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Abstract. In the setting of graph-structured data, description logics are
well suited to impose constraints that capture the semantics of the do-
main of interest. When the data evolves as a result of operations carried
out by users or applications, it is important to ensure that the satis-
faction of the constraints is preserved, analogously to the consistency
requirement for transactions in relational databases. In this paper we in-
troduce a simple action language in which actions are finite sequences of
insertions and deletions performed on concept/roles, and we study static
verification in this setting. Specifically, we address the problem of verify-
ing whether the constraints are still satisfied in the state resulting from
the execution of a given action, for every possible initial state satisfying
them. We are able to provide a tight coNExpTime bound for a very
expressive DL, and show that the complexity drops to coNP-complete
for the case of DL-Lite.

1 Introduction

Graph databases are gaining increasing importance due to the adoption of data
formats like RDF, and are fundamental for storing, for example, web data in the
form of RDF triplestores, and other forms of semi-structured data. Given the
very large amounts of data currently available in these stores, the development of
automated management tools for them is becoming a pressing problem. Indeed,
many of the crucial aspects of managing classical relational databases are also
relevant for graph databases. For instance, as in traditional databases, integrity
constraints on graph databases are important to capture the semantics of the
domain of interest. Databases may evolve as a result of operations carried out
by users or applications, and it is important to ensure that this does not result
in the constraints being violated. This is essentially the consistency property
of database transactions. A transaction encapsulates a sequence of modifica-
tions to the data, which are executed and committed as a unit. A transaction
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is consistent if its execution over a legal database state never leads to an il-
legal one. Verifying the consistency of transactions is a crucial problem that
has been studied extensively, for different kinds of transactions and constraints,
over traditional relational databases [11], object-oriented databases [2,12,3], and
deductive databases [5], to name a few. Most of these works adoptexpressive
formalisms like (extensions of) first or higher order predicate logic [3], or un-
decidable tailored languages [11] to express the constraints and the operations
on the data. Systems for performing verification are often implemented using
theorem provers, and complete algorithms can not be devised.

In contrast, the setting we consider here is that of graph databases where
integrity constraints are expressed in Description Logics (DLs) [1]. DLs are decid-
able languages that have been strongly advocated for managing data repositories
[6], and are particularly natural for talking about graph databases. To express
the changes to the databases, we introduce a simple action language in which
actions are finite sequences of insertions and deletions performed on unary and
binary predicates (concepts and roles, in DL jargon). We consider the static
verification problem for this setting, that is, the problem of verifying whether
the constraints are still satisfied in the state resulting from the execution of a
given action, for every possible initial state satisfying them. As usual in DLs,
the semantics of the DL knowledge bases expressing the constraints is defined in
terms of interpretations. In turn, graph databases can be naturally seen as finite
DL interpretations. Given a set of constraints expressed by a knowledge base K,
we have that a (graph) database satisfies the constraints in K iff it is a model
of K when seen as an interpretation. Hence, in this paper we talk about inter-
pretations only, and identify the satisfaction of constraints with the modelhood
problem. The updates described by the action language are similar in spirit to
the knowledge base (more concretely, ABox) updates studied in other works,
e.g., [7], but are done directly on interpretations rather than on (the instance
level of) knowledge bases. In this framework, we are able to show that the static
verification problem is decidable and provide tight complexity bounds for it, us-
ing two different DLs as constraint languages. Specifically, we provide a tight
coNExpTime bound for a very expressive DL, and show that the complexity
drops to coNP-completeness for the case of a variation of DL-Lite [4].

2 Description Logic for Constraint Specification

We now define the description logic that we use as a constraint language for
graph databases. We call it ALCHOIQbr, which is the standard ALCHOIQ
extended with Boolean combinations of axioms and a constructor for a singleton
role. We assume countably infinite sets NR of role names, NC of concept names,
NI of individual names, and NV of variables.

Roles are defined inductively: (i) if r ∈ NR, then r and r− (the inverse of r)
are roles; (ii) if {t, t′} ⊆ NI ∪ NV, then {(t1, t2)} is also a role; (iii) if r1, r2 are
roles, then r1 ∪ r2, and r1 \ r2 are also roles.
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Concepts are defined inductively as well: (i) if A ∈ NC, then A is a concept;
(ii) if t ∈ NI ∪ NV, then {t} is a concept (called nominal); (iii) if C1, C2 are
concepts, then C1 u C2, C1 t C2, and ¬C1 are also concepts; (iv) if r is a role,
C is a concept, and n is a non-negative integer, then ∃r.C, ∀r.C, 6n r.C, and
>n r.C are also concepts.

