
Robustness of External Annotation for Web-Page Clipping:
Empirical Evaluation with Evolving Real-Life

Web Documents

Masahiro Hori
Faculty of Informatics, Kansai

University
2-1-1 Ryozenji-cho,

Takatsuki-shi
Osaka 569-1095, Japan

horim@res.kutc.kansai-
u.ac.jp

Mari Abe
∗

IBM Tokyo Research
Laboratory

1623-14 Shimotsuruma,
Yamato-shi

Kanagawa 242-8502, Japan

maria@jp.ibm.com

Kouichi Ono
IBM Tokyo Research

Laboratory
1623-14 Shimotsuruma,

Yamato-shi
Kanagawa 242-8502, Japan

onono@jp.ibm.com

ABSTRACT
Web metadata is crucial for providing machine-understandable
descriptions of Web resources, and has a number of appli-
cations such as discovery, qualification, and adaptation of
Web documents. While annotations are often embedded
into a Web document, annotations can also be associated
externally by means of addressing expressions represented
with the XPath language. However, there has been little
empirical study of robust pointing using XPath expressions,
in spite of the increasing prevalence of the XPath language
not only for use with XSLT, but also in emerging content
adaptation systems. The objective of this study is to evalu-
ate the robustness of XPath expressions especially the ones
that can be used for the generation of external annotations,
and draw practical implications to the reliable use of exter-
nal annotation.

1. INTRODUCTION
Web annotation is crucial for providing not only human-

readable remarks, but also machine-understandable descrip-
tions, and has a number of applications such as discovery,
qualification, and adaptation of Web contents [19]. As more
and more Web-enabled personal devices are becoming avail-
able for connecting to the Internet, the same Web docu-
ments need to be rendered differently on different client de-
vices. Adaptation of Web document to delivery context is
thus crucial for transparent Web access, which may depend
on client capabilities, network connectivity, or user prefer-
ences [8]. The long-term goal of our research is to establish

∗This author also belongs to Graduate School of Science and
Technology, Keio University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

technologies of customizing Web documents suitable for de-
livery context. The customization or document adaptation
requires annotation that indicates the ways of modifying the
document at hand.

Annotations can be embedded into a Web document as in-
line annotations, which are often created as extra attributes
of document elements. Most existing HTML browsers ignore
unknown attributes added to HTML elements, without be-
ing bothered by the proprietary inline annotations. Because
of its simplicity, inline annotation has been often adopted as
a way of associating annotation with HTML documents [22,
25, 10, 12]. An advantage of the inline approach is the ease
of annotation maintenance without the bookkeeping task of
associating annotations with their target document. The
inline approach, however, requires annotators to have doc-
ument ownership because annotated documents need to be
modified whenever inline annotations are created or revised.

On the other hand, the external annotation approach [13]
does not suffer from these issues related to document own-
ership. The important point of the external annotation ap-
proach is that it facilitates the sharing and reuse of anno-
tations across Web documents. In addition, the mixing of
content and metadata is not desirable with regard to the
design guideline that content should be separated from pre-
sentation. Therefore, it is assumed in this study that such
metadata is maintained separately from a target document,
and exploited dynamically at runtime by a content adapta-
tion engine.

Since Web documents may change over time, it is not
always obvious what kinds of addressing expression keep
pointing the same target element regardless of the document
changes. It was reported that a key complaint in the use of
electronic annotation was the situation in which an anno-
tation cannot point any portion of a target document [4].
These are aspects of the issue related to robust positioning,
which has been investigated in a couple of empirical studies
[24, 3]. However, there has been little empirical study of
robust pointing using XPath expressions, in spite of the in-
creasing prevalence of the XPath language not only for use
with XSLT, but also in emerging content adaptation systems
[13, 26, 23, 2].

The objective of this study is to evaluate the robustness

of XPath expressions especially the ones that can be used
for the generation of external annotations, and draw prac-
tical implications to the reliable use of external annotation.
In the next section, we introduce variations in annotation
tools, on the basis of two authoring methods (annotation by
selection and by example) as well as the different roles of
annotations for assertion and transformation. Section 3 ex-
plains an annotation language for Web page clipping, which
has been adopted for commercially available software prod-
ucts, and its application to page clipping for small-screen de-
vices and portal site development. In Section 4, we present
an empirical evaluation of the robustness of XPath expres-
sions with regard to the changes in real-life HTML pages. In
particular, it was investigated to what extent those expres-
sions continued to point at the same nodes in the modified
pages during the observation period of one year and three
months. Finally, we discuss the advantages and limitations
of the XPath expressions taking account of the generation
of external annotations.

