
When to Intervene: Toward a Markov Decision Process

Dialogue Policy for Computer Science Tutoring

Christopher M. Mitchell, Kristy Elizabeth Boyer, and James C. Lester

Department of Computer Science, North Carolina State University,

Raleigh, North Carolina, USA

{cmmitch2, keboyer, lester}@ncsu.edu

Abstract. Designing dialogue systems that engage in rich tutorial dialogue has

long been a goal of the intelligent tutoring systems community. A key challenge

for these systems is determining when to intervene during student problem

solving. Although intervention strategies have historically been hand-authored,

utilizing machine learning to automatically acquire corpus-based intervention

policies that maximize student learning holds great promise. To this end, this

paper presents a Markov Decision Process (MDP) framework to learn when to

intervene, capturing the most effective tutor turn-taking behaviors in a task-

oriented learning environment with textual dialogue. This framework is

developed as a part of the JavaTutor tutorial dialogue project and will contribute

to data-driven development of a tutorial dialogue system for introductory

computer science education.

Keywords: Tutorial Dialogue, Markov Decision Processes, Reinforcement

Learning

1 Introduction

The effectiveness of tutorial dialogue has been widely established [1, 2]. Today’s

tutorial dialogue systems have been successful in producing learning gains as they

support problem solving [3–5], encourage collaboration [6, 7], and adapt to student

responses [8]. These systems have also been shown to be successful in implementing

some affective adaptations of human tutors [5, 9]. Recent research into tutorial

dialogue systems with unrestricted turn-taking has shown promise for simulating the

natural tutorial dialogue interactions of a human tutor [7]. Recognizing and simulating

the natural conversational turn-taking behavior of humans continues to be an area of

active research [10–12], and there has recently been renewed interest in developing

dialogue systems that harness unrestricted turn-taking paradigms [7, 13, 14].

The JavaTutor tutorial dialogue project aims to build a tutorial dialogue system

with unrestricted turn-taking and rich natural language to support introductory

computer science students. The overarching paradigm of this project is to

automatically derive tutoring strategies using machine learning techniques applied to

a corpus collected from an observational study of human-human tutoring. In

particular, the project focuses on how to devise tutorial strategies that deliver both

cognitive and affective scaffolding in the most effective way. The project to date has

seen the collection of a large corpus of tutorial dialogue featuring six repeated

interactions with tutor-student pairs, accompanied by data on learning and attitude for

each session as well as across the study [15–17]. This paper describes an important

first step toward deriving tutorial dialogue policies automatically from the collected

corpus in a way that does not simply mimic the behavior of human tutors, but seeks to

identify the most effective tutorial strategies and implement those within the system’s

dialogue policy.

In recent years, reinforcement learning (RL) has proven useful for creating tutorial

dialogue system policies in structured problem-solving interactions, such as what type

of question to ask a student [18] and whether to elicit or tell the next step in the

solution [19]. In order to harness the power of RL-based approaches within a tutorial

dialogue system for computer science education, two important research problems

must be addressed. First, a representation must be formulated in which student

computer programming actions, which can occur continuously or in small bursts, can

be segmented at an appropriate granularity and provided to the model. Second,

because student dialogue moves, tutor dialogue moves, and student programming

actions can occur in an interleaved manner with some overlapping each other, features

to define the Markov Decision Process state space must be identified that preserve the

rich, unrestricted turn-taking and mixed-initiative interaction to the greatest extent

possible. In a first effort to address these challenges, this paper presents a novel

application of RL-based approaches to the JavaTutor corpus of textual tutorial

dialogue. In particular, the focus here is automatically learning when to intervene

from this fixed corpus of human-human task-oriented tutorial dialogue with

unrestricted turn-taking. The presented approach and policy results can inform data-

driven development of tutorial systems for computer science education.

2 Human-Human Tutorial Dialogue Corpus

To date, the JavaTutor project has seen the collection of an extensive corpus of

human-human tutoring. Between August 2011 and March 2012, 67 students interacted

with experienced tutors through the Java Online Tutoring Environment (Figure 1).

