

Preserving Designer Input on Concrete User Interfaces
Using Constraints While Maintaining Adaptive Behavior

Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu

Computing Department, The Open University

Walton Hall, Milton Keynes, United Kingdom

{pierre.akiki, a.k.bandara, y.yu}@open.ac.uk

Figure 1. Adding Constraints on the CUI as Part of the Process of Developing Adaptive Model-Driven UIs (Step 2)

and Maintaining These Constraints When the Adaptation Engine Applies the Adaptive Behavior (Step 4)

ABSTRACT

User interface (UI) adaptation is applied when a single UI

design might not be adequate for maintaining usability in

multiple contexts-of-use that can vary according to the user,

platform, and environment. Fully-automated UI generation

techniques have been criticized for not matching the

ingenuity of human designers and manual UI adaptation has

also been criticized for being time consuming especially

when it is necessary to adapt the UI for a large number of

contexts. This paper presents a work-in-progress approach

that uses constraints for preserving designer input on

concrete user interfaces upon applying adaptive behavior.

The constraints can be assigned by the UI designer using

our integrated development environment Cedar Studio.

Author Keywords

Adaptive user interfaces; Designer input; Constraints;

Concrete user interfaces; Model-driven engineering

ACM Classification Keywords

D.2.2 Design Tools and Techniques - User interfaces;

[Information Interfaces and Presentation]: H.5.2 User

Interfaces – User-centered design

General Terms

Design; Human Factors

INTRODUCTION

User interface (UI) adaptation is applied when a single UI

design might not be adequate for maintaining usability in

multiple contexts-of-use that can vary according to the user,

platform, and environment. UI adaptation is either labeled

as adaptable meaning that manual adaptation is required or

adaptive indicating that an automatic adaptation is done. By

observing the literature we can see that there are a variety

of UI adaptation techniques that adopt manual adaptation

(adaptable UI) such as “two interface design” [14] and

“crowdsourced adaptation” [17] or automated adaptation

(adaptive UI) such as “Supple” [13], and “Personal

Universal Controller” [18].

Some researchers have criticized fully-mechanized UI

construction in favor of applying the intelligence of human

designers for achieving higher usability [21]. Adaptive UI

behavior is also regarded by some as being unpredictable

and possibly disorienting for users [11]. Other researchers

promote the use of adaptive behavior [5]. The automation

provided by adaptive behavior provides advantages in terms

of saving development time thereby reducing the cost of

adapting user interfaces to multiple contexts-of-use.

The importance of obtaining a predictable outcome is

emphasized due to its impact on the success of UI

development techniques [16]. Some fully-automated

approaches only allow designer input on a high level of

abstraction thereby decreasing the control and predictability

of the outcome. Other approaches support lower level input

such as control over the concrete widgets, nevertheless

upon applying adaptive behavior the input made by the

human designer will be overridden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

In this paper, we present a work-in-progress technique that

allows designers to assign UI constraints that are preserved

after applying automated adaptive behavior. The constraints

embody the characteristics of the UI that require human

ingenuity and are not met by fully-automated techniques.

The model-driven approach to user interface development

has been promoted by many research works such as the

well-established CAMELEON reference framework [6].

CAMELEON represents user interfaces on multiple levels

of abstraction: (1) Task Models can be represented as

ConcurTaskTrees [20] and Domain Models as UML class

diagrams, (2) Abstract User Interface (AUI), represents the

UI independent of any modality (e.g., graphical, voice,

etc.), (3) Concrete User Interface (CUI), represents the UI

as concrete widgets (e.g., buttons, labels, etc.), and (4)

Final User Interface (FUI), is the running UI rendered in a

presentation technology. The model-driven approach to UI

development can serve as a basis for devising adaptive UIs

due to the possibility of applying different types of

adaptations on the various levels of abstraction [2]. Out of

the levels of abstraction presented by CAMELEON, the

CUI will be given particular attention in this paper since it

embodies the designer’s ingenuity. Designer input on the

CUI is particularly promoted by indicating that it would be

better if the designer can manipulate a concrete object

rather than its abstraction [9]. By following such

recommendations, we can say that the designer should be

allowed to create a CUI rather than completely generating it

from an abstract model. Yet even though some approaches

might offer designers with the ability to create CUIs, upon

applying the adaptive UI behavior the designer’s choices

are bound to change according to the adaptive UI behavior

particular to a given context-of-use. Nevertheless, in certain

cases designers would like to keep some UI characteristics

intact. We think this could be achieved by providing non-

technical UI designers with a simple technique for assigning

constraints on the CUI. These constraints could be taken into

consideration and preserved at a later stage when the UI is

being automatically adapted to a particular context-of-use.

