
Oriented Local Binary Patterns for
Writer Identification

Anguelos Nicolaou
Institute of Computer Science and

Applied Mathematics University of Bern
Neubrückstrasse 10

3012 Bern, Switzerland
Email: anguelos.nicolaou@gmail.com

Marcus Liwicki and Rolf Ingolf
Document, Image and Voice Analysis (DIVA) Group

University of Fribourg
Bde des Perolles 90
Fribourg Switzerland

Email: firstname.lastname@unifr.ch

Abstract—In this paper we present an oriented texture feature
set and apply it to the problem of offline writer identification.
Our feature set is based on local binary patterns (LBP) which
were broadly used for face recognition in the past. These features
are inherently texture features. Thus, we approach the writer
identification problem as an oriented texture recognition task
and obtain remarkable results comparable to the state of the art.
Our experiments were conducted on the ICDAR 2011 and ICHFR
2012 writer identification contest datasets. On these datasets we
investigate the strengths of our approach as well its limitations.

I. INTRODUCTION

A. Local Binary Patterns

Local binary patterns (LBP) were broadly popularized in
2002 with the work of Ojala et al [1] as a texture feature set
extracted directly on grayscale images. As well demonstrated
by Ojala, the histogram of some specific binary patterns is a
very important feature-set. LBP are inherently texture features,
but they have been used in a very broad range of applications
in Computer Vision (CV), many of which exceed the typical
texture recognition tasks. In 2004, Ahonen et al [2] used
successfully LBP for face recognition. In 2007, Zhao et al [3]
extended the operator as a 2D plus time voxel version of LBP,
called VLBP, and used them successfully for facial gesture
recognition. In 2009, Whang et al [4] combined LBP features
with HOG features to address the problem of partial occlusions
in the problem of human detection.

B. Writer Identification

While graphology, i.e. the detection of personality traits
based on handwriting, has been associated with bad science [5]
and has failed to provide experimentally sound significant
results [6], handwriting style can be considered an invariant
attribute of the individual. Writer identification has tradition-
ally been performed by Forensic Document Examiners using
visual examination. In recent decades there is an attempt
to automate the process and codify this knowledge in to
automated methods. In 2005, Bensefia et al [7] successfully
used features derived from statistical analysis of graphemes,
bigrams, and trigrams. In 2008, He et al [8] used Gabor
filter derived features and in 2010 Du et al [9] introduced
LBP on the wavelet domain. Even-though the method of Du
uses LBP for feature extraction in writer identification, the
similarities end there. Our method makes no assumptions

specific to handwriting and treats the problem as a generic
oriented binary texture classification problem. The extent to
which handwriting contains invariant characteristics of the
writer is an open question. While forensic document examiners
have been tested in detecting disguised handwriting by Bird
et al [10], Malik et al [11] have started to address the
issue of different writing styles for automated offline writer
identification systems. It remains an open question whether
handwriting style can provide us with real biometric markers,
invariant to the sample acquisition conditions. By preserving
the generic attributes of our method, we can safely avoid
addressing many complications that are specific to handwriting
analysis and writer detection.

II. LBP FEATURE SET

Although writer identification seems to require scale invari-
ant features, scale sensitive features might be suited as well.
Writers tend to write with a specific size, therefore the scale of
the texture tends to be directly dependent on the sampling rate.
The task of writer identification is almost always done with
respect to a dataset, where the sampling rate is defined or at
least known when performing feature extraction. It is feasible
and probably worth the effort of resampling all text images to
a standard sampling resolution, rather than improvising a scale
invariant feature-set. Our feature-set as is the norm, is derived
from the histogram of occurring binary patterns.

A. The LBP operator

LBP were defined in [1] as a local structural operator,
operating on the periphery of a circular neighborhood. LBP
are encoded as integers, which in binary notation would map
each sample on the periphery to a binary digit. As can be
seen in Fig. 1 and (2), LBP are defined by the radius of the
circular neighborhood and the number of pixels sampled on
the periphery. The sampling neighborhood Nr,b is formally
defined in (1).