Students were drawn from a first-year engineering course on a voluntary basis. They

earned partial course credit for their participation. Students who reported substantial

programming experience in a pre-survey were excluded from the experienced-tutoring

condition (and were instead placed in a peer-tutoring collaborative condition that is

beyond the scope of this paper), since the target population of the JavaTutor tutorial

dialogue system is students with no programming experience. Each student completed

six tutoring sessions over a period of four weeks, and worked with the same tutor for

all interactions. Each tutoring session was limited to forty minutes.

Seven tutors participated in the study. Their experience level ranged from multiple

years’ experience in one-on-one tutoring to one semester’s experience as a teaching

assistant or small group tutor. Gender distribution of the tutors was three female and

four male. Tutors were provided with printed learning objectives for each session and

were reminded that they should seek to support the students’ learning as well as

motivational and emotional state. Also, because each subsequent tutoring session built

on the completed computer program from the preceding session, tutors were

encouraged to ensure that students completed the required components of the

programming task within the allotted forty-minute time frame.

The overarching computer science problem-solving task was for students to create

a text-based adventure game in which a player can explore scenes based on menu

choices. In order to implement the adventure game, students learned a variety of

programming concepts and constructs. This paper focuses on the first of the six

tutoring sessions. The learning objectives covered in this first session included

compiling and running code, writing comments, variable declaration, and system I/O.

For each learning objective, there was a conceptual component and an applied

component. For example, for the learning objective related to compiling code, the

conceptual learning objective was for students to explain that compilation translates

human-readable Java programs into machine-readable forms. The applied learning

objective was for students to demonstrate that they can compile a program by pressing

the “compile” button within the interface.

The Java Online Learning Environment, shown in Figure 1, supports textual

dialogue between the human tutor and student. It also provides tutors with a real-time

synchronized view of the student’s workspace. The interface allows for logging

events to a database with millisecond precision, making it straightforward to

reconstruct the events of a session from these logs. There are two information

channels between a tutor and a student. The first of these, the messaging pane,

supports unrestricted textual dialogue between a tutor and a student, similar to

common instant messaging applications. There are no restrictions placed on turn-

taking, allowing either person to compose a message at any time. In addition, both

students and tutors are notified when their partner is composing a message. The

second information channel is the student’s workspace. A tutor can see progress on

the Java program written by the student in real-time, but the tutor is not able to edit

the program directly. The Java programming environment is scaffolded for novices: it

hides class declarations, method declarations, and import statements from the student,

lowering the amount of complex syntax visible. Students effectively compose their

programs within a main method “sandbox”.

In order to measure the effectiveness of each session, students completed a pre-test

at the beginning of each session and a post-test at the end of each session evaluating

their knowledge of the material to be taught in that lesson. From these, we computed

normalized learning gain using the following equation:

≤
−

>
−

−

=

pretestposttest
pretest

pretestposttest

pretestposttest
pretest

pretestposttest

inLearningGanormalized

,

,
1

(1)

Fig. 1. A student’s view of the JavaTutor human tutoring interface

This equation, adapted from Marx and Cummings [20] allows for the possibility of

negative learning gain during a session, a phenomenon that occurred three times in the

corpus. These normalized learning gain values can range from -1 to 1. In the present

study normalized learning gains ranged from -0.29 to 1 (mean = 0.42; median = 0.45;

st. dev. = 0.32). Students scored significantly higher on the post-test than the pre-test

(p < .001).

3 Building the Markov Decision Process

The goal of the analysis presented here is to derive an effective tutorial intervention

policy—when to intervene—from a fixed corpus of student-tutor interactions. From

the tutors’ perspective, the decision to intervene was made based on the state of the

interaction as observed through the two information channels in the interface: the

textual dialogue pane and the synchronized view of the student’s workspace. In order

to use a MDP framework to derive an effective intervention policy, we describe a

representation of the interaction state as a collection of features from these

information channels.