A concept (resp., role) inclusion is an expression of the form α1 vα2, where
α1, α2 are concepts (resp., roles). Expressions of the form t : C and (t, t′) : r,
where {t, t′} ⊆ NI ∪NV, C is a concept, and r is a role, are called concept asser-
tions and role assertions, respectively. Concepts, roles, inclusions and assertions
that have no variables are called ordinary. The role of variables will become
apparent in Section 3. We define (ALCHOIQbr-)formulae inductively: (i) ev-
ery inclusion and assertion is a formula; (ii) if K1,K2 are formulas, then so are
K1∧K2, K1∨K2 and ¬̇K1. If a formula K has no variables, it is called a knowledge
base (KB).

An interpretation is a pair I = 〈∆I , ·I〉 where ∆I 6= ∅ is the domain, AI ⊆
∆I for each A ∈ NC, rI ⊆ ∆I×∆I for each r ∈ NR, and oI ∈ ∆I for each o ∈ NI.
For the ordinary roles of the form {(o1, o2)}, we let {(o1, o2)}I = {(oI1 , oI2 )}. The
function ·I is extended to the remaining ordinary concepts and roles in the
usual way. Assume an interpretation I. For an ordinary inclusion α1 v α2, I
satisfies α1vα2 (in symbols, I |= α1vα2) if αI1 ⊆ αI2 . For an ordinary assertion
β = o : C (resp., β = (o1, o2) : r), I satisfies β (in symbols, I |= β) if oI ∈ CI
(resp., (oI1 , o

I
2 ) ∈ rI). The notion of satisfaction is extended to knowledge bases

as follows: (i) I |= K1 ∧ K2 if I |= K1 and I |= K2; (ii) I |= K1 ∨ K2 if I |= K1

or I |= K2; (iii) I |= ¬̇K if I 6|= K. If I |= K, then I is a model of K. The finite
satisfiability (resp., unsatisfiability) problem is to decide given a KB K if there
exists (resp., doesn’t exist) a model I of K with ∆I finite. The finite satisfiability
problem for ALCHOIQbr KBs has the same computational complexity as for
the standard ALCHOIQ:

Theorem 1. Finite satisfiability of ALCHOIQbr KBs is NExpTime-complete.

Proof (sketch). The lower bound comes from [13]. The upper bound can be
obtained by a straightforward translation into the two variable fragment with
counting, for which finite satisfiability is NExpTime-complete [10].

3 Actions

We now define an action language that allows us to express finite sequences of
operations on interpretations (i.e., graph databases).

Definition 1 (Action language). A basic action β is given by the following
grammar:

β −→ (A⊕ C) | (A	 C) | (r ⊕ p) | (r 	 p),
where A is a concept name, r is a role name, C is an arbitrary concept, and p is
an arbitrary role. Then, (complex) actions are given by the following grammar:

α −→ β · α | K ?α : α | ε,
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where β is a basic action and K is an arbitrary ALCHOIQbr–formula. The
special symbol ε denotes the empty action.

An action α is ground if it has no variables. An action α′ is called a ground
instance of an action α if α′ is ground and it can be obtained from α by replacing
each variable by an individual name from NI. For an action α, we will sometimes
write α(x), where x is a tuple containing exactly the variables of α.

Intuitively, an application of an action (A⊕C) on an interpretation I stands
for the addition of the content of CI to AI . In turn, removing CI from AI can
be done by applying (A 	 C) on I. The two operations can also be performed
on extensions of roles. In addition, complex actions allow for composing basic
actions and for conditional action execution. In order to formally define the
semantics of actions, we first introduce the notion of interpretation updates.

Definition 2 (Interpretation updates). Assume an interpretation I and let
σ be a concept or role name. If σ is a concept, let W ⊆ ∆I be a unary relation,
otherwise, if σ is a role, let W ⊆ ∆I × ∆I be a binary relation. Then we let
I ⊕σ W (resp., I 	σ W ) denote the interpretation I ′ such that

- ∆I
′

= ∆I ,
- σI

′

1 = σI1 for all symbols σ1 6= σ, and
- σI

′
= σI ∪W (resp., σI

′
= σI \W ).

Now we can define the semantics of ground actions inductively as follows.

