
Extending Absorption to Nominal Schemas

Andreas Steigmiller1, Birte Glimm1, and Thorsten Liebig2

1 Ulm University, Ulm, Germany, <first name>.<last name>@uni-ulm.de
2 derivo GmbH, Ulm, Germany, liebig@derivo.de

Abstract. Nominal schemas have recently been introduced as a new approach
for the integration of DL-safe rules into the Description Logic framework. The
efficient processing of knowledge bases with nominal schemas remains, however,
challenging. We address this by extending the well-known optimisation of ab-
sorption as well as the standard tableau calculus to directly handle the (absorbed)
nominal schema axioms. We implement the resulting extension of standard tab-
leau calculi in a novel reasoning system and we integrate further optimisations.
In our empirical evaluation, we show the effect of these optimisations and we
find that the proposed approach performs well even when compared to other DL
reasoners with dedicated rule support.

1 Introduction

We address the problem of an efficient handling of so-called nominal schema axioms in
tableau calculi for Description Logics (DLs). Nominal schemas have been introduced
recently [11] as a feature for expressing arbitrary DL-safe rules (as specified in the W3C
standards SWRL [5] or RIF [9]) natively in DLs and, consequently, in OWL ontologies
[13]. Hence, DLs with nominal schemas provide a unified basis for OWL and rules.
Although some attempts (see, e.g., [10]) have been made to improve the performance
of tableau calculi when extended with nominal schemas, handling of nominal schemas
remains challenging. We tackle this problem by extending the well-know tableau opti-
misation of absorption [7]. The resulting calculus extends a standard tableau calculus
by additional rules to deal with the absorbed nominal schema axioms and shows a con-
siderable performance improvement over existing techniques.

Nominal schemas extend the nominal constructor that is present in many DLs and
which allows for specifying a concept as a singleton set with a named individual as
member, e.g., the interpretation of the concept {a} consists of the element that represents
the named individual a. Nominal schemas introduce a new concept constructor {x},
where x is a variable that can only be bound to a named individual from the ABox of
the knowledge base. This restriction ensures decidability and is common for nominal
schemas as well as for SWRL rules.

We use the same running example as Krisnadhi and Hitzler [10], which describes a
conflicting review assignment for an individual who has to review a paper x that has an
author y with whom that individual has a joint publication in the same venue z:

∃hasReviewAssignment.({x} u ∃hasAuthor.{y} u ∃atVenue.{z})
u ∃hasSubmittedPaper.(∃hasAuthor.{y} u ∃atVenue.{z})
v ∃hasConflictingAssignedPaper.{x}.

For brevity, we shorten hasReviewAssignment to r, hasAuthor to a, atVenue to v, has-
SubmittedPaper to s, and hasConflictingAssignedPaper to c in the remainder. Obvi-
ously, this axiom can neither be directly expressed in a DL knowledge base nor as
ordinary DL-safe rule (e.g., if we were to express the complex concepts as role atoms,
we would have to introduce a variable for the submitted paper, which then would only
bind to known ABox individuals). However, such nominal schema axioms can be elimi-
nated by upfront grounding, i.e., by replacing nominal schema axioms with all possible
grounded axioms obtained by replacing nominal schemas with nominals, where the
nominal schemas with the same variable are always replaced by the same nominal. Up-
front grounding is, however, very inefficient. For example, a nominal schema axiom
with 3 variables can be grounded for a knowledge base with 100 ABox individuals in
1003 different ways, which is prohibitive even for small examples.

A promising approach for efficient reasoning in OWL DL ontologies extended with
nominal schemas, i.e., SROIQV knowledge bases withV denoting nominal schemas,
is to adapt established tableau algorithms (e.g., [4]), which are dominantly used for
sound and complete reasoning systems for expressive DLs. One such approach extends
a tableau algorithm such that grounding is delayed until it is required [10]. However,
this requires significant changes to the tableau algorithm and, thus, to existing optimisa-
tions, which are crucial for a reasonable performance on real-world ontologies. Further-
more, it is not clear in which way concepts have to be grounded for a well-performing
implementation and some concepts even cannot be grounded efficiently.

In this paper, we present a novel approach that works by collecting possible bind-
ings for the nominal schema variables during the application of tableau rules; then,
these bindings are used to complete the processing of the nominal schema axioms. For
this, we extend the widely used technique of absorption (Section 3) to handle nominal
schemas (Section 4.1), and we adapt or add new rules to the tableau calculus (Sec-
tion 4.2). We further sketch optimisations and empirically evaluate the proposed ap-
proach (Section 5), before we conclude (Section 6). Further details and an extended
evaluation are available in a technical report [15]. Proofs are also in the appendix.

2 Preliminaries

For brevity, we do not introduce DLs (see, e.g., [1]) and we only give a short overview
about the used tableau algorithm in the following (for details see, e.g., [4]). We present
our approach for ALCOIQV, however, covering SROIQV is easily possible: role
chains can be encoded [4] and the remaining SROIQ features are easy to support.

Roughly speaking, the tableau algorithm constructs for an input knowledge base K
a completion graph G = (V, E,L, ,̇) by decomposing complex concepts with a set of
expansion rules. Each node x ∈ V (edge 〈x, y〉 ∈ E) is labelled with the set of concepts
L(x) (set of roles L(〈x, y〉)) and ,̇ records inequalities between nodes. G is initialised
with one node for each ABox individual/nominal in the input knowledge base (w.l.o.g.
we assume that the ABox is non-empty). In order to guarantee that each node of the
completion graph indeed satisfies all TBox axioms, one can use a tableau rule that
checks, for each general concept inclusion (GCI) C v D, whether C is satisfied for
a node and only then adds D to the node label. Checking whether a complex left-hand

side is satisfied can, however, be non-trivial. In order to guarantee correctness, one treats
such axioms where C is complex as > v ¬CtD. Given that > is satisfied at each node,
the disjunction ¬C t D is then added to the label of each node. In practise, one uses
elaborate transformations in a preprocessing step called absorption to avoid axioms of
the form > v ¬C t D.

Roughly speaking, the absorption algorithm extracts those conditions of a disjunc-
tion for which it can be ensured that if one of these conditions is not satisfied for
a node in a completion graph, then at least one alternative of the disjunction is triv-
ially satisfiable. These conditions are then used for expressing the disjunction in such
a way that non-determinism can be avoided as much as possible in the tableau algo-
rithm. For example, one would like to avoid treating ∃r.(A1 t A2) v ∃s.A as > v
∀r.(¬A1 u ¬A2) t ∃s.A. Any node that does not have an r-neighbour trivially satisfies
∀r.(¬A1 u ¬A2) and, hence, the overall disjunction. Thus, we could only add the dis-
junction to nodes that have at least one r-successor. We can, however, go even further by
first identifying nodes that satisfy A1 or A2 and then make sure that their r−-neighbour
satisfies ∃s.A. Hence, the disjunctive axiom can be rewritten into A1 v T , A2 v T and
T v ∀r−.(∃s.A), where T is a fresh atomic concept. Here, A1 and A2 have been absorbed
(i.e., moved to the left-hand side of the axiom) and the concept T is used to enforce the
semantics of the original axiom. We call ∀r.(¬A1 u ¬A2) completely absorbable since
it no longer contributes a disjunct. The goal of the absorption preprocessing step is,
therefore, the extraction of such easy to verify conditions that allow for expressing a
GCI by possibly several axioms that ideally do not require a disjunction.

In order to absorb more complex concepts it is often necessary to join several con-
ditions, say A1 to An. An efficient way to do this is binary absorption [8], where two
concepts A1 and A2 imply a fresh atomic concept T1 by the axiom (A1 u A2) v T1. We
can then combine T1 with the next condition A3 and so on, until (Tn−2 u An) v Tn−1,
where Tn−1 can then be used for further absorption.

3 Absorption Algorithm

Since our handling of nominal schemas is based on absorption methods, we next present
an improved variant of a recursive binary absorption algorithm, which we then extend
to nominal schemas in the next section. The improvements allow for absorbing parts
of the axioms partially without creating additional disjunctions. For example, the TBox
axiom ∃r.(A u ∀r.C) v D is, without absorption, handled as > v ∀r.(¬A t ∃r.¬C) t D.
None of the disjuncts can be absorbed completely, but it is nevertheless possible to
delay the processing of the disjunction until there is an r-neighbour with the concept
A in its label. In order to capture this, the absorption rewrites the axiom such that the
disjunction is propagated from a node with A in its label to all r−-neighbours (if there
are any), which results in A v ∀r−.(∀r.(¬A t ∃r.¬C) t D).

In the following, C(i),D(i) are (possibly complex) concepts, A(i),T(i) are atomic con-
cepts with T(i) used for fresh concepts and S is a set of concepts. We assume that all con-
cepts are in the well-known negation normal form (NNF) or we use nnf(C) to transform
a concept C to an equivalent one in NNF. Our algorithm uses the following functions to
absorb axioms of a TBox T into a new (global) TBox T ′:

Algorithm 1 isCA(C) and isPA(C)
Output: Returns whether the concept C is

completely absorbable
1: procedure isCA(C)
2: if C = C1 tC2 then
3: return isCA(C1) ∧ isCA(C2) .

4: else if C = C1 uC2 then
5: return isCA(C1) ∧ isCA(C2)
6: else if C = ∀r.C′ then
7: return isCA(C′) .

8: else if C = ¬{a} then
9: return true

. . .
10: else if C = ¬A then
11: return true
12: end if
13: return false
14: end procedure

Output: Returns whether the concept C is par-
tially absorbable

1: procedure isPA(C)
2: if C = C1 tC2 then
3: return isPA(C1) ∨ isPA(C2) .

