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Abstract
In this paper we investigate the exploitation of loosely tran-
scribed audio data, in the form of captions for weather forecast
recordings, in order to adapt acoustic models for automatically
transcribing these kinds of forecasts. We focus on dealing with
inaccurate time stamps in the captions and the fact that they
often deviate from the exact spoken word sequence in the fore-
casts. Furthermore, different adaptation algorithms are com-
pared when incrementally increasing the amount of adaptation
material, for example, by recording new forecasts on a daily
basis.
Index Terms: speech recognition, acoustic model adaptation,
slightly supervised training, loose transcripts, adaptation meth-
ods

1. Introduction
Within the European Union’s 7th Framework Programme’s
project (Bridges Across the Language Divide) (EU-BRIDGE) 1

several tasks on automatic speech recognition are defined over
different data sets. The active domains are TED talks2, a col-
lection of public talks covering a variety of topics, academic
lectures and weather bulletins. For the TED task large collec-
tions of training data are readily available which are the basis
for the IWSLT ASR evaluation track [1]. The mismatch be-
tween training and testing data pertains to speaker and domain
yet style is relatively consistent. The approximate transcripts of
the talks are very close to verbatim. For lectures there is com-
paratively little training data available. Thus, general models
are adapted on small data sets that often do not even have tran-
scripts. Unsupervised adaptation must account for mismatches
in speaker, domain and style. The weather bulletin data on the
other hand is a new and still very small data set that has weak
references in the form of captions. Again, general models must
be adapted in a supervised/semi-supervised manner to account
for mismatches in style, domain and speakers.

This paper investigates different approaches for acoustic
model adaptation on weather forecasts when captions are avail-
able. Of special interest is the question of how to deal with
imperfect transcripts and unlabeled non-speech audio as inves-
tigated by [2]. Similar to [3] we investigate the possible im-
provements of a system by unsupervised acoustic model train-
ing depending on the amount of training data and the reliability
of transcripts. Similar to [4, 5], we made use of word level con-
fidence scores. However, we did not exclude data from training

1http://www.eu-bridge.eu
2http://www.ted.com

based on the word posteriors of the transcription, as we have too
little training data available as that we could afford to lose some
of it. Our training conditions can be compared to [6] where
new data for retraining comes from the same speaker, channel
and related conversation topics. Following the implications of
[7] we add low confidence score data to the training, but un-
like in other work we apply word-based weighting in order to
compensate for errors, as it was done by [8] for acoustic model
adaptation. The assumption is that erroneous data is helpful to
improve system generalization. Unlike other work, e.g. [9], we
did not use a lattice-based approach. Furthermore we study the
choice of a good adaptation method with increasing adaption
set sizes. We assume that sufficient amounts of training data
are available in order to transition from transform based tech-
niques, such as maximum likelihood linear regression and its
feature space constrained version [10], to maximum likelihood
[11] or maximum a posteriori parameter re-estimation [12].

2. The BBC Weather Data
The BBC weather data consists of audio recordings of British
weather forecasts and manually generated captions. There are
two different kinds of forecasts: general bulletins and regional
forecasts. The captions for the general bulletins are prerecorded
and therefore more accurate than the live captions for the re-
gional weather forecasts.

The data used consists of audio of forecasts recorded be-
tween 2008 and 2012 with roughly 50 different speakers. This
information is only an estimate since the tagging of speaker
names is partly imprecise and inconsistent, and the airing date
of the shows is not always given.

Although the speakers are well trained there are some hes-
itations, grammar errors or lengthy formulations in the record-
ings which are corrected in the captions (some examples are
shown in Table 1). The captions therefore can only be regarded
as loose transcripts.

Capt. We had some more typical summer weather
Verb. We had some more of this typical summer weather
Capt. Downpours across England and Wales
Verb. Downpours whistling across England and Wales

Table 1: Two examples for differences between captions (Capt.)
and the verbatim word sequences (Verb.). Words omitted in the
caption are bold-faced.