Definition 3. Given a ground action α, we define a mapping Sα from interpre-
tations to interpretations as follows:

S(A⊕C)·α(I) = Sα(I ⊕A CI) S(r⊕p)·α(I) = Sα(I ⊕r pI)

S(A	C)·α(I) = Sα(I 	A CI) S(r	p)·α(I) = Sα(I 	r pI)

Sε(I) = I SK?α1:α2
(I) =

{
Sα1

(I), if I |= K,
Sα2(I), if I 6|= K.

Example 1. The following interpretation I1 represents (part of) the project database
of some research institute. There are two active projects, and there are four em-
ployees of which three work in the active projects.

ActiveProjectI1 = {P20840 ,P24090},
ProjectI1 = {P20840 ,P24090},

ConcludedProjectI1 = {},
EmployeeI1 = {E01 ,E03 ,E04 ,E07},

ProjectEmployeeI1 = {E01 ,E03 ,E07},
PermanentEmployeeI1 = {E04},

worksForI1 = {(E01 ,P20840 ), (E03 ,P20840 ), (E07 ,P24090 )},
P20840I1 = P20840 ,

P24090I1 = P24090 .
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The following action captures the termination of project P20840, which is re-
moved from the active projects and added to the concluded ones. The employees
working for this project are removed from the project employees.

α1 = ActiveProject	 {P20840}·
ConcludedProject⊕ {P20840}·
ProjectEmployee	 ∃worksFor.{P20840}

The interpretation Sα1
(I1) that reflects the status of the database after action

α1 looks as follows:

ActiveProjectSα1 (I1) = {P24090},
ProjectSα1

(I1) = {P20840 ,P24090},
ConcludedProjectSα1 (I1) = {P20840},

EmployeeSα1
(I1) = {E01 ,E03 ,E04 ,E07},

ProjectEmployeeSα1 (I1) = {E07},
PermanentEmployeeI1 = {E04},

worksForI1 = {(E01 ,P20840 ), (E03 ,P20840 ), (E07 ,P24090 )},
P20840Sα1 (I1) = P20840 ,

P24090Sα1
(I1) = P24090 .

In our approach, all the individual variables of an action are seen as param-
eters, whose values are given before executing an action.

Example 2. The following action α2 with variables x, y, z transfers the employee
x from project y to project z:

α2 = (x : Employee ∧ y : Project ∧ z : Project ∧ (x, y) : worksFor) ?
worksFor 	 {(x, y)} · worksFor ⊕ {(x, z)} : ε

The action α2 first checks whether x is an employee, y and z are projects, and
x works for y. If yes, it removes the worksFor link between x and y and creates
a worksFor link between x and z. If any of the checks fails, it does nothing.

In this paper we focus on static verification: we want to know whether, given
an action α and a collection of constraints expressed as a KB, the execution
of α on I preserves the satisfaction of the constraints, for any possible finite
interpretation I.

Definition 4 (The static verification problem). Let K be a knowledge base.
We say that an action α is K-preserving if for every ground instance α′ of α
and every finite interpretation I, we have that I |= K implies Sα′(I) |= K. The
static verification problem is to decide, given as input an action α and a KB K,
whether α is K-preserving.
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Example 3. The following KB K1 expresses constraints on the project database
of our running example:

(Project v ActiveProject t ConcludedProject) ∧
(Employee v ProjectEmployee t PermanentEmployee) ∧

(∃worksFor.Project v ProjectEmployee)

The action α1 from Example 1 is not K1-preserving: I1 |= K1, but Sα1
(I1) 6|= K1

since the concept inclusion ∃worksFor.Projectv ProjectEmployee is violated.

4 Solving the Static Verification Problem

To obtain an algorithm for the static verification problem we employ a reduction
to finite (un)satisfiability of ALCHOIQbr KBs. In particular, given a knowledge
base K and an action α, we build a KB K′ such that K′ is finitely satisfiable
iff α is not K-preserving. We start by defining a transformation TRα(K) that
incorporates an action α into a KB K:

Definition 5. Given a KB K, we use KL←L′ to denote the KB that is obtained
from K by replacing every name L by a possibly more complex expression L′.
Given a KB K and an action α, we define TRα(K) as follows:

(a) TRε(K) = K,
(b) TR(A⊕C)·α(K) = (TRα(K))A←AtC ,
(c) TR(A	C)·α(K) = (TRα(K))A←Au¬C ,
(d) TR(r⊕p)·α(K) = (TRα(K))r←r∪p,
(e) TR(r	p)·α(K) = (TRα(K))r←r\p,
(f) TR(K1?α1:α2)(K) = (¬K1 ∨ TRα1(K)) ∧ (K1 ∨ TRα2(K))

Example 4. By applying the transformation above to K1 and α1, we obtain the
following KB TRα1

(K1):

(Projectv (ActiveProject u ¬{P20840}) t (ConcludedProject t {P20840})) ∧
(Employeev (ProjectEmployee u ¬∃worksFor.{P20840}) t PermanentEmployee) ∧
(∃worksFor.Projectv (ProjectEmployee u ¬∃worksFor.{P20840}))

Note that I1 6|= TRα1
(K1), since (∃worksFor.Project)I1 = {E01 ,E03 ,E07} and

(ProjectEmployee u ¬∃worksFor.{P20840})I1 = {E07}, hence the inclusion

∃worksFor.Projectv (ProjectEmployee u ¬∃worksFor.{P20840}

is violated.

We now show that this transformation correctly captures the meaning of
ground actions.

Lemma 1. Assume a ground action α and a KB K. For any interpretation I,
we have Sα(I) |= K iff I |= TRα(K).
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Proof. We prove the claim by induction on the structure of α. In the base case
where α = ε, we have Sα(I) = I and TRα(K) = K by definition, and thus the
claim holds.

Assume α = (A⊕C) ·α′. Let I ′ = S(A⊕C)(I), i.e., I ′ coincides with I except

that AI
′

= AI ∪CI . We know that for any KB K′, I ′ |= K′ iff I |= K′A←AtC . In
particular, I ′ |= TRα′(K) iff I |= (TRα′(K))A←AtC . Since, (TRα′(K))A←AtC =
TRα(K), we get I ′ |= TRα′(K) iff I |= TRα(K). By the induction hypothesis,
I ′ |= TRα′(K) iff Sα′(I ′) |= K. Thus, I |= TRα(K) iff Sα′(I ′) |= K. Since
Sα′(I ′) = Sα′(S(A⊕C)(I)) = Sα(I), we have I |= TRα(K) iff Sα(I) |= K.

For the cases α = (A 	 C) · α′, α = (r ⊕ p) · α′, and α = (r 	 p) · α′, the
argument is analogous.

Finally, we consider α = (K1?α1:α2), and assume an arbitrary I. We distin-
guish two cases:

(i) I |= K1. Then Sα(I) = Sα1
(I) by definition. By the induction hypothesis,

Sα1
(I) |= K iff I |= TRα1

(K), hence we have Sα(I) |= K iff I |= TRα1
(K).

Since TRα(K) = (¬K1 ∨ TRα1(K)) ∧ (K1 ∨ TRα2(K)), it trivially follows
that Sα(I) |= K iff I |= TRα(K).

(ii) I 6|= K1, that is, I |= ¬K1. The proof is analogous. We have Sα(I) = Sα2
(I)

by definition. By the induction hypothesis, Sα2
(I) |= K iff I |= TRα2

(K),
hence we have Sα(I) |= K iff I |= TRα2

(K). Since TRα(K) = (¬K1 ∨
TRα1(K)) ∧ (K1 ∨ TRα2(K)), it trivially follows that Sα(I) |= K iff I |=
TRα(K). ut

This lemma is the key to our reduction. An action α is not K-preserving iff
some model of K does not model TRα∗(K), where α∗ is a ‘canonical’ grounding
of α obtained by replacing each variable with a fresh individual. This allows
us to decide the static verification problem by deciding the satisfiability of K ∧
¬TRα∗(K). Formally, we have:

Theorem 2. Assume a (complex) action α and a KB K. Then the following
are equivalent:

(i) The action α is not K-preserving.
(ii) K∧¬TRα∗(K) is finitely satisfiable, where α∗ is obtained from α by replac-

ing each variable with a fresh individual name not occurring in α and K.

Proof. (i) to (ii). Assume there exist a ground instance α′ of α and a finite inter-
pretation I such that I |= K and Sα′(I) 6|= K. Then by Lemma 1, I 6|= TRα′(K).
Thus I |= ¬TRα′(K). Suppose o1 → x1, . . . , on → xn is the substitution that
transforms α into α′. Suppose also o′1 → x1, . . . , o

′
n → xn is the substitution that

transforms α into α∗. Take the interpretation I∗ that coincides with I except
for (o′i)

I∗ = (oi)
I . Then I∗ |= K ∧ ¬TRα∗(K).