The steps illustrated in Figure 1 show where our proposed

technique fits in the process of developing adaptive model-

driven UIs. We can see that the constraints are added by the

designer in Step 2 after adjusting the CUI design. Later, in

Step 4 when the adaptation engine applies the adaptive

behavior it preserves the designer’s constraints.

The remainder of this paper is structured as follows. The

next section briefly describes the related work. Then, an

example is given to highlight the importance of preserving

designer input on the CUI. Later, our approach to applying

CUI constraints is described. Finally, the conclusions and

future work are given.

RELATED WORK

By observing the literature we can categorize UI adaptation

approaches under the following categories:

 Adaptable UIs allow interested stakeholders to manually

adapt the desired characteristics

 Adaptive UIs automatically react to a change in the

context-of-use by changing one or more of their

characteristics using a predefined set of adaptation rules

 Truly Adaptive UIs can automatically react to a change in

the context-of-use but are also capable of reacting to

contexts-of-use that were previously unknown

Adaptable UIs fully support manual designer input, which

provides an advantage in terms of applying the knowledge

of a human designer but has a downside in terms of high

development time. Both Adaptive and Truly Adaptive UIs

provide a higher level of automation through the ability of

adapting the UI using generic rules but even though the

rules are meant to produce an optimal UI based on the

context-of-use, in some cases the input of the human

designer can be essential (e.g. widget size, position, etc.).

Raneburger et. al. presented an approach to automated

generation of WIMP style UIs. They attempt to enhance the

quality of the generated UIs by using a graphical tree editor

to add hints to the transformations (e.g., the alignment of a

widget) [22]. One problem is that UI designers might only

work on the CUI level and the specification of the model

transformations would be left to the developers. Also, the

authors state that a graphical “what you see is what you get”

(WYSIWYG) editor similar to the one presented by the

Gummy [15] system would improve on their approach.

Supple is primarily capable of automatically generating UIs

that are adapted to each user’s motor abilities by treating UI

generation as an optimization problem [13]. Yet, although

the authors mention that Supple is not intended to replace

human designers, the system only relies on a high level

model to generate its final UI thereby preventing designer

input from being made on the CUI level.

DynaMo-AID [7] is presented as part of the Dygimes UI

creation framework. It incorporates a design process for the

development of context-aware UIs that are adaptable at

runtime. Like Supple this system focuses on a high level UI

representation (task models), which is used for automatic

generation of the CUI.

MASP [10] provides designers with a graphical design tool

to support the creation of layout models, which are later

interpreted at runtime for supporting adaptive UI behavior.

Although the tool supports designer input, no mechanism is

offered for maintaining this input after the adaptive

behavior is applied.

Smart templates are proposed for improving automatic

generation of ubiquitous remote control UIs on mobile

devices [19]. Although these templates improve the ability

of preserving designer input, specifying the various

template variations could be time consuming and would be

classified under adaptable rather than adaptive behavior.

AN EXAMPLE OF USER INTERFACE CONSTRAINTS

We developed a mechanism called Role-Based User

Interface Simplification (RBUIS) [2] for simplifying UIs by

minimizing their feature-set and optimizing their layout

based on the context-of-use (user, platform, environment).

We define a minimal feature-set as the set with the least

features required by a user to perform a job. An optimal

layout is the one that maximizes satisfaction of the

constraints imposed by a set of aspects such as computer

skills, culture, etc. An optimal layout is obtained by adapting

the properties of concrete widgets (e.g., type, grouping,

size, location, etc.). In RBUIS, the feature-set is minimized

by applying roles to task models and the layout is optimized

by executing adaptive behavior workflows on the CUI. The

workflows can embody visual and code-based constructs.

RBUIS is based on the CEDAR architecture [1] and uses

interpreted runtime models for the adaptation. Nevertheless,

the designer can still create an initial fully-featured CUI.