Captions are only provided for the forecast itself with time
markers relative to the beginning of the forecast but without ab-
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solute positions in the recording. Also, the recordings often
contain untranscribed parts at the beginning—such as trailers
and introductions by different speakers—and advertisements at
the end. The length of the untranscribed parts in the audio dif-
fers, so it is not possible to simply cut it off at a specific time,
in order to just obtain the portion of the data that is actually
captioned.

For the test corpus described in Section 5 careful transcrip-
tions were available in addition to the captions also covering
only the forecast itself, leaving out introduction and trailers. To
determine the general degree of faithfulness of the captions as a
(training) reference we computed the word error rate (WER) be-
tween the verbatim references and the captions. Table 2 shows
the result of this on the test data. It can be seen that the captions
and the verbatim transcriptions are rather close, indicating that
the speakers are indeed well trained.

Case Sensitive Case Insensitive
WER 7.4% 5%
# words in reference 12007 12007
Total # errors 890 600
# Substitutions 434 144
# Insertions 21 21
# Deletions 435 435

Table 2: WER between the captions and the verbatim tran-
scripts of the test set, and statistics on the types of errors.

The captions’ data format contains timestamps that indicate
when individual captions are displayed, however these need not
exactly correspond to when the respective words were spoken,
because captions have to adhere to further constraints in addi-
tion to when they were spoken. E.g., they have to adhere to
a certain letter rate in order to be readable, have to maintain a
certain distance from scene changes and may not span several
scenes. The timing information is therefore too inaccurate to be
taken as timestamps in the audio.

3. Preprocessing: Finding Suitable Start
and End Times

Due to the inaccuracy of the timing information we need to
align the captions to the audio to be able to use them as loose
transcripts. A naı̈ve Viterbi alignment of the concatenated cap-
tions to the corresponding audio file leads to suboptimal results
due to the large untranscribed parts in the audio.

To make sure that we use only audio that is properly tran-
scribed we decode the audio data, align the resulting hypotheses
to the captions and search for the first and last matching trigram.
The start time of the first word of the first trigram is used as the
start time of the loose transcript and the end time of last the
word of the last trigram as end time. The words preceding the
first trigram and following the last trigram are deleted from the
transcript. This leads to some data loss but the start and end
times can be iteratively refined by repeating the decoding and
cutting after the model was adapted on the data obtained in the
previous iteration.

Even after one iteration of model re-estimation the amount
of data that is lost due to the cut-off is rather small. We tested
the approach on a subset of 16 hours of audio data (parts 1-4
of the final database as described in Section 4). The acoustic
model as well as the language model of the system used for
decoding were trained on British general broadcast data. The

baseline system is described in more detail in Section 5. On the
test set described in Section 5 this system’s WER was 31.9%.
The baseline system was adapted on the raw recordings and then
achieved a WER of 23.2%. This adapted system in turn was
used to refine the start and end times of the audio it was adapted
on. After cutting, the amount of audio data was reduced by ap-
proximately 37% but the text of the original captions only by
around 6%. When applying this method to the final database,
the reduction of audio data decreased to 35.1% and the percent-
age of removed words in the reference to 4.9%. So the cut off
audio data consists of a small part of transcribed data plus a very
large part of unwanted data.

The different results for the subset and the final database
result from the small amount of data in total and from the fact
that the length of introductions and trailers differs significantly.
Although this heuristic for finding usable start and end times is
rather simple, it is convenient for the given task, as only 4.9%
of words in the reference were lost.

4. Experimental Set-Up and Data
All experiments were performed with the Janus Recognition
Toolkit (JRTk) developed at Karlsruhe Institute of Technology
and Carnegie Mellon University [13].

The training of our Hidden Markov Model (HMM) based
acoustic model tries to maximize the likelihood of the model
on the training data. In Viterbi training only the most probable
HMM state sequence is computed and used for re-estimating
the HMM’s parameters. In Expectation Maximization (EM)
training all possible alignments are taken into consideration for
model estimation. Both training techniques work iteratively and
require an initial set of model weights which are improved over
several iterations of model re-estimation. Adaptation can be
done by performing one iteration of model parameter estima-
tion on new adaptation data using an existing set of models that
was trained on different, out-of-domain data. As an alternative
maximum-a-posteriori (MAP) estimation using the models of
an existing speech recognizer as seed models for the ML esti-
mation of the model parameters was investigated—again on the
adaptation data. Various weighting factors τ to control the in-
fluence of the seed model were evaluated. We denote the MAP
weights as (Weight of the seed model ·100 |Weight of the adap-
tation data ·100).