∀n, φ : n ∈ [0..b− 1] ∧ φ = (n ∗ 2 ∗ π)/b
∀f(x1, x2) : R2 =⇒ {0, 1}

Nr,b(I(x, y), n) = I(x+ sin(φ) ∗ r, y + cos(φ) ∗ r) (1)



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: Indicative LBP operators: LBP1,4 (a), LBP1,8 (b),
LBP1.5,8 (c), LBP2,8(d),LBP2,12 (e), LBP2,16 (f),
LBP3,8 (g), LBP3,16 (e). Dark green represents pixels
with 100% contribution, green represents pixels with 50%,
light green pixels with 25%, and black is the reference pixel.

LBPr,b,f (x, y) = f(Nr,b(I(x, y), n) ∗ 2n, I(x, y))+
f(Nr,b(I(x, y), n− 1) ∗ 2n−1), I(x, y)) + ...

...+ f(Nr,b(I(x, y), 0) ∗ 20, I(x, y))
(2)

When defined on grayscale images, LBP are obtained by
thresholding each pixel on the periphery by the central pixel.
Because we worked on binary images as input, a lot more
operations than greater or equal (thresholding) were possible
as a binary operation. We generalized our definition of the LBP
in (2), to consider the boolean operator marked as f a third
defining characteristic of the LBP operator LBPr,b,f along
with the radius r and the number of samples b.

We took into account several factors for selecting the
appropriate LBP binary operator. In what concerns the bit
count, a bit-count of 8 presents us with many benefits. Im-
plementation wise, the LBP transform is an image that uses
one byte per pixel. Its histogram has 256 bins providing
a high feature-vector dimentionality and good discriminative
properties. Additionally, containing the distinct LBP count to
256, guaranties highly representative sampling in relatively
small surfaces of text.

B. The LBP function

While LBP are traditionally derived from grayscale images,
when dealing with text, its better to use binarized text images
as input, thus avoiding all information coming from the text
background. We considered many different binary operations
and chose the binary operator ”equals” (3) as f() in (2 ).

f(xceter, xperiphery) =

{
1 : xceter = xperiphery
0 : xceter 6= xperiphery

(3)

”Equals” as a boolean function on an image means true for any
background pixel in the peripheral neighborhood of a back-
ground pixel, true for any foreground pixel in the peripheral
neighborhood of a foreground pixel, and false for everything
else. When using the ”equals” function as the binary function
in a 8 bit-count LBP, all pixels with only foreground and

(a)

(b)

Fig. 2: LBP edge patterns. In (a) the top-edge contributing
patterns and in (b) the top-left edge contributing patterns can
be seen. Contribution: black 100%, dark gray 50%, gray 25%,
and light gray 12.5%

only background have an LBP value of 255. By suppressing
(ignoring) the 255 bin, we make the LBP histogram surface
invariant. All occurrences left in the histogram represent the
pixels in the border between foreground and background. The
core of the feature set comprises of the 255 histogram bins
normalized to a sum of 1. This normalization renders the
features derived from the histogram invariant to the number
of signal pixels in the image.

C. Redundant Features

Having the normalized 255 bins from the histogram as
the core of the feature set, we calculate some redundant
features that will amplify some aspects of the LBP we consider
significant in the writer identification task. Our goal is to have
a feature-set discriminative enough to work well with naive
classifiers such as nearest neighbor or, even more, classify
writers by clustering the samples without any training.

The first redundant feature group we use, is edge participa-
tion. We consider each pattern to have a specific probability of
belonging to an edge of a specific orientation; from now on we
call that contribution. The sum of the number of occurrences
of each pattern, multiplied by its contribution factor makes up
the oriented edge occurrences. In Fig. 2a all top-edge patterns
can be seen along with their probability, in 2b we can see the
patterns of the top-left-edge patterns and their probabilities
which are derived from the top-edge patterns by rotating them
counter-clock-wise. By rotating the contributing patterns of
the top-edge, we can obtain the contributing patterns of all
eight edge-orientations. We also add the more general edge-
orientations: horizontal, vertical, ascending, and descending as
separate features which are calculated as the sum of the respec-
tive pair of edge-orientations. In the end we calculate the two
final aggregations of perpendicular and diagonal, which are the
sum of horizontal and vertical and respectively ascending and
descending. In total we obtain 14 edge-features, which we then
normalize to a sum of 1. One of our aims when introducing
these redundant features is to enhance characteristics that have
been associated with writer identification such as text slant.

