
Adaptive Prejoin Approach for Performance Optimization
in MapReduce-based Warehouses

Weiping Qu
Heterogeneous Information

Systems Group
University of Kaiserslautern
qu@informatik.uni-kl.de

Michael Rappold
∗

Department of Computer
Science

University of Kaiserslautern
m_rappol@cs.uni-kl.de

Stefan Dessloch
Heterogeneous Information

Systems Group
University of Kaiserslautern

dessloch@informatik.uni-
kl.de

ABSTRACT
MapReduce-based warehousing solutions (e.g. Hive) for big
data analytics with the capabilities of storing and analyzing
high volume of both structured and unstructured data in a
scalable file system have emerged recently. Their efficient
data loading features enable a so-called near real-time ware-
housing solution in contrast to those offered by conventional
data warehouses with complex, long-running ETL processes.

However, there are still many opportunities for perfor-
mance improvements in MapReduce systems. The perfor-
mance of analyzing structured data in them cannot cope
with the one in traditional data warehouses. For example,
join operations are generally regarded as a bottleneck of per-
forming generic complex analytics over structured data with
MapReduce jobs.

In this paper, we present one approach for improving per-
formance in MapReduce-based warehouses by pre-joining
frequently used dimension columns with fact table redun-
dantly during data transfer and adapting queries to this join-
friendly schema automatically at runtime using a rewrite
component. This approach is driven by the statistics infor-
mation derived from previous executed workloads in terms
of join operations.

The results show that the execution performance is im-
proved by getting rid of join operations in a set of future
workloads whose join exactly fits the pre-joined fact table
schema while the performance still remains the same for
other workloads.

1. INTRODUCTION
By packaging complex custom imperative programs (text

mining, machine learning, etc.) into simple map and reduce

functions and executing them in parallel on files in a large

∗finished his work during his master study at university of
kaiserslautern

25th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 28.05.2013 - 31.05.2013, Ilmenau, Germany.
Copyright is held by the author/owner(s).

scalable file system, MapReduce/Hadoop1 systems enable
analytics on large amounts of unstructured data or struc-
tured data in acceptable response time.

With the continuous growth of data, scalable data stores
based on Hadoop/HDFS2 have achieved more and more at-
tention for big data analytics. In addition, by means of sim-
ply pulling data into the file system of MapReduce-based
systems, unstructured data without schema information is
directly analyzed with parallelizable custom programs, where-
as data can only be queried in traditional data warehouses
after it has been loaded by ETL tools (cleansing, normaliza-
tion, etc.), which normally takes a long period of time.

Consequently, many web or business companies add MapRe-
duce systems to their analytical architecture. For example,
Fatma Özcan et al. [12] integrate their DB2 warehouse with
the Hadoop-based analysis tool - IBM Infosphere BigInsights
with connectors between these two platforms. An analytical
synthesis is provided, where unstructured data is initially
placed in a Hadoop-based system and analyzed by MapRe-
duce programs. Once its schema can be defined, it is further
loaded into a DB2 warehouse with more efficient analysis ex-
ecution capabilities.

Another example is the data warehousing infrastructure
at Facebook which involves a web-based tier, a federated
MySQL tier and a Hadoop-based analytical cluster - Hive.

Such orchestration of various analytical platforms forms a
heterogeneous environment where each platform has a differ-
ent interface, data model, computational capability, storage
system, etc.

Pursuing a global optimization in such a heterogeneous
environment is always challenging, since it is generally hard
to estimate the computational capability or operational cost
concisely on each autonomous platform. The internal query
engine and storage system do not tend to be exposed to
outside and are not designed for data integration.

In our case, relational databases and Hadoop will be in-
tegrated together to deliver an analytical cluster. Simply
transferring data from relational databases to Hadoop with-
out considering the computational capabilities in Hadoop
can lead to lower performance.