The feasibility of adapting a least constrained UI design

was shown in a previous research [12]. RBUIS follows a

similar approach by adapting an initial UI that is without

constraints in terms of the feature-set and least constrained

in terms of the layout (e.g., least constrained screen size).

Adaptive UI behavior such as removing and adding widgets

could leave gaps and deformations in the layout, which are

not esthetically desirable and could increase the navigation

time according to Fitts’s Law. A mechanism is needed for

maintaining plasticity, denoting the UI’s ability to adapt to

the context-of-use while preserving its usability [8]. Hence,

we can consider layouting as one example of UI constraints

that could be influenced by choices made by a human

designer rather than merely automated choices. The

example illustrated in Figure 3 is that of a sales invoice UI,

usually common in enterprise applications such as

enterprise resource planning systems. Let us consider that

we would like to apply RBUIS to this UI in order to

minimize its feature-set for a role that does not require all

the initial features. The examples shown in Figure 4 and

Figure 5 are two possible layouting alternatives that could

be produced after eliminating the undesirable features from

the UI. The differences between the two versions are the

layouting choices related to group boxes “a” and “b” on one

hand, and data grid “c” and text box “d”. In Version 1, shown

in Figure 4, the width of group box “b” is increased in order

to prevent scrolling but this is at the expense of the width of

group box “a”, whereas in Version 2 shown in Figure 5 the

opposite is done. Also, in Version 1 the width of text box

“d” is increased at the expense of the height of data grid “c”

whereas in Version 2 an opposite choice is made. In both

cases there are no absolute right and wrong choices. Such

choices depend on what the human designer thinks is more

appropriate. Is giving more room for data entry in the fields

of group box “a” and the text box in group box “d” more

important than showing additional items on the screen in

the radio button groups of group box “b” and data grid “c”?

When an algorithm makes the choice between Versions 1

and 2 without providing any rationale, critics are going to

deem adaptive UIs as being unpredictable. Empowering

human designers could strike a balance between automation

and human intelligence to increase adaptive UI predictability.

CONCRETE USER INTERFACE CONSTRAINTS

In many cases UIs are designed by non-technical designers.

Also, in another work we have highlighted the possibility of

engaging end-users in the UI adaptation process [3].

Therefore, we think that the constraints we are proposing

should be kept simple in order to be implementable by the

non-technical stakeholders. We devised a basic meta-

model, illustrated in Figure 2, to reflect such constraints.

Figure 2. Simple CUI Constraints Meta-Model

Since each CUIElement has Properties, Constraints can be

attached to these properties in order to reflect designer

related choices regarding their values. A Constraint simply

has a comparison operator (e.g., “>”, “<”, “=”, etc.) and a

value for comparison. In order to have a practical approach

that promotes easier constraint assignment, a constraint’s

value should not necessarily be exact. It can be absolute or

relative, quantitative or qualitative. For example, a constraint

on the width of a widget could be “> 100” or it could be “=

Large”. It is possible to define ranges for such values or

leave the decision to the adaptation engine to be made

according to a given context and UI. Let us consider group

boxes “a” and “b” presented in both Figure 4 and Figure 5.

If the designer specified that the width of group box “a”

should be “Medium” whereas that of group box “b” should

be “Large” then the version in Figure 4 would be chosen

and vice-versa. The same could work for data grid “c” and

text box “d”. The designer also has the ability to allocate

each Constraint to a Priority Class in order to indicate

which constraint would get eliminated in case a conflict

occurs between two or more constraints. If conflicts still

exist even with the priority classes, the system will then

have to eliminate one at random. A Constraint can be one

of two types: Strict or Lenient. For example, a lenient

equality constraint indicates that the original value can be

changed to close values whereas if it were strict it would

mean that the value should be exactly the same but it can

still be dropped in case of a conflict. The coming section

explains how we distinguish explicit and implicit constraints

and our proposition for applying them in practice.

Figure 3. Initial Sales Invoice User Interface

Figure 4. Adapted Sales Invoice User Interface Version 1

Figure 5. Adapted Sales Invoice User Interface Version 2

Figure 6. Assigning Concrete User Interface Constraints in Cedar Studio

APPLYING CONCRETE UI CONSTRAINTS

Cedar Studio is our integrated development environment

(IDE) for supporting the development of adaptive UIs based

on a model-driven approach [4]. We consider that designer

constraints can be explicitly or implicitly specified. Explicit

constraints are specified by the designer on the CUI

properties whereas implicit constraints can be deduced from

the design made on the canvas itself such as widget

ordering and positioning relative to other widgets.