(ii) to (i). Assume K∧¬TRα∗(K) is finitely satisfiable, i.e., there is an inter-
pretation I such that I |= K and I 6|= TRα∗(K). Then by Lemma 1, Sα∗(I) 6|= K.

ut

The above reduction leads to the main complexity result of this paper.
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Theorem 3. The static verification problem is coNExpTime-complete in the
presence of ALCHOIQbr KBs.

Proof. The coNExpTime upper bound follows from Theorem 2 and the fact
that finite satisfiability of ALCHOIQbr KBs is NExpTime-complete (c.f. The-
orem 1).

For hardness, we note that finite unsatisfiability of ALCHOIQbr KBs can be
reduced in polynomial time to static verification in the presence of ALCHOIQbr
KBs. Indeed, a KB K is finitely satisfiable iff (A′⊕{o}) is not (K∧(Av¬A′)∧(o :
A))-preserving, where A, A′ are fresh concept names and o is a fresh individual.

ut

5 Lowering the Complexity

In this section we consider a restricted setting for which the computational
complexity of the static verification problem is lower. We use a variant of DL-
LiteR [4], which we call DL-Lite+

R, as the language for constraint specification.
It supports (restricted) Boolean combinations of inclusions and assertions, and
allows for more complex concepts and roles in assertions. We also make the
unique name assumption (UNA), i.e., for every pair of individuals o1, o2 and
interpretation I, we have oI1 6= oI2 .

Definition 6. A DL-Lite+
R KB K is a KB satisfying the following conditions:

- The operator ¬̇ may occur only in front of assertions.
- All concept inclusions have the form C1vC2 or C1v¬C2 of K, with C1, C2 ∈
NC ∪ {∃r.> | r ∈ NR} ∪ {∃r−.> | r ∈ NR}.

- All role inclusions have the form r1 v r2 or r1 v ¬r2, with r1, r2 ∈ NR ∪ {r− |
r ∈ NR}.

- For all concept assertions3 o : C of K, C ∈ B+, where B+ is the smallest set
of concepts such that:
(a) NC ⊆ B+,
(b) {o′} ∈ B+ for all o′ ∈ NI,
(c) ∃r.> ∈ B+ for all roles r,
(d) {B1 uB2, B1 tB2,¬B1} ⊆ B+ for all B1, B2 ∈ B+.

A DL-LiteR KB K is a DL-Lite+R KB that satisfies the following restrictions:

- K is a conjunction of inclusions and assertions,
- all assertions in K are basic assertions of the forms o : C with C ∈ NC, and

(o, o′) : r with r ∈ NR.

We also restrict slightly the action language, by allowing only Boolean com-
binations of (possibly negated) assertions to be used to express the condition
K in actions of the form K ?α1:α2. This is captured by the notion of localized
actions.

3 Note that there is no restriction on role assertion (o, o′) : r of K.
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Definition 7. If no inclusions occur in an action α, then α is called localized.

DL-Lite+
R is expressive enough to allow us to reduce the static verification

problem for localized actions to finite unsatisfiability testing.

Theorem 4. The static verification problem for DL-Lite+R KBs and localized
actions can be reduced in linear time to finite unsatisfiability testing for DL-
Lite+R KBs.

Proof. Assume a DL-Lite+
R KB K and a localized action α. Let α∗ be the action

obtained from α by replacing each variable with a fresh individual name not
occurring in α and K. Construct K′ = K∧¬̇TRα∗(K). From Theorem 2 we know
that K′ is not finitely satisfiable iff α is K-preserving. The KB K′ is not a DL-
Lite+

R KB, but it can be transformed into an equisatisfiable DL-Lite+
R KB in

linear time. To this end, turn K′ into negation normal form, i.e., push ¬̇ inside
so that ¬̇ occurs in front of inclusions and assertions only. Then replace every
occurrence of ¬̇(B1 v B2) and ¬̇(r1 v r2) in the resulting K′ by o : B1 u ¬B2

and (o, o′) : r1 \ r2, respectively, where o, o′ are fresh individuals. Clearly, the
above transformations preserve satisfiability. Moreover, since in K the operator
¬̇ may occur only in front of assertions, and α is localized, every inclusion in the
resulting K′ already appears in K. This implies that K′ is a DL-Lite+

R KB as
desired. ut

We next characterize the complexity of finite satisfiability in DL-Lite+
R.