As an example, performing complex analytical workloads
over multiple small/large tables (loaded from relational data-

1one open-source implementation of MapReduce framework
from Apache community, see http://hadoop.apache.org
2Hadoop Distributed File System - is used to store the data
in Hadoop for analysis



bases) in Hadoop leads to a number of join operations which
slows down the whole processing. The reason is that the
join performance is normally weak in MapReduce systems
as compared to relational databases [15]. Performance limi-
tations have been shown due to several reasons such as the
inherent unary feature of map and reduce functions.

To achieve better global performance in such an analytical
synthesis with multiple platforms from a global perspective
of view, several strategies can be applied.

One would be simply improving the join implementation
on single MapReduce platform. There have been several ex-
isting works trying to improve join performance in MapRe-
duce systems [3, 1].

Another one would be using heuristics for global perfor-
mance optimization. In this paper, we will take a look at the
second one. In order to validate our general idea of improv-
ing global performance on multiple platforms, we deliver our
adaptive approach in terms of join performance. We take the
data flow architecture at Facebook as a starting point and
the contributions are summarized as follows:

1. Adaptively pre-joining tables during data transfer for
better performance in Hadoop/Hive.

2. Rewriting incoming queries according to changing ta-
ble schema.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the background of this paper. Section 3 gives
a näıve approach of fully pre-joining related tables. Based
on the performance observation of this näıve approach, more
considerations have been taken into account and an adap-
tive pre-join approach is proposed in Section 4, followed by
the implementation and experimental evaluation shown in
Section 5. Section 6 shows some related works. Section 7
concludes with a summary and future work.

2. BACKGROUND
In this section, we will introduce our starting point, i.e.

the analytical data flow architecture at Facebook and its
MapReduce-based analytical platform - Hive. In addition,
the performance issue in terms of join is also stated subse-
quently.

2.1 Facebook Data Flow Architecture
Instead of using a traditional data warehouse, Facebook

uses Hive - a MapReduce-based analytical platform - to
perform analytics on information describing advertisement.
The MapReduce/Hadoop system offers high scalability which
enables Facebook to perform data analytics over 15PB of
data and load 60TB of new data every day [17]. The archi-
tecture of data flow at Facebook is described as follows.

As depicted in Figure 1, data is extracted from two types
of data sources: a federated MySQL tier and a web-based
tier. The former offers the category, the name and corre-
sponding information of the advertisements as dimension
data while the actions such as viewing an advertisement,
clicking on it, fanning a Facebook page are extracted as fact
data from the latter.

There are two types of analytical cluster: production Hive
cluster and ad hoc Hive cluster. Periodic queries are per-
formed on the production Hive cluster while the ad hoc
queries are executed on the ad hoc Hive cluster.

Just as Hive and Hadoop are core to our storage and data processing 
strategies, Scribe[3] is core to our log collection strategy. Scribe is 
an open source technology created at Facebook that acts as a service 
that can aggregate logs from thousands of web servers. It acts as a 
distributed and scalable data bus and by combining it with Hadoop's 
distributed file system (HDFS)[6] we have come up with a scalable 
log aggregation solution that can scale with the increasing volume 
of logged data. 

In the following sections we present how these different systems 
come together to solve the problems of scale and job diversity at 
Facebook. The rest of the paper is organized as follows. Section 2 
describes how the data flows from the source systems to the data 
warehouse. Section 3 talks about storage systems, formats and 
optimizations done for storing large data sets. Section 4 describes 
some approaches taken towards making this data easy to discover, 
query and analyze. Section 5 talks about some challenges that we 
encounter due to different SLA expectations from different users 
using the same shared infrastructure. Section 6 discusses the 
statistics that we collect to monitor cluster health, plan out 
provisioning and give usage data to the users. We conclude in 
Section 7. 

2. DATA FLOW ARCHITECTURE 
In Figure 1, we illustrate how the data flows from the source 
systems to the data warehouse at Facebook. As depicted, there are 
two sources of data – the federated mysql tier that contains all the 
Facebook site related data and the web tier that generates all the log 
data. An example of a data set that originates in the former includes 
information describing advertisements – their category, there name, 
the advertiser information etc. The data sets originating in the latter 
mostly correspond to actions such as viewing an advertisement, 
clicking on it, fanning a Facebook page etc. In traditional data 
warehousing terminology, more often than not the data in the 

federated mysql tier corresponds to dimension data and the data 
coming from the web servers corresponds to fact data. 

