
Using the W3C WebCrypto API for Document
Signing

Nick Hofstede and Nick Van den Bleeken

Inventive Designers, Sint Bernardsesteenweg 552, 2660 Antwerp, Belgium,
https://www.inventivedesigners.com/

Abstract. This paper focuses on digitally signing documents as a spe-
cific use case for making secure hardware available to a web application.
We explore the current options available to implementers and the draw-
backs associated with each option. Then we look at the emerging Web
Cryptography API developed by the W3C and discover missing func-
tionality needed to implement this use case. Finally, we suggest a way
to extend the API in order to support digitally signing documents using
secure hardware.

Keywords: web applications, secure hardware, Web Cryptography API,
W3C

1 Use Case

Converting paper processes to digital ones is an obvious trend within organi-
sations. Documents are stored electronically and processes involving paperwork
are transitioned to web applications. Not only is this more ecological, it enables
a lot of opportunities to increase productivity and reduce costs. The past decade
the paperless office has been inching ever closer to reality.

Not all paper documents are so easily replaced by their digital equivalent
however. After digitizing the low-hanging fruit, attention now turns to processes
that are more difficult to digitize. One of the common hurdles involves signatures.
Often they can be replaced by auditing the web applications and using your
corporate account to identify yourself, but some documents really do require
a legally binding signature. Whereas on paper this involves taking a pen and
making a scribble, the digital equivalent is often more complex. Web applications
capable of generating documents digitally signed by the user are needed.

1.1 Signing Documents

The European Union recognizes three levels of digital signatures [1]: electronic
signatures like scanned in handwritten signatures or email footers, advanced
electronic signatures which are created using modern cryptography standards
and qualified signatures which are advanced electronic signatures satisfying ad-
ditional requirements. This last level is an advanced electronic signature made



using a key which has a qualified certificate associated with it. Qualified certifi-
cates can only be issued by certified certificate authorities and are only issued
using the most stringent processes and only to the most secure type of keys. In
return, qualified signatures must be considered equivalent to handwritten signa-
tures by a judge whereas other electronic signatures are open to interpretation
based on the actual details. The peace of mind this obligation provides makes
them a requirement often encountered.

The requirement that a key should be kept under the sole control of the owner
for qualified certification is interpreted to mean the key should be embedded in
a hardware device. This to make sure undetected copying is impossible. In order
to create a qualified signature, a European citizen will therefore always need a
smart card or key dongle. A web application creating digital signatures should
therefore be able to access the secure hardware of the user.

1.2 Electronic Identity Cards

The requirement for secure hardware prompted several European countries to
issue electronic identity cards to their citizens. Currently countries like Belgium,
Germany and many others provide electronic identity cards capable of creating
electronic signatures [2–10] and more countries are planning on issuing them.

These cards, many of them issued mandatory, create a large group of users
with access to secure hardware and a certificate ready to create legally bind-
ing electronic signatures. Governments have begun using these cards in web
applications for the retrieval of official documents like birth certificates (after
authentication) or submitting online tax forms (requiring a signature). Many
more use cases for government and corporate applications can be thought of,
but in this paper we will be focussing on signing documents.

2 Current Situation

Using these identity cards in web applications today is possible, but serious
drawbacks exist.

2.1 Client-side TLS

The first applications that popped up were using client-side TLS for authentica-
tion. The user navigates to a website and is asked to authenticate herself. Most
if not all of the identity cards come with middleware that either adds the certifi-
cate to the operating system’s key ring allowing it to be accessed by browsers,
or installs specific browser plug-ins registering the certificate for client-side use.

After the user has authenticated herself, consent with the content to be sub-
mitted to the application (like a tax form for example) is typically given by
pushing a button. Proof of this consent is then carried by the auditing informa-
tion logged by the web application. No real electronic signature is created and
consent can only be inferred from the audit logs of the web application.



Even this simple scheme can lead to problems when one is not careful. In
particular, revocation checks often need to be explicitly enabled at the SSL
termination point as it is typically disabled by default. Additionally, client-side
authentication suffers from a few other problems like not being able to log out of
a session and somewhat bad usability due to it being needed before a connection
to the server is established and a web page providing guidance can be shown.
While this can be worked around using different domains, it would be preferable
if the authentication process is initiated by the web page itself to allow for a
richer user experience.

In any case, no actual qualified electronic signature is created, only an audit
trail.

2.2 Java Plugin

If a qualified electronic signature needs to be created to sign a PDF document,
or to create an archive containing a XAdES signature for example, the browser
needs to access the smart card. This can be done using a custom plug-in, but a
better option is to use a more widely available general purpose plug-in for this
task. Chances are the user already has this plug-in installed which avoids going
through an additional installation procedure. Using javascript and a Java applet,
data can be shipped to and signed by the secure hardware. Typically, one of two
methods is used. Either the applet probes for a library installed as part of the
card’s middleware using JNI, or the smart card is accessed directly using APDU
commands available in standard java runtimes starting from version 6 [11].