4: else if C = C1 uC2 then
5: return isPA(C1) ∧ isPA(C2)
6: else if C = ∀r.C′ then
7: return true .

8: else if C = ¬{a} then
9: return true

. . .
10: else if C = ¬A then
11: return true
12: end if
13: return false
14: end procedure

Algorithm 2 collectDisjuncts(C, absorbable)
Output: Returns the absorbable/not absorbable disjuncts of the concept C
1: S ← {C}
2: while (C1 tC2) ∈ S do
3: S ← (S \ (C1 tC2)) ∪ {C1,C2}

4: end while
5: if absorbable = true then return { C ∈ S | isPA(C) }
6: else return { C ∈ S | ¬isCA(C) }
7: end if

• isCA(C) (isPA(C)), shown in Algorithm 1, returns whether the concept C is com-
pletely (partially) absorbable. We have tagged the lines 3 and 7 with a comment
symbol to highlight where isPA might allow additional absorption in comparison
to isCA. We have indicated with “. . .” that the absorption can further be extended
to other constructors, e.g., to constructors of more expressive DLs [15].

• collectDisjuncts(C, absorbable), shown in Algorithm 2, returns the set of (com-
pletely or partially) absorbable disjuncts for C if absorbable = true and the set of
not completely absorbable disjuncts otherwise. If C is not a disjunction, then {C}
itself is returned, in case it conforms to the specified absorbable condition.

For simplicity, we assume here that axioms of the form C ≡ D are rewritten into
C v D and D v C. An extension that directly and, hence, more efficiently handles
axioms of the form A ≡ C is also possible [15].

To obtain the absorbed TBox T ′, we call for each axiom C v D ∈ T the func-
tion absorbJoined for the set of absorbable disjuncts, i.e., collectDisjuncts(nnf(¬C t
D), true), which returns a fresh atomic concept that is used to imply a disjunction of
the non-absorbable disjuncts, i.e., collectDisjuncts(nnf(¬C t D), false). The methods
absorbJoined (Algorithm 3) and absorbConcept (Algorithm 4) are recursively calling

Algorithm 3 absorbJoined(S)
Output: Returns the atomic concept that is implied by the join of the absorptions of S
1: S ′ ← ∅
2: for all C ∈ S do
3: A′ ← absorbConcept(C)
4: S ′ ← S ′ ∪ {A′}
5: end for
6: while A1 ∈ S ′ and A2 ∈ S ′ and A1 , A2 do
7: T ← fresh atomic concept
8: T ′ ← T ′ ∪ {(A1 u A2) v T }
9: S ′ ← (S ′ ∪ {T }) \ {A1, A2}

10: end while
11: if S ′ = ∅ then return >
12: else return the element A′ ∈ S ′ . S ′ is a singleton
13: end if

Algorithm 4 absorbConcept(C)
Output: Returns the atomic concept for the absorption of C
1: if C = C1 uC2 then
2: A1 ← absorbJoined(collectDisjuncts(C1, true))
3: A2 ← absorbJoined(collectDisjuncts(C2, true))
4: T ← fresh atomic concept
5: T ′ ← T ′ ∪ {A1 v T, A2 v T }
6: return T
7: else if C = ∀r.C′ then
8: Anb ← absorbJoined(collectDisjuncts(C′, true))
9: T ← fresh atomic concept

10: T ′ ← T ′ ∪ {Anb v ∀r−.T }
11: return T
12: else if C = ¬{a} then
13: T ← fresh atomic concept
14: T ′ ← T ′ ∪ {{a} v T }
15: return T

. . .
16: else return A . C is of the form ¬A
17: end if

each other, whereby absorbJoined is joining several atomic concepts with binary ab-
sorption axioms and absorbConcept creates the absorption for a specific concept. For
instance, a concept of the form ∀r.C can be absorbed (lines 7–11 of Algorithm 4) by
creating a propagation from the atomic concept Anb, which is obtained for the absorp-
tion of C, back over the r-edge, to trigger a fresh atomic concept T . Note, if C cannot
be absorbed, then absorbJoined returns > and the axiom > v ∀r−.T is created, which
corresponds to ∃r.> v T and, thus, is similar to the well known role absorption [16].

The absorbJoined function creates binary absorption axioms (Algorithm 3, lines 6-
10) for the atomic concepts returned by absorbConcept. Thus, absorbJoined is joining
several conditions into one fresh atomic concept, which can be used for further absorp-

tion or to initiate the addition of the remaining and non-absorbable part of the axiom.
One can further reduce the number of produced axioms by reusing absorption axioms
for concepts that occur more then once.

One can show that concept satisfiability is indeed preserved for the absorbed TBox:

Theorem 1 Let T denote a TBox, T ′ the TBox obtained by absorbing T , and C a
concept, then C is satisfiable with respect to T iff it is satisfiable with respect to T ′.

4 Nominal Schema Absorption

In contrast to DL-safe SWRL rules, the left-hand side of axioms with nominal schemas
can be satisfied on arbitrary nodes in the completion graph (even though variables can
only bind to nodes that represent individuals/nominals). As a consequence, axioms
with nominal schemas can influence arbitrary nodes in the completion graph and, thus,
blocking, which ensures termination, easily becomes unsound when typical approaches
for rule processing, such as Rete [3], are used naively. Our approach to overcome this
issue is to emulate such rule processing mechanisms by adapted tableau rules, which
propagate bindings of variables for concepts through the completion graph. As a nice
side-effect, this propagation means that also complex roles can easily be supported.

4.1 Absorption of Axioms with Nominal Schemas

The absorption of axioms with nominal schema variables works very similar to the
absorption of ordinary axioms. We could directly extend the absorption algorithm to
handle the new concept construct, however, to avoid some special cases for conjunctions
C1 u C2 in an absorbable disjunct, where different nominal schema variables are used
in C1 and C2, we require that conjunctions in absorbable positions are eliminated. This
can be done by duplicating the disjunction that is absorbed and by replacing C1 u C2
once with C1 and once with C2. For example, the axiom {x} t A v ∃r.{x} is handled as
the disjunction (¬{x} u ¬A) t ∃r.{x} in the absorption and to eliminate ¬{x} u ¬A we
replace the original axiom with {x} v ∃r.{x} and A v ∃r.{x}.

For our absorption algorithm of Section 3, the following two modifications are nec-
essary in order to handle nominal schemas in the remaining axioms:

• isCA(C) (isPA(C)) is extended to return that a negated occurrence of a nominal
schema ¬{x} is completely (partially) absorbable.

• absorbConcept(C) of Algorithm 4 must now also handle a negated occurrence of
a nominal schema ¬{x} by absorbing it to O v ↓x.Tx for which the fresh atomic
concept Tx is returned and O is a special concept that is added to the label of all
ABox individuals.

The ↓ binder operator, as known from Hybrid Logics [2], is introduced to actually bind
variables to individuals (or nodes in a completion graph). It is handled by a new tableau
rule, which adds, for a node a with ↓x.Tx ∈ L(a), Tx to the label and records that
x is bound to a. In the remainder, we assume that knowledge bases contain, for each

Table 1. Tableau rule extensions to propagate variable mappings

∀-rule: if ∀r.C ∈ L(v), v not indirectly blocked, there is an r-neighbour w of v with C <
L(w) or B(∀r.C, v) * B(C,w)

then L(w) −→ L(w) ∪ {C} and B(C,w) −→ B(C,w) ∪ B(∀r.C, v)
v1-rule: if A v C ∈ K , A ∈ L(v), v not indirectly blocked, and C < L(v) orB(A, v) * B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ B(C, v) ∪ B(A, v)
v2-rule: if (A1 u A2) v C ∈ K , {A1, A2} ⊆ L(v), v not indirectly blocked, and

1. B(A1, v) ∪ B(A2, v) = ∅ and C < L(v), or
2. (B(A1, v) 1ε B(A2, v)) , ∅ and C < L(v) or (B(A1, v) 1ε B(A2, v)) * B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ B(C, v) ∪ (B(A1, v) 1ε B(A2, v))
↓-rule: if ↓x.C ∈ L(v), v not indirectly blocked, and C < L(v) or {x 7→ v} < B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ {{x 7→ v}}
gr-rule: if gr(C) ∈ L(v), v not indirectly blocked, there exists a variable mapping µ ∈

compKVars(C)(B(gr(C), v)) with C[µ] < L(v)
then L(v) −→ L(v) ∪ {C[µ]}

individual a, an axiom of the form {a} v O, where O is a fresh atomic concept. Since the
binders are, therefore, only added to ABox individuals (due to axioms of the form O v
↓x.Tx), the decidability is retained, whereas the unrestricted extension of a Description
Logic with binders easily leads to undecidability of the standard reasoning problems.

Other concepts can be absorbed as before, however, the final atomic concept A cre-
ated by the absorption cannot initiate the addition of the remaining, non-absorbed part
of the axiom in the same way. If the remaining disjuncts D1, . . . ,Dn still contain nom-
inal schemas, then the disjunction has to be grounded with those bindings of variables
that have been propagated to A. In the tableau algorithm this can be done dynamically,
e.g., with a new “grounding concept” and a corresponding rule. Therefore, if D1, . . . ,Dn

still contain concepts with nominal schemas, then A v gr(D1t . . .tDn) has to be added
to the TBox, where gr(·) is the new grounding concept. For simplicity, let us assume
that gr(C) is always used to add the remaining, non-absorbed part of the axiom, even if
C or the axiom does not contain any nominal schemas.