The second redundant feature-group we implemented are
the rotation invariant hashes. We grouped all patterns, so
that each pattern in a group can be transformed in to any
other pattern in that group by rotating. When having an 8
sample LBP, the distinct rotation invariant patterns are 36
in total [1]. Some pattern groups contain only one pattern
eg. pattern 0, while other groups contain up to 8 patterns,
such as all one bit true patterns 1,2,4,8,16,32,64,128. We



took the number of occurrences for each group in the input
image and normalized them to a sum of 1, thus providing
36 rotation invariant features. A complementary feature-group
to the rotation invariant patterns is what we named rotation
phase. For each group of rotation invariant features, we took
the minimum, with respect to the numeric value, pattern in
the group and designated it as group-hash. The number of
clockwise rotations each pattern needs to become its groups-
hash, is what we call the rotation phase. By definition, the
distinct phases in an LBP image, are as many as the number
of samples of the LBP. The frequency of all phases normalized
to the sum of 1, provides us with 8 more redundant features
that are complementary to the rotation invariant hashes.

A third group of redundant features we introduced to our
feature-set is what we called beta-function as defined in (4)
along with the bit-count of every pattern.

∀n ∈ [1..bitcount]

∀lbp ∈ [0..2bitcount−1]

d(lbp, n) =

{
1 : bit n is set in lbp∧

bit n− 1 is not set in lbp
0 : otherwise

β(lbp) =
∑
n

d(lbp, n)

(4)

When the sample count is 8, the β function, has up to 5 distinct
values. The histogram of the β function (5 bins) normalized to
a sum of 1 and the histogram of the bit-count of every pattern
normalized to 1 as well, are the last redundant feature-group
we defined. The β function becomes an important feature when
the LBP radius is greater than pen stroke thickness. In those
situations, e.g. a β count of one, would indicate the ending
of a line, and a β count of three or four would indicate lines
crossing.

If we put it all together, we have 255 bins of the histogram,
plus 36 rotation invariant features, plus 8 rotation phase
features, plus 14 edge-features, plus 5 β function features, plus
9 sample-count features, makes a total of 327 features; these
are the proposed feature-set. The redundant features make the
features well suited for naive classifiers. By setting the 255
histogram bin to 0, the feature set ignores all non signal areas
in the image. The normalization of all bins to a sum of 1, as
well as the nullification of the last bin, renders our feature set
invariant with respect to non signal areas (white).

D. The Classifier

Once we transform a given set of images into feature
vectors, we can either use them as a nearest neighbor classifier
or perform clustering on them. While clustering seems to be
a more generic approach, it is constrained by the need to
process all samples at the same time. Such a constraint makes
the clustering approach very well suited for research purposes
but hard to match any real world scenarios. The construction
of the classifier consists of four steps. In the first step, we
extract the image features. In the second step, we rebase the
features along the principal components of a given dataset by
performing principal components analysis. This step might, in
a very broad sense of the term, be considered training because
our method acquires information from a given dataset. In the
third step we scale the rebased features by a scaling vector

which was defined by evolutionary optimization on the train-
set. The optimization process is also performed on a given
dataset and should also be considered as a training stage. While
it is not required, it makes more sense that both training steps
are performed on the same dataset. The fourth and last step
is to calculate the L1 norm on the scaled and rebased feature
vectors. Steps two and three can be combined in to a linear
operation on the feature space and in many aspects should be
viewed as a statistically derived heuristic matrix. Our classifier,
as was implemented, has two inputs, a subject dataset and a
reference dataset. The output consists of a table where each
row refers to a sample in the subject dataset and contains all
samples in the reference dataset ranked by similarity to the
specific sample. When benchmarking classification rates of our
method, we can simply run our classifier with an annotated
dataset as both object dataset and reference dataset. In this
case, the first column contains the object sample and the
second column contains the most similar sample in the dataset
other than its self. The rate at which the classes in the first
column agree to the classes in second column, is the nearest
neighbor classification rate.