2. VARIATIONS IN ANNOTATION TOOLS
An annotation in general declares properties that qualify

a particular portion of a target document. In some cases,
however, annotations may indicate structural changes for
the annotated portion of a target document. In order to
clarify the distinction of these two roles, the former is called
assertional annotation, while the latter transformational an-
notation [14]. Note here that this distinction is not exclusive,
because every annotation is intrinsically an assertion.

Transformational annotation has been used for Web con-
tent adaptation, in which structural changes of a target doc-
ument are needed [13, 23, 26, 28]. In contrast to assertional
annotation languages (such as Dublin Core Metadata [7]),
transformational annotation languages (such as XSLT [28])
are more like programming languages, and not necessary
easy for annotators to create transformational annotations
by using conventional annotation by selection approach.

It is simple for annotation authors or annotators to in-
dicate a location to be annotated and create an assertion
as annotation content. This is an approach that we call
annotation by selection, and is adopted by existing annota-
tion tools [1, 5, 10, 13, 17, 23, 11]. On the other hand, for
transformational annotations, it is easier for annotators to
modify a target document toward the desired results of the
customization, rather than to indicate the ways of modifi-
cations declaratively as assertional annotations. This is a
basic idea behind an approach what we call annotation by
example, which was originally proposed in our previous work
on the generation of XSLT rules [18].

According to the distinctions of annotation authoring meth-
ods and the roles of annotation, Table 1 summarizes varia-
tions in annotation tools. Annotators can select a portion of
document to be annotated and declare properties on the se-
lected portion as assertional annotation. This type of anno-
tation tools support assertional annotation by selection [Ta-
ble 1(a)], and most of the existing annotation tools fall into
this category. Even when annotations are used for structural
changes of a target document, it is possible for authors to
create transformational annotations by selecting portions to
be changed and declare instructions of transformations as
annotations. This type of annotation tools support trans-
formational annotation by selection [Table 1(b)].

In order to create transformational annotations, however,

Table 1: Variations in annotation tool design

Authoring methods

R ol es of
a nnota tion

By example

T r an s f o r mat i o n

A s s er t i o n

By s elec t i o n

(a)

(b) (c)

N/A

annotation by example would be much easier for annotators,
because the annotators can work with a concrete example
and create a desired result interactively with the example.
In particular, the example-based method allows annotators
to generate transformational annotations on the basis of an-
notators’ editing operations conducted to come up with a de-
sired result. This type of annotation tools follows transfor-
mational annotation by example [Table 1(c)]. This example-
based method is particularly useful for the transformational
annotations, and would not make sense for assertional anno-
tations, because it is not intuitive for annotators to indicate
assertional annotations as results of structural changes of a
target document.

The core part of the tool configuration is independent of
any particular views and editors, and consists of two docu-
ment object models (DOMs) [9]: one for a target document,
and another for an annotation document. It is assumed here
that the creation of an annotation document is a primary
task of annotators, and the annotators are not allowed to
modify a target document. The assertional annotation by
selection is the most typical and provide a comprehensive
way of annotation. The details of this type of annotation
tool is reported in another article [1, 16]. According to our
interests in customization of Web documents, this paper fo-
cuses on the transformational annotation, and in particular
the two advanced approaches to generating annotations by
selection [Table 1(b)] and by example [Table 1(c)].

2.1 Transformational Annotation by Selection
Figure 1 depicts the configuration for transformational

annotation by selection. This type of annotation tools relies
on a target document viewer, because portions of a target
document can only be selected without any modification.
With this type of annotation tools, first an annotator opens
a target document to be customized. The annotator then
selects portions of the target document by using a document
viewer [Figure 1 (a)], and indicates how each of the selected
portion to be modified (e.g., remove and enlarge). Trans-
formational annotation can then be generated [Figure 1 (b)]
on the basis of the portions of a target document selected
by an annotator.

2.2 Transformational Annotation by Example
If a person knows how to perform a task to be executed

by a computer, perhaps the person’s knowledge can some-
how be exploited for the creation of a program to perform
the task. This is the idea behind programming by exam-
ple [20]. Programming by example is a natural approach to
generating transformational annotation for page designers
or novice programmers, because such users need only work
with examples of how to transform a document at hand, and
are given with generated annotations that can replicate the

Selected
n o des

Target
D o c u m en t
Viewer

Selection-based
annotation generation

Core components

T a r g et
D o cu m en t

T r a n s f o r m a ti o n a l
A n n o ta ti o n

A n n o tati o n
G en erato r

(a)