A Markov Decision Process is a model of a system in which a policy can be

learned to maximize reward [21]. It consists of a set of states S, a set of actions A

representing possible actions by an agent, a set of transition probabilities indicating

how likely it is for the model to transition to each state sʹ ϵ S from each state s ϵ S

when the agent performs each action a ϵ A in state s, and a reward function R that

maps real values onto transitions and/or states, thus signifying their utility.

The goal of this analysis is to model tutor interventions during the task-completion

process, so the possible actions for a tutor were to intervene (by composing and

sending a message) or not to intervene. Hence, the set of actions is defined as A =

{TutorMove, NoMove}. We chose three features to represent the state of the dialogue,

with each feature taking on one of three possible values. These features, described in

Table 1, combine as a triple to form the states of the MDP as (Current Student Action,

Task Trajectory, Last Action). These three features were chosen because they

succinctly represent the current state of the dialogue in terms of turn-taking

information in the Current Action and Last Action features, while the recent behavior

of the student is captured in the Task Trajectory and Current Action features. Thus,

these features supply an agent with sufficient information to learn a basic intervention

policy while relying only on automatically annotated features. By selecting a small

state space and action space, we avoid data sparsity issues [22], thereby decreasing

the likelihood of states being insufficiently explored in our corpus, and increasing the

likelihood of producing a meaningful intervention policy.

Table 1. The features that define the states of the Markov Decision Process

Current Student Action Task Trajectory Last Action

• Task: Working on the

task

• StudentDial: Writing a

message to the tutor

• NoAction: No current

student action

• Closer: Moving closer to the

final correct solution

• Farther: Moving away from

correct solution

• NoChange: Same distance

from correct solution

• TutorDial: Tutor

message

• StudentDial: Student

message

• Task: Student worked on

the task

In addition, the model includes 3 more states: an Initial state, in which the model

always begins, and two final states: one with reward +100 for students achieving

higher-than-median normalized learning gain and one with reward -100 for the

remaining students, following the conventions established in prior research into

reinforcement learning for tutorial dialogue [18, 19].

Using these formalizations, one state was assigned to each of the log entries

collected during the sessions and transition probabilities were computed between

them when a tutor made an intervention (TutorMove) and when a tutor did not make

an intervention (NoMove) based on the transition frequencies observed in the data.

Any states that occurred less than once per session on average were combined into a

single LowFrequency state, following the convention of prior work [23]. There were

four states fitting this description: (Task, Farther, StudentDial), (StudentDial,

Farther, StudentDial), (StudentDial, Farther, Task), and (StudentDial, Farther,

TutorDial). Thus, the final MDP model contained 25 states requiring a tutorial

intervention decision (23 states composed of feature combinations, the LowFrequency

state, and the Initial state), and two final states.

The Current Student Action and Last Action features were relatively

straightforward to assign to log entries by simply observing what a student was

currently doing at that point in the session and observing what action had occurred

most recently. The Task Trajectory feature was computed by discretizing the students’

work on the task into chunks, which presents a substantial research question and

design decision for supporting computer science learning. Historically, intelligent

tutoring systems for computer science have utilized granularity at one extreme or the

other. The smallest possible granularity is every keystroke, perhaps the earliest

example of this being the Lisp tutor of Anderson and colleagues [24]. The largest

granularity could arguably be to evaluate only when the student deems the artifact

complete enough to manually submit for evaluation, which was the approach taken by

another very early computer science tutor, Proust [25]. For the JavaTutor system,

evaluating the student program more often than at the completion of tasks is essential

to support dialogue, but an every-keystroke evaluation is too frequent due in part to

algorithm runtime limitations. We define our task events as beginning when a student

begins typing in the task pane and ending when a student has not typed in the task

pane for at least 1.5 seconds. This threshold of 1.5 seconds was chosen empirically

before model building to strike a balance between shorter thresholds, which resulted

in frequent switching between “working on task” and “not working on task” states,

and longer thresholds, which resulted in never leaving the “working on task” state.