Example 1. Our running example ∃r.({x}u∃a.{y}u∃v.{z})u∃s.(∃a.{y}u∃v.{z}) v ∃c.{x}
can be almost completely absorbed into the following axioms:

O v ↓x.Tx

Tz v ∀v−.T2
T5 v ∀r−.T6

O v ↓y.Ty

(T1 u T2) v T3
(T4 u T6) v T7

Ty v ∀a−.T1
T3 v ∀s−.T4
T7 v gr(∃c.{x}),

O v ↓z.Tz

(T3 u Tx) v T5

where Tx, Ty, Tz, T1, . . . ,T7 are fresh atomic concepts. Only ∃c.{x} cannot be absorbed
and has to be grounded on demand. To keep the example small, we have reused axioms
for the absorption of the same concepts, whereas the algorithm of Section 3 would
generate for each occurrence of ¬{y} and ¬{z} a separate binder concept.

4.2 Tableau Algorithm Extensions

We can now extend a standard tableau decision procedure to support (absorbed) nom-
inal schema axioms. Note, we assume that GCIs are handled by two rules: the v1-rule

handles GCIs of the form A v C (i.e., a non-absorbable axiom C v D is handled
as > v nnf(¬C t D)) and the v2-rule handles binary absorption axioms of the form
(A1 u A2) v C. These rules and the ∀-rule (for transitivity support also the ∀+-rule)
have to be adapted. The ↓ binders and gr(·) concepts are handled by new rules. In or-
der to propagate variable bindings, we keep a set of mappings that records bindings for
variables, for each concept in a node label.

Definition 1 (Variable Mapping). A variable mapping µ is a (partial) function from
variable names to individual names. The set of elements on which µ is defined is the
domain, written dom(µ), of µ. We use ε for the empty variable mapping, i.e., dom(ε) =

∅. We associate a concept C in the label of a node v with a set of variable mappings,
denoted by B(C, v).

When clear from the context, we simply write mapping instead of variable mapping.
Table 1 shows the adapted and new tableau rules and we describe the not so straight-

forward extensions in more detail below. The mappings have to be propagated by the
tableau rules for the concepts and axioms that are used in the absorption. For example,
if we apply the adapted v1-rule to an axiom of the form A v C, we keep the mappings
also for the concept C. Note that it is only necessary to extend those rules, which are
related to concepts and axioms that are used in the absorption, because if the mappings
are propagated to a gr(·) concept, the remaining, non-absorbed part of the axiom is
grounded and thus corresponds to an ordinary concept.

Some major adjustments are necessary for the v2-rule that handles binary absorp-
tion axioms of the form (A1uA2) v C. First of all, we want to keep the default behaviour
if there are no variable mappings associated to the concept facts for which the rule is
applied, i.e., if B(A1, v) ∪ B(A2, v) = ∅, then we add C to the label of v. In contrast,
if B(A1, v) , ∅ or B(A2, v) , ∅, we propagate the join of the mapping sets to the im-
plied concept. In the case B(A1, v) = ∅ and B(A2, v) , ∅, we extend B(A1, v) by the
empty mapping ε so that the join of B(A1, v) and B(A2, v) results in B(A2, v), which is
then propagated to C. We proceed analogously for B(A2, v) = ∅ and B(A1, v) , ∅. In
principle, the join combines variable mappings that map common variables to the same
individual name and to point out that the empty sets of mappings are specially handled,
we have extended the join operator 1 with the superscript ε.

Definition 2 (Variable Mapping Join). Two variable mappings µ1 and µ2 are compat-
ible if µ1(x) = µ2(x) for all x ∈ dom(µ1) ∩ dom(µ2). For compatible mappings µ1 and
µ2, µ1 ∪ µ2 is defined as (µ1 ∪ µ2)(x) = µ1(x) if x ∈ dom(µ1), and (µ1 ∪ µ2)(x) = µ2(x)
otherwise. Given two (possibly empty) sets of variable mappings M1, M2, let Mε

1 = {ε}
(Mε

2 = {ε}) if M1 = ∅ (M2 = ∅) and Mε
1 = M1 (Mε

2 = M2) otherwise. The join M1 1ε M2
is defined as {µ1 ∪ µ2 | µ1 ∈ Mε

1, µ2 ∈ Mε
2 and µ1 is compatible with µ2} \ {ε}.

For a concept gr(C) the gr-rule grounds C based on the variable mappings associ-
ated to gr(C). Since these mappings might not cover all nominal schema variables that
occur in C, it is necessary to extend the mappings with every combination of named in-
dividuals for the remaining variables. This so-called completion ensures that only fully
grounded concepts are added, which can then be handled as ordinary concepts in the
completion graph. Therefore, it is also not necessary to further propagate mappings to
such newly added concepts.

a3 a4

a1 a2

a0

a
v a

v

r, c s

L(a3) ⊃{
↓y.Ty,T

{{y7→a3}}
y , (∀a−.T1){{y7→a3}}

} L(a4) ⊃{
↓z.Tz,T

{{z7→a4}}
z , (∀v−.T2){{z 7→a4}}

}

L(a1) ⊃
↓x.Tx,T

{{x 7→a1}}
x ,T {{y7→a3}}

1 ,T {{z7→a4}}
2 ,

T {{y7→a3 ,z7→a4}}
3 ,T {{x 7→a1 ,y7→a3 ,z7→a4}}

5 ,

(∀r−.T6){{x 7→a1 ,y7→a3 ,z 7→a4}}


L(a2) ⊃{

T {{y7→a3}}
1 ,T {{z7→a4}}

2 ,T {{y7→a3 ,z 7→a4}}
3 ,

(∀s−.T4){{{y7→a3 ,z7→a4}}}

}
L(a0) ⊃

{
T {{y 7→a3 ,z7→a4}}

4 ,T {{x 7→a1 ,y7→a3 ,z7→a4}}
6 ,T {{x 7→a1 ,y7→a3 ,z7→a4}}

7 , gr(∃c.{x}){{x 7→a1 ,y7→a3 ,z 7→a4}},∃c.{a1}
}

Fig. 1. Variable mapping propagation example

Definition 3 (Grounding, Completion). For a concept C, Vars(C) is the set of nominal
schema variables that syntactically occur in C. A concept C is grounded if Vars(C) = ∅.
Let µ be a variable mapping. We write C[µ] to denote the concept obtained by replacing
each nominal schema {x} that occurs in C and x ∈ dom(µ) with the nominal {µ(x)}.

Given a set of variables Y and a variable mapping set M with Mε as the extension
by the empty mapping ε if M = ∅, the completion compKY (M) of M w.r.t. Y and a
knowledge base K containing the individuals Inds(K) is

compKY (M) := {µ ∪ {x1 7→ v1, . . . , xn 7→ vn} | µ ∈ Mε , x1, . . . , xn ∈ (Y \ dom(µ)),
v1, . . . , vn ∈ Inds(K)}.

The unrestricted application of generating rules such as the ∃-rule can lead to the in-
troduction of infinitely many new tableau nodes. To guarantee termination, one uses
a cycle detection technique called (pairwise) blocking [6] that restricts the application
of such rules. To apply blocking, we distinguish blockable nodes from nominal nodes,
which have a nominal from the knowledge base in their label. A node v with predeces-
sor v′ is blocked by a node w with predecessor w′, if v, v′,w,w′ are all blockable and
the labels of (i) v and w (ii) v′ and w′ and (iii) 〈v′, v〉 and 〈w′,w〉 coincide. We extend
the standard blocking conditions to also require that the bindings for the concepts in the
labels of these nodes coincide.

The completion graph in Figure 1 is obtained in the course of testing the consistency
of a knowledge base containing the axioms of Example 1 and the assertions: r(a0, a1),
s(a0, a2), a(a1, a3), v(a1, a4), a(a2, a3), v(a2, a4). Note, Figure 1 shows only those con-
cepts and variable mappings (in superscripts) that are relevant for the grounding of new
concepts in this example. However, since O and thereby also the binder concepts are
added to all ABox individuals, additional variable mappings are automatically created
for every ABox individual. The joins of the mapping sets are created in the nodes a1
and a2 for the concepts T3 and T5 and finally in node a0 for the concept T7. Only the
variable mapping {x 7→ a1, y 7→ a3, z 7→ a4} is propagated to the grounding concept
gr(∃c.{x}) ∈ L(a0) and, thus, by replacing the nominal schema {x} with the nominal
{a1}, we have ∃c.{a1} as the only grounded concept. Hence, the individual a0 is found
to have a conflicting review assignment with the paper a1.

Roughly speaking, it is possible to prove the correctness of our nominal schema
absorption technique by a reduction between a completion graph for a TBox with nom-
inal schemas and a standard completion graph for the upfront grounded TBox. Blocking

still guarantees termination since only a limited number of variable mappings are intro-
duced.

Theorem 2 Let T denote an absorbed TBox (possibly with nominal schema axioms),
then a tableau decision procedure (as described above) extended by the rules in Table 1
is a decision procedure for the satisfiability of T .

5 Implementation and Evaluation

We have implemented the techniques in the novel reasoning system Konclude that sup-
ports SROIQV by (i) upfront grounding and (ii) tableau extensions with different op-
timisations to handle the absorbed nominal schema axioms.