E. Scale Vector Optimisation

Describing in detail the optimization process of the scaling
vector would go beyond the scope of this paper. In brief
we optimized using an evolutionary algorithm. We used as
input the 125 most prominent components of the features
and the id of the writer of each sample. We optimized using
the ICHFR 2012 writer identification competition dataset [13]
which contains 100 writers contributing 4 writing samples
each. Individuals of the algorithm were modeled as vector
of continuous scaling factors for each feature in the feature
space. The fitness function was based on the classification rate
a nearest neighbor classifier obtains when the feature space
is scaled by each individual. The stoping criteria was set to
2000 generations, and each generation had 20 individuals.
Suitable parents were determined by the rank they obtained
in the generation.

III. EXPERIMENTAL PROCEDURE

In order to have a proper understanding of our methods
performance, its robustness, and its limitations, we conducted
a series of experiments. We used two datasets for our experi-
ments: the dataset from the ICDAR 2011 writer identification
contest [12], hereafter 2011 dataset and the dataset from the
ICHFR 2012 writer identification challenge [13], hereafter
2012 dataset. The 2011 dataset has 26 writers contributing
samples in Greek, English, German, and French with 8 samples
per writer. The 2012 dataset has 100 writers, contributing
samples in Greek and English with 4 samples per writer.
While the 2011 dataset was given as the train set for the 2012
contest, we used them in the opposite manner. In order to
avoid overfitting during the optimization step, we deemed the
”harder” dataset, containing more classes and less samples per
class, was better suited for training.

A. Performance

As previously described, our method consist of four stages:
feature extraction, principal components analysis, scaling vec-
tor optimization, and L1 distance estimation. Steps two and



TABLE I: Performance Results. Various modalities of our method’s results on the 2011 dataset [12] and state of the art methods
performance for reference

Nearest Hard Hard Hard Hard Soft Soft
NAME Neighbor Top-2 Top-3 Top-5 Top-7 Top-5 Top-10

Tsinghua 99.5% 97,1% NA 84.1% 44.1% 100% 100%

MCS-NUST 99.0% 93.3% NA 78.9% 38.9% 99.5% 99.5%

Tebessa 98.6% 97.1% NA 81.3% 50.0% 100% 100%

No PC, No train 96.63% 87.02% 79.33% 63.94% 28.84% 98.56% 99.04%

PC, No train 98.56% 91.35% 84.62% 68.27% 34.62% 98.56% 98.56%

PC, Train 98.56% 95.19% 91.83% 84.13% 50.48% 99.04% 99.04%

three require a training dataset, while steps one and four are
totally independent of any data. In TABLE I analytical scores
of our method in various modalities can be seen. Apart from
the nearest neighbor accuracy we also add the hard TOP-N
and soft TOP-N criteria [12], [13]. The soft TOP-N criterium
is calculated by estimating the percentage of samples in the
test set that have at least one sample of the same class in their
N nearest neighbors. The hard TOP-N criterium is calculated
by estimating the percentage of samples in the test set that have
only samples of the same class in their N nearest neighbors.
More in detail, in TABLE I we can see various versions of
our method and their performance as well as some state of
the art methods for reference. Methods Tsinghua, MCS-NUST
and Tebessa [14] are the top performing methods from the
ICDAR 2011 writer identification contest. We must point out
that our method had a vastly superior train set, consisting of
400 samples, and we had access to the test set while working.
Our method has two parts that were optimized on our train
set, the 2012 dataset. The first is the principal components of
the train set and the second is the scaling of the feature space.
No PC, No train is the raw feature space without any training,
just the features in an L1 nearest neighbor setup. PC, No train
is the feature space rebased along the principal components of
the the train set in a L1 nearest neighbor setup. PC, Train is
the feature space rebased along the principal components of
the the train-set and scaled along the optimized vector in a
L1 nearest neighbor setup. As we can see our method almost
reaches the overall performance of the state of the art when
it incorporates the full trained heuristics but it also provides
very good results in its untrained form.

