
Building a High-Level Process Model for Soliciting

Requirements on Software Tools to Support Software

Development: Experience Report

Ilia Bider
1,2

, Athanasios Karapantelakis
3
, Nirjal Khadka

1

1 Department of Computer and System Science (DSV) of Stockholm University, Kista, Sweden
2 IbisSoft AB, Stockholm, Sweden

3 Ericsson Research, Kista, Sweden

ilia@{ibissoft|dsv.su}.se, athanasios.karapantelakis@ericsson.com, nirjal@gmail.com

Abstract. Use of software tools to support business processes is both a

possibility and necessity for both large and small enterprises of today. Given

the variety of tools on the market, the question of how to choose the right tools

for the process in question or analyze the suitability of the tools already

employed arises. The paper presents an experience report of using a high-level

business process model for analyzing software tools suitability at a large ICT

organization that recently transitioned to scrum-based project methodology of

software development. The paper gives overview of the modeling method used,

describes the organizational context, presents a model built, and discusses

preliminary findings based on the analysis of the model.

Keywords: Business process, requirements elicitation, software development,

Scrum, project management, tool support, business process modeling.

1 Introduction

This paper is an experience report from a project that had both practical and research

objectives. The project was conducted at a large ICT organization that recently went

through reengineering of their software development process. The reengineering

concerned transforming this process:

 from a traditional phase-based development approach with local software

development teams

 to working in an iterative manner using the Scrum project management

methodology and employing geographically distributed teams that have cultural

differences and may work in different time zones.

The following two practical objectives were identified for our project:

1. Gain better understanding of current software development practice and map this

understanding to a model

2. Use the model to analyze the suitability of project structure and software tools

currently supporting the development process and find potential improvements

both in the structure as well as the tools themselves.

For completing these tasks, we used a business process modeling technique from [1].

A model build with this technique is expressed in terms of a small number of steps

(phases) of the process and relationships of different kinds between these steps. Some

of these relationships are well known, e.g. input/output relationships [2]; others are

new, like weak dependencies and team intersections. [1] suggests using such a model

for choosing an appropriate cloud service to support the process in question. In this

paper, we apply the model from [1] for different purpose, see 2 above. In connection

to using modeling technique from [1], the following two research objectives were

identified for the project:

1. Test the technique suggested in [1]. In particular, we wanted to see whether a high-

level process model suggested can be built for a relatively complex process.

2. Test whether such a model can be used for a different purpose than originally

suggested.

The rest of the paper is structured in the following way. In Section 2, we describe the

project and its organizational context. In section 3, we give a brief overview of the

framework suggested in [1]. In Section 4, we present a high-level model of the

software development process built based on the framework. In Section 5, 6 and 7, we

analyze tools used for supporting the process and give our suggestions for

improvements. Section 7 summarizes the findings and draws plans for the future.

2 The project

In order to achieve our objectives as outlined in Section 1, we studied the software

development process in one of the Product Development Units (PDU) of a large ICT

organization. The product under development was a complex, commercial-grade

telephony switching software solution. The organization in question has recently

transitioned from a waterfall-like, phase-based software development approach to

more flexible iterative development process, using the Scrum framework for project

management. Given the novelty of this transition to a new development approach,

there was vested interest in potential findings of our study not only from us

researchers, but also from project managers from the development unit, who were

interested in using our results to enhance the performance of the development process

for future product development.

In order to gain understanding on how the development process worked, we started

with brainstorming sessions between the members of the research team, without

involving external stakeholders. Our research team had access to relevant

documentation on the development process such as project plans, process workflow

charts, and software development tools documentation.

The results of the aforementioned brainstorming sessions allowed us to form an

initial hypothesis around how the process worked. We formalized this hypothesis into

a mental model, focusing on identifying the actors participating in the development

process and the interactions between them. The intention was to use this hypothetical

model as support to our discussions with representatives from the development units.

Through those discussions, the model would be refined and finalized. Table 1 list and

describes the different actors in the development process.