Explicit Constraints

We extended the CUI designer of Cedar Studio to support

the addition of explicit designer constraints. Let us

considers a basic example that requires such constraints and

propose a technique for applying it in practice. Consider

that the “Phone Numbers” grid (Figure 6 – a) should be

eliminated for a given context-of-use. The layouting engine

will be faced with two choices, either filling the space by

increasing the width of the “Note” (Figure 6 – b) or by

increasing the height of the “Picture” (Figure 6 – c). If the

designer adds a constraint as shown in Figure 6 – d to

indicate that the “Note” should have a “Large” width, the

system should be able to incorporate this choice in a

constraint problem that can be passed to a constraint solver.

Listing 1. Constraint Problem Written in Python on Z3Py

1. #variables to hold the final calculated width of the widgets
2. noteWidth, pictureHeight = Reals('noteWidth pictureHeight')

3. #initial width of the note and picture widgets
4. initialNoteWidth,initialPictureHeight = Reals('initialNoteWidth

initialPictureHeight')

5. initialNoteWidth = 250; initialPictureHeight = 200

6. #the height and width of the canvas holding the widgets
7. canvasWidth, canvasHeight = Reals('canvasWidth

canvasHeight')

8. canvasWidth = 300; canvasHeight = 200

9. solve (
#the two possibilities
(noteWidth == canvasWidth and pictureHeight ==
initialPictureHeight) or
(noteWidth == initialNoteWidth and pictureHeight ==
canvasHeight),
#constraint based on the designer's input

 noteWidth == max(canvasWidth, initialNoteWidth))

The problem shown in Listing 1 is expressed in Python and

is relevant to the example demonstrated in Figure 6. It

defines two variables “noteWidth” and “pictureHeight” to

hold the calculated values of the widget properties. It takes

as input the initial property values (“initialNoteWidth” and

“initialPictureHeight”) and the height and width of the

canvas (“canvasHeight” and “canvasWidth”) that are the

possible values that these properties can take. The two

possibilities at hand are either resizing the width of the

“Note” widget to fit the canvas width and keeping the

height of the “Picture” widget intact or vice-versa. Since the

designer specified a constraint stating that the “Note” width

should be “Large”, the problem was supplied with a

constraint “noteWidth == max (canvasWidth, initialNoteWidth)”

in order to choose the largest possible value. Running the

problem on the Z3Py [24] constraint solver yields the

following result: “[noteWidth = 300, pictureWidth = 200]”.

The yielded values could be applied to the relevant CUI

element properties to obtain an adapted user interface that

preserves designer input.

Figure 7. Implicit Concrete User Interface Constraints – A Relative Positioning Example

(a) Initial User Interface Design, (b) Minimized Feature-Set UI that Hides Widgets, (c) Refitted Layout UI Design

Implicit Constraints

An implicit layouting constraint that we worked on as part

of the layouting algorithm supporting RBUIS is related to

the relative widget positioning and ordering specified by the

designer. Upon eliminating parts of the UI in Figure 7 – a to

minimize its feature-set for a particular context-of-use as

shown in Figure 7 – b, this algorithm would be responsible

for refitting the UI by removing the gaps. The example in

Figure 7 – c shows how the widgets are pushed upwards

beneath the closest widget. Deducing implicit constraints

from the design made on the canvas saves the designer the

effort of adding these constraints separately.

Algorithm 1. UI Refitting Written in C# (Excerpt)

1. public bool RefitTop(List<ControlInfo> Controls, int StartingTop = 5)
2. {
3. List<List<ControlInfo>> lines = this.GetControlLines(Controls);
4. if (lines.Count == 0) { return true; }
5.
6. foreach (ControlInfo control in lines[0])
7. { control.Top = StartingTop; }
8.
9. for (int counter = 1; counter < lines.Count; counter++)
10. {
11. foreach (ControlInfo control in lines[counter])
12. {
13. int reverseLineCounter = counter -1;
14. var ctrsAbove = new List<List<ControlInfo>> ();
15.
16. while (ctrsAbove.Count() == 0 && reverseLineCounter >= 0)
17. {
18. ctrsAbove = from l in lines[reverseLineCounter]
19. where (l.Left > control.Left - l.Width &&
20. l.Left < control.Left + l.Width)
21. orderby l.Height descending select l;
22. reverseLineCounter- - ;
23. }
24.
25. if (ctrsAbove.Count() > 0) {
26. ControlInfo ctrAbove = ctrsAbove.First();
27. control.Top = ctrAbove.Bottom + widgetMargin;
28. }
29. else { control.Top = StartingTop; }
30. }
31. }
32. return true;
33. }