The data from the web servers is pushed to a set of Scribe-Hadoop 
(scribeh) clusters. These clusters comprise of Scribe servers running 
on Hadoop clusters. The Scribe servers aggregate the logs coming 
from different web servers and write them out as HDFS files in the 
associated Hadoop cluster. Note that since the data is passed 
uncompressed from the web servers to the scribeh clusters, these 
clusters are generally bottlenecked on network. Typically more than 
30TB of data is transferred to the scribeh clusters every day – 
mostly within the peak usage hours.  In order to reduce the cross 
data center traffic the scribeh clusters are located in the data centers 
hosting the web tiers. While we are exploring possibilities of 
compressing this data on the web tier before pushing it to the 
scribeh cluster, there is a trade off between compression and the 
latencies that can be introduced as a result of it, especially for low 
volume log categories. If the log category does not have enough 
volume to fill up the compression buffers on the web tier, the data 
therein can experience a lot of delay before it becomes available to 
the users unless the compression buffer sizes are reduced or 
periodically flushed. Both of those possibilities would in turn lead to 
lower compression ratios. 

Periodically the data in the scribeh clusters is compressed by copier 
jobs and transferred to the Hive-Hadoop clusters as shown in Figure 
1. The copiers run at 5-15 minute time intervals and copy out all the 
new files created in the scribeh clusters. In this manner the log data 
gets moved to the Hive-Hadoop clusters. At this point the data is 
mostly in the form of HDFS files. It gets published either hourly or 
daily in the form of partitions in the corresponding Hive tables 
through a set of loader processes and then becomes available for 
consumption. 

The data from the federated mysql tier gets loaded to the Hive-
Hadoop clusters through daily scrape processes. The scrape 
processes dump the desired data sets from mysql databases, 
compressing them on the source systems and finally moving them 
into the Hive-Hadoop cluster. The scrapes need to be resilient to 
failures and also need to be designed such that they do not put too 
much load on the mysql databases. The latter is accomplished by 
running the scrapes on a replicated tier of mysql databases thereby 
avoiding extra load on the already loaded masters. At the same time 
any notions of strong consistency in the scraped data is sacrificed in 
order to avoid locking overheads. The scrapes are retried on a per 
database server basis in the case of failures and if the database 
cannot be read even after repeated tries, the previous days scraped 
data from that particular server is used. With thousands of database 
servers, there are always some servers that may not be reachable by 
the scrapes and by a combination of using retries and scraping stale 
data a daily dump of the dimension data is created in the Hive-
Hadoop clusters. These dumps are then converted to top level Hive 
tables. 

As shown in Figure 1, there are two different Hive-Hadoop clusters 
where the data becomes available for consumption by the down 
stream processes. One of these clusters – the production Hive-
Hadoop cluster - is used to execute jobs that need to adhere to very 
strict delivery deadlines, where as the other cluster – the ad hoc 
Hive-Hadoop cluster is used to execute lower priority batch jobs as 
well as any ad hoc analysis that the users want to do on historical 
data sets. The ad hoc nature of user queries makes it dangerous to 
run production jobs in the same cluster. A badly written ad hoc job 

 

Web Servers

Production Hive-Hadoop
Cluster

Federated MySQL

Scribe-Hadoop Clusters

Adhoc Hive-Hadoop
Cluster

Hive replication

Figure 1: Data Flow Architecture 

1014

Figure 1: Facebook Data Flow Architecture[17]

2.2 Hive
Hive [16] is an open source data warehousing solution built

on top of MapReduce/Hadoop. Analytics is essentially done
by MapReduce jobs and data is still stored and managed in
Hadoop/HDFS.

Hive supports a higher-level SQL-like language called Hive-
QL for users who are familiar with SQL for accessing files
in Hadoop/HDFS, which highly increases the productivity
of using MapReduce systems. When a HiveQL query comes
in, it will be automatically translated into corresponding
MapReduce jobs with the same analytical semantics. For
this purpose, Hive has its own meta-data store which maps
the HDFS files to the relational data model. Files are log-
ically interpreted as relational tables during HiveQL query
execution.