The Java plug-in needs to be installed and the applet needs to be granted
additional privileges. This is cumbersome, but until recently it was a reasonable
approach. After a series of vulnerabilities in Java however, browsers either disable
the plug-in, or only allow it to run when it is the latest version and has been
given explicit permission. This degrades the user experience so much that using
an applet is no longer a viable option.

3 Evaluation of the Web Cryptography API

Mainly driven by mobile applications being implemented as web applications,
more and more functionality, including access to hardware like GPS sensors [12]
and cameras [13], has been made available through javascript API’s. When we
first heard about a Web Cryptography API [14] being under development we
looked at it to remove the dependency on a Java applet to access the secure
hardware device and do the signing. With a use case like “The ability to select
credentials and sign statements can be necessary to perform high-value transac-
tions such as those involved in finance, corporate security, and identity-related
claims about personal data.” in the working group’s charter [15] as a goal this
did not seem far-fetched at all.



3.1 Design

In order to keep the scope of the API limited, the Working group has defined a
very narrow scope for its main document. In order to stay away from concepts
that are not portable between operating systems, cryptographic libraries or user
agent implementations, provisioning operations or the discovery of cryptographic
modules is considered out of scope.

While this might seem like a severe restriction, by supporting key generation
functions it still allows for many cryptographic use cases. Indeed, as long as the
keys are generated by the api, the provided operations (encrypt, decrypt, sign,
verify, digest, deriveKey, importKey and exportKey) allow for a wide array
of applications like secure messaging, data integrity protection of cached data
and cloud storage.

On the more practical side of designing the API, the working group follows
JavaScript best practices and tries to make every call that might take some
time, or that might conceivably require user interaction to be asynchronous.
This allows for the program flow of the javascript application to continue while
waiting for the user the grant permissions, enter a pin number or calculations to
be completed.

3.2 Signing

The key types and sign operations supported by the API are suited for the use
case we have in mind. The issue has been raised whether “broken” cryptography
algorithms like SHA1 and PKCS#1 v1.15 should be included, but for the sake
of backwards compatibility and integration with server-side software it has been
decided they remain. While we hope the world quickly moves on to the more
modern alternatives which are supported as well, given the number of deployed
smartcards implementing only these older algorithms, excluding them would
seriously limit the applicability of the API today.

3.3 Key Discovery

Recognizing that not all use cases work with keys generated by the applica-
tion itself, the group started work on key discovery in a separate working draft
[16]. In order to limit the scope and driven by a use case focussing on trusted
platform modules (TPMs) and digital rights management (DRM), the specifica-
tion currently limits itself to “discovering named, origin-specific pre-provisioned
cryptographic keys for use with the Web Cryptography API”. While this allows
for user agents to make keys stored on secure elements like TPMs available to
web applications originating from a given domain under a known name, none of
those adjectives are a good match for the signing use case.

While it might be possible to assign names to the keys provided by the secure
hardware, in all naming schemes we could come up with it would be impossible
for the web application to guess what that name might be. Additionally, the keys
contained in the secure hardware wouldn’t be origin-specific either. A user shall



want to use her smart card to authenticate herself to different web applications.
Finally, the keys are not pre-provisioned. A way to prompt the user to (re)insert
her smart card or USB dongle would be needed.

Key discovery as currently conceived by the WebCrypto Key Discovery draft
isn’t useful for discovering keys that reside on users’ smart cards.

3.4 Certificate Based Discovery

Instead of name-based key discovery we believe attribute-based discovery of keys
based on the key’s algorithm or the accompanying certificate is necessary. By
limiting the keys known to the browser by algorithm, issuing certificate authority,
intended usage and other relevant properties, a short list could be presented to
the user where she can pick the key needed to complete the action she started.

While this operation closely resembles selecting the appropriate key to use
when setting up client-side TLS, it should be noted that this operation can be
made asynchronous and can be initiated after a page has been presented to
the user. It is conceivable that the user prompt takes the same form as other
requests for access to specific resources like your location or camera. The main
difference might be that this wouldn’t have an “Allow” and “Disallow” button,
but a “Select...” one popping up a dialog requiring further interaction.

4 Proposed Extension

Despite its current shortcomings, we believe the Web Cryptography API forms
a solid basis. We joined the working group to help shape the API and make the
use case outlined in this paper possible. We’re currently working on a proposal
that will extend the current API to enable the creation of web applications that
use secure hardware for the creation of digital signatures.