Table 1. Description of actors and job roles in the product development

Actor Description Job Role

Project

Management

(PM)

Project management is responsible for coordinating

geographically distributed software development teams

by ensuring that each team’s deliverables are finished on

time. A sub-project manager is responsible for

communicating requirements from project management

to the leader of each team, and receiving feedback on the

team’s progress from the team leader. A Total Project

Manager holds regular meetings with sub-project

managers to stay informed on the progress of individual

teams.

Total Project

Manager, Sub-

project

managers

System

Management

(SM)

System management has a broad technical perspective of

the product under development and is responsible for

extending the business requirements drafted from

external stakeholders to technical requirements to be used

by software development teams.

System

Manager

Feature Team

X (FT-X)

Feature teams are geographically distributed software

development teams. Each team develops a specific part of

the product (one “feature”). A team leader is responsible

for facilitating communication between the feature team

and a representative from PM.

Scrum Master,

SCRUM team

member

Release

Management

(RM)

Release management is responsible for integrating all

features delivered from the feature teams into a complete

product and authorizes the software for commercial

release by doing quality assurance (“acceptance testing”).

Quality

Assurance

(QA) Manager,

QA-team

Using data from Table 1, we identified a number of individuals representing different

actors and interviewed them. The interview questions concerned the type and quality

of interactions of the actor being interviewed with other actors, in order to identify

potential issues hindering the efficiency of these interactions (for example a sub-

optimal performance of a tool leading to inefficient communication).

3 Overview of the high-level business process modeling

According to [1], a high-level business process model consists of the following

elements (syntactical units of the modeling language):

 Steps that represent work-packages to be completed in the process, each step

having a unique name.

 Relationships between the steps. Relationships are typed and there can be more

than one relationship between a pair of process steps, different relationships

belonging to different types. Depending on the type, relationships can be

symmetrical, or asymmetrical. In case of asymmetrical relationships there can exist

up to two relationships for a given pair of steps. An example of an asymmetrical

relationship between the steps is the input/output relationship. If a relationship

exists between steps A, B it means that there is formalized output from step A that

is used as input for step B, but not the opposite.

 We introduce two ways of depicting a model for a particular business process,

namely using a graphic notation or relationships matrices.

 In the graphical form, the model consists of a set of diagrams, one for each type of

relationships. In a diagram, steps are represented as rectangles (boxes) that have

step names as labels inside them. Relationships are represented as lines between

the step boxes.

 In the matrix form, the model consists of a set of square matrices, one for each type

of relationships, where both columns and rows correspond to the process steps.

Intersection between a row and a column in a matrix shows a relationship between

the two steps. The type of content in the cells depends on the relationships type.

In this paper, we mostly use the matrix form for depicting a model, as it is easier to

work with matrices in a formal way. Some relationships are basic, i.e. they are

determined when building a model. Other relationships are derived to be used for

determining requirements on tools to support the process. A derived relationships

matrix is obtained via transforming a matrix of one of the basic relationships, or via

merging two or more other matrixes.

We assume that the number of steps chosen for building a model is rather small

(under 10, preferably 5 or 6), so that the whole model is compact in both its matrix

and graphical form. Having a small number of steps means that each step represents a

rather large work package, which on its own can be split in smaller steps later.

A detailed description of the relationship matrices, which constitute the semantics

of our modeling language, is presented in the next session wherein we describe the

model built for our case.

4 The model described

4.1 Steps

We identify seven steps in the PDU software development process as illustrated in

Fig. 1 (together with input/output relationships, see section 4.2). The central and most

complex part of the diagram in Fig. 1 is the development of separate software

modules (part of the total software product, also known as “features”) and their

integration coordinated by project management. Due to the size and complexity of the

product, software development is split to parts and assigned to different teams across

the world. These parts are also known as product features, representing a subset of the

functionality of the complete product. Each team delivers their own feature; hence the

teams are given the name “feature teams”. Feature teams periodically deliver their

part of functionality to Release Management for integration with other features. Note

that in some cases, there exist inter-dependencies of features; in this case, a feature

developed by one team may depend on a feature developed by another team. In such

cases, one team has to wait for the other to deliver, which can cause delays to the

release schedule (see section 4.2).