After each task event (discretized as described above), a student’s program was

separated into tokens as defined by the Java compiler, and a token-level minimum edit

distance was computed from that student’s final solution for the lesson, tokenized in

the same manner. Variable names, comments, and the contents of string literals were

ignored in this edit distance calculation. The change in the edit distance from one

chunk to the next determined the value of the Task Trajectory feature. Because the

tutors were experienced in Java programming and had knowledge of the lesson

structure, it is reasonable to assume that they were able to determine whether the

student was moving farther or closer to the final solution. In this way, the edit

distance algorithm provides a rough, automatically computable estimate of the tutors’

assessment of student progress.

4 Policy Learning

The goal of this analysis is to learn a tutorial intervention policy—when to

intervene—that reflects the most effective strategies within the corpus. In the MDP

framework described above, this involves maximizing the learning gain reward. In

order to learn this tutorial intervention policy, we used a policy iteration algorithm

[21] on the MDP. For each iteration, this algorithm computes the expected reward in

each state s ϵ S when taking each action a ϵ A, based on the computed transition

probabilities to other states and the expected rewards of those states from the previous

iteration. Following the practice of prior work [13, 17], a discount factor of 0.9 was

used to penalize delayed rewards (those requiring several state transitions to achieve)

in favor of immediate rewards (those requiring few state transitions to achieve). The

policy iteration continues until convergence is reached; that is, until the change in

expected reward for each state is less than some epsilon value between iterations. We

used an epsilon of 10
-7

, requiring 125 iterations to converge. The resulting policy is

shown in Table 2.

Table 2. The learned tutorial intervention policy

State

(Current Action,

Task Trajectory,

Last Action)

Policy

 State

(Current Action,

Task Trajectory,

Last Action)

Policy

(Task, Closer, Task) TutorMove (StudentDial, NoChange, TutorDial) NoMove

(Task, Closer, StudentDial) TutorMove (NoAction, Closer, Task) TutorMove

(Task, Closer, TutorDial) TutorMove (NoAction, Closer, StudentDial) TutorMove

(Task, Farther, Task) TutorMove (NoAction, Closer, TutorDial) NoMove

(Task, Farther, TutorDial) TutorMove (NoAction, Farther, Task) NoMove

(Task, NoChange, Task) TutorMove (NoAction, Farther, StudentDial) TutorMove

(Task, NoChange, StudentDial) NoMove (NoAction, Farther, TutorDial) NoMove

(Task, NoChange, TutorDial) TutorMove (NoAction, NoChange, Task) TutorMove

(StudentDial, Closer, Task) TutorMove (NoAction, NoChange, StudentDial) NoMove

(StudentDial, Closer, StudentDial) TutorMove (NoAction, NoChange, TutorDial) NoMove

(StudentDial, Closer, TutorDial) TutorMove Initial TutorMove

(StudentDial, NoChange, Task) NoMove LowFrequency TutorMove

(StudentDial, NoChange, StudentDial) NoMove

Some noteworthy patterns emerge in the intervention policy learned from the corpus.

For example, in seven of the eight states where the student is actively engaged in task

actions (Task, *, *), the policy recommends that the tutor make a dialogue move. An

excerpt from the corpus illustrating this strategy in a high learning gain session is

shown in Figure 2, on lines 2-4. An excerpt from a low learning gain session showing

tutor non-intervention during task progress is shown in Figure 3. In addition, among

the states in which no action is currently being taken by the student and the last action

was a tutor message, i.e., matching the pattern (NoAction, *, TutorDial), we find that

the policy recommends that a tutor not make another consecutive dialogue move,

regardless of how well the student is progressing on the task. However, Figure 2

shows that high learning gains are possible without strictly following this particular

recommendation. Additional discussion on these recommendations can be found in

[26].

5 Conclusion and Future Work

Current tutorial dialogue systems are highly effective, and matching the effectiveness

of the most effective tutors is a driving force of tutorial dialogue research. This paper

presents a step toward rich, adaptive dialogue for supporting computer science

learning by introducing a representation of task-oriented dialogue with unrestricted

turn-taking in a reinforcement learning framework and presenting initial results of an

automatically learned policy for when to intervene. The presented approach will

inform the development of the JavaTutor tutorial dialogue system, whose initial

policies will be learned based on the fixed human-human corpus described here.