(b)

annotate

Figure 1: Tool configuration for transformational
annotation by selection

Operation
h is tory

Target
D o c u m en t
Editor

C u s tom iz ed
D oc u m ent

Example-based
annotation generation

A n n o tati o n
G en erato r

(a)

(b)

(c)

Core components

T arg et
D oc u m ent

T rans f orm ational
A nnotation

annotate

Figure 2: Tool configuration for transformational
annotation by example

same transformation.
A configuration of the example-based annotation tool is

depicted in Figure 2. This type of annotation tools relies on
a target document editor rather than a viewer in contrast to
the case of annotation by selection (see Figure 1). With this
type of annotation tools, first an annotator opens a target
document to be customized (e.g., an HTML file). The anno-
tator then edits the document by using the full capabilities of
a WYSIWYG authoring tool [Figure 2 (a)]. Although the
annotator’s editing actions are recorded into an operation
history [Figure 2 (b)], the annotator does not have to care
about the recording process behind the scenes. When the
editing is finished, the annotator will have a customized doc-
ument. At the same time, the annotation generator creates
transformational annotation for the document customiza-
tion [Figure 2 (c)], which can be used by a runtime engine
(e.g., XSLT processor) to replicate the transformation from
the initial target document to the customized document.
Further details on the annotation generation procedure are
reported in the other articles [14, 18].

It is possible for both selection-based and example-based
approaches to generate transformational annotations, but
the selection-based approach is limited in the kinds of an-
notation constructs to be generated as compared with the
example-based approach, because the expressiveness of an-
notators’ selection on a document viewer is far more limited
than that of annotators’ full editing capability on a docu-
ment editor.

3. ANNOTATION-BASED DOCUMENT ADAP-
TATION

Web pages for e-commerce, for example, contain a lot of
information such as details of products, product images, and
numerous links to other areas of the site, when the pages

(a)
O ri gi nal
p age

Target document

(b)
C l i p p ed
p age

U R L -x

U R L -x

Transcoding
P rox y

C l ip p ing
e ngine

H TTP
S e rv e r (U R L -x)

A nnotati on
document
A nnotati on
document

Figure 3: Overview of an annotation-based
transcoding

are created for the desktop computers. However, it may
be necessary to deliver portions of this page for users to
access through a Web-enabled phone rather than a desk-
top browser. In such a case, the images and nested HTML
tables prepared for a nicely laid out page are a hindrance
rather than help. The sheer amount of information becomes
unwieldy in the small display, and potentially expensive de-
pending on the user’s wireless service.

Transformational annotations provide additional informa-
tion about Web documents, so that an adaptation engine
can make better decisions on the content transformation.
The role of annotations here is to provide explicit semantics
that can be understood by a content adaptation engine [15].

3.1 Page Clipping for Small-Screen Devices
An overview of an annotation-based transcoding process

is depicted in Figure 3. Upon receipt of a request from a
client, a Web document is retrieved from a content server.
Taking account of the capabilities of the client specified in
the HTTP request header, a transcoding proxy selects one
or more transcoding modules. When a selected transcod-
ing module requires an annotation document, an annota-
tion file is also retrieved from a content server, which may
or may not be the same server that retrieved the Web docu-
ment. The transcoding module may simply return the origi-
nal document, if a client agent has the rendering capabilities
compatible with ordinary desktop computers [Figure 3 (a)].
Alternatively, the original document may be returned with
modification, so that the original content can fit into a small
screen device [Figure 3 (b)]. The decisions about the content
adaptation are made taking account of the client capabilities
specified in the HTTP request header.

Content adaptation can be done by using an annotation-
based page-clipping engine [26]. At content delivery time,
the page-clipping engine may modify the original document
with reference to page-clipping annotations and client pro-
files sent over HTTP. The main idea in the page-clipping
annotation language is the notion of a clipping state. By
using <keep> and <remove> elements in the annotation de-
scriptions, users can specify the clipping state to indicate
whether the content being processed should be preserved or
removed.