From past experience these approaches are known to out-
perform maximum likelihood linear regression (MLLR) adapta-
tion of acoustic models when the training data exceeds roughly
1.5hrs. The amount of available adaptation data suggested
MLLR adaptation to be inferior, thus it was omitted.

Since the captions are not verbatim transcripts we expected
the Viterbi as well as the EM training to suffer from transcrip-
tion errors. The EM algorithm should not be affected as badly
as the Viterbi approach, since all possible HMM state sequences
are considered and not only the most likely one. To over-
come the problem of transcription errors we tried altering the
transcripts by introducing successions of filler states between
words, that are intended to be aligned to feature vectors from
words missing from the transcript. As a final alternative we
tested two kinds of unsupervised adaptation on transcripts of
the adaptation data that are in fact hypotheses produced by the
unadapted speech recognition system. The statistics accumu-
lated in training over these transcripts are either weighted by
the confidence value of the respective hypothesis word or the
weights are set to 1.0 for all words.

We split up the data and adapted the general system de-
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scribed in Section 5 with the different algorithms on different
growing subsets of the database. Periodically new packages of
data were made available. Our final database consists of the 6
parts described in Table 3.

Part
Number

# files Comment Duration / hours
(net duration)

1 50 bulletins part 1 3.87 (2.43)
2 50 bulletins part 2 4.04 (2.48)
3 50 bulletins part 3 3.89 (2.44)
4 51 bulletins part 4 3.88 (2.49)
5 103 bulletins part 5 7.46 (4.86)
6 54 regional forecasts 1.07 (1.00)
Σ 24.21 (15.7)

Table 3: Overview of the parts the final database consists of.
The size of the general bulletins files varies between 180 and
410 seconds.

Part 6 (regional forecasts with live captions) contains cap-
tions considered to be less verbatim even than the material in
the rest of the database. These captions are produced on the fly
during live airings and the results depend on the ability of the
captioner to keep up with the speaking rate of the presenter.

Since not all parts of the data were available when the ex-
periments began, we tested the general viability of some adap-
tation approaches only on initially available subsets of the final
training data. We tested only the most promising techniques on
the larger databases.

5. Results
For all tests a semi-continuous system was used as baseline sys-
tem to be adapted on the given adaptation data.

As front-end we used mel-frequency cepstral coefficients
(MFCC) with 13 cepstral coefficients. The mean and variance
of the cepstral coefficients were normalized on a per-utterance
basis. 15 adjacent frames were combined into one single fea-
ture vector. The resulting feature vectors were then reduced to
42 dimensions using linear discriminant analysis (LDA).

The acoustic model is a context dependent quinphone sys-
tem with three states per phoneme, and a left-to-right topology
without skip states. It uses 24,000 distributions over 8,000 code-
books. The model was trained using incremental splitting of
Gaussians (MAS) training, followed by semi-tied covariance
(STC) [14] training using one global transformation matrix, and
one iteration of Viterbi training. The acoustic models have up to
128 mixture components per model and a total of 591k Gaus-
sian components. All models use vocal tract length normaliza-
tion (VTLN)[15].

The system was trained on about 200 hours of carefully
transcriped British general Broadcast data.

A baseline 4gram case sensitive language model with modi-
fied Kneser-Ney smoothing was built for 36 sources with a total
word count of 2,935.6 million and a lexicon size of 128k words.
This was done using the SRI Language Modeling Toolkit [16].
The language models built from the text sources were interpo-
lated using interpolation weights estimated on a tuning set re-
sulting in a language model with 59, 293k 2grams, 153, 979k
3grams and 344, 073k 4grams. For decoding, a pronunciation
dictionary was used containing 142k entries.

