
Position Paper: Can the Web Really Use Secure

Hardware?

Justin King-Lacroix1

Department of Computer Science, University of Oxford
justin.king-lacroix@cs.ox.ac.uk

Abstract. The Web has become the platform of choice for providing
services to users in a range of different environments. These services
can have drastically differing security requirements; for more sensitive
services, it is attractive to take advantage of the wide deployment of
secure hardware in the consumer space. However, the applicability of
that hardware to any given security problem is not always obvious. This
paper explores which use cases are appropriate, and which are not.

1 Introduction

The Web has transformed from a medium of information exchange to a plat-
form for providing services. As desktop computers have become more powerful,
Internet connections wider, and Web browsers more capable, Web applications
have evolved to the point where they can now compete with their desktop coun-
terparts on feature-set, performance, and price. Additionally, Web applications
have several advantages: for one, the Web architecture requires application code
to be downloaded from the remote server on every launch, placing the burden of
application installation and maintenance on server operators (who are required
to be IT-savvy) rather than end-users (who are not); for another, user data is
frequently also stored on the server side, making it automatically accessible from
anywhere on the Internet.

However, different applications can have very different security needs: an In-
ternet banking application might need much stronger evidence of identity to
authorise a financial transaction than a social networking website to authorise
a post. This specific problem has traditionally been solved with two-factor au-
thentication: in addition to their password (something you know), the user also
possesses a secure element (something you have) which can generate a one-time
code [15]. These elements can also be used to show liveness – certain banks ask
users to re-authenticate before allowing certain types of transactions.

Much work has been done on user authentication in general, and two-factor
authentication in particular [6]. These topics will therefore not be explored fur-
ther in this paper. Instead, we ask the following two questions:

1. What other security properties might Web applications require?
2. Can secure hardware practically provide those properties?



2 Web application security

ConcerningWeb applications, we divide security properties into two broad classes:
those internal to the application itself, guaranteed by programmers at design
time, and those regarding – and provided by – its execution environment. Nat-
urally, secure hardware can only help with the latter class.

To aid in discussion, we further divide the application’s execution environ-
ment into three sections: its hardware environment, including the physical envi-
ronment of that hardware; its software environment, which includes that both
server- and client-side; and its network environment, since Web applications are
inherently network-based.

Finally, we remark that any hardware security device can only be used to
make meaningful assertions about components of the system that explicitly use
it, or are implemented in terms of other components that themselves use it. This
fact is well-understood, but is restated here because it is critical to the discussion
that follows.

Hardware The application may require knowledge of hardware present or absent
at the client, or may be required to present such information about the server.
More strongly, it may be required to enforce restrictions on the nature of that
hardware, its location, or other properties of its physical environment (such
as the availability and quality of electrical power, or level of electromagnetic
interference). Finally, the application may require knowledge or restriction of
the identity of the devices on which it runs. The identity of the person currently
using the device (or, indeed, whether there is even a user currently present) can
also be considered part of its physical environment.

Software The application may wish to know or restrict the operating system
(OS), OS patch level, Web browser or browser version, or installed software on
any given device. The configuration of any of these components is also a concern;
particular examples include the presence (or absence) of browser plugins, rights
of the user account under which the browser is running, or modifiability of ele-
ments of the system’s configuration. System state information, such as network
location and address(es), CPU and memory load, and currently-running tasks,
could also be required.

Equally, the application may be required to present such information about
servers to its clients, so that the clients can make security decisions regarding
the transmission of sensitive information.

Network Traffic between client and server may have confidentiality, integrity, or
authenticity constraints. It may be that all traffic must be confidential to only
the communicating parties, or that this only applies to some traffic. Equally,
all traffic may need to be tamperproof, or only some, or may require different
levels or types of integrity protection at different times. Finally, certain data may
require proof of additional verification, such as obtaining explicit user consent,
before it can be considered authentic.



3 Secure hardware in the consumer space

Consumers already have access to a variety of secure hardware. They are ac-
customed to authorising financial transactions using chip-and-PIN smart credit
cards, inserting SIM cards into their mobile phones, and authenticating to bank-
ing (and other) Web applications using hardware tokens [14]. However, deploying
a secure element may not always be cost-effective; in any case, all of these ex-
amples use secure elements purely for user authentication.