A detailed evaluation can be found in the technical report [15]. For brevity, we
exemplarily show here some results for the University Ontology Benchmark (UOBM)
[12] extended by DL-safe rules, which can straightforwardly be expressed as nominal
schema axioms. The DL-safe rules allow for comparing Konclude to the DL reasoners
HermiT 1.3.63 and Pellet 2.3.0 [14]. To the best of our knowledge, these are the only
reasoning systems that support DL-safe rules for such expressive ontologies. The used
ontology (UOBM1\D, data properties removed) has SHOIN expressivity and consists
of 190, 093 axioms, 69 classes, 36 properties, and 25, 453 individuals. All experiments
were performed on an Intel Core i7 940 quad core processor running at 2.93 GHz. The
reasoners are restricted to use one core and all results are averaged over three runs.
Exceeding the time (memory) limit of 24 hours (10 GB) is shown as time (mem).

Table 2 shows the rules and the number of matches for each rule in the consistency
check. However, since reasoning with UOBM1\D is non-deterministic, these numbers
might vary between different executions and reasoners. Our system requires 1.03 s for
preprocessing and 1.09 s for the consistency test for the ontology without rules. Table 3
then shows the increases in reasoning time for the ontology with nominal schema ax-
ioms. In parenthesis we show the additional preprocessing time for the upfront ground-
ing, which is mostly spend on absorption, lexical normalisation, etc. Upfront grounding
fails for R5 since although two variables can be eliminated (see safety condition in [11])
it requires 647, 855, 209 new axioms. We have also implemented an optimisation where
we create a representative for a set of variable mappings. Only these representatives are
then propagated and considered in the dependency directed backtracking, which saves
memory. The direct propagation and the propagation of representatives are depicted (i)
with and (ii) without the backward chaining (BC) optimisation, which is used to restrict
the creation and propagation of variable mappings, i.e., variable mappings are only cre-
ated if there is an opportunity to propagate them to a grounding concept. This is realised
by additionally absorbing nominal schema axioms, where all nominal schemas are re-
placed by O, and by using the created atomic concept from this absorption to identify
“interesting” individuals with possibly the grounding concept in the label. We then use
a back propagation, whereby only binder concepts are activated that are in the scope of
these “interesting” individuals. However, for example for rule R2, still nearly all vari-
able mappings have to be created and propagated, and thus, the backward chaining only
slightly improves the reasoning time.

3 http://www.hermit-reasoner.com

http://www.hermit-reasoner.com

Table 2. DL-safe Rules for UOBM-Benchmarks

Name DL-safe Rule Matches
R1 isFirendOf(?x, ?y), like(?x, ?z), like(?y, ?z)→ friendWithSameInterest(?x, ?y) 4,037
R2 isFirendOf(?x, ?y), takesCourse(?x, ?z), takesCourse(?y, ?z)→ 82

friendWithSameCourse(?x, ?y)
R3 takesCourse(?x, ?z), takesCourse(?y, ?z), hasSameHomeTownWith(?x, ?y)→ 940

classmateWithSameHomeTown(?x, ?y)
R4 hasDoctoralDegreeFrom(?x, ?z), hasMasterDegreeFrom(?x, ?w), 369

hasDoctoralDegreeFrom(?y, ?z), hasMasterDegreeFrom(?y, ?w),
worksFor(?x, ?v),worksFor(?y, ?v),→ workmateSameDegreeFrom(?x, ?y)

R5 isAdvisedBy(?x, ?z), isAdvisedBy(?y, ?z), like(?x, ?w), like(?y, ?w), 286
like(?z, ?w)→ personWithSameAdviserAllSameInterest(?x, ?y)

Table 3. Comparison of the increases in reasoning time of the consistency tests in seconds

Rule upfront direct propagation representative propagation HermiT Pellet
grounding without BC with BC without BC with BC 1.3.6 2.3.0

R1 (10.99) mem 9.12 7.10 5.06 3.38 31.46 6.33
R2 (10.92) 4.05 3.33 2.33 2.13 2.11 4.79 7.4
R3 (13.33) 3.55 1.98 0.62 2.20 0.76 1.67 142.25
R4 (16.44) 0.30 1.08 0.09 1.06 0.07 1.42 122.85
R5 (time) – 1.87 0.50 1.80 0.43 28.41 mem

Table 3 further shows the reasoning time increase for HermiT and Pellet when a
rule from Table 2 is added. Without rules Konclude requires 1.09 s, HermiT 23.24
s, and Pellet 2.22 s for a consistency test (ignoring loading and preprocessing time).
With backwards chaining and the propagation of representatives, the reasoning times
for Konclude are significantly faster than HermiT’s or Pellet’s. HermiT uses, however,
significantly less memory than the other systems. This might be because HermiT does
not support complex roles, such as hasSameHomeTownWith in R3, in the body of rules
and its results might be incomplete.

6 Conclusions

We have addressed the problem of practical reasoning with nominal schemas through
an extended absorption algorithm and with slight modifications of standard tableau cal-
culi. Our approach “collects” the bindings for nominal schema axioms that have to be
grounded and considered for a specific node in the completion graph. The presented
techniques have been implemented and our empirical evaluation, which focusses on
DL-safe rules, shows that our approach works well even compared to reasoners with
dedicated rule support.

Acknowledgements

The first author acknowledges the support of the doctoral scholarship under the Post-
graduate Scholarships Act of the Land of Baden-Wuerttemberg (LGFG).

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edn. (2007)

2. Blackburn, P., Tzakova, M.: Hybridizing concept languages. Annals of Mathematics and
Artificial Intelligence 24(1–4), 23–49 (1998)

3. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1), 17–37 (1982)

4. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’06). pp. 57–67. AAAI
Press (2006)

5. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B.N., Dean, M.: SWRL:
A Semantic Web Rule Language. W3C Member Submission (21 May 2004), available at
http://www.w3.org/Submission/SWRL/

6. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierar-
chies. J. of of Logic and Computation 9(3), 385–410 (1999)

7. Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: Proc. 7th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR’00). pp. 285–296. Morgan
Kaufmann (2000)

8. Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description
logics. In: Proc. 19th Int. Workshop on Description Logics (DL’06). vol. 189. CEUR (2006)

9. Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Group Note (22 June 2010), avail-
able at http://www.w3.org/TR/rif-overview/

10. Krisnadhi, A., Hitzler, P.: A tableau algorithm for description logics with nominal schema.
In: Krötzsch, M., Straccia, U. (eds.) Proc. 6th Int. Conf. on Web Reasoning and Rule Systems
(RR’12). LNCS, vol. 7497, pp. 234–237. Springer (2012)

11. Krötzsch, M., Maier, F., Krisnadhi, A., Hitzler, P.: A better uncle for OWL: nominal
schemas for integrating rules and ontologies. In: Proc. 20th Int. Conf. on World Wide Web
(WWW’11). pp. 645–654. ACM (2011)

12. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology
benchmark. In: Proc. 3rd European Semantic Web Conf. (ESWC’06). LNCS, vol. 4011, pp.
125–139. Springer (2006)

13. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/
owl2-overview/

14. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. J. of Web Semantics 5(2), 51–53 (2007)

15. Steigmiller, A., Glimm, B., Liebig, T.: Nominal schema absorption. Tech.
Rep. UIB-2013-06, Ulm University, Ulm, Germany (2013), available online at
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_
Berichte/2013/UIB-2013-06.pdf

16. Tsarkov, D., Horrocks, I.: Efficient reasoning with range and domain constraints. In: Proc.
17th Int. Workshop on Description Logics (DL’04). vol. 104. CEUR (2004)

http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/2013/UIB-2013-06.pdf
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/2013/UIB-2013-06.pdf

A Correctness Proofs

A.1 Correctness of the Absorption Algorithm

In the following we prove the correctness of Theorem 1, i.e., the correctness of our mod-
ified absorption algorithm presented in Section 3. We first show that the complete ab-
sorption of a disjunct of an axiom is correct, i.e., it preserves the satisfiability (Lemma 1
and Lemma 2), and then we show that the correctness of a partially absorbed concept
disjunct can be reduced to the complete absorption (Lemma 3).

Lemma 1 Let T denote a TBox, I = (∆I, ·I) an interpretation such that I |= T , C a
concept that is completely absorbable, A the concept returned by absorbJoined({C}),
and T ′ the extension of T with all the axioms created by absorbJoined({C}), then

1. for every extension I′ of I such that I′ |= T ′, it holds that I′ |= T ,
2. for every extension I′ of I such that I′ |= T ′, it holds for all δ ∈ ∆I

′

that δ ∈ AI
′

if δ < CI
′

, and
3. there exists an interpretation I′ = (∆I

′

, ·I
′

) such that I′ |= T ′ with ∆I
′

= ∆I and
δ ∈ AI

′

only if δ < CI
′

.

Proof. (Claim 1) Since T ′ is an extension of T , it trivially follows that I′ |= T .
(Claim 2) We first prove the simple cases where C is completely absorbable and after-
wards we show by induction that the lemma also holds for the complex cases.

• If C is of the form ¬A, then absorbConcept(C) directly returns A, which is then
also returned by absorbJoined({C}). Thus, if δ ∈ ∆I

′

and δ < CI
′

, i.e., δ < (¬A)I
′

,
then δ ∈ AI

′

. Hence, the lemma holds if C is of the form ¬A.
• If C is of the form ¬{a}, then absorbConcept(C) adds the axiom {a} v A to T ′ and

returns A, which is then also returned by absorbJoined({C}). Thus, if δ < CI
′

, i.e.,
δ < (¬{a})I

′

, then δ ∈ aI
′

and because, by assumption, I′ |= T ′, i.e., I′ |= {a} v A,
it follows that δ ∈ AI

′

. Hence, the lemma holds if C is of the form ¬{a}.