B. Qualitative Experiments

Apart from providing a comprehensive accuracy score that
is comparable to other methods, in order to describe the
strength and limitations of our method, we performed a series
of experiments that simulate frequently appearing distortions
to the data.

1) Rotation: Text orientation, is a text image characteristic
that is definitely affected by the writer. Under controlled
homogeneous experimental conditions of data acquisition, text
orientation should depend only on the writer. Quite often in
real life scenarios we have no way of knowing whether an
image has been rotated or not and to which extent. One of the
important characteristics of a writer identification system is the
robustness against moderate rotation. We address this issue by
an experiment where we try to recognize samples of a dataset
with rotated versions of the database. More specifically we

took the 2012 dataset and we rotated its samples by 1◦ from
−20◦ to 20◦. We obtained our measurements by classifying the
original 2012 dataset with the the rotated versions. In Fig. 3
the rotation sensitivity of our method can be demonstrated.
Two different measurements can be seen. The first one, noted
as Sample Self Recognition, is the the nearest neighbor in-
cluding the test sample. Sample Self Recognition rate will
be by definition 100% when no rotation occurs. The second
measurement, marked as Nearest Neighbor is the accuracy
of nearest neighbor excluding the first occurrence. Nearest
Neighbor is by definition the accuracy when no rotation occurs.
As can be seen in Fig. 3 our method demonstrates some
rotation tolerance from −5◦ to +5◦ with sustainable accuracy
rates, but performance drops significantly beyond this limit1.
It is also worth noticing the fact that −1◦ and +1◦ rotations
perform slightly worst than −2◦ to +2◦; a possible explanation
for this could be aliasing phenomena.

2) Downsampling: As we stated previously, in most real
world scenarios, the sampling resolution will be known to
a writer identification system, but not always controlled as
sometimes the data are acquired by external sources or at
different times. We devised an experiment that demonstrate
the behavior and limitations of our method in what concerns
the resolution. We took the ICDAR 2011 Writer Identification
dataset and rescaled it to various scales from 100% down to
10%. As can be seen in Fig. 4 we obtained three measurements.
The first, marked as Self Recognition Unscaled Sample, is
the nearest neighbor when classifying the initial dataset with
the subsampled dataset as a database. The second, marked
as Nearest Neighbor Unscaled Sample, is the second nearest
neighbor when classifying the initial dataset with the subsam-
pled dataset as a database. We presume that the first nearest
neighbor will always be the same sample in different scales
and therefore disregard it for this measurement. The third
measurement, named Nearest Neighbor Scaled Sample, is the
accuracy of the second nearest neighbor when classifying the
scaled dataset with the scaled dataset a database. The first two
measurements describe the sensitivity our method has in com-
paring samples of different sampling resolution and therefore
scale as well, while the third measurement demonstrates how
well our method would work on datasets of lower resolution.
We should also point out that the optimization process was
performed on the original resolution. As we expected and can
be seen in Fig. 4, we find that our method has no tolerance in
comparing samples from different sampling rates. We can also

1samples rotated by more than 5◦ could be manually corrected during
sample aquisition



Fig. 3: Rotation Sensitivity Fig. 4: Resolution/scale sensitivity Fig. 5: Grapheme quantity sensitivity

conclude that our method has tolerance to lower than standard
resolutions, but benefits mostly from higher resolutions. The
out of the norm measurement in Nearest Neighbor Scaled
Sample posed us with a puzzle. The most probable explanation
is that it is related to aliasing but is worth investigating more.