The Trusted Platform Module [1] is a near-ubiquitous example of a hardware
security module (HSM). It provides services for encryption, signing, and key
storage. Moreover, the availability of cryptographic keys and decrypted plaintext
can be made to depend on the software state of the system, which can equally be
asserted to a remote party using remote attestation. [8,9] Assertions about the
composition and construction of that system are made by its manufacturer(s),
via the endorsement and platform credentials. Finally, the TPM also provides a
cryptographically-strong device identity.

Trusted Execution Environments (TEEs) are also widely deployed, with
ARM TrustZone [3] and Intel Trusted Execution Technology (TXT) [7] – both
CPU architecture extensions – the most common examples. These provide for
isolated code execution, which can allow for more flexible key usage policies than
those available with an HSM, although TEEs based on these technologies often
use the TPM for its measurement and attestation services [2,11]. In particular,
the ability to execute arbitrary code could be leveraged to guarantee explicit
user consent.

Notably absent from consumer devices is a secure sensor access mecha-
nism: sensor data may be used by both Web and native applications (insofar
as browsers and OSes provide useful APIs to that end), but there is currently
no way of assuring the accuracy of the data therby obtained.

4 Secure hardware in Web applications: the difficulties

The Web is a highly heterogeneous environment: Web browsers can be found for
most operating systems, on several hardware architectures, across multiple de-
vice form factors, with different interface paradigms. Ideally, the browser should
abstract over these differences, presenting a uniform rendering surface for Web
applications. In reality, that abstraction must leak information about its under-
lying layers to the application; for example, for usability reasons, the application
may change its interface depending on the local form factor.

This goes double for security-related services: in order for a security service
to be useful, both the service itself and its implementation must be trusted. Web
security APIs must therefore expose low-level information to the application, in
order that a meaningful trust decision can be made. Further, this information
must be verifiable, which, for a service backed by secure hardware, requires the
exposure of hardware-level APIs directly to the application.

This presents two problems. First, for secure hardware, or indeed security
services in general, to be exposed to Web applications, either the entire software



stack above them must be trusted – which presents a verification and main-
tenance nightmare to application developers – or their APIs must be carefully
designed not to trust said stack – which limits how they can be abstracted over,
inhibiting the paradigm of generic service-provision that has contributed to the
success of the Web. Second, in order to support any such security services, all
browsers on all platforms must be modified to support them, an issue showcased
most recently by HTML5’s video codec fragmentation.

In short, either application developers must be able to make trust decisions
about entire software stacks of arbitrary complexity, or browsers and operating
systems must be modified to support specific security technologies, with little
room for abstraction.

5 Secure hardware in Web applications: the possibilities

All is not lost: while secure hardware is challenging to apply to the Web space
in general, it has several specific, but significant uses.

Hardware Secure hardware can provide very few meaningful guarantees at the
hardware level, in no small part because much security hardware operates inde-
pendently of other hardware in the machine.

CPU instruction set extensions are the obvious exception to this rule, and
indeed they are excellent tools for isolating executing code. System devices like
the IOMMU perform a similar function for hardware devices. However, neither
of these tools can assist with issues related to network security: network abstrac-
tions are orthogonal to the memory isolation that they both provide.

In essence, secure hardware can make very few statements about the hard-
ware environment in which an application is executing, other than its own pres-
ence and state. To provide any stronger guarantees, it must (like the TPM) be
very closely integrated into that environment.

Software The TPM already provides a cryptographically-strong device-specific
identity. Applications needing to limit their distribution to a small set of trusted
machines thus already have a mechanism for doing so; this is supported by
existing PKI infrastructure in browsers and OSes already, and so requires no
modification to either. (This type of limitation is most useful for applications
with designated administration nodes, whose state can be carefully maintained.)

Credential storage is another deployed use of secure hardware – the TPM
and smart cards being well-known examples – that can be easily integrated into
nearly any application. However, the fact that those credentials are resident
in a hardware security module, and the properties of that module, must be
known to the application in order for an informed security decision to be made.
Additionally, depending on the nature of both the stored credentials and the
hardware, credential revocation may be problematic.

Perhaps the most interesting application is a combination of TPM-based run-
time state attestation, TXT’s virtualisation-based software security, and recent



work on TPM virtualisation [4,10,13]: applications with high security demands
can distribute read-only virtual machine images containing a restricted and well-
understood software stack. The hardware TPM can identify the hypervisor run-
ning on the bare hardware, and the virtual TPM can then identify the software
state of the virtual machine [5].