As a simple example, an HTML page and its clipped re-
sults are shown in Figure 4. In this example, the header and
the first paragraph are preserved as shown in Figure 4(a).
The table element is modified by deleting the third column
and the second row. The cell-padding attribute of the table
is increased, so that each table cell can be provided with

Original page C lipped page

(a) pres erv e

(b) m o d if y

(c) rem o v e

Figure 4: Simple example of an HTML page clipping

<?xml version='1.0' ?>
<annot version="2.0">

<!-- (a) Set the default clipping state to 'keep' -->
<description take-effect="before"

target="/HTML[1]/BODY[1]/*[1]">
<keep/>

</description>

<!-- (b) Remove a column and a row of the first -->
<!–- table, and change a cellpadding -->
<!–- attribute value -->
<description take-effect="before"

target="/HTML[1]/BODY[1]/TABLE[1]">
<keep/>
<table>

<column index="3" clipping="remove"/>
<column index="*" clipping="keep"/>
<row index="2" clipping="remove"/>
<row index="*" clipping="keep"/>

</table>
<insertattribute name="cellpadding" value="4"/>

</description>

<!-- (c) Set the clipping state to 'remove' -->
<description take-effect="before"

target="/HTML[1]/BODY[1]/P[2]">
<remove/>

</description>
<!-- (d) Set the clipping state back to 'keep' -->
<description take-effect="after"

target="/HTML[1]/BODY[1]/P[2]">
<keep/>

</description>
</annot>

Figure 5: Example of page-clipping annotations

margin space [Figure 4(b)]. In addition, the whole of the
second paragraph is removed as shown in Figure 4(c). All
the structural changes in HTML documents can be easily
done by using a WYSIWYG HTML editor.

Figure 5 shows an annotation document that realizes the
page clipping illustrated in Figure 4. This transformational
annotation can actually be generated by using the example-
based annotation generation tool [14]. The <description>

element prescribes a unit of an annotation statement in
the annotation language. The target attribute is set to
an XPath expression, and identifies the node on which the
annotation will be applied, and the take-effect attribute
indicates whether the annotation is applied before or af-
ter the target node. By specifying the value of target at-
tribute as /HTML[1]/BODY[1]/*[1] [Figure 5(a)], the
clipping state is activated after the first element after the
first <BODY> element, which in this case is an <H1>. The
<keep> element in Figure 5(a) indicates that all the doc-

ument elements encountered are preserved, until otherwise
instructed by another annotation statement. The clipping
state is changed to ’remove’ just before the second <P> ele-
ment [Figure 5(c)], and changed back to ’keep’ after the <P>

element [Figure 5(d)]. As results, the second paragraph ele-
ment indicated by /HTML[1]/BODY[1]/P[2] is removed
while preserving the elements just before and after the re-
moved element.

Since HTML tables can often be complex elements to clip,
the annotation language provides special-purpose elements
to make table clipping easier. The <row> and <column> el-
ements allow user to clip rows and columns without relying
on complicated XPath expressions. The table-clipping el-
ements are used in the description shown in Figure 5(b).
This description sets the clipping state to ’keep’ just be-
fore the first table element, and also changes the value of
cellpadding attribute to 4 by using the <insertattribute>
element. The name attribute of <insertattribute> can be
specified with an arbitrary name of an attribute available
for a target document.

In addition, the description element [Figure 5(b)] declares
that the third column, which is indicated by the index value
of the <column> element, is discarded, while the remaining
columns are preserved. Note here that the wildcard char-
acter to indicate multiple columns (index="*"). If a wild-
card is specified, all rows (or columns) will be affected, ex-
cept for those specifically indicated by a separate <row> (or
<column>) element. So, all rows but the second are pre-
served for the target table.

3.2 Page Clipping for Portal Site Development
Annotation-based page clipping is a useful technique for

the adaptation of existing HTML documents to varieties
of small-screen devices, but the advantages are not limited
to device adaptation. Another promising application of the
page clipping technology is the use in Web portals. Web por-
tals are becoming an increasingly popular technology, since
it can provide a single point of comprehensive, integrated
access to both Web data and applications. However, each
of the Web data or application is for the most cases pro-
vided assuming to be presented on a desktop browser, and
would be too spacious to fit into a small area in a portal
page. Page clipping is thus useful for Web pages that are
aggregated into a portal site.

Figure 6 illustrates the process of creating a portal page
with an annotation-based clipping portlet. Portlets are spe-
cialized servlets that plug into and run in portals, and allow
to generate dynamic contents. When a portal server receives

Clipping
portlet Annotation

d oc u m e nt
Annotation
d oc u m e nt

P orta l P a ge P orta l Server

Clipped
pa ge

O th er
pa ge O th er

portlet

H T T P
r e q u e s t

H T T P
r e s p ons e

Content Server A

Content Server B

P ag e
(a)

P ag e
(a)

P ag e
(b)

P ag e
(b)

Figure 6: Creation of a portal page with annotation-
based clipping portlet

Annotation
b y s e l e c tion

Ad ap tation b y
tr ans f or m ational

annotation

Portal Page on Browser

A nnotati on T ool

Figure 7: Annotation tool for Web clipping portlet

an HTTP request, the server dispatches the request to each
portlet aggregated in the page, and collects the results into
a portal page to be returned (Figure 6).