 Event Tutor action and state transition

1. Student is declaring a String variable named

“aStringVariable”.

NoMove

(Task, NoChange, Task)

2. Tutor starts typing a message TutorMove

(NoAction, Closer, TutorDial)

3. 1.5 seconds elapse, task action is complete.

4. Tutor message: That works, but let’s give the variable

a more descriptive name

5. Tutor starts typing a message TutorMove

(NoAction, Closer, TutorDial)

6. Student starts typing a message

7. Student message: ok

8. Tutor message: Usually, the variable’s name tells us

what data it has stored

Fig. 2. An excerpt from a high learning gain session.

 Event Tutor action and state transition

1. Student has just attempted to implement the

programming code needed to complete the task, with

no tutor intervention.

NoMove

(NoAction, Closer, Task)

2. Student starts typing a message NoMove

(StudentDial, Closer, Task)

3. Student message: not sure if this is right… NoMove

(NoAction, Closer, StudentDial)

Fig. 3. An excerpt from a low learning gain session.

Further exploring of the state space via simulation and utilizing a more expressive

representation of state are highly promising directions for future work. Other

directions for future work include undertaking a more fine-grained analysis of the

timing of interventions, which could inform the development of more natural

interactions, as well as allowing for more nuanced intervention strategies.

Additionally, these models should be enhanced with a more expressive representation

of both dialogue and task. It is hoped that these lines of investigation will yield highly

effective machine-learned policies for tutorial dialogue systems and that tutorial

dialogue systems for computer science will make this subject more accessible to

students of all grade levels.

Acknowledgements

The JavaTutor project team includes Eric Wiebe, Bradford Mott, Eun Young Ha,

Joseph Grafsgaard, Alok Baikadi, Megan Hardy, Mary Luong, Miles Smaxwell,

Natalie Kerby, Robert Fulton, Caitlin Foster, Joseph Wiggins, and Denae Ford. This

work is supported in part by the National Science Foundation through Grants DRL-

1007962 and CNS-1042468. Any opinions, findings, conclusions, or

recommendations expressed in this report are those of the participants, and do not

necessarily represent the official views, opinions, or policy of the National Science

Foundation.

References

1. Bloom, B.: The 2 sigma problem: the search for methods of group instruction as

effective as one-to-one tutoring. Educational Researcher. 13, 4–16 (1984).

2. VanLehn, K., Graesser, A.C., Jackson, G.T., Jordan, P., Olney, A., Rosé, C.P.:

When are tutorial dialogues more effective than reading? Cognitive Science. 31,

3–62 (2007).

3. Evens, M.W., Michael, J.: One-on-One Tutoring by Humans and Computers.

Lawrence Erlbaum Associates, Mahwah, New Jersey (2005).

4. Heffernan, N.T., Koedinger, K.: The design and formative analysis of a dialog-

based tutor. Workshop on Tutorial Dialogue Systems. pp. 23–34 (2001).

5. Forbes-Riley, K., Litman, D.: Adapting to student uncertainty improves tutoring

dialogues. Proceedings of the International Conference on Artificial Intelligence

in Education. pp. 33–40 (2009).

6. Kersey, C., Di Eugenio, B., Jordan, P., Katz, S.: KSC-PaL: A peer learning agent

that encourages students to take the initiative. Proceedings of the Fourth

Workshop on Innovative Use of NLP for Building Educational Applications. pp.

55–63 (2009).

7. Kumar, R., Rosé, C.P.: Architecture for Building Conversational Agents that

Support Collaborative Learning. IEEE Transactions on Learning. 4, 21–34

(2011).

8. Jackson, G.T., Person, N.K., Graesser, A.C.: Adaptive Tutorial Dialogue in

AutoTutor. ITS 2004 Workshop Proceedings on Dialog-based Intelligent

Tutoring Systems. pp. 9–13 (2004).

9. D’Mello, S., Graesser, A.: AutoTutor and affective autotutor: Learning by talking

with cognitively and emotionally intelligent computers that talk back. ACM

Transactions on Interactive Intelligent Systems. 2, (2012).