Network Paradoxically, by virtue of being implemented at a layer of abstraction
below both the Web application and, indeed, the browser, the network environ-
ment is the easiest to augment with secure hardware. Combining TPM-based
keys with TLS is already a well-understood technique; more recent work in-
volves using a TEE to provide more sophisticated key policy options than are
possible with only the TPM [12].

6 Conclusion

Deployed consumer security hardware is an attractive choice for fulfilling the
security needs of Web applications. However, its applicability is not always clear.
In general, the need to modify the Web browser and the underlying OS limits
the number and scope of technologies that can be usefully employed.

However, there are two major cases in which secure hardware can be of use.
The first is in securing services at a lower layer of abstraction than the Web
application, and whose security is thus negotiated and provided transparently.
TLS, and developments thereon, are an excellent example of this kind of security.
In a similar vein are TPM-based keys and cryptographic transactions, with their
integration into OS cryptographic infrastructure in a manner transparent to the
browser. However, some trust decisions must be able to be made about the
implementations of each layer in use; this is an open problem.

The second is in a ‘pass-through’ mode, where security services are explicitly
exposed by all layers in between the hardware and the application. This mode
is more difficult to achieve, since every intermediate layer must be partially or
fully rewritten to support the change. However, it has seen limited success with
two-factor authentication – where the abstraction layers between the hardware
interface and the Web application are few.

In either case, however, secure hardware is limited in the guarantees that
it can provide. It cannot be used to make assertions about other devices in the
machine unless those devices are designed (or forced) to interact with it. Equally,
it cannot be used to make assertions about high-level constructs – such as OS
user account or application identity – unless the software that implements those
constructs directly interacts with it.

References

1. Trusted Platform Module main specification 1.2 part 1: Design principles. Tech.
rep., Trusted Computing Group

2. GlobalPlatform TEE System Architecture. Tech. rep., GlobalPlatform Inc. (2011)



3. ARM Holdings: ARM Architecture Reference Manual
4. Cooper, A.: Towards a trusted grid architecture. Ph.D. thesis, University of Oxford

(2010)
5. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual

machine-based platform for trusted computing. ACM SIGOPS Operating Systems
Review 37(5), 193–206 (2003)

6. Grosse, E., Upadhyay, M.: Authentication at scale. In: Proceedings of the IEEE
Symposium on Security and Privacy. SP’13, vol. 11, pp. 15–22 (2013)

7. Intel Corporation: Trusted eXecution Technology (TXT) – Measured Launched
Environment Developer’s Guide

8. King-Lacroix, J., Martin, A.: BottleCap: a credential manager for capability sys-
tems. In: Proceedings of the 7th ACM Workshop on Scalable Trusted Computing
(2012)

9. Martin, A.: The ten page introduction to trusted computing. Research Report
CS-RR-08-11 (2008)

10. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVi-
sor: Efficient TCB reduction and attestation. In: Proceedings of the IEEE Sympo-
sium on Security and Privacy. pp. 143–158. SP’10 (2010)

11. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an ex-
ecution infrastructure for TCB minimization. In: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems. pp. 315–328. Eu-
rosys’08 (2008)

12. Paverd, A., Martin, A.: Hardware security for device authentication in the smart
grid. In: First Open EIT ICT Labs Workshop on Smart Grid Security. SmartGrid-
Sec12, Berlin (2012)

13. Perez, R., Sailer, R., van Doorn, L.: vTPM: virtualizing the trusted platform mod-
ule. In: Proceedings of the 15th Conference on USENIX Security (2006)

14. Vasudevan, A., Owusu, E., Zhou, Z., Newsome, J., McCune, J.: Trustworthy ex-
ecution on mobile devices: What security properties can my mobile platform give
me? In: Trust and Trustworthy Computing, Lecture Notes in Computer Science,
vol. 7344, pp. 159–178 (2012)

15. Weir, C.S., Douglas, G., Carruthers, M., Jack, M.: User perceptions of security,
convenience and usability for ebanking authentication tokens. Computers & Secu-
rity 28(12), 47–62 (2009)


	Position Paper: Can the Web Really Use Secure Hardware?