The part of our algorithm that pushes the widgets upwards

is shown in Algorithm 1. We implemented the implicit

constraints as a layouting algorithm due to its simplicity in

comparison to having to generate a constraint problem such

as the one shown in Listing 1. For example, the

implementation excerpt shown in Algorithm 1 splits the

CUI controls into ordered lines and moves each widget

beneath the one above it from one of the previous lines.

Expressing this algorithm as a separate constraint problem

for different contexts would have been more difficult than

writing one generic solution.

CONCLUSIONS AND FUTURE WORK

This paper presented a work-in-progress technique that

allows designers to supply CUI constraints that would be

maintained after applying automated adaptations. We

categorized these constraints as explicit and implicit.

Explicit constraints are specified by the designer on the

CUI properties whereas implicit constraints can be deduced

from the design made on the canvas such as widget

ordering and positioning. Both types of constraints can be

specified using our IDE Cedar Studio. We proposed the

generation of constraint problems that could be solved by

constraint solvers to satisfy explicit constraints. On the

other hand we implemented implicit constraints relevant to

widget positioning and ordering as a layouting algorithm.

More work is still required to make the proposed technique

applicable in practice. A primary point would be devising

an algorithm that would convert explicit designer constraints

into a constraints problem such as the one shown in Listing

1. This algorithm should then be utilized by the adaptation

engine in combination with the algorithm for refitting the

UI based on implicit constraints in order to maintain the

designer’s input upon adapting the user interface. When this

part is accomplished, then we can comprehensively test

both explicit and implicit constraints in a real-life scenario

by measuring the extent to which the usability is preserved

and the efficiency of the technique.

Our solution is intended for allowing designers to add any

type of constraints that can be applied on the properties of

the concrete UI widgets. The incorporation of this solution

in a generic IDE like Cedar Studio allows extensions to be

made in the future. One possible extension would be

supplying UI designers with the ability to automatically

check the initial design (implicit constraints) based on

general ergonomic rules [23] or to add these rules as

explicit constraints. Another possibility is to use such

ergonomic rules for prioritizing constraints in order to allow

the system to make an informed decision when it faces two

conflicting constraints that were assigned the same priority

by the human designer.

ACKNOWLEDGMENT

This work is partially funded by ERC Advanced Grant

291652.

REFERENCES

1. Akiki, P.A., Bandara, A.K., and Yu, Y. Using

Interpreted Runtime Models for Devising Adaptive User

Interfaces of Enterprise Applications. Proceedings of the

14th International Conference on Enterprise

Information Systems, SciTePress (2012), 72–77.

2. Akiki, P.A., Bandara, A.K., and Yu, Y. RBUIS:

Simplifying Enterprise Application User Interfaces

through Engineering Role-Based Adaptive Behavior.

Proceedings of the fifth ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, ACM

(2013), Forthcoming.

3. Akiki, P.A., Bandara, A.K., and Yu, Y. Crowdsourcing

User Interface Adaptations for Minimizing the Bloat in

Enterprise Applications. Proceedings of the fifth ACM

SIGCHI Symposium on Engineering Interactive

Computing Systems, ACM (2013), Forthcoming.

4. Akiki, P.A., Bandara, A.K., and Yu, Y. Cedar Studio:

An IDE Supporting Adaptive Model-Driven User

Interfaces for Enterprise Applications. Proceedings of

the fifth ACM SIGCHI Symposium on Engineering

Interactive Computing Systems, ACM (2013),

Forthcoming.

5. Benyon, D. Adaptive systems: A solution to usability

problems. User Modeling and User-Adapted Interaction

3, 1 Springer (1993), 65–87.

6. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. A Unifying

Reference Framework for Multi-Target User Interfaces.

Interacting with Computers 15 Elsevier (2003) 289–308.