Furthermore, in contrast to high data loading cost (using
ETL jobs) in traditional data warehouses, Hive benefits from
its efficient loading process which pulls raw files directly into
Hadoop/HDFS and further publishes them as tables. This
feature makes Hive much more suitable for dealing with large
volumes of data (i.e. big data).

2.3 Join in Hadoop/Hive
There has been an ongoing debate comparing parallel data-

base systems and MapReduce/Hadoop. In [13], experiments
showed that performance of selection, aggregation and join
tasks in Hadoop could not reach parallel databases (Vertica
& DBMS-X). Several reasons of the performance difference
have been also explained by Stonebraker et al. in [15] such
as repetitive record parsing, and high I/O cost due to non-
compression & non-indexing.

Moreover, as MapReduce was not originally designed to
combine information from two or more data sources, join im-
plementations are always cumbersome [3]. The join perfor-
mance relies heavily on the implementation of MapReduce
jobs which have been considered as not straightforward.

As Hive is built on top of MapReduce/Hadoop, the join
operation is essentially done by corresponding MapReduce
jobs. Thus, Hive suffers from these issues even though there
have been efforts [5] to improve join performance in MapRe-
duce systems or in Hive.



3. FULL PRE-JOIN APPROACH
Due to the fact that the join performance is a perfor-

mance bottleneck in Hive with its inherent MapReduce fea-
ture, one näıve thinking for improving total workload perfor-
mance would be to simply eliminate the join task from the
workload by performing a rewritten workload with the same
analytical semantics over pre-joined tables created in the
data load phase. A performance gain would be expected by
performing large table scan with high parallelism of increas-
ing working nodes in Hadoop instead of join. In addition,
the scalable storage system allows us to create redundant
pre-joined tables for some workloads with specific join pat-
terns.

In an experiment, we tried to validate this strategy. An
analytical workload (TPC-H Query 3) was executed over
two data sets of TPC-H benchmark (with scale factor 5 &
10) of the original table schema (with join at runtime) and a
fully pre-joined table schema (without join) which fully joins
all the related dimension tables with the fact table during
the load phase, respectively. In this case, we trade storage
overhead for better total performance.

As shown on the left side of the Figure 2(a), the perfor-
mance gain of the total workload (including the join) over
the data set with SF 5 can be seen with 6GB storage over-
head introduced by fully pre-joining the related tables into
one redundant table (shown in Figure 2(b)). The overall

0

50

100

150

200

250

300

350

5GB 10GB

av
e

ra
ge

 r
u

n
ti

m
e

 (
se

c)
 

data set size 

no pre-join

full pre-join

(a) Average Runtimes

0

5

10

15

20

25

5GB 10GB

d
at

a 
vo

lu
m

e
 f

o
r 

e
xe

cu
ti

n
g 

w
o

rk
lo

ad
s 

(G
B

) 

data set size 

no pre-join

full pre-join

(b) Accessed Data Volume

Figure 2: Running TPC-H Query-3 on Original and
Full Pre-joined Table Schema

performance can be significantly increased if workloads with
the same join pattern later frequently occur, especially for
periodic queries over production Hive-Hadoop cluster in the
Facebook example.

However, the result of performing the same query on the
data set with SF 10 size is disappointing as there is no per-
formance gain while paying 12.5GB storage for redundancy
(shown in Figure 2(b)), which is not what we expected. The
reason could be that the overhead of scanning such redun-
dant fully pre-joined tables and the high I/O cost as well off-
set the performance gain as the accessed data volume grows.

4. ADAPTIVE PRE-JOIN APPROACH
Taking the lessons learned from the full pre-join approach

above, we propose an adaptive pre-join approach in this pa-
per.