For the complex cases we assume that all nested disjunctions are replaced by a sin-
gle disjunction with all disjuncts, i.e., (C1 t (C2 t C3)) is replaced by (C1 t C2 t

C3). Furthermore, we automatically decompose a disjunction into the set of disjuncts
by calling absorbJoined. This simplification is also done by the algorithm with the
collectDisjuncts function, which is always called before absorbJoined. Therefore, we
can omit collectDisjuncts for calling absorbJoined, which improves the readability.
Now, for a disjunct C j, it follows that C j is not a disjunction itself and it also fol-
lows that absorbJoined({C j}) only returns the atomic trigger concept that is returned
by absorbConcept(C j).

Let C1, . . . ,Cn be completely absorbable concepts and A1, . . . , An the atomic con-
cepts returned by absorbJoined({C1}), . . . ,absorbJoined({Cn}). By our induction hy-
pothesis, the lemma holds for A1 w.r.t. C1, . . . , An w.r.t. Cn.

• If C is now of the form C1 t . . .tCn, then absorbJoined({C1, . . . ,Cn}) collects the
atomic concepts A1, . . . , An by calling absorbConcept(C j) for each C j, 1 6 j 6 n,
and creates the binary absorption axioms (A1uA2) v T1, (T1uA3) v T2, . . . , (Tn−2u

An) v A. Thus, if δ < CI
′

, i.e., δ < (C1 t . . . t Cn)I
′

, then δ ∈ (¬C1 u . . . u ¬Cn)I
′

and as a consequence δ ∈ (¬C j)I
′

for 1 6 j 6 n. Therefore, by the induction
hypothesis we have δ ∈ AI

′

j for all 1 6 j 6 n. Thus, δ ∈ AI
′

1 and δ ∈ AI
′

2 and since
the interpretation I′ |= T ′ with {(A1 u A2) v T1, (T1 u A3) v T2, . . . , (Tn−2 u An) v
A} ⊆ T ′ it follows that δ ∈ TI

′

1 , δ ∈ TI
′

2 , . . . , δ ∈ AI
′

. Hence, the lemma holds by
induction if C is of the form C1 t . . . tCn.

• If C is of the form C1 u C2, then absorbJoined({C}) returns A, which is obtained
by calling absorbConcept(C), where additionally the axioms A1 v A and A2 v A
are created. If δ < CI

′

, i.e., δ < (C1 uC2)I
′

, then δ ∈ (¬C1 t¬C2)I
′

. There are now
two cases: If δ ∈ (¬C1)I

′

, then by the induction hypothesis we have δ ∈ AI
′

1 and
due to the axiom A1 v A we have δ ∈ AI

′

. For the other case we have δ ∈ (¬C2)I
′

and by the induction hypothesis δ ∈ AI
′

2 and due to the axiom A2 v A we also have
δ ∈ AI

′

. Hence, the lemma holds by induction if C is of the form C1 uC2.
• If C is of the form ∀r.C1, then absorbConcept(C) creates A1 v ∀r−.A and A is

returned by absorbJoined({C}). Thus, if δ < CI
′

, i.e., δ < (∀r.C1)I
′

, then δ ∈
(∃r.¬C1)I

′

. It follows that there exists γ ∈ ∆I
′

, (δ, γ) ∈ rI
′

with γ ∈ (¬C1)I
′

and
by the induction hypothesis we have γ ∈ AI

′

1 . As a consequence of the axiom
A1 v ∀r−.A we also have δ ∈ AI

′

. Hence, the lemma holds by induction if C is of
the form ∀r.C1.

(Claim 3) We construct the interpretation I′ from I such that δ ∈ AI
′

only if
δ < CI

′

. Therefore, let I′ = (∆I
′

, ·I
′

) be an interpretation with ∆I
′

= ∆I and ·I
′

reduced
from ·I such that only the atomic concepts, atomic roles, and individuals occurring in
T are interpreted. Obviously, it still holds that I′ |= T since the interpretation of all
axioms in T coincides with I. We now define the interpretation of the fresh atomic con-
cepts A1, . . . , Am introduced for the absorption of C in I′. Note that we treat absorption
axioms of the form A′ v ∀r.Ai in their equivalent form ∃r−.A′ v Ai.

Now, for 1 6 i 6 m and for each axiom H v Ai generated by the absorption, we
exhaustively add δ ∈ ∆I

′

to AI
′

i if (i) H = A′ and δ ∈ A′I
′

, (ii) H = {a} and δ ∈ {a}I
′

,
(iii) H = (A′ u A′′) and δ ∈ A′I

′

∩ A′′I
′

, or (iv) H = ∃r−.A′ and δ ∈ (∃r−.A′)I′ , i.e.,
δ has some r-neighbour γ such that (γ, δ) ∈ rI

′

and γ ∈ A′I
′

. We have δ ∈ AI
′

i only
if δ satisfies the left-hand side of an axiom A′ v Ai, {a} v Ai, or (A′ u A′′) v Ai, or
∃r−.A′ v Ai. Consequently, it follows that I′ |= T ′. Furthermore, δ < AI

′

if δ ∈ CI
′

,
because of the following cases:

• If C is of the form ¬A and δ ∈ CI
′

, i.e., δ ∈ (¬A)I
′

, then δ < AI
′

.
• If C is of the form ¬{a} for which the absorption has generated {a} v A and if
δ ∈ CI

′

, i.e., δ ∈ (¬{a})I
′

, then δ < {a}I
′

and then δ < AI
′

, because the left-hand
side of {a} v A is not satisfied and there is also no other axiom that implies A,
because A is freshly used for {a} v A.

For the remaining cases, we again assume that the lemma holds for A1 w.r.t. C1, . . . , An

w.r.t. Cn, where A1, . . . , An are the atomic trigger concepts for absorbing the completely
absorbable concepts C1, . . . ,Cn. Therefore, it follows by induction that δ < AI

′

if δ ∈
CI

′

, because:

• If C is of the form C1t. . .tCn and δ ∈ CI
′

, i.e., δ ∈ (C1t. . .tCn)I
′

, then there exists
a C j, 1 6 j 6 n with δ ∈ CI

′

j . By the induction hypothesis it follows that δ < AI
′

j

and by the binary axiom chain (A1 u A2) v T1, (T1 u A3) v T2, . . . , (T j−2 u A j) v
T j−1, . . . , (Tn−2 u An) v A, which is generated for absorbing C1 t . . .tCn, we have
δ < AI

′

, because the left-hand side of the axiom (T j−2 u A j) v T j−1 cannot be
satisfied.

• If C is of the form C1 u C2 and δ ∈ CI
′

, i.e., δ ∈ (C1 u C2)I
′

, then δ ∈ CI
′

1 and
δ ∈ CI

′

2 . By the induction hypothesis we have δ < AI
′

1 and δ < AI
′

2 . The left-hand
side of the axioms A1 v A and A2 v A is not satisfied and the absorptions does not
generate other axioms that imply A. Thus, δ is not added to AI

′

.
• If C is of the form ∀r.C1 and δ ∈ CI

′

, i.e., δ ∈ (∀r.C1)I
′

, then for all γ ∈ ∆I
′

with (δ, γ) ∈ rI
′

we also have γ ∈ CI
′

1 . By the induction hypothesis it follows that
γ < AI1 and since the left-hand side of the generated axiom ∃r−.A1 v Ai is not
satisfied, and there are not any other axioms that imply A, we do not add δ to AI

′

and, thus, δ < AI
′

. ut

We can now use Lemma 1 to show the correctness of the absorption for the case of
a completely absorbable concept C in an axiom C v D.

Lemma 2 For T a TBox and C t D a disjunction, where C is completely absorbable
and D is neither completely nor partially absorbable, let T1 denote the TBox with T1 =

T ∪ {> v C t D} and T2 denote the TBox with T2 = T ∪ {A v D} ∪ X, where X are
the axioms created by A ← absorbJoined({C}). Then, a concept C′ is satisfiable with
respect to T1 iff it is satisfiable with respect to T2.

Proof. If direction: For I2 an interpretation with C′I2 , ∅ and I2 |= T2, we show that
I2 |= T1. Because of the axiom A v D ∈ T2 for each δ ∈ ∆I2 it holds that either δ < AI2

(and thus δ ∈ CI2 by Lemma 1) or δ ∈ DI2 . Thus, the axiom > v (C t D) ∈ T1 is
satisfied for every δ ∈ ∆I2 and, therefore, I2 |= T1.

Only if direction: For I1 an interpretation with C′I1 , ∅ and I1 |= T1, we construct
an interpretation I′1 with C′I

′
1 , ∅ and I′1 |= T2. Since I1 |= T1 and T1 is an extension

of T , it follows that I1 |= T . Because of Lemma 1, there exists an interpretation I′1
that can be constructed from I1 for which it holds that I′1 |= T ∪ X and for all δ ∈ ∆I

′
1

that δ ∈ AI
′
1 only if δ < CI

′
1 . Thus, it also follows that I′1 |= A v D, because ∆I

′
1 = ∆I1

and for all δ ∈ ∆I
′
1 it holds that either δ ∈ CI

′
1 and thus δ < AI′1 or δ ∈ DI

′
1 . Thus, if

C′I1 , ∅, then C′I
′
1 , ∅. ut

In order to show the correctness of the partial absorption of a disjunction C t D,
where C is partially absorbable and D is neither completely nor partially absorbable,
we reduce the problem to the complete absorption of C′ tC t D, where for C′ it holds
that C′ is completely absorbable and C′ v C. We show that the partial absorption of
C is equivalent to the complete absorption of the concept C′. Therefore, the partial
absorption of C t D corresponds to the complete absorption of C′ t C t D, which is
obviously equisatisfiable to C t D since C subsumes C′.