7. Clerckx, T., Luyten, K., and Coninx, K. DynaMo-AID:

a Design Process and a Runtime Architecture for

Dynamic Model-Based User Interface Development.

Proceedings of the 2004 International Conference on

Engineering Human Computer Interaction and

Interactive Systems, Springer-Verlag (2004), 11–13.

8. Coutaz, J. User Interface Plasticity: Model Driven

Engineering to the Limit! Proceedings of the 2nd ACM

SIGCHI Symposium on Engineering Interactive

Computing Systems, ACM (2010), 1–8.

9. Demeure, A., Meskens, J., Luyten, K., and Coninx, K.

Design by Example of Graphical User Interfaces

adapting to available screen size. In V. Lopez-Jaquero,

J.P. Molina, F. Montero and J. Vanderdonckt, eds.,

Computer-Aided Design of User Interfaces VI. Springer-

Verlag (2009), 277–282.

10. Feuerstack, S., Blumendorf, M., Schwartze, V., and

Albayrak, S. Model-based Layout Generation.

Proceedings of the Working Conference on Advanced

Visual Interfaces, ACM (2008), 217–224.

11. Findlater, L. and McGrenere, J. A Comparison of Static,

Adaptive, and Adaptable Menus. Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems, ACM (2004), 89–96.

12. Florins, M. and Vanderdonckt, J. Graceful Degradation

of User Interfaces as a Design Method for Multiplatform

Systems. Proceedings of the 9th International

Conference on Intelligent User Interfaces, ACM (2004),

140–147.

13. Gajos, K.Z., Weld, D.S., and Wobbrock, J.O.

Automatically Generating Personalized User Interfaces

with Supple. Artificial Intelligence 174, 12-13 Elsevier

(2010), 910–950.

14. McGrenere, J., Baecker, R.M., and Booth, K.S. An

Evaluation of a Multiple Interface Design Solution for

Bloated Software. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems,

ACM (2002), 164–170.

15. Meskens, J., Vermeulen, J., Luyten, K., and Coninx, K.

Gummy for Multi-Platform User Interface Designs:

Shape me, Multiply me, Fix me, Use me. Proceedings of

the Working Conference on Advanced Visual Interfaces,

ACM (2008), 233–240.

16. Myers, B., Hudson, S.E., and Pausch, R. Past, Present,

and Future of User Interface Software Tools. ACM

Transactions on Computer-Human Interaction 7, 1

ACM (2000), 3–28.

17. Nebeling, M. and Norrie, M.C. Tools and Architectural

Support for Crowdsourced Adaptation of Web

Interfaces. Proceedings of the 11th International

Conference on Web Engineering, Springer-Verlag

(2011), 243–257.

18. Nichols, J., Myers, B.A., Higgins, M., et al. Generating

Remote Control Interfaces for Complex Appliances.

Proceedings of the 15th annual ACM Symposium on

User Interface Software and Technology, ACM (2002),

161–170.

19. Nichols, J., Myers, B.A., and Litwack, K. Improving

Automatic Interface Generation with Smart Templates.

Proceedings of the 9th International Conference on

Intelligent User Interfaces, ACM (2004), 286–288.

20. Paternò, F., Mancini, C., and Meniconi, S.

ConcurTaskTrees: A Diagrammatic Notation for

Specifying Task Models. Proceedings of the IFIP TC13

Interantional Conference on Human-Computer

Interaction, Chapman & Hall, Ltd. (1997), 362–369.

21. Pleuss, A., Botterweck, G., and Dhungana, D.

Integrating Automated Product Derivation and

Individual User Interface Design. Proceedings of the

Fourth International Workshop on Variability

Modelling of Software-Intensive Systems, Universitat

Duisburg-Essen (2010), 69–76.

22. Raneburger, D., Popp, R., and Vanderdonckt, J. An

Automated Layout Approach for Model-Driven WIMP-

UI Generation. Proceedings of the 4th ACM SIGCHI

Symposium on Engineering Interactive Computing

Systems, ACM (2012), 91–100.

23. Vanderdonckt, J. and Bodart, F. The “Corpus

Ergonomicus”: A Comprehensive and Unique Source

for Human-Machine Interface. Proceedings of the 1st

International Conference on Applied Ergonomics, USA

Publishing (1996), 162–169.

24. Microsoft Z3Py. http://rise4fun.com/z3py.

