
Worklr: Supporting and Capturing Business
Processes from Knowledge Workers

David Martinho and António Rito Silva

1 Instituto Superior Técnico – UL
2 ESW - INESC-ID

davidmartinho,rito.silva@ist.utl.pt

Abstract. Worklr (Workflow enhanced with Live Recommendations) is
a workflow tool that relies on one of the most known user experience
(UX) pattern: the exchange of email messages. In organizations that do
not have workflow systems guiding their business processes, knowledge
workers rely on technologies like telephone, email or fax, to interact and
attain their business process goals. Knowledge workers operate the busi-
ness in a daily basis, and they know how to handle the most complex
business situations. Worklr supports the capture of workers’ knowledge
following a design-by-doing approach. Workers attain business goals by
producing data objects. The convergence of workers’ behavior is fostered
through a recommender system. This novel proposal leverages on data-
driven workflow approaches.

Keywords: Ad-hoc Workflow, Operational Support, Recommender Sys-
tems

1 The Worklr Tool Approach

Our approach to capture knowledge workers’ tacit knowledge is based on an
ad-hoc workflow system which implements conversational acts, and where busi-
ness goals are achieved when a set of data objects is produced [1]. Knowledge
workers are responsible to produce data objects towards the complete genera-
tion of the information required for the process goal achievement. Additionally,
knowledge workers can establish conversational acts to request the production of
data objects by their co-workers. Associated to a request, the initiator may in-
clude some input data objects, and the executor is expected to reply with output
data objects that she produced to fulfill the request. The flow of conversational
acts (i.e. requests), supported by the ad-hoc workflow system, is driven by the
knowledge workers’ knowledge of their own organizational responsibilities and
their co-workers responsibilities: they know who is responsible to produce what.

Consider a Travel Process case where an employee wants to go on a business
travel to Beijing. First, he creates a process instance named Travel Process.
As he initiates such process instance, the employee is automatically assigned to
execute the first request of the process, a.k.a. root request. It is within this root



request, automatically named after the process name, that the employee will
create any necessary sub-requests.

The employee knows that the secretary is responsible to handle his trip, but
before he sends her a sub-request, he creates a set of data objects that he knows
the secretary will need. Therefore, the employee creates a data object labeled
Destination and fills its value with Beijing, two data objects labeled Departure

Date and Returning Date with the values 25/08/2013 and 30/08/2013, respec-
tively, and a data object labeled Motivation where he states that he wants to
attend the BPM2013 conference. For now, these four data objects are defined
as the creation context of the request identified by the request label Travel

Process3.

Having the necessary data objects, the employee is in condition to send a
sub-request to the secretary. To do so, he creates a new sub-request, chooses
the secretary’s queue as destination, names the request Travel Request, adds a
little description to communicate the motivation for that request as a commen-
tary, and selects all the data objects he created before: Destination, Departure
Date, Returning Date and Motivation. As the employee sends the sub-request,
that request is published in the secretary’s work queue.

As one secretary claims the request for execution, she is proclaiming herself
as the executor of that request, being able to see the data objects provided by the
request’s initiator. Having the information provided by the employee, the secre-
tary calls some travel agencies to request some hotel and flight prices. However,
before booking any hotel room or flight, the secretary needs an authorization
from the supervisor. Similarly to the employee, the secretary also knows that the
supervisor needs to know the trip details and the best tender value she got from
the agencies. As such, she creates a data object named Tender and fills it up
with the best price she got from the travel agencies. Afterwards, the secretary
creates a new sub-request, which she addresses to the supervisor’s queue, labels
the request Travel Authorization, writes a comment on what she needs from
the supervisor, and, as input, she selects the data objects labeled Motivation,
Departure Date, Returning Date, Destination and Tender.

In the same way, as the request is sent, it is published in the supervisor’s
queue. As one of the supervisors claims this request for execution, he can see the
data objects that the secretary attached as input of the request. Based in this
data, the supervisor executing the request decides to either authorize or not the
travel. To let the secretary know that she can proceed with the hotel and flight
booking, the supervisor creates a new data object labeled Authorization and
defines its value as Granted. Then, the supervisor is in condition of responding
to the request and let the secretary know of his decision. Notice that the secre-
tary will only see the data object if the supervisor explicitly selects it when he
responds to the request. After the supervisor responds to the request, he cannot
create any sub-request or data objects in that context4.

3 The root request is created automatically and named after the process name
4 Although this requirement appears to be limitative, its for correctness purposes



After the supervisor replies to the Travel Authorization request, the secre-
tary can see the responded data object Authorization along with its Granted

value. Based on that positive value, the secretary calls the travel agency and
books the hotel and flight, obtaining the respective reservation number and
flight ticket number. With this information, she creates two data objects labeled
Hotel Reservation and Flight Number and fills in the respective information.
After this, she is in condition to respond to the original request initiated by
the employee, providing both the Hotel Reservation and Flight Number data
objects.

As the secretary responds to the request, the employee can see the hotel and
flight information contained in the data objects included in the response. Since
he needs no more information, and has no pending or executing sub-requests,
the employee completes the process.