Figure 7 shows a screen of an annotation tool for clip-
ping portlet in the left, and a portal page that includes the
clipped page in the right. This annotation tool allows a user
to select the portions of the original page to be removed in
the portal page [cf., Figure 1 (a)], and the annotation gen-
erator creates page-clipping annotations from the selected
nodes [cf., Figure 1 (b)].

The selection-based annotation generation was actually
adopted for a software product of an annotation tool for a
portal server, and extensively used in the development of
a supplier portal of an automotive company. In this case,
the automotive company extensively used the page-clipping
portlet with the annotation tool solely for the simple <keep>
and <remove> clipping operations. The primary reason for
the customer’s choice was just the simplicity of the author-
ing process without advanced annotation constructs for page
clipping. Since the automotive company needs to aggregate
several thousands of existing pages into the portal site, it
was not practical to create sophisticated clipping annota-
tions for page by page, and it was reasonable to provide just
simple clipping capability to remove headers and side menus
in the original documents that were created for browsers on
desktop computers.

4. EMPIRICAL EVALUATION
The page-clipping annotation explained in the previous

section is adopted for commercially available software prod-
ucts, and has been used for a number of real applications for
Web document adaptation. Moreover, the above-mentioned
annotation generation tools have been provided as toolkits
for the software products: the example-based annotation
tool for transcoding proxy [26] and the selection-based an-
notation tool for portal server development [6].

4.1 Single-Node Pointing Expression
External annotations generated by these two tools use a

type of addressing expressions that points to at most one
particular node, and will not point at anything if the partic-

ular node is not found. This type of addressing expressions
is what we call single-node pointing expressions, which are
suitable for automatic generation of addressing expressions,
because single-node pointing expressions can be generated
solely on the basis of focal nodes without human interven-
tion.

Although the XPath language [27] provides thirteen axes
(such as ancestor, descendant, following, and preceding) for
specifying the direction of node-set selection in a location
step, there exist only the two axes, namely, the child and
descendant axes that can point to every element from a doc-
ument root element, using only one kind of axis for every
location step with position number predicate. Therefore,
there are the only two kinds of single-node pointing expres-
sions created by using only one axis. One is to create an
expression pointing to an element of the target document
using a sequence of child-position location steps (ChildPos-
Seq). Another is for pointing to an element by means of a
descendant position (DescendantPos).

The ChildPosSeq expression simply follows the hierarchy
of DOM tree from the root to a target element, and points
to at most one element by a sequence of child positions (e.g.,
/html[1]/body[1]/table[2]/tbody[1]/tr[1]/td[2]). The
DescendantPos expression, on the other hand, indicates the
number of an element with the same tag name in the doc-
ument order among all the descendant nodes from the root
node, and points to at most one element by a descendant
position (e.g., /descendant::table[8]).

The two annotation tools mentioned above have been us-
ing the ChildPosSeq expression, and the DescendantPos was
not used for the generation of addressing expressions. In
the remainder of this section, we present an empirical eval-
uation of the robustness of XPath expressions, in order to
draw practical implications to the reliable use of external
annotation.

4.2 Evaluation Method and Results
Table 2 shows the basic data of the observed HTML pages.

The pages A and B are a corporate top page and a product
page of the same company. The page C is a top page of a
news media company, while the page D belongs to a software
company. These pages were saved each day during about the

Table 2: Basic data of the observed HTML pages

Number of Depth of
Page URI nodes per page document tree

[ave. (max, min)] [ave. (max, min)]
A www.ibm.com/ 393 (441, 348) 21 (21, 20)
B www.ibm.com/products/ 709 (758, 623) 27 (30, 20)
C public.wsj.com/ 952 (1333, 433) 22 (24, 21)
D java.sun.com/ 909 (1311, 325) 22 (29, 15)

The number of sample pages is 540 for each reference page.

Reference page
Reference page

with IDs

IDsInserting IDs

(a)

Sample pages
(1 .. N)

Difference files
(1 .. N)

PatchingDifferencing

Sample pages
with IDs (1 .. N)

IDs

(b)

Figure 8: Process of node ID insertion

period of one year and three months, and 540 pages for each
are collected as samples for this investigation.

In order to make sure that an XPath expression actually
points to the same node in a reference page, it is necessary
to know the node-to-node mapping between the reference
page and other sample pages with the same URI that are
collected during the observation period. For the purpose
of this empirical study, an ID attribute was added to every
DOM node of the reference and sample pages. Note that
the most of existing HTML pages are not well-formed, and
therefore cannot be reliably pointed to by XPath expres-
sions. It is assumed here that both the reference page and
sample pages are parsed by an HTML parser in advance,
and converted to DOM trees before the node ID insertion
process.