Instead of pre-joining full dimension tables with the fact
table, we try to identify the dimension columns which oc-
curred frequently in the select, where, etc. clauses of previ-
ous executed queries for filtering, aggregation and so on. We
refer to these columns as additional columns as compared to
the join columns in the join predicates. By collecting a list of
additional column sets from previous queries, for example,

Just as Hive and Hadoop are core to our storage and data processing 
strategies, Scribe[3] is core to our log collection strategy. Scribe is 
an open source technology created at Facebook that acts as a service 
that can aggregate logs from thousands of web servers. It acts as a 
distributed and scalable data bus and by combining it with Hadoop's 
distributed file system (HDFS)[6] we have come up with a scalable 
log aggregation solution that can scale with the increasing volume 
of logged data. 

In the following sections we present how these different systems 
come together to solve the problems of scale and job diversity at 
Facebook. The rest of the paper is organized as follows. Section 2 
describes how the data flows from the source systems to the data 
warehouse. Section 3 talks about storage systems, formats and 
optimizations done for storing large data sets. Section 4 describes 
some approaches taken towards making this data easy to discover, 
query and analyze. Section 5 talks about some challenges that we 
encounter due to different SLA expectations from different users 
using the same shared infrastructure. Section 6 discusses the 
statistics that we collect to monitor cluster health, plan out 
provisioning and give usage data to the users. We conclude in 

Section 7. 

2. DATA FLOW ARCHITECTURE 
In Figure 1, we illustrate how the data flows from the source 
systems to the data warehouse at Facebook. As depicted, there are 
two sources of data ! the federated mysql tier that contains all the 
Facebook site related data and the web tier that generates all the log 
data. An example of a data set that originates in the former includes 
information describing advertisements ! their category, there name, 
the advertiser information etc. The data sets originating in the latter 
mostly correspond to actions such as viewing an advertisement, 
clicking on it, fanning a Facebook page etc. In traditional data 
warehousing terminology, more often than not the data in the 

federated mysql tier corresponds to dimension data and the data 
coming from the web servers corresponds to fact data. 

The data from the web servers is pushed to a set of Scribe-Hadoop 
(scribeh) clusters. These clusters comprise of Scribe servers running 
on Hadoop clusters. The Scribe servers aggregate the logs coming 
from different web servers and write them out as HDFS files in the 
associated Hadoop cluster. Note that since the data is passed 
uncompressed from the web servers to the scribeh clusters, these 
clusters are generally bottlenecked on network. Typically more than 
30TB of data is transferred to the scribeh clusters every day ! 
mostly within the peak usage hours.  In order to reduce the cross 
data center traffic the scribeh clusters are located in the data centers 
hosting the web tiers. While we are exploring possibilities of 
compressing this data on the web tier before pushing it to the 
scribeh cluster, there is a trade off between compression and the 
latencies that can be introduced as a result of it, especially for low 
volume log categories. If the log category does not have enough 
volume to fill up the compression buffers on the web tier, the data 
therein can experience a lot of delay before it becomes available to 
the users unless the compression buffer sizes are reduced or 
periodically flushed. Both of those possibilities would in turn lead to 
lower compression ratios. 

Periodically the data in the scribeh clusters is compressed by copier 
jobs and transferred to the Hive-Hadoop clusters as shown in Figure 
1. The copiers run at 5-15 minute time intervals and copy out all the 
new files created in the scribeh clusters. In this manner the log data 
gets moved to the Hive-Hadoop clusters. At this point the data is 
mostly in the form of HDFS files. It gets published either hourly or 
daily in the form of partitions in the corresponding Hive tables 
through a set of loader processes and then becomes available for 
consumption. 

The data from the federated mysql tier gets loaded to the Hive-
Hadoop clusters through daily scrape processes. The scrape 
processes dump the desired data sets from mysql databases, 
compressing them on the source systems and finally moving them 
into the Hive-Hadoop cluster. The scrapes need to be resilient to 
failures and also need to be designed such that they do not put too 
much load on the mysql databases. The latter is accomplished by 
running the scrapes on a replicated tier of mysql databases thereby 
avoiding extra load on the already loaded masters. At the same time 
any notions of strong consistency in the scraped data is sacrificed in 
order to avoid locking overheads. The scrapes are retried on a per 
database server basis in the case of failures and if the database 
cannot be read even after repeated tries, the previous days scraped 
data from that particular server is used. With thousands of database 
servers, there are always some servers that may not be reachable by 
the scrapes and by a combination of using retries and scraping stale 
data a daily dump of the dimension data is created in the Hive-
Hadoop clusters. These dumps are then converted to top level Hive 
tables. 