With the process completed, the employee is essentially saying that the pro-
cess attained its goal, which consists in getting the travel approved and both
the hotel and flight information. During the process execution, several data ob-
jects were produced and drove the process instance. Worklr considers all the
created data objects and stores their set of labels, along with their cardinality,
as a business process goal. This means that completing the process depicted in
the example above results in a process goal with the following eight data object
labels:

– 1 x Destination

– 1 x Motivation

– 1 x Departure Date

– 1 x Returning Date

– 1 x Tender

– 1 x Authorization

– 1 x Hotel Reservation

– 1 x Flight Number

Having this process goal is important to guide future business process in-
stances under the same label, i.e. process instances labeled Travel Process.
Worklr knows, that if in the past a particular process goal was attained, it is
likely that same goal will be attained again in a future execution of that kind
of process. Hence, along with other contextual information gathered during the
execution of a business process instance, Worklr uses such business process goal
information and inspects the current state of the process to recommend the cre-
ation of new data objects or sub-requests. Such recommendations are based on
a process goal and the current execution context, i.e. the user’s roles, the labels
of data objects available to the user, and the overall process’ data object labels.

Therefore, apart from providing operational support, Worlr is also capable
of storing previous executions in a structured way, which contain information to
guide future process instances with the same label. Nevertheless, as new business
situations occur (e.g. if the supervisor refuses the authorization), the Worklr
ah-hoc aspect supports that change, i.e. it does not enforce recommendations,



and stores the new attained process goal. That new process goal is taken into
consideration in the following executions of processes labeled Travel Process.

1.1 Features

The tool is in its first prototype stage, and its source code is not available yet
due to intellectual property restrictions inherent to the PhD status of one of the
authors.

The following list highlights a set of core functionalities of the Worklr appli-
cation, regarding operational support:

– Create new business process instances.
– Create data objects within the execution of a request.
– Edit data objects created within the execution of a request.
– Create sub-requests and publish them into user and role queues.
– Claim requests received in the Inbox for execution.
– Communicate with the initiator of the executing request.
– Communicate with the executor of the sub-request.
– Cancel pending and executing sub-requests.
– List all sub-requests initiated and see their respective status (pending, exe-

cuting, completed, canceled).
– Provide data objects as input of sub-requests.
– Respond to executing requests, specifying which data objects should be in-

cluded in the response.
– Complete business process instances.

Apart from operational support, Worklr saves executions in the form of re-
quest templates, which are entities that abstract the different completed requests
by storing some contextual information. A request template is therefore com-
posed by:

– an initiator role context, which is essentially the set of organizational roles
played by the initiators of that kind of request.

– an input data context, which is the set of data object labels, and respective
cardinality, of the data objects provided as input in that kind of request.

– a creation data context, which is also a set of data object labels, and respec-
tive cardinality, created in that kind of request.

– an output data context, which, analogously, is the set of data object labels,
and respective cardinality, responded in that kind of request.

Along with all the business process goals attained under a particular process
label, e.g. Travel Process, the Worklr tool provides a recommender system that
analyses the context of execution of the current user, and computes a set of rec-
ommendations of both the labels of the data objects that should be created, and
the labels of the sub-requests that can also be created. To each recommendation
is associated a score, as discussed in [2], from which the list of recommendations
is ordered accordingly.

Hence, the list of Worklr features is extended by this recommender system,
and the tool can also:



– Provide sub-request recommendations based on the current execution con-
text.

– Provide data creation recommendations based on the current execution con-
text.

As users perceive recommendations as useful, they are re-using the labels
and behavior from other organizational parties playing a similar set of roles.
Additionally, although the number of process, request and data object instances
increase as more cases are handled, if recommendations are followed, the number
of request templates and data object templates converges and recommendations
become more accurate.

1.2 Experiment

As shown in the screencast of the tool5, Worklr is in a functional state enough
to conduct an experiment. In [3], we discuss the results of an experiment that
we recently conducted, where we gathered some important feedback.

In the experiment, we had 13 participants and 1 confederate. The confed-
erate would initiate new process instances and the root request, while the 13
participants were distributed across 4 distinct organizational roles that should
cooperate to attain a particular business process goal. The business process used
in the experiment was similar to the one exemplified here, but with more business
rules.

A last comment on the experiment: we gathered some important results from
the tool as we perceive some convergence in the use of labels by different par-
ticipants. In the cold-start of the experiment, users would use different labels to
identify requests and data objects, but after 16 business process instances, we
identified some interesting convergence results.

Acknowledgement

This work was supported by national funds through FCT – Fundação para a
Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/2013.

References

1. Martinho, D., Silva, A.: Non-intrusive capture of business processes using social
software. In: BPM Workshops, pp. 207–218. Springer (2012)

2. Martinho, D., Silva, A.: A recommendation algorithm to capture end-users’ tacit
knowledge. Business Process Management 7481, 216–222 (2012)

3. Martinho, D., Silva, A.R.: An experiment on capturing business process from knowl-
edge workers, submitted to the BPMS2 Workshop at BPM2013

5 http://vimeo.com/user4862900/worklr-demo-bpm2013 - Password: BPM2013

http://vimeo.com/user4862900/worklr-demo-bpm2013

	Worklr: Supporting and Capturing Business Processes from Knowledge Workers