Lemma 3 Let C be a partially absorbable concept, then absorbJoined({C}) generates
the absorption of a concept C′ for which it holds that C′ v C and C′ is completely
absorbable.

Proof. If C is already completely absorbable, then the lemma trivially holds since in this
case C′ is C. Thus, we show in the following for all cases where C is partially absorbable
but not completely absorbable that absorbJoined({C}) generates the absorption of a
more specific concept C′ for which it holds C′ v C and C′ is completely absorbable.

• If C is of the form ∀r.D′ and D′ (nnf(¬D′)) is neither completely nor partially
absorbable, then absorbConcept(C) creates > v ∀r−.A, which corresponds to the
complete absorption of ∀r.¬> for which it holds that ∀r.¬> v ∀r.D′.

To prove the complex cases by induction, we assume that the concepts D1, . . . ,Dm are
partially absorbable and the lemma holds for D1, . . . ,Dm, i.e., the absorption completely
absorbs the concepts D′1, . . . ,D

′
m, for which it holds that D′1 v D1, . . . ,D′m v Dm, and let

A1, . . . , Am be the atomic trigger concepts that are achieved for absorbing D′1, . . . ,D
′
m.

• If C is of the form ∀r.D1 and D1 is partially absorbable, then absorbConcept(C)
creates A1 v ∀r−.A, where A1 is the atomic trigger concept that is returned by
absorbConcept(D1) for completely absorbing D′1. The absorption of C corresponds
to the complete absorption of ∀r.D′1 and, by the induction hypothesis, we have
D′1 v D1. Thus, it also holds that ∀r.D′1 v ∀r.D1.

• If C is of the form D1t . . .tDmtC1t . . .tCn with D1, . . . ,Dm partially absorbable
and C1, . . . ,Cm neither partially nor completely absorbable, then the absorption
creates the binary axiom chain (A1uA2) v T1, (T1uA3) v T2, . . . , (Tm−2uAm) v A,
which corresponds to the complete absorption of D′1 t . . . t D′m, where A1, . . . , Am

are again the atomic trigger concepts for absorbing D′1, . . . ,D
′
m. Because of the

induction hypothesis it holds that D′1 t . . . t D′m v D1 t . . . t Dm tC1 t . . . tCn.
• If C is of the form D1 u D2 with D1,D2 partially absorbable, then the absorption

creates the axioms A1 v A and A2 v A, which corresponds to the complete absorp-
tion of D′1 u D′2, where A1 and A2 are the atomic trigger concepts for absorbing D′1
and D′2. Because of the induction hypothesis it holds that D′1 u D′2 v D1 u D2. ut

A.2 Correctness of Nominal Schema Absorption

In the following we prove the correctness of Theorem 2, i.e., our nominal schema ab-
sorption technique presented in Section 4. For this, we roughly proceed as follows:
Given a nominal schema axiom C v D and an absorbed TBox T , then for Tns and Tug

as the TBoxes obtained from absorbing T ∪ {C v D} and T ∪ {U1, . . . ,Uh}, respec-
tively, where U1, . . . ,Uh are the upfront grounded axioms of C v D, we show that a
fully expanded and clash free completion graph Gns for Tns can be converted to a fully
expanded and clash free completion graph Gug for Tug. Furthermore, we show that our
extended tableau algorithm constructs a complete and clash free completion graph Gns

for Tns if there exists a fully expanded and clash free completion graph Gug for Tug that
is constructed by a standard tableau algorithm.

Please note that we only work with TBoxes instead of knowledge bases. This as-
sumption is w.l.o.g. since in the presence of nominals ABoxes can be internalised (e.g.,
C(a) is equivalent to the GCI {a} v A, r(a1, a2) to {a} v ∃r.{b}, etc.). We assume, there-
fore, that a completion compTY (M) is analogously defined to the completion compKY (M)
with K = (T , ∅).

To simplify the conversion between a completion graph for Tns and a standard com-
pletion graph for Tug, we ensure that all concept facts can directly be converted into con-
cept facts for the other completion graph. Therefore, we make the following simplify-
ing assumptions: We assume that the absorption of nominals of the form ¬{a} generates
{a} v > u A instead of {a} v A (cf. Algorithm 4, line 14), which is obviously logically
equivalent. As a result, binder concepts such as ↓x.A can be directly converted to con-
cepts of the form > u A. We also assume that the absorption of the upfront grounded
axiom C[µ] v D[µ], by the variable mapping µ, creates a new special grounding con-
cept grµ(D) to add the remaining, non-absorbable part of the axiom instead of directly
implying D[µ]. This new concept construct retains the mapping µ and corresponds to
the grounding concept gr(D) that is created for the absorption of the nominal schema
axiom C v D.

Before introducing the actual conversion, we first define the notion of concept and
axiom set closure:

Definition 4 (Closure). The closure clos(C′) of a concept C′ is a set of concepts that
is closed under sub-concepts of C′ and also contains C′. Additionally, fclos(Z) is the
extension to a set of axioms Z:

fclos(Z) :=
⋃

C′vD′∈Z

clos(¬C′ t D′).

For a TBox T and an axiom C′ v D′ with nnf(¬C′) completely and D′ not completely
absorbable, the absorption closure aclosT (C′ v D′) for T and C′ v D′ contains the
new concepts introduced by the absorption of C′ v D′ and is defined as:

aclosT (C′ v D′) := fclos(X′1, . . . , X
′
n) \ (fclos(T) ∪ clos(D′)),

where X′1, . . . , X
′
n are the axiom introduced by the absorption of C′ v D′.

Note that the concepts in the absorption closure are those that are relevant for the con-
version between completion graphs since these are the concepts with variable mappings.

Now, the actual conversion of concepts and axioms obtained from the absorption is
defined as follows:

Definition 5 (Conversion). Let C v D be a nominal schema axiom where nnf(¬C) is
completely and D not completely absorbable, and let µ be a mapping with dom(µ) =

Vars(¬C t D) . Furthermore, let T be an absorbed TBox, Tns and Tug TBoxes obtained
by absorbing T ∪{C v D} and T ∪{U1, . . . ,Uh}, respectively, where U1, . . . ,Uh are the
axioms obtained by the upfront grounding of C v D. We denote the axioms (in creation
order) and fresh atomic concepts obtained by absorbing nnf(¬C t D) with X1, . . . , Xn

and A1, . . . , Ag, respectively. Similarly, we use Xµ
1 , . . . , X

µ
n and Aµ

1, . . . , A
µ
g for the case

of absorbing nnf((¬C t D)[µ]).
For the concept C′, we inductively define the concept conversion convµ(C′) of C′

w.r.t. T , C v D and µ as

convµ(C′) =


C′ if C′ < aclosT (C v D)
(> u convµ(C′′)) if C′ = ↓x.C′′

grµ(D) if C′ = gr(D)
C′

[A1/A
µ
1 ,...,Ag/A

µ
g]

otherwise,

where C′
[A1/A

µ
1 ,...,Ag/A

µ
g]

denotes the syntactic replacement of each occurrence of Ai in C′

with Aµ
i , for 1 ≤ i ≤ g. The extension to axioms fconvµ(X) is defined as:

fconvµ(X) =

{µ(x)} v > u convµ(D′) if X = O v ↓x.D′

convµ(C′) v convµ(D′) otherwise.

In the remainder of the section, we use C v D, µ, T , Tns, Tug, A1, . . . , Ag, Aµ
1, . . . , A

µ
g,

X1, . . . , Xn, and Xµ
1 , . . . , X

µ
n as in the above definition.

Note that the restrictions on C v D are w.l.o.g. since any nominal schema axiom can
be transformed into the desired form in an equivalence preserving manner. If nnf(¬C)
is only partially absorbable, then a completely absorbable concept nnf(¬C′) can be
extracted from C (cf. Lemma 3), which can be used to obtain an axiom C′ v D′,
where it holds that C′ v C, C′ is completely absorbable and D′ = nnf(¬C′) t D is
not completely absorbable. Also note that ¬> and ⊥ can always be used to extend a
disjunction that corresponds to an axiom in order to obtain a completely absorbable and
not completely absorbable disjunct w.r.t. our absorption algorithm.

We can now show that we can convert the axioms obtained by absorbing nnf(¬CtD)
from the nominal schema axiom C v D into the axioms that are obtained by absorbing
the grounded version nnf((¬C t D)[µ]), which is the first step in the conversion of a
completion graph with nominal schema concepts to a standard completion graph:

Lemma 4 Let T be an absorbed TBox, C v D a nominal schema axiom, U1, . . . ,Uh

the upfront grounding, µ a mapping, Tns and Tug TBoxes, and X1, . . . , Xn and Xµ
1 , . . . , X

µ
n

axioms as in Definition 5. The set {fconvµ(X1), . . . , fconvµ(Xn)} is identical to the set
{Xµ

1 , . . . , X
µ
n }.

Proof. Let A1, . . . , Ag and Aµ
1, . . . , A

µ
g be the fresh atomic concepts introduced by the ab-

sorption of nnf(¬CtD) and nnf((¬CtD)[µ]), respectively. Since the concepts nnf(¬Ct
D) and nnf((¬C t D)[µ]) only differ in the nominal schemas that are replaced by nomi-
nals, the absorption of nnf(¬C tD) and nnf((¬C tD)[µ]) is identical expect for axioms
of the form O v ↓x.Ai and Ag v gr(D) in Tns, which correspond to axioms of the form
{a} v (> u Aµ

i) and Aµ
g v grµ(D) in Tug. Hence, by Definition 5, the claim holds. ut

For the conversion, we use the implicitly associated sets of variable mappings,
which are defined as follows:

Definition 6 (Implicitly Associated Mappings). The implicitly associated set of vari-
able mappings mappG(C′(v)) for a concept fact C′(v) and C′ in the absorption closure
w.r.t. a completion graph G = (V, E,L,B) is defined as:

mappG(C′(v)) =


{{x 7→ v}} if C′ = ↓x.D′

B(C′, v) if B(C′, v) , ∅
{ε} otherwise.