As shown in Figure 1, there are two different Hive-Hadoop clusters 
where the data becomes available for consumption by the down 
stream processes. One of these clusters ! the production Hive-
Hadoop cluster - is used to execute jobs that need to adhere to very 
strict delivery deadlines, where as the other cluster ! the ad hoc 
Hive-Hadoop cluster is used to execute lower priority batch jobs as 
well as any ad hoc analysis that the users want to do on historical 
data sets. The ad hoc nature of user queries makes it dangerous to 
run production jobs in the same cluster. A badly written ad hoc job 

 

Web Servers

Production Hive-Hadoop
Cluster

Federated MySQL

Scribe-HadoopClusters

AdhocHive-Hadoop
Cluster

Hive replication

Figure 1: Data Flow Architecture 

1014

a b c d 

r s t 

x y z 

dim table: α 

dim table: β 

fact table: λ 

“(λ, α.r, β.x)“ 
  

p 

a b c d r′ x′ 

fact table: λ′ 

r s t 

x y z 

dim table: α 

dim table: β 

Adaptive Pre-joined Schema 

Figure 3: Adaptive Pre-joined Schema in Facebook
Example

the periodic queries on production Hive-Hadoop cluster, a
frequent column set could be extracted.

One example is illustrated in Figure 3. The frequent set
of additional columns has been extracted. The column r

in dimension table α is frequently joined with fact table in
company in the previous workloads as a filter or aggregate
column, as the same for the column x in dimension table
β. During next load phase, the fact table is expanded by
redundantly pre-joining these two additional columns r and
x with it.

Depending on the statistics information of previous queries,
different frequent sets of additional columns could be found
in diverse time intervals. Thus, the fact table is pre-joined
in an adaptive manner.

Assume that the additional columns identified in previ-
ous queries will also frequently occur in the future ones (as
in the Facebook example), the benefits of adaptive pre-join
approach are two-fold:

First, when all the columns (including dimension columns)
in a certain incoming query which requires a join opera-
tion have been contained in the pre-joined fact table, this
query could be directly performed on the pre-joined fact ta-
ble without join.

Second, the adaptive pre-join approach leads to a smaller
table size in contrast to the full pre-join approach, as only
subsets of the dimension tables are pre-joined. Thus, the
resulting storage overhead is reduced, which plays a signif-
icant role especially in big data scenarios (i.e. terabytes,
petabytes of data).

To automatically accomplish the adaptive pre-join ap-
proach, three sub-steps are developed: frequent column set
extraction, pre-join and query rewrite.

4.1 Frequent Column Set Extraction
In the first phase, the statistics collected for extracting

frequent set of additional columns is formated as a list of
entries each which has the following form:

Set : {Fact, Dim X.Col i, Dim X.Col j ... Dim Y.Col k}

The join set always starts with the involved fact table
while the joint dimension columns are identified and cap-



tured from the select, where, etc. clauses or from the sub-
queries.

The frequent set of additional columns could be extracted
using a set of frequent itemset mining approaches [2, 7, 11]

4.2 Query Rewrite
As the table schema is changed in our case (i.e. newly gen-

erated fact table schema), initial queries need to be rewritten
for successful execution. Since the fact table is pre-joined
with a set of dedicated redundant dimension columns, the
tables which are involved in the from clause of the original
query can be replaced with this new fact table once all the
columns have been covered in it.

By storing the mapping from newly generated fact table
schema to the old schema in the catalog, the query rewrite
process can be easily applied. Note that the common issue
of handling complex sub-queries for Hive can thereby be
facilitated if the columns in the sub-query have been pre-
joined with the fact table.