Fig. 1. Software development steps and input/output relationships (partial view).

For reasons of simplifying the model (see Fig. 1), we present only two feature

development steps (features A and B, developed by feature team A and B

respectively). In a realistic scenario, there can be more than two such steps; however,

we consider the abstraction to two steps sufficient to capture feature teams

interdependencies, wherein feature B depends on feature A. The rest of this

subsection describes the steps in our model in greater details:

1. BR: Business (product) requirements – The business requirements are created as

a result of a process involving identification of a business opportunity, discussion

on its commercial viability, and ultimately drafting of a formal business

requirements document stored in a product management tool.

2. TR: Technical (design) requirements – business requirements are converted into

design requirements using the expertise of the System Management group (see

Table 1). The outcome is a list of technical requirements stored in a requirements

management tool. Typically, from one high-level business requirement, a number

of technical requirements are created.

3. AR: Assigning requirements to feature development teams – the technical

requirements are analyzed and their implementation is assigned to various teams.

The process of analysis and assignment is done in meetings with participants from

the feature teams, as well as project and system management. At the same time the

schedule of delivery to Release Management is designed, with the intention to

meet the deadlines set by the project timeline.

4. FD-A: Feature A development – this step represents the internal process of a team

developing feature A. In case of feature dependencies, team A has to deliver both

to the Release Management team for integration with other deliverables, but also to

team B – for integration with their own deliverable, which depends on feature A.

Feature team A in this case would receive bug reports – if any – on their

deliverable from both team B as well as the release management team.

5. FD-B: Feature B development - this step represents the internal process of a team

developing feature B. In this case, the team expects to receive some part of

functionality of feature A from feature team A before it can deliver to integration.

There is an open line of communication via a bug reporting system towards feature

team A in case bugs are discovered.

6. IC: Implementation Coordination – This step contains the activities of project

management, which is responsible for coordinating development among feature

teams and the release management team. Project management receives feedback on

the development progress from the feature teams and communicates task

prioritization based on the current project status and needs. Project management

therefore ensures that release management receives the software deliverables from

feature teams in time and maintains an open line of communication with release

management, which reports back on whether the integrated feature set meets their

quality requirements or there are any residual defects (e.g. bugs, missing

functionality) found in one or more of the deliverables.

7. RM: Release management (integration) - In this step, a set of engineers forming

the RM team integrates all deliverables from the feature teams. After integration,

the RM team tests the product feature set in a process known as acceptance testing.

If integration is successful and acceptance testing meets the quality criteria of the

RM team, then the integrated feature set can be released to the customer (in what is

known as Product Release – PR). In any other case, the product release schedule

towards the customer is delayed and the issues observed in acceptance testing are

submitted through an online bug tracking system to the feature teams (project

management is also notified).

4.2 Input/output relationships in detail

Input/output relationships show dependencies of one step on the results achieved in

another. In graphical form, the dependencies are represented as arrows between the

steps, where the text attached to an arrow explains the nature of the output from one

step serving as an input into another (see Fig. 1, 2).

Fig. 2. Detailed view of the input/output relationships between the last 4 steps of the software

development process under study. Relationships missing from Fig.1, are presented in bold.

They show a feature inter-dependency scenario, where feature B is dependent on feature A.

Table 2. Input/output relationships as a matrix

Output

Input

BR TR AR FD-A D-B IC RM

BR

TR *Product

req. spec.

AR *Design

req. spec.

FD-A *Feature A

req. spec.

,Schedule

 Priorities Bug reports,

Preliminary

integration.

FD-B *Feature B

req. spec.,

Schedule

Early

versions

of code

 Priorities Bug reports,

Preliminary

integration

IC *Split

schema,

Schedule

Status

info

Status

info

 Status info

RM *Split

schema,

Schedule

*Code

and

instruct.

*Code

and

instruct.