3) Removing Graphemes: A very important characteristic
of writer identification methods is how much text is required
to in order to reach the claimed accuracy. We conducted an
experiment to answer specifically this question. Our strategy
was to create group datasets that vary only on the amount
of signal (text) and then compare results on these datasets.
As the primary dataset we took the ICDAR 2011 writer
identification dataset, because it provides us with relatively
large text samples. In order to quantify the available signal,
we took the 2011 dataset and for each image in the dataset,
we produced 20 images with different amounts of connected
components from the original image. Due to the very high
locality of our feature set, the fact that we removed connected
components instead of text lines should be negligible and
at the same time it gave us quite higher control over the
signal quantity. As can be seen in Fig. 5 the results are quite
surprising. Instead of having a gradual drop in performance,
the performance is unaffected down to 30% of the graphemes,
bellow that point, performance drops linearly.

4) Writer vs Writing Style: We submitted an earlier version
of our method to the SigWiComp2013 competition. The goal
of the writer identification part of the competition, is to mea-
sure the performance of writer identification systems, when the
handwriting style has been altered. A sample dataset was made
available by the organizers of the competition. The dataset
contained 55 writers contributing 3 text samples each and
each sample written a different writing style. Having access
to the sample dataset, we performed a simple experiment to
determine whether our features encapsulate writer biometrical
information or simply the writing style. We separated the
dataset of 165 samples in to left and right halves. We then
performed a pair matching of the left halves to the right halves
based on the nearest neighbor classification. We obtained two
measurements, first the percentage of left-samples having an
assigned right-sample written by the same writer (55 classes),
and second the percentage of left-samples having the spe-
cific sample’s complementary right-half as the nearest neigh-
bor (165 classes). The writer identification rate was 87.27%,
while the specific sample recognition rate was 86.06%. By
definition the writer identification rate is greater or equal to

the sample recognition rate. We performed a one tail t-test
on the results on 165 sample-classifications and obtained a p-
value of 0.3734, which by all standards make the recognition-
rates indistinguishable. This experiment indicates that for our
method any two samples written in different writing styles
are as different regardless of whether they were written by
the same individual or not. From a forensic perspective, these
measurements imply that our method does not distinguish
between disguised writing style and natural writing style.

IV. DISCUSSION

In this paper we presented a powerful feature set that
summarizes any texture on a binary image as a vector of 327.
We use our feature extraction method to produce a database
from any given dataset with handwriting samples and use it as a
nearest neighbor classifier. In order to improve our classifier we
performed PCA on a specific dataset and linearly transformed
the feature space. We also scaled the features by a scaling
vector in order to increase the impact of the features that
contribute to correct classifications on our test set. Both these
improvements can be combined in to single matrix with which
we multiply all feature vectors. This single matrix should be
viewed as a heuristic matrix statistically derived from the 2012
dataset. It is also valid to think of this matrix as the result
of a supervised learning process. The idea is to calculate
this matrix once per type of texture we want to classify. In
the context of western script handwriting, we obtained the
matrix from the 2012 dataset and used it in benchmarking
our method on the 2011 dataset, our qualitative experiments,
and our submission to SigWiComp2013 [11]. When comparing
the experimental results to the state of the art, we can not
obtain a perfectly fair comparison. The state of the art methods
participated in a blind competition with a very small train-
set, although we could maybe assume that participants had
access to larger third-party datasets as well. Since datasets
of competitions are published after the competitions, the only
way to have a perfectly fair comparison to the state of the art
is to participate in those competitions. A comparison of the
untrained classifier (96.63%) to the state of the art (99.5%)
is quite unfair towards our method. On the other hand, a
comparison of our trained classifier (98.56%) to the state of
the art (99.5%) is a bit unfair towards the state of the art. In
the authors opinion, a fair comparison would be a lot closer to
the trained classifier than to the untrained. The performance of
the untrained classifier demonstrates clearly the potency of our
feature set. The qualitative experiments were not performed