Figure 8 illustrates the process of node ID insertion, which
can be done in the following two steps. The fist step is to add
unique identifiers as an attribute value (e.g., uid="N27") to
every node in the reference page [Figure 8 (a)]. Note that
comment and text nodes were excluded from the ID inser-
tion, because an attribute cannot be added to those nodes.
The second step consists of differencing and patching [Fig-
ure 8 (b)]. The DOM-tree difference was calculated taking
account of the changes in each sample page as compared
with a reference page with the same URL. Each difference
file consists of a sequence of edit operations that transform
the reference page into a corresponding sample page. The
difference files are then applied to the reference page with
unique identifiers. Finally, as results of the patching, we can
obtain a set of sample pages with unique identifiers. As a
differencing and merging tool for XML documents, we used
the 3DM tool [21].

It is straightforward to insert ID attributes to all the
DOM nodes in the reference pages. However, due to the
changes in Web pages over time, some nodes will be inserted
into or deleted from the documents. The newly inserted
nodes do not have any ID attribute, because they cannot
be mapped from any node in the reference page. In addi-

0

200

400

600

800

1000

1 51 101 151 201 251 301 351 401 451 501

Number of days

N
um

be
r o

f n
od

es
 w

ith
 ID

 a
ttr

ib
ut

e

Page A

Page B

Page C

Page D

Page D

Page B

Page A Page C

Figure 9: Number of nodes with ID attributes dur-
ing the observation period

Reference page
with IDs

IDs

(a)

Sample pages with IDs

1 (k) N

A test set
of XPath

expressions

… …

(b)

Figure 10: Process of testing XPath expressions

tion, like the most tree differencing and merging tools, the
3DM algorithm regards an attribute-value change as dele-
tion of the modified node followed by insertion of the same
node with updated attribute value. This means the ID at-
tributes disappear when a node is updated as results of an
attribute-value change.

Figure 9 shows the numbers of nodes ID attributes for
each sample page along the 540-day observation period. For
the pages A and B, there is a sudden decrease in the number
of nodes with IDs just after the 50th day due to the small
style changes. In addition, since the site design for the pages
C and D has been changed, the numbers of nodes with IDs
were suddenly decreased in the page C after the 232nd day
and the page D after the 367th day. The numbers in the
page D tentatively decreased during about 10 days from the
272nd day. This is because the site design was temporally
changed due to the annual developer conference1held by that
company.

The number of nodes with IDs decreases as results of
the deletion, insertion, and update of DOM nodes. Note
here that the differencing algorithm was always applied to
obtain node-to-node mappings from a reference page to a
sample page. Therefore, the difference from the reference
page would not necessarily increase monotonically, but may
be reduced later if the page were modified again to be closer
to the reference page. This is why the number of nodes with
IDs increases at some points in the observed period.

1The 2002 JavaOne Conference

0

20

40

60

80

100

P
re

ce
nt

ag
e

of
 c

or
re

ct
 p

oi
nt

in
g

ChildPosSeq

DescendantPos

Figure 11: Percentage of correctly pointed nodes for
each XPath expression

Every DOM node with a unique identifier in a reference
page was regarded as a reference node. For each reference
node, we created ChildPosSeq and DescendantPos expres-
sions, so that they can point to the corresponding reference
node. This set of XPath expressions constituted a test set
[Figure 10 (a)]. Each expression in the test set was then
applied to sample pages with the same URI [Figure 10 (b)].
If an XPath expression actually points to a node with the
same ID as the reference node, the expression was regarded
as correct in the sample page. Note that an XPath ex-
pression may point to multiple nodes in a target document.
However, since this evaluation only deals with single-node
pointing expressions, correct expressions must point to the
only one node with the same ID in a sample page, and must
not point to any other nodes in the sample page.

Figure 11 shows the percentages of nodes that are cor-
rectly pointed to by each type of expressions. The Child-
PosSeq always scores higher percentage than DescendantPos
expression. In the next section, we will further investigate
the robustness of the two types of expressions.

5. DISCUSSION
A correctly pointing expression points to a target node

that is identical with the reference target node as identi-
fied by the ID-attribute value, and does not points to any
other nodes other than the reference target. Here we call
this correct pointing as exact pointing. When an XPath ex-
pression does not correctly point to a target node, the ways
of incorrect pointing can be categorized into three types:
nonexistent, inclusive, and exclusive. Nonexistent pointing
is when an XPath expression points to nothing. Inclusive
pointing is when an expression points to a node set that in-
cludes not only the target node but also nodes other than
the target. Exclusive pointing is when an expression points
to a node or a set of nodes that does not include the target
node at all.