5. IMPLEMENTATION AND EVALUATION
We use Sqoop3 as the basis to implement our approach.

The TPC-H benchmark data set with SF 10 is adaptively
pre-joined according to the workload statistics and trans-
ferred from MySQL to Hive. First, the extracted join pat-
tern information is sent to Sqoop as additional transforma-
tion logic embedded in the data transfer jobs for generating
the adaptive pre-joined table schema on the original data
sources. Furthermore, the generated schema is stored in
Hive to enable automatic query rewrite at runtime.

We tested the adaptive pre-join approach on a six-node
cluster (Xeon Quadcore CPU at 2.53GHz, 4GB RAM, 1TB
SATA-II disk, Gigabit Ethernet) running Hadoop and Hive.

After running the same TPC-H Query 3 over the adaptive
pre-joined table schema, the result in the Figure 4(a) shows
that the average runtime is significantly reduced. The join

0

50

100

150

200

250

300

350

10GB

av
e

ra
ge

 r
u

n
ti

m
e

 (
se

c)
 

data set size 

no pre-join

full pre-join

adaptive pre-join

(a) Average Runtimes

0

5

10

15

20

25

10GB

d
at

a 
vo

lu
m

e
 f

o
r 

e
xe

cu
ti

n
g 

w
o

rk
lo

ad
s 

(G
B

) 

data set size 

no pre-join

full pre-join

adaptive pre-join

(b) Accessed Data Volume

Figure 4: Running TPC-H Query-3 on Original, Full
Pre-joined and Adaptive Pre-joined Table Schema

task has been eliminated for this query and the additional
overheads (record parsing, I/O cost) have been relieved due
to the smaller size of redundancy as shown in Figure 4(b).

6. RELATED WORK
An adaptively pre-joined fact table is essentially a mate-

rialized view in Hive. Creating materialized views in data
warehouses is nothing new but a technique used for query
optimization. Since 1990s, a substantial effort [6, 8] has been

3an open source tool for data transfer between Hadoop and
relational database, see http://sqoop.apache.org/

to answer queries using views in data warehouses. Further-
more, several subsequent works [14, 10] have focuses on dy-
namic view management based on runtime statistics (e.g.
reference frequency, result data size, execution cost) and
measured profits for better query performance. In our work,
we reviewed these sophisticated techniques in a MapReduce-
based environment.

Cheetah [4] is a high performance, custom data warehouse
on top of MapReduce. It is very similar to the MapReduce-
based warehouse Hive introduced in this paper. The perfor-
mance issue of join implementation has also been addressed
in Cheetah. To reduce the network overhead for joining
big dimension table with fact table at query runtime, big
dimension tables are denormalized and all the dimension at-
tributes are directly stored into the fact table. In contrast,
we choose to only denormalize the frequently used dimen-
sion attributes with the fact table since we believe that less
I/O cost can be achieved in this way.

7. CONCLUSION AND FUTURE WORK
We propose a schema adaption approach for global opti-

mization in an analytical synthesis of relational databases
and a MapReduce-based warehouse - Hive. As MapRe-
duce systems have weak join performance, frequently used
columns of dimension tables are pre-joined with the fact
table according to useful workload statistics in an adap-
tive manner before being transfered to Hive. Besides, a
rewrite component enables the execution of incoming work-
loads with join operations over such pre-joined tables trans-
parently. In this way, better performance can be achieved in
Hive. Note that this approach is not restricted to any spe-
cific platform like Hive. Any MapReduce-based warehouse
can benefit from it, as generic complex join operations occur
in almost every analytical platform.

However, the experimental results also show that the per-
formance improvement is not stable while the data volume
grows continuously. For example, when the query is exe-
cuted on one larger pre-joined table, the performance gain
from eliminating joins is offset by the impact caused by the
record parsing overhead and high I/O cost during the scan,
which results in worse performance. This concludes that
the total performance of complex data analytics is effected
by multiple metrics rather than a unique consideration, e.g.
join.