Now, let Gns be a completion graph showing the satisfiability of the TBox Tns. We
can replace each concept fact C′(v) with the implicitly associated variable mappings
M and C′ ∈ aclosT (C v D), by the concept facts (convµ1 (C′))(v), . . . , (convµk (C

′))(v),

where µ1, . . . , µk are the mappings obtained from the completion compTVars(¬CtD)(M)
of M. As a result, we obtain a fully expanded completion graph Gug that shows the
satisfiability of the upfront grounded TBox Tug.

Lemma 5 (Soundness) Let T be an absorbed TBox, C v D a nominal schema axiom,
U1, . . . ,Uh the upfront grounding for C v D, and Tns and Tug TBoxes as in Definition 5.
If there is a fully expanded and clash free completion graph for Tns, then there is a fully
expanded and clash free completion graph for Tug.

Proof. Let Gns = (Vns, Ens,Lns, ,̇ns,Bns) be a fully expanded and clash free comple-
tion graph for Tns. We convert Gns into a fully expanded and clash free completion
graph Gug by replacing every concept fact C′(v), C′ ∈ aclosT (C v D), v ∈ Vns, with
the implicitly associated variable mappings M = mappGns (C′(v)), by the concept facts
(convµ1 (C′))(v), . . . , (convµk (C

′))(v) with {µ1, . . . , µk} = compTVars(¬CtD)(M). Further-
more, let λ2, . . . , λ` be all possible variable mappings for Vars(¬C t D) w.r.t. T , i.e.,
{λ2, . . . , λ`} = compTVars(¬CtD)({ε}).

In the following we show that none of the standard tableau rules for the concepts
and axioms used in the absorption are applicable to Gug. Please note that the extended
tableau rules (Table 1) coincide with the standard tableau rules [4] if no variable map-
pings are associated to the concept facts. Also note that the concept facts and axioms,
which are not related to the absorption, are not affected by the conversion. Thus, the cor-
responding rules are not applicable for these concepts and axioms. Furthermore, since
identical node labels are converted in the same way, blocking is not affected, i.e., if a
node is blocked before the conversion, then it is also blocked after the conversion.

• We firstly consider the application of the ∀-rule, which is not applicable for Gug, be-
cause C′ = ∀r.D′(v) is converted to (convµ1 (∀r.D′))(v), . . . , (convµk (∀r.D′))(v) and
for each r-neighbour node w of v the concept fact D′(w) is either also not associated
with variable mappings (which is ensured by the absorption algorithm by creating
separate axioms with fresh atomic concepts for the absorption of concepts that do
not contain nominal schemas) or is at least also associated with the same variable
mappings (otherwise the ∀-rule would be applicable for Gns) and thus D′(w) is at
least also converted to (convµ1 (D′))(w), . . . , (convµk (D

′))(w).
• We now consider the application of the v1-rule. The absorption creates axioms

of the form H v D′ with D′ ∈ aclosT (C v D) and H = {a} or H = A. If
D′ , ↓x.D′′ (the replacement axioms for O v ↓x.D′′ are considered together with
the ↓-concepts), H < aclosT (C v D) and H = A or H = {a}, then we would
have the axioms H v convλ2 (D′), . . . , H v convλ` (D

′) in Tug and the v1-rule is
not applicable, because, for every node v in Gns with the concept fact H(v), D′(v)
is also present and Bns(D′, v) = ∅. Thus, D′(v) is replaced by (convλ2 (D′))(v), . . . ,
(convλ` (D

′))(v). If A ∈ aclosT (C v D), then we would have the axioms convλ2 (A)
v convλ2 (D′), . . . , convλ` (A) v convλ` (D

′) and the v1-rule is not applicable, be-
cause for every node v in Gns with the concept fact A(v) and the associated variable
mappings µ1, . . . , µk, A(v) would be replaced by (convµ1 (A))(v), . . . , (convµk (A))(v),
and D′ is either also not associated with variable mappings (which is ensured by
the absorption algorithm) or is at least also associated with the variable mappings

µ1, . . . , µk (otherwise Gns would not be fully expanded), and is at least also replaced
by (convµ1 (D′))(v), . . . , (convµk (D

′))(v). Thus, the v1-rule is not applicable for Gug.
• Next, we consider the application of the v2-rule for an axiom (A1uA2) v D′. There

are three cases:
1. If Bns(A1, v) = ∅ and Bns(A2, v) = ∅, then Bns(D, v) = ∅ and every concept fact

D′(v) is replaced by (convλ2 (D′))(v), . . . , (convλ` (D
′))(v) and thus the rule is

not applicable for (A1 u A2) v convλ2 (D′), . . . , (A1 u A2) v convλ` (D
′).

2. IfBns(A1, v) , ∅ (Bns(A2, v) , ∅), then the v2-rule is analogously to the v1-rule
not applicable, because either there is no variable mapping that is associated to
A2(v) (A1(v)) and, as a consequence, there is also no variable mapping associ-
ated to D′(v) (which is ensured by the absorption algorithm), or every variable
mapping that is associated to A2(v) (A1(v)) is also associated to D′(v) if A1 (A2)
is also in the label of v. Thus, the v2-rule cannot add a convλ j (D

′) concept to v
that is not already present, because the corresponding convλ j (A1) (convλ j (A2))
is missing.

3. If Bns(A1, v) , ∅ and Bns(A2, v) , ∅, the v2-rule is again not applicable af-
ter the conversion, because A1(v) and A2(v) are replaced by the concept facts
(convµ1 (A1))(v), . . . , (convµk (A1))(v) and (convµ′1 (A2))(v), . . . , (convµ′k′ (A2))(v),
respectively, where µ1, . . . , µk and µ′1, . . . , µ

′
k′ are the completion of the set of

variable mappings mappGns (A1(v)) and mappGns (A2(v)). The v2-rule is, how-
ever, only applicable for an axiom (convµ(A1) u convµ(A2)) v convµ(D′) if
convµ(A1) as well as convµ(A2) is in the same label, but convµ(D′) is not al-
ready present, i.e., µ ∈ {µ1, . . . , µk} and µ ∈ {µ′1, . . . , µ

′
k′ }, but µ < {µ1, . . . , µk} 1

ε

{µ′1, . . . , µ
′
k′ }, which is a contradiction, because {µ1, . . . , µk} 1

ε {µ′1, . . . , µ
′
k′ } is

the same as the completion of Bns(A1, v) 1ε Bns(A2, v) to all possible variables
used in C v D.

• The ↓-concepts are more complicated. Concept facts of the form ↓x.D′(a) are
not explicitly associated with variable mappings. However, because of the axiom
O v ↓x.D′, they only occur in the label of ABox individual nodes. Thus, we can use
the implicit information that x will be bound to the ABox individual node a, and we
use the completion of the variable mapping {x 7→ a} for µ1, . . . , µk. Therefore, we
replace ↓x.D′(a) with the concept facts (>uconvµ1 (D′))(a), . . . , (>uconvµk (D

′))(a).
It is not hard to see that (> u convµ1 (D′)), . . . , (> u convµk (D

′)) cannot be un-
folded in Gug, because the ↓-rule ensures that D′ is also already present in the
label of the node and is associated with the variable mapping {x 7→ a} and, thus,
D′ is also replaced by convµ1 (D′), . . . , convµk (D

′). Analogously, for the axioms
{a} v > u convµ1 (D′), . . . , {a} v > u convµk (D

′) that we have to consider in
Gug instead of O v ↓x.D′, the rules for these axioms are also not applicable,
because the concept ↓x.D′ in the label of a has been replaced by the concepts
> u convµ1 (D′), . . . ,> u convµk (D

′) and ↓x.D′ is in the label of a, because it is
added to every ABox individual node due to the axiom O v ↓x.D′.

• The argumentation for the gr-concepts and the corresponding rules is very similar.
As mentioned before, we assume that the grounding concept is always used to
add the remaining, non-absorbable part of the axiom. Thus, gr(D) is always in
aclosT (C v D), even if Vars(D) = ∅. Furthermore, we also use the assumption
that the absorption of an upfront grounded axiom, by the variable mapping µ, also

uses a special grounding concept grµ(D), which has to be unfolded to D[µ] and
is, therefore, not problematic for the tableau algorithm, because it corresponds to
a conjunction with only one conjunct. Thus, a concept fact gr(D)(v) is replaced
by (convµ1 (gr(D)))(v), . . . , (convµk (gr(D)))(v), which is the same as (grµ1 (D))(v),
. . . , (grµk (D))(v). Obviously, these replaced grounding concepts cannot be unfolded
to D[µ1], . . . ,D[µk], because D[µ1], . . . ,D[µk] are already present due to the application
of the gr-rule for gr(D)(v), for which also the completion of the associated set of
variable mappings is used for the grounding of D. ut

Next, we show that we can steer our extended tableau algorithm to construct a com-
plete and clash free completion graph Gns for Tns if there exists a fully expanded and
clash free completion graph Gug for Tug that is constructed by a standard tableau algo-
rithm.

Lemma 6 (Completeness) Let T be an absorbed TBox, C v D a nominal schema
axiom, U1, . . . ,Uh the upfront grounding for C v D, and Tns and Tug TBoxes as in
Definition 5. If there is a fully expanded and clash free completion graph for Tug, then
there is a fully expanded and clash free completion graph for Tns.