Theorem 5. Finite satisfiability of DL-Lite+R KBs is NP-complete.

Proof. NP-hardness is immediate (e.g., by a reduction from propositional satis-
fiability). For membership in NP, we define a non-deterministic rewriting proce-
dure that transforms in polynomial time a DL-Lite+

R KB into a DL-LiteR KB.
In particular, we ensure that a DL-Lite+

R KB K is finitely satisfiable iff there
exists a rewriting of K into a finitely satisfiable DL-LiteR KB. Since satisfiabil-
ity testing in DL-LiteR is feasible in polynomial time, this yields an NP upper
bound for DL-Lite+

R.
Assume a DL-Lite+

R KB K. The rewriting of K has two steps: first, we get
rid of the possible occurrences of ∨, and then of the complex concepts and roles
in assertions.

For the first step, let P be the set of inclusions and assertions appearing in K.
Non-deterministically pick a set M ⊆ P such that M is a model of K, when K is
seen as a propositional formula over P . Let KM =

∧
α∈M α∧

∧
α′ 6∈M ¬̇α′. Clearly,

K is finitely satisfiable iff we can choose an M with KM finitely satisfiable.
In the next step, we show how to obtain from KM a DL-LiteR KB. Let T be

the set of inclusions that occur in KM and let A be the set of assertions and their
negations occurring in KM . Recall that the inclusions of T are inclusions of the
standard DL-LiteR, but the assertions in A may contain complex concepts. We
non-deterministically complete A with further assertions to explicate complex
concepts and roles. A completion of A is a ⊆-minimal set A+ of assertions such
that:
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- A ⊆ A+;
- for every assertion α, α 6∈ A+ or ¬̇α 6∈ A+;
- if o is an individual from KM and C1 v C2 ∈ T , then ¬̇(o : C1) ∈ A+ or
o : C2 ∈ A+;

- if (o, o′) are individuals from KM and r1v r2 ∈ T , then ¬̇((o, o′) : r1) ∈ A+ or
(o, o′) : r2 ∈ A+;

- if o : C1 u C2 ∈ A+, then o : C1 ∈ A+ and o : C2 ∈ A+;
- if o : C1 t C2 ∈ A+, then o : C1 ∈ A+ or o : C2 ∈ A+;
- if o : ∃r.> ∈ A+, then (o, o′) : r ∈ A+ for some fresh o′;
- if o : ¬C ∈ A+, then ¬̇(o : C) ∈ A+;
- if ¬̇(o : C) ∈ A+, then o : ¬C ∈ A+;
- if o : ¬¬C ∈ A+, then o : C ∈ A+;
- if o : ¬(C1 u C2) ∈ A+, then ¬̇(o : C1) ∈ A+ or ¬̇(o : C2) ∈ A+;
- if o : ¬(C1 t C2) ∈ A+, then ¬̇(o : C1) ∈ A+ and ¬̇(o : C2) ∈ A+;
- if o : ¬(∃r.>) ∈ A+, then ¬̇((o, o′) : r ∈ A+) for all individuals o′ of A+;
- if (o, o′) : r ∈ A+, then (o′, o) : r− ∈ A+;
- if (o, o′) : r1 ∪ r2 ∈ A+, then (o, o′) : r1 ∈ A+ or (o, o′) : r2 ∈ A+;
- if (o, o′) : r1 \ r2 ∈ A+, then (o, o′) : r1 ∈ A+ and ¬̇((o, o′) : r2) ∈ A+;
- if ¬̇((o, o′) : r1 ∪ r2) ∈ A+, then ¬̇((o, o′) : r1) ∈ A+ and ¬̇((o, o′) : r2) ∈ A+;
- if ¬̇((o, o′) : r1 \ r2) ∈ A+, then ¬̇((o, o′) : r1) ∈ A+ or (o, o′) : r2 ∈ A+;
- if o : {o′} ∈ A+, then o = o′;
- if (o1, o2) : {(o′1, o′2)} ∈ A+, then o1 = o′1 and o2 = o′2;

Let A+
b be the restriction of A+ to basic assertions. Clearly,

∧
T ∧

∧
A+
b is a

DL-LiteR KB. It is not difficult to see that KM is finitely satisfiable iff there
exists a completion A+ such that

∧
T ∧

∧
A+
b is finitely satisfiable. ut

Now we can give a tight bound on the complexity of static verification.