With the continuous growth of data, diverse frameworks
and platforms (e.g. Hive, Pig) are built for large-scale data
analytics and business intelligent applications. Data trans-
fer between different platforms generally takes place in the
absence of key information such as operational cost model,
resource consumption, computational capability etc. within
platforms which are autonomous and inherently not designed
for data integration. Therefore, we are looking at a generic
description of the operational semantics with their compu-
tational capabilities on different platforms and a cost model
for performance optimization from a global perspective of
view. The granularity we are observing is a single operator
in the execution engines. Thus, a global operator model with
generic cost model is expected for performance improvement
in several use cases, e.g. federated systems.

Moreover, as an adaptively pre-joined fact table is re-
garded as a materialized view in a MapReduce-based ware-
house, another open problem left is how to handle the view
maintanence issue. The work from [9] introduced an incre-



mental loading approach to achieve near real-time dataware-
housing by using change data capture and change propaga-
tion techniques. Ideas from this work could be taken further
to improve the performance of total workload including the
pre-join task.

8. REFERENCES
[1] F. N. Afrati and J. D. Ullman. Optimizing joins in a

map-reduce environment. In Proceedings of the 13th
International Conference on Extending Database
Technology, EDBT ’10, pages 99–110, New York, NY,
USA, 2010. ACM.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of
the 20th International Conference on Very Large Data
Bases, VLDB ’94, pages 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[3] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J.
Shekita, and Y. Tian. A comparison of join algorithms
for log processing in mapreduce. In Proceedings of the
2010 ACM SIGMOD International Conference on
Management of data, SIGMOD ’10, pages 975–986,
New York, NY, USA, 2010. ACM.

[4] S. Chen. Cheetah: a high performance, custom data
warehouse on top of mapreduce. Proc. VLDB Endow.,
3(1-2):1459–1468, Sept. 2010.

[5] A. Gruenheid, E. Omiecinski, and L. Mark. Query
optimization using column statistics in hive. In
Proceedings of the 15th Symposium on International
Database Engineering & Applications, IDEAS ’11,
pages 97–105, New York, NY, USA, 2011. ACM.

[6] A. Y. Halevy. Answering queries using views: A
survey. The VLDB Journal, 10(4):270–294, Dec. 2001.

[7] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. SIGMOD Rec.,
29(2):1–12, May 2000.

[8] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In Proceedings of
the 1996 ACM SIGMOD international conference on
Management of data, SIGMOD ’96, pages 205–216,
New York, NY, USA, 1996. ACM.

[9] T. Jörg and S. Deßloch. Towards generating etl
processes for incremental loading. In Proceedings of
the 2008 international symposium on Database
engineering & applications, IDEAS ’08, pages 101–110,
New York, NY, USA, 2008. ACM.

[10] Y. Kotidis and N. Roussopoulos. Dynamat: a dynamic
view management system for data warehouses.
SIGMOD Rec., 28(2):371–382, June 1999.

[11] H. Mannila, H. Toivonen, and I. Verkamo. Efficient
algorithms for discovering association rules. pages
181–192. AAAI Press, 1994.

[12] F. Özcan, D. Hoa, K. S. Beyer, A. Balmin, C. J. Liu,
and Y. Li. Emerging trends in the enterprise data
analytics: connecting hadoop and db2 warehouse. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, SIGMOD ’11,
pages 1161–1164, New York, NY, USA, 2011. ACM.

[13] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data,
SIGMOD ’09, pages 165–178, New York, NY, USA,
2009. ACM.

[14] P. Scheuermann, J. Shim, and R. Vingralek.
Watchman: A data warehouse intelligent cache
manager. In Proceedings of the 22th International
Conference on Very Large Data Bases, VLDB ’96,
pages 51–62, San Francisco, CA, USA, 1996. Morgan
Kaufmann Publishers Inc.

[15] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. Mapreduce and
parallel dbmss: friends or foes? Commun. ACM,
53(1):64–71, Jan. 2010.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using Hadoop. In ICDE
’10: Proceedings of the 26th International Conference
on Data Engineering, pages 996–1005. IEEE, Mar.
2010.

[17] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur,
N. Jain, J. Sen Sarma, R. Murthy, and H. Liu. Data
warehousing and analytics infrastructure at facebook.
In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data,
SIGMOD ’10, pages 1013–1020, New York, NY, USA,
2010. ACM.