Proof. Let Gug be a completion graph for Tug that is obtained by applying only rules for
concepts and axioms of T . Since our extended rules coincide with the standard tableau
rules if no variable mappings are associated to concept facts, our extended tableau algo-
rithm can create Gns, which exactly coincides with Gug. We show that the application of
a rule in Table 1 to Gns deterministically adds only concept facts and possibly variable
mappings, for which the conversion of these facts and variable mappings are also con-
sequences in Gug that are added in the course of applying standard tableau rules to Gug.
Thus, Gug can obviously be used for steering the non-deterministic decisions for Gns to
construct a fully expanded and clash free completion graph if Gug is fully expanded and
clash free.

Now, let Gns and Gug be completion graphs for Tns and Tug, respectively, and Gns

and Gug coincide with the inferred facts so far, i.e., the conversion of concept facts and
variable mappings from Gns corresponds to the contained concept facts in Gug. To show
by induction that each rule application for Gns only adds concept facts and variable
mappings, for which the conversion of these facts and variable mappings are also con-
sequences in Gug, let λ2, . . . , λ` be all possible variable mappings, i.e., {λ2, . . . , λ`} =

compTVars(¬CtD)({ε}). Please note, it suffices to consider only the extended rules for con-
cepts and axioms used for absorbing C v D, because only the concepts in aclosT (C v
D) can be associated with variable mappings, for which the extended rules differ to
standard rules.

• First, we consider the ∀-rule for a concept fact ∀r.D′(v), ∀r.D′ ∈ aclosT (C v D),
which adds the concept fact D′(w) to an r-neighbour w of v in Gns and possibly the
variable mapping µ ∈ Bns(∀r.D′, v) to Bns(D′,w). If the ∀-rule only adds the con-
cept fact D′(w) for cases where B(∀r.D′, v) = ∅, then mappGns (D′(w)) = {ε} (which
is ensured by the absorption algorithm) and we have to show that in the completion
graph Gug the concept facts (convλ2 (D′))(w), . . . , (convλ` (D

′))(w) are also added
by rule applications. Obviously, this is the case, because the concept fact ∀r.D′(v)

corresponds to (convλ2 (∀r.D′))(v), . . . , (convλ` (∀r.D′))(v) in Gug and by applying
the ∀-rule for all concept facts (convλ j (∀r.D′))(v), 1 ≤ j ≤ `, we have the con-
cepts convλ2 (D′), . . . , convλ` (D

′) in the label of all neighbour nodes. If the ∀-rule
adds a variable mapping µ ∈ Bns(∀r.D′, v) to Bns(D′,w), then we have to show
that (convµ1 (D′))(w), . . . , (convµk (D

′))(w) with {µ1, . . . , µk} = compTVars(¬CtD)({µ})
are added to Gug by rule applications. But this is also the case since ∀r.D′(v) cor-
responds to (convµ1 (∀r.D′))(w), . . . , (convµk (∀r.D′))(w) in Gug and applying the
∀-rule for (convµ1 (∀r.D′))(w), . . . , (convµk (∀r.D′))(w) adds (convµ1 (D′))(w), . . . ,
(convµk (D

′))(w) to the label of all neighbour nodes.
• Next, we consider the v1-rule for an axiom H v D′ with H = A or H = {a}

and D′ , ↓x.D′′ (we consider the addition of the binder concepts together with
the ↓-rule). If Bns(H, v) = ∅ and the v1-rule adds only the concept fact D′(v) to
a node, then we have to show that (convλ2 (D′))(v), . . . , (convλ` (D

′))(v) are also
added to Gug by rule applications. Again, this is obviously the case, because for
Gug we have the rules convλ2 (H) v convλ2 (D′), . . . , convλ` (H) v convλ` (D

′). If
Bns(H, v) , ∅, then H = A, the v1-rule adds also a variable mapping µ to Bns(D′, v)
and we have to show that (convµ1 (D′))(v), . . . , (convµk (D

′))(v) with {µ1, . . . , µk} =

compTVars(¬CtD)({µ}) are added to Gug by rule applications. Again, this is a con-
sequence of the concept facts (convµ1 (A))(v), . . . , (convµk (A))(v) in Gug and the
axioms convµ1 (A) v convµ1 (D′), . . . , convµk (A) v convµk (D

′) that we have to con-
sider for Gug.

• Let us now consider the v2-rule for an axiom (A1 u A2) v D′. If the v2-rule
only adds the concept fact D′(v), then we have to show that (convλ2 (D′))(v), . . . ,
(convλ` (D

′))(v) are also added to Gug by rule applications. However, this is the case,
because A1(v) and A2(v) corresponds to (convλ j (A1))(v) and (convλ j (A2))(v) in Gug,
respectively, and, since we have the axiom (convλ j (A1) u convλ j (A2)) v convλ j (D)
for each 1 ≤ j ≤ `, it follows that all (convλ2 (D′))(v), . . . , (convλ` (D

′))(v) are
also added to Gug. If the v2-rule also adds the variable mapping µ to Bns(D′, v),
then we have to show that (convµ1 (D′))(v), . . . , (convµk (D

′))(v) with {µ1, . . . , µk} =

compTVars(¬CtD)({µ}) are also added to Gug by rule applications. Let us first assume
that Bns(A1, v) = ∅ (Bns(A2, v) = ∅). As a consequence, we have in Gug the concept
facts (convλ2 (A2))(v), . . . , (convλ` (A2))(v) and (convµ1 (A2))(v), . . . , (convµk (A2))(v)
((convλ2 (A1))(v), . . . , (convλ` (A1))(v) and (convµ1 (A1))(v), . . . , (convµk (A1))(v)). As
a consequence of the axioms (convλ j (A1)uconvλ j (A2)) v convλ j (D), for all 1 ≤ j ≤
`, the concept facts (convµ1 (D′))(v), . . . , (convµk (D

′))(v) are also added to Gug by
rule applications. Let us now assume that Bns(A1, v) , ∅ as well as Bns(A2, v) , ∅.
We show that (convµ1 (D′))(v), . . . , (convµk (D

′))(v) has to be added to Gug, because
(convµ1 (A1))(v), . . . , (convµk (A1))(v) as well as (convµ1 (A2))(v), . . . , (convµk (A2))(v)
are in Gug. Obviously, there exists the variable mappings µ′ ∈ Bns(A1, v) and
µ′′ ∈ Bns(A2, v) with µ = dom(µ′)∪dom(µ′′) and for each x ∈ (dom(µ′)∩dom(µ′′))
it holds that µ′(x) = µ′′(x). Thus, µ′ ⊆ µ and µ′′ ⊆ µ and as a consequence
of the completion of µ′ and µ′′ it follows that {µ1, . . . , µk} ⊆ {µ

′
1, . . . , µ

′
k} and

{µ1, . . . , µk} ⊆ {µ
′′
1 , . . . , µ

′′
k }. Therefore, (convµ1 (A1))(v), . . . , (convµk (A1))(v) and

(convµ1 (A2))(v), . . . , (convµk (A2))(v) are at least also in Gug.
• The ↓-rule for a concept fact ↓x.D′(a) adds D′ to the label of a and the vari-

able mapping {x 7→ a} to Bns(D′, a). We have to show that the concept facts

(convµ1 (D′))(a), . . . , (convµk (D
′))(a) with {µ1, . . . , µk} = compTVars(¬CtD)({x 7→ a})

are also added to Gug by rule applications. But this is obviously the case, be-
cause in Gug we have the concept facts (convµ1 (↓x.D′))(a), . . . , (convµk (↓x.D

′))(a),
which is nothing else than (> u convµ1 (D′))(a), . . . , (> u convµk (D

′))(a). Further-
more, we have to show that (> u convµ1 (D′))(a), . . . , (> u convµk (D

′))(a) is added
to Gug, because, as a consequence of the axiom O v ↓x.D′, ↓x.D′(a) is added
to Gns. Obviously, this is the case, because for Gug we have the axioms {a} v
> u convµ1 (D′), . . . , {a} v > u convµk (D

′).
• The application of the gr-rule adds for a concept fact gr(D′)(v) and a (possibly

empty) variable mapping µ ∈ Bεns(gr(D′), v) the concept facts D[µ1], . . . ,D[µk] with
{µ1, . . . , µk} = compTVars(¬CtD)({µ}). We have to show that D[µ1], . . . ,D[µk] is also
added to Gug by rule applications. Again, this is obviously the case, because in
Gug we have the concept facts (convµ1 (gr(D′)))(v), . . . , (convµk (gr(D′)))(v), which
is the same as grµ1 (D′)(v), . . . , grµk (D

′)(v). ut

The extended tableau algorithm is still terminating. This is due to the fact that the
number of variable mappings is limited by the number of ABox individuals and the
number of variables in axioms. Thus, blocking is ensured since the nodes in the com-
pletion graph can only be labelled with a limited number of concepts and only a limited
number of variable mappings can be associated to these concepts.

Lemma 7 (Termination) The tableau algorithm extended by the rules in Table 1 is
terminating for absorbed TBoxes with nominal schema axioms.

	Extending Absorption to Nominal Schemas
	Introduction
	Preliminaries
	Absorption Algorithm
	Nominal Schema Absorption
	Absorption of Axioms with Nominal Schemas
	Tableau Algorithm Extensions

	Implementation and Evaluation
	Conclusions
	Correctness Proofs
	Correctness of the Absorption Algorithm
	Correctness of Nominal Schema Absorption