A second, smaller 4-gram language model was trained on
the references of the acoustic model training data containing

61, 738 words increasing the lexicon size to 129k words. This
was interpolated with the baseline language module to produce
an adapted language model. Adding pronunciations and vari-
ants for the new words in the lexicon to the pronunciation dic-
tionary increased its size to 144k entries.

5.1. Test Set

The test set contains 54 minutes of general weather bulletins,
the captions for which were manually corrected to be verbatim
transcripts. Correct start and end times were also manually de-
termined.

5.2. First Adaptation Tests

First adaptation tests were done on a subset of the final database
originally containing 16 hours of audio data and 10.6 hours after
recalculation of start and end times as described in Section 3. Of
all 6 parts of the final database the first tests were only done on
the first 4. Table 4 shows a comparison of the results of the
adaptations via one iteration of the Viterbi or the EM algorithm,
and the Viterbi-based MAP estimation. Viterbi re-estimation
using the original start and end times was used as an additional
baseline.

To limit time and memory consumption a segmentation of
the audio files using a partial Viterbi-Alignment was performed
instead of aligning over whole audio files.

System WER
Baseline 31.9%
Viterbi 1 iteration 20.9%
Viterbi 2 iterations 26.5%
EM 1 iteration 21.5%
EM 2 iterations 32.1%
MAP 20/80 20.7%
MAP 40/60 20.5%
MAP 60/40 21.0%
MAP 80/20 21.6%

Table 4: First adaptation results on a subset of the final
database.

It can be seen that the EM re-estimation achieves worse re-
sults than the Viterbi re-estimation. These results however are
not comparable since our EM training fails for a considerable
amount of the training data (approximately 31%). This may be
due to the implementation being optimized under the assump-
tion of accurate transcripts and although a pruning technique is
applied the EM training exceeds the memory limit for long ut-
terances. Tuning the pruning parameter of the EM algorithm
might alleviate this problem.

After two iterations of Viterbi re-estimation the systems
performance degrades since the adaptation over-fits to the adap-
tation data.

5.3. Results on the Iteratively Growing Database

Viterbi estimation and Viterbi MAP estimation were tested
in multiple configurations trained on different parts of the
database. Results are shown in Table 5 and Figure 1.

It can be seen that Viterbi MAP adaptation outperforms the
Viterbi ML re-estimation for all sizes of the database but the
difference in performance decreases the larger the amount of
training data is. Figure 2 shows the corresponding results of the
tests using the adapted language model. Here the difference in
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database parts Viterbi WER MAP 20/80 MAP 40/60 MAP 60/40 MAP 80/20
1 26.1% 25.1% 23.4% 22.9% 24.0%

1+2 23.4% 23.4% 22.6% 22.0% 22.8%
1-3 21.9% 21.6% 21.2% 21.5% 22.0%
1-4 20.8% 20.3% 20.6% 20.7% 21.6%
1-5 20.4% 20.1% 20.3% 20.6% 21.3%
1-6 20.1% 19.8% 20.0% 20.5% 21.3%

only 6 50.9% 33.7% 31.4% 30.7% 31.0%

Table 5: WERs of adapted systems for different numbers of parts of the final database. The best performance for each size of the
database is bold.
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Figure 1: Word Error rates for different adaptation methods on
the test set, plotted over increasing amounts of available adap-
tation data .

performance for larger amounts of training data is significantly
higher and the performance of the Viterbi ML re-estimation
seems to stagnate. Using the adapted language model with the
unadapted acoustic model, the resulting WER is 21.5%.
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Figure 2: Word Error rates for different adaptation methods on
the test set, plotted over increasing amounts of available adap-
tation data with adapted language model.

We took part in an internal EU-BRIDGE evaluation cam-
paign on the Weather Bulletin Task using the presented Viterbi
MAP re-estimation method. The initial system training men-
tioned in Section 5 was redone with the adaptation data also
being used during the basic system training. Instead of MFCC
features we used deep bottle neck features (DBNFs) [17] which
have been shown to significantly outperform MFCC features.