4.1 Additional API

We propose a new X509Certificate class, and two new asynchronous methods.
A first one to search for certificates and related keys, and a second one to enable
exporting certificates to a byte array.

The X509CertificateSelector will take a dictionary containing filters. Fil-
ters include things like issuing certificate authority, usage flags, key algorithm,
validity dates and others.

Invoking the X509CertificateSelector will create a subset of all known
certificates known to the browser and initiate a selection procedure by the user
agent. This procedure can start with a subtle banner to request access like the
location or media capture API’s. When clicked, the subset can be presented as
a list to the user. Confronted with the list, the user will pick the certificate
appropriate for the action she started and grant the web application access to
the associated keys. This grant is origin-specific. When the keys are used an
additional dialog window prompting for a pin code may be shown.



By keeping the user in the loop and requiring her to explicitly allow access to
the certificate and keys stored in the operating system’s store, this API can’t be
used to fingerprint users or glance information from unrelated certificates stored
in the store.

The export functionality is necessary because the certificate (or certificates
as you probably need the entire chain) used will likely have to be embedded in
or associated with the digital signature that is being created.

4.2 Prototype

We are implementing enough of the WebCrypto API and the proposed extensions
as a browser plug-in to validate this proposal [20]. The code is available under
an Apache license on github [21].

Note This is an initial proposal and not all issues have been discovered or indeed
resolved. We welcome comments, insights and code contributions you may have
or want to share.

References

1. European Parliament and Council. Directive 1999/93/EC on a Community frame-
work for electronic signatures. 13 December 1999. Retrieved from http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31999L0093:EN:NOT

2. Austria. The Austrian electronic ID Card “Bürgerkarte”. Retrieved from
http://www.buergerkarte.at/

3. Belgium. The Belgian electronic ID Card. Retrieved from http://eid.belgium.be/
4. Estonia. The Estonian eID Card, “EstEID”. Retrieved from http://www.id.ee/
5. Finland. The Finnish eID Card, “’FINEID’. Retrieved from http://www.fineid.fi/
6. Germany. The German electronic ID Card, “Personalausweis”. Retrieved from

http://www.personalausweisportal.de/
7. Italy. Carta di Identit Elettronica (C.I.E), the Italian electronic ID Card. Retrieved

from http://www.halnet.it/cie/
8. Portugal. The Portuguese electronic ID Card, “Carto de Cidado”. Retrieved from

http://www.cartaodecidadao.pt/
9. Spain. The Spanish eID Card. Retrieved from http://www.dnielectronico.es/
10. Sweden. Fakta om nationellt id-kort (Facts about the national ID card). Retrieved

from http://www.polisen.se/inter/nodeid=33378&pageversion=1.jsp
11. Oracle. Java Smart Card I/O API. Javadoc, package specification. Retrieved from

http://docs.oracle.com/javase/6/docs/jre/api/security/smartcardio/spec/
12. Geolocation API Specification W3C Proposed Recommendation 10 May 2012 Re-

trieved from http://www.w3.org/TR/geolocation-API/
13. HTML Media Capture W3C Last Call Working Draft 26 March 2013 Retrieved

from http://dev.w3.org/2009/dap/camera/
14. World Wide Web Consortium. Web Cryptography API. W3C Working Draft 8

January 2013. Retrieved from http://www.w3.org/TR/2013/WD-WebCryptoAPI-
20130108/

15. World Wide Web Consortium. Web Cryptography Working Group Charter. 3 April
2013. Retrieved from http://www.w3.org/2011/11/webcryptography-charter.html



16. World Wide Web Consortium. WebCrypto Key Discovery. W3C Working Draft 08
January 2013. Retrieved from http://www.w3.org/TR/2013/WD-webcrypto-key-
discovery-20130108/

17. Cryptographic Token Interface Standard. Version 2.30, Editor Simon McMahon
with Robert Griffin of RSA as project coordinator. RSA PSS mechanism parameters.
Retrieved from http://www.cryptsoft.com/pkcs11doc/v230/

18. Mac Developer Library. kSecInputIsDigest constant definition. Retrieved from
https://developer.apple.com/library/mac/search/?q=kSecInputIsDigest

19. Windows Dev Center. CryptSignHash function documentation. Retrieved from
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380280

20. Inventive Designers API proposal, version 79f54d9 Retrieved from
https://github.com/InventiveDesigners/webcrypto-key-certificate-discovery-
js/wiki/API

21. GitHub, Inc. Inventive Designers’ webcrypto-key-certificate-discovery-js repository.
Retrieved from https://github.com/InventiveDesigners/webcrypto-key-certificate-
discovery-js