Theorem 6. The static verification problem for DL-Lite+R KBs and localized
actions is coNP-complete.

Proof. The upper bound follows directly from Theorems 4 and 5. The lower
bound can be obtained by a reduction from finite unsatisfiability in DL-Lite+

R.
To this end, we can employ exactly the same reduction in the proof of Theorem 3.

ut

It is important to note that coNP-hardness is not only due to the fact that
we are using an intractable extension of DL-LiteR to specify the constraints.
Indeed, the given coNP bound is tight even if the constraints are in a very
restricted fragment of the core DL-Lite: they are a conjunction of disjointness
assertions between concept names. The actions needed to show coNP-hardness
are also quite restricted: plain sequences of basic concept actions.

Theorem 7. The static verification problem is coNP-hard already for KBs of
the form (A0v¬A′0)∧ . . . (Anv¬A′n), where each Ai, A

′
i is a concept name, and

actions are localized, ground sequences of basic actions of the forms (A⊕C) and
(A	 C).
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Proof. We employ the 3-Coloring problem for graphs. Assume a graph G =
(V,E) with V = {1, . . . , n}. We construct in polynomial time a KB K and an
action α such that G is 3-colorable iff α is not K- preserving. For every v ∈ V ,
we use 3 concept names A0

v, A
1
v, A

2
v for the 3 possible colors of the vertex v. In

addition, we employ a concept name D. Let K be the following KB:

K = (D v ¬D) ∧
∧

(v,v′)∈E∧0≤c≤2

Acv v ¬Acv′ .

It remains to define the action α. For this we additionally use a nominal {o}
and fresh concept names B1, . . . , Bn. We let α := α1α

1
2 · · ·αn2α3, where

(i) α1 = (D ⊕ {o})(B1 ⊕ {o}) · · · (Bn ⊕ {o}),
(ii) αi2 = (Bi 	A0

i )(Bi 	A1
i )(Bi 	A3

i ) for all i ∈ {1, . . . , n}, and
(iii) α3 = (D 	B1) · · · (D 	Bn).

Assume I is a model of K such that Sα(I) 6|= K. We argue that then G
is 3-colorable. Indeed, since α does not modify the extensions of concepts Acv,
Sα(I) 6|= K may only hold if {o}I is in the extension of D after applying α on I.
Due to α3, {o}I is not in the extensions of B1, . . . , Bn after applying α1α

1
2 · · ·αn2

on I. Due to α1 and αn2 , for any i ∈ {1, . . . , n}, it must be the case that {o}I is
in the extension of some A0

i , A
1
i or A2

i in I. For every v ∈ V , let col(v) ∈ {0, 1, 2}
by any value such that {o}I is in the extension of A

col(v)
i in I. Since I satisfies

the disjointness axioms in K, the function col is a proper 3-coloring of G.
Suppose G is 3-colorable and a proper coloring of G is given by a function

col : V → {0, 1, 2}. Take any interpretation I with ∆I = {e} and such that
(i) {o}I = e, (ii) DI = ∅, (iii) e ∈ (Acv)

I iff col(v) = c. Since col is a proper
coloring of G, I is a model of K. As easily seen, Sα(I) 6|= K. ut

6 Conclusions

In this paper we have studied the static verification problem for evolving graph
databases, when the integrity constraints are expressed in DLs and the updates
in a simple action language. We have shows that the problem can be reduced
to a better known reasoning task: finite satisfiability of knowledge bases. We
obtained a tight coNExpTime bound for the problem when the constraints are
expressed in a very expressive DL, and a coNP bound if a dialect of DL-Lite
is considered. This paper is intended to be only a starting point in the study of
evolving graph databases under DL constraints, and many challenges remain for
future work. For example, the action language we have considered here is rather
weak, and a more expressive action language seems desirable. However, many
natural extensions, such as ‘while’ loops in actions, would easily yield an unde-
cidable formalism. Given that the static verification problem is intractable even
for weak fragments of the core DL-Lite and very restricted forms of actions, it re-
mains to explore how feasible static verification is in practice, and whether there
are meaningful restrictions that make the problem tractable. Also other data
management reasoning services remain to be considered, including planning, for
which we may draw from existing work on DL-based action languages [8,9].
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