We also performed fMLLR and MLLR adaptation in a second
decoding pass. This resulted in a single 2nd pass system with
a WER of 12.4%. Adapting this system, which already saw the
Weather Bulletin data during traing, still resulted in a reduced
WER of 12.0% for the Viterbi ML re-estimation and 11.9% for
the MAP re-estimation.

5.4. Comparison to Unsupervised Training

Table 6 compares the best results from using the captions as
training transcriptions with training in an unsupervised man-
ner. One can see that the unsupervised training performs sig-
nificantly worse. This suggests that the quality of the training
references, while not verbatim grade, is still good enough and
that they are much more informative than recognition hypothe-
ses. However, when time is not an issue repetitive unsuper-
vised adaptation may yield similar results. The Viterbi ML re-
estimation using the original start and end times mentioned in
Section 3 was redone using the final database, improving the
performance from 23.2% to 21.8%.

system WER
Unadapted system 31,9%

Viterbi on original start and end times 21.8%
Viterbi on modified start and end times 20.1%

MAP 20/80 on modified start and end times 19.8%
Unsupervised 28.4%

Unsupervised weighted 27.9%

Table 6: WER of the best adapted system to baseline experi-
ments. Unsupervised adaptations are Viterbi ML re-estimations
on the hypotheses from the decoding with the baseline system.
In weighted unsupervised training the confidence of a word is
used as a weight for the training patterns during the accumula-
tion of the sufficient statistics during training.

6. Conclusion
We investigated methods for using captions as loose transcripts
for adapting acoustic models for automatic speech recognition
to weather forecast audio data. Considerable gains can be made
by determining the correct start and end times of the captions.
This is necessary since the original time segments of the cap-
tions only match imprecisely to the corresponding parts in the
audio. It turned out that similar to supervised adaptation meth-
ods Viterbi ML estimation is outperformed by MAP estimation
but for increasing amounts of adaptation material results con-
verge. By using an adapted language model the effect of con-
vergence is decreased.
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We showed that the proposed method leads to a WER that
is 8.1% abs. lower than when using unsupervised adaptation
methods, letting the WER drop from 27.9% to 19.8%. Refin-
ing start and end times for incomplete transcriptions by a sim-
ple heuristic that searches for matching trigrams of words in
the alignment of hypotheses from the decoded audio files to the
transcriptions improves the WER by 1.7% abs.

Using the proposed method in combination with language
model adaptation and deep BNF features led to a WER of 11.9%
in the EU-BRIDGE evaluation campaign on the Weather Bul-
letin task.

At a level of 5% WER divergence of the available tran-
scripts from verbatim references supervised training is still
much more effective than replacing the reference with automat-
ically generated transcripts. A major drawback of the proposed
method is the need to decode all of the adaptation material. De-
pending on the task this might not be feasible due to the time
intensity of the approach.

If the divergence is higher, the investigation of the appropri-
ate adaption method would have to be redone and data selection
methods might become necessary.
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[11] S. Stüker, “Acoustic modelling for under-resourced languages,”
Ph.D. dissertation, PhD thesis, Universität Karlsruhe (TH), Karl-
sruhe, Germany, 2009. 125, 2009.

[12] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation
for multivariate gaussian mixture observations of markov chains,”
IEEE Transactions on Speech and Audio Processing, vol. 2, no. 2,
pp. 291–298, Apr. 1994.

[13] H. Soltau, F. Metze, C. Fuegen, and A. Waibel, “A one-pass de-
coder based on polymorphic linguistic context assignment,” in
ASRU, 2001.

[14] M. Gales, “Semi-tied covariance matrices for hidden markov
models,” Cambridge University, Engineering Department, Tech.
Rep., February 1998.

[15] P. Zhan and M. Westphal, “Speaker normalization based on fre-
quency warping,” in ICASSP, Munich, Germany, April 1997.

[16] A. Stolcke, “Srilm—an extensible language modeling toolkit,” in
ICSLP, 2002.

[17] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting deep
bottleneck features using stackedauto-encoders,” in Acoustics,
Speech and Signal Processing (ICASSP),2013 IEEE International
Conference on. IEEE, 2013.

36

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.