10. Jonsdottir, G.R., Thorisson, K.R., Nivel, E.: Learning Smooth, Human-Like

Turntaking in Realtime Dialogue. Proceedings of the 8th International

Conference on Intelligent Virtual Agents. pp. 162–175 (2008).

11. Ward, N.G., Fuentes, O., Vega, A.: Dialog Prediction for a General Model of

Turn-Taking. Proceedings of the International Conference on Spoken Language

Processing (2010).

12. Raux, A., Eskenazi, M.: Optimizing the turn-taking behavior of task-oriented

spoken dialog systems. ACM Transactions on Speech and Language Processing.

9, 1–23 (2012).

13. Bohus, D., Horvitz, E.: Multiparty Turn Taking in Situated Dialog: Study,

Lessons, and Directions. Proceedings of the 12th Annual Meeting of the Special

Interest Group in Discourse and Dialogue. pp. 98–109 (2011).

14. Morbini, F., Forbell, E., DeVault, D., Sagae, K., Traum, D.R., Rizzo, A.A.: A

Mixed-Initiative Conversational Dialogue System for Healthcare. Proceedings of

the 13th Annual Meeting of the Special Interest Group in Discourse and

Dialogue. pp. 137–139 (2012).

15. Mitchell, C.M., Boyer, K.E., Lester, J.C.: From strangers to partners: examining

convergence within a longitudinal study of task-oriented dialogue. Proceedings of

the 13th Annual SIGDIAL Meeting on Discourse and Dialogue. pp. 94–98

(2012).

16. Ha, E.Y., Grafsgaard, J.F., Mitchell, C.M., Boyer, K.E., Lester, J.C.: Combining

verbal and nonverbal features to overcome the “information gap” in task-oriented

dialogue. Proceedings of the 13th Annual SIGDIAL Meeting on Discourse and

Dialogue. pp. 246–256 (2012).

17. Grafsgaard, J.F., Fulton, R., Boyer, K.E., Wiebe, E., Lester, J.C.: Multimodal

analysis of the implicit affective channel in computer-mediated textual

communication. to appear in Proceedings of the 14th ACM international

conference on Multimodal Interaction (2012).

18. Tetreault, J.R., Litman, D.J.: A Reinforcement Learning approach to evaluating

state representations in spoken dialogue systems. Speech Communication. 50,

683–696 (2008).

19. Chi, M., VanLehn, K., Litman, D.: Do micro-level tutorial decisions matter:

applying reinforcement learning to induce pedagogical tutorial tactics.

Proceedings of the International Conference on Intelligent Tutoring Systems. pp.

224–234. (2010).

20. Marx, J.D., Cummings, K.: Normalized change. American Journal of Physics. 75,

87–91 (2007).

21. Sutton, R., Barto, A.: Reinforcement Learning. MIT Press, Cambridge, MA

(1998).

22. Singh, S., Litman, D., Kearns, M., Walker, M.: Optimizing Dialogue

Management with Reinforcement Learning: Experiments with the NJFun System.

Journal of Artificial Intelligence Research. 16, 105–133 (2002).

23. Tetreault, J.R., Litman, D.J.: Using Reinforcement Learning to Build a Better

Model of Dialogue State. Proceedings of the 11th Conference of the European

Chapter of the Association for Computational Linguistics. pp. 289–296 (2006).

24. Anderson, J.R., Boyle, C.F., Corbett, A.T., Lewis, M.W.: Cognitive modeling and

intelligent tutoring. Artificial Intelligence. 42, 7–49 (1990).

25. Johnson, W.L., Soloway, E.: PROUST: Knowledge-based program

understanding. ICSE ’84: Proceedings of the 7th international conference on

Software engineering. pp. 369–380 (1984).

26. Mitchell, C.M., Boyer, K.E., Lester, J.C.: A Markov Decision Process Model of

Tutorial Intervention in Task-Oriented Dialogue. To appear in Proceedings of the

16th International Conference on Artificial Intelligence in Education (2013).