Figure 12 divides the nodes up by pointing status. The to-
tal number of tested nodes was more than a million (1,280,880),
counting all the HTML elements included in the sample
pages throughout the entire observation period. The IDVal-
ueMatch expressions rely on the ID-attribute value of the
target node. An example of the IDValueMatch expression
is //*[@uid=’N35’], where the “uid” is the name of the ID

0 400000 800000 1200000

IDValueMatch

ChildPosSeq

DescendantPos

Number of nodes

Exact

 Exclusive

 Nonexistent

Figure 12: Number of nodes with detailed distinc-
tion of pointing status

attribute we created in the ID-insertion process (Figure 8).
The IDValueMatch corresponds to a situation when every
node of a document at hand is provided with an unique
identifier. Although the attribute name “uid” might be ac-
cidentally duplicated in some sample pages, no duplication
was not found within the pages examined for this study.

Besides the numbers of the exact (correct) pointing, one
of the notable feature in Figure 12 is the large number of
the exclusive pointing errors for the DescendantPos. An
exclusive pointing error means that an XPath expression
points to a node or a set of nodes that does not include the
target node at all.

If we consider only exact pointing, this example is not
so serious as simply a case of incorrect pointing. However,
when we use XPath expressions for external annotations,
we need to further think about the actual influences of such
incorrect pointing with regard to the behavior of the run-
time engines such as XSLT processors for XSLT stylesheets.
Therefore, it is also important to investigate the robustness
of XPath expressions taking account of application scenar-
ios.

6. CONCLUDING REMARKS
In this paper, we presented variations in annotation tools,

and explained the two types of tools that generate transfor-
mational annotation for Web document clipping. Since the
transformational annotations are descriptions of the ways of
modifying the document at hand, the semantics of the docu-
ment adaptation can easily be indicated through annotator’s
demonstration or editing actions to obtain the desired result
of adaptation. Although the example-based annotation tool
is the most sophisticated approach to creating transforma-
tional annotation, it may suffer from difficulties in inferring
the annotator’s intension behind the editing process. On
the other hand, the selection-based annotation is a simpler
approach, and limited in the capabilities of annotation gen-
eration. However, it is noteworthy that the simplicity was a
real advantage for use in the development of clipping portlet,
because it was not practical to create sophisticated clipping
annotations for several thousands of pages to be aggregated
into a supplier portal.

Finally, the empirical study presented in this paper is
tightly bound to the specific HTML pages we investigated,
and we know that our sample sizes are too small to have

statistical validity. Therefore, we are not claiming that the
results can easily be generalized to all the other kinds of
HTML documents. However, this empirical study is an
important step towards establishing hypotheses regarding
phenomenon that may hinder the practical use of external
annotations or metadata that exploit XPath expressions.

7. REFERENCES
[1] Abe, M. and Hori, M.: A visual approach to authoring

XPath expressions. Proceedings of Extreme Markup
Languages 2001, pp. 1–14 Montréal, Canada (2001).

[2] Asakawa, C. and Takagi, H.: Transcoding system for
non-visual Web access (2): annotation-based
transcoding. Sixteenth International Conference on
Technologies and Persons with Disabilities
(CSUN2001) (2001).

[3] Brush, A. J., Bargeron, D., Gupta, A., and Cadiz, J.
J.: Robust annotation positioning in digital
documents. Proceedings of the 2001 ACM Conference
on Human Factors in Computing Systems (CHI 2001),
pp. 285–292, Seattle, Washington (2001).

[4] Cadiz, J. J., Gupta, A., and Grudin, J.: Using Web
annotations for asynchronous collaboration around
documents. Proceedings of ACM 2000 Conference on
Computer Supported Cooperative Work (CSCW 2000),
pp. 309–318, Philadelphia, PA (2000).

[5] Denoue, L. and Vignollet, L.: An annotation tool for
Web browsers and its applications to information
retrieval. Proceedings of the 6th Conference on
Content-Based Multimedia Information Access (RIAO
2000), Paris, France (2000).

[6] DeWitt, S. : Basic Web Clipping Using WebSphere
Portal Version 4.1. IBM WebSphere Developer Domain,
http://www7b.software.ibm.com/wsdd/library/techarticles/
0206 dewitt/dewitt.html (2002).