with forensics in mind, except for the last one, writer vs
writing style. In writer vs writing style we tried to determine
the extent to which our feature set can deal with disguising
writers; the quick answer is, no our method can not deal with
disguising writers. There are many subtleties in the conclusions
that can be drawn from the writer vs writing style experiment
about what phenomena is that our features model. One could
even say that our method is more about texture similarity than
about writer similarity; assuming there are biometric features
in handwriting, the proposed feature set does not seem to
encapsulate them. From a software engineering perspective the
approach of treating writer identification as a distance metric
instead of a classifier [12] seems more efficient and modular, it
allows for simplification and standardization of benchmarking.
The fact that the proposed features encapsulate no structural
information what so ever, makes them a very good candidate
for fusion with other feature sets.

ACKNOWLEDGMENT

The first author of this paper would like to thank Georgios
Louloudis for his precious insights on the subject of writer
identification and performance evaluation. The first author
would also like to thank Muhammad Imran Malik for his
effort and assistance in the participation of this method on
the SigWiComp2013 competition.

REFERENCES

[1] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 24, no. 7, pp. 971–987, 2002.

[2] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local
binary patterns,” in Computer Vision-ECCV 2004. Springer, 2004, pp.
469–481.

[3] G. Zhao and M. Pietikainen, “Dynamic texture recognition using local
binary patterns with an application to facial expressions,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 29, no. 6,
pp. 915–928, 2007.

[4] X. Wang, T. X. Han, and S. Yan, “An hog-lbp human detector with
partial occlusion handling,” in Computer Vision, 2009 IEEE 12th
International Conference on. IEEE, 2009, pp. 32–39.

[5] G. A. Dean, I. W. Kelly, D. H. Saklofske, and A. Furnham, “Graphology
and human judgment.” 1992.

[6] A. Furnham, “Write and wrong: The validity of graphological analysis,”
The Hundreth Monkey and Other Paradigms of the Paranormal, pp.
200–205, 1991.

[7] A. Bensefia, T. Paquet, and L. Heutte, “Handwritten document analysis
for automatic writer recognition,” Electronic letters on computer vision
and image analysis, vol. 5, no. 2, pp. 72–86, 2005.

[8] Z. He, X. You, and Y. Y. Tang, “Writer identification of chinese
handwriting documents using hidden markov tree model,” Pattern
Recognition, vol. 41, no. 4, pp. 1295 – 1307, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320307004037

[9] L. Du, X. You, H. Xu, Z. Gao, and Y. Tang, “Wavelet domain local
binary pattern features for writer identification,” in Pattern Recognition
(ICPR), 2010 20th International Conference on. IEEE, 2010, pp. 3691–
3694.

[10] C. Bird, B. Found, and D. Rogers, “Forensic document examiners skill
in distinguishing between natural and disguised handwriting behaviors,”
Journal of forensic sciences, vol. 55, no. 5, pp. 1291–1295, 2010.

[11] M. I. Malik, M. Liwicki, L. Alewijnse, W. Ohyama, M. Blumenstein,
and B. Found, “Signature verification and writer identification competi-
tions for on- and offline skilled forgeries (sigwicomp2013),” in 12th Int.
Conf. on Document Analysis and Recognition, Washigton, DC, USA,
2013, p. n.A.

[12] G. Louloudis, N. Stamatopoulos, and B. Gatos, “Icdar 2011 writer
identification contest,” in Document Analysis and Recognition (ICDAR),
2011 International Conference on. IEEE, 2011, pp. 1475–1479.

[13] G. Louloudis, B. Gatos, and N. Stamatopoulos, “Icfhr 2012 com-
petition on writer identification challenge 1: Latin/greek documents,”
in Frontiers in Handwriting Recognition (ICFHR), 2012 International
Conference on. IEEE, 2012, pp. 829–834.

[14] D. Chawki and S.-M. Labiba, “A texture based approach for arabic
writer identification and verification,” in Machine and Web Intelligence
(ICMWI), 2010 International Conference on. IEEE, 2010, pp. 115–
120.