[7] Dublin Core Metadata Element Set, Version 1.1:
Reference Description. Dublin Core Metadata
Initiative, Recommendation,
http://dublincore.org/documents/dces/ (1999).

[8] Device Independence Principles. W3C Working Draft,
http://www.w3.org/TR/di-princ/ (2001).

[9] Document Object Model (DOM) Level 1 Specification
Version 1.0. W3C Recommendation,
http://www.w3.org/TR/REC-DOM-Level-1/ (1998).

[10] Erdmann, M., Maedche, A., Schnurr, H.-P., and
Staab, S.: From manual to semi-automatic semantic
annotation: about ontology-based text annotation
tools. Proceedings of the COLING 2000 Workshop on
Semantic Annotation and Intelligent Content,
Luxembourg (2000).

[11] Handschuh, S. and Staab, S.: Authoring and
annotation of Web pages in CREAM. Proceedings of
the 11th International World Wide Web Conference,
pp. 462–473, Honolulu, Hawaii (2002).

[12] Heflin, J. and Hendler, J.: Semantic interoperability
on the Web. Proceedings of Extreme Markup
Languages 2000, pp. 111–120 (2000).

[13] Hori, M., Kondo, G., Ono, K., Hirose, S., and Singhal,
S.: Annotation-based Web content transcoding.
Proceedings of the 9th International World Wide Web
Conference, pp. 197–211, Amsterdam, Netherlands
(2000).

[14] Hori, M., Ono, K., Koyanagi, T., and Abe, M.:
Annotation by transformation for the automatic
generation of content customization metadata. In F.
Mattern and M. Naghshineh (Eds.) Pervasive
Computing, First International Conference, Pervasive
2002, Lecture Notes in Computer Science 2414,
pp. 267–281, Zurich, Switzerland (2002).

[15] Hori, M.: Semantic annotation for Web content
adaptation. In D. Fensel, J. Hendler, H. Lieberman,
and W. Whalster (Eds), Spinning the Semantic Web,
pp. 542–573, MIT Press, Boston, MA (2002).

[16] Hori, M., Abe, M. and Ono, K.: Extensible framework
of authoring tools for Web document annotation.
Proceedings of International Workshop on Semantic
Web Foundations and Application Technologies
(SWFAT), pp. 1-8, Nara, Japan (2003).

[17] Kahan, J. and Koivunen, M.-R.: Annotea: an open
RDF infrastructure for shared Web annotations.
Proceedings of the 10th International World Wide
Web Conference, pp. 623–632, Hong Kong (2001).

[18] Koyanagi, T., Ono, K., and Hori, M.: Demonstrational
Interface for XSLT Stylesheet Generation. Markup
Languages: Theory & Practice, 2(2): 133–152 (2001).

[19] Lassila, O.: Web metadata: a matter of semantics.
IEEE Internet Computing, 2(4): 30–37 (1998).

[20] Lieberman, H. (Ed.): Your Wish is My Command:
Programming by example. Morgan Kaufmann
Publishers, San Francisco (2001).

[21] Lindholm, T.: A 3-way merging algorithm for
synchronizing ordered trees – The 3DM merging and
differencing tool for XML. Master Thesis, Department
of Computer Science, Helsinki University of
Technology (2001).

[22] Mea, V. D., Beltrami, C. A., Roberto, V., and
Brunato, D.: HTML generation and semantic markup
for telepathology. Proceedings of the 5th International
World Wide Web Conference, pp. 1085–1094, Paris,
France (1996).

[23] Nagao, K., Shirai, Y., and Kevin, S.: Semantic
annotation and transcoding: making Web content
more accessible. IEEE Multimedia, 8(2): 69–81 (2001).

[24] Phelps, T. A. and Wilensky, R.: Robust
intra-document locations. Proceedings of the 9th
International World Wide Web Conference,
pp. 105–118, Amsterdam, Netherlands (2000).

[25] Rousseau, J. F., Macias, A. G., de Lima, J. V., and
Duda, A.: User adaptable multimedia presentations
for the World Wide Web. Proceedings of the 8th
International World Wide Web Conference,
pp. 195–212, Toronto, Canada (1999).

[26] Spinks, R., Topol, B., Seekamp, C., and Ims, S.:
Document clipping with annotation. IBM
developerWorks,
http://www.ibm.com/developerworks/ibm/library/ibm-
clip/
(2001).

[27] XML Path Language (XPath) Version 1.0. W3C
Recommendation, http://www.w3.org/TR/xpath
(1999).

[28] XSL Transformations (XSLT) Version 1.0. W3C
Recommendation, http://www.w3.org/TR/xslt (1999).