Schedule

changes

In matrix form, input/output relationships are shown in the following fashion: Cell

(a,b) in the matrix, where a refers to a column and b to a row, specifies what result

(i.e., output) from column step a (if any) is used as input to row step b. In addition to

the name of result, a cell can be marked with asterisk (*) indicating that the result is

required for step b to be started the first time. The input/output matrix as shown in

Table 2, represents formalized casual relationships between the steps that are

analogues to input/output connections in IDEF0 specification [2]. In addition to the

formalized relationships, there could be informal input/output relationships between

the steps, which are explained in Section 4.4.

4.3 Parallel execution and dependencies

The parallel execution matrix shows whether two steps are allowed to be executed in

parallel. If ongoing activity inside step a does not forbid carrying out activity in step b,

then both cells (a,b) and (b,a) are marked with x (the matrix is symmetrical). If none

of the steps can run in parallel, the parallel execution matrix will be empty. This

would be the case if the system development process in our example was carried out

in successive phases (e.g. waterfall model). In our case, Business requirements,

Technical requirments and Assigning requirements are executed in the sequential

fashion, while Feature A,B dvelopment, Implementation coordination and Release

management run in parellel. Due to the lack of space, we do not show this matrix.

[1] suggests combining the input-output matrix with parallel execution matrix to

get a new view on complexity of the process. Table 3 is produced by merging Tables

2 and a corresponding parallel execution matrix according to a simple rule: cell(a,b)

get crossed in the new table only if the cell is non-empty in both input-output matrix

and parallel execution matrix. As only the last four steps are completed in parallel,

we show in Table 4 only dependencies between the last four steps (all other cells

will be empty. We will refer to the merged matrix as to parallel dependencies matrix.

The cross in cell(a,b) in this matrix means that steps a and b can run in parallel at the

same time as b is dependent on results from a.

The parallel dependencies matrix shows the potentially weak points in the process

that require special consideration, otherwise the process will not run smoothly.

Table 3. Parallel dependencies between the last four steps of the model

 FD-A FD-B IC RM

FD-A x x

FD-B x x x

IC x x x

RM x x x

4.4 Weak dependencies

Weak dependencies show whether one step might require information from another

step that is not part of the relationships formalized in the input/output matrix. For

example, IC may want to inspect the source code of a troublesome module to

determine the severity of the problem when re-scheduling delivery. Cell (a,b) in this

matrix specifies what kind of information from step a might be needed to complete

step b. A part of the weak dependencies matrix for our systems development process

is given in Table 4. This part concerns the most troublesome spots in the development

process – the one that have parallel dependencies.

The concept of weak dependencies reflects the needs for informal communication

in the frame of a process instance. It is not always possible to include everything that

might be needed for the next step in the formal results, as different instances might

require completely different information from the previous steps. It is better to start

looking for this information on the demand basis, i.e., when there is a need for it.

Table 4. Weak dependencies

 FD-A FD-B IC RM

FD-A Explanations of

code behavior

 Explanation of test

results/bug reports

FD-B Details on the status

Explanations of test

results/bug reports

 Explanations of test

results/bug reports

IC Details on the status Details on the status Details on the status

RM Explanations of

code behavior

Explanations of

code behavior

4.5 Teams and their relationships

The teams matrix shows the presence of collaborative teams and their relationships.

The presence of teams is shown in the diagonal of the teams matrix :cell (a,a) is

marked with the light gray color if the team for step a consists of more than one

person. The non-diagonal elements show whether the teams participating in different

steps intersect. If the teams for steps a and b intersect but not coincide, we mark both

cells (a,b) and (b,a) with the light gray color. If the teams coincide, we mark these

cells with the dark gray color. We also use the lighter gray color if the intersection is

very “thin”. In our case, all steps have teams, and many teams intersect. The

composition of the teams in terms of Table 1 is as follows (due to the lack of space,

we do not present the matrix itself):

 BR team = External stakeholders (see Section 4.1) + SM

 TR team = SM + PM + representatives of FT-X, and RM

 AR team = SM + PM + representatives of FT-X, and RM

 FD-A team (FD-B has the same structure) = FT-X + Subproject-manager from PM

 IC team = PM

 RM team = RM

By merging the weak dependencies matrix with the teams matrix (Section 4.5), we get

a view on the needs for inter-step collaboration. The part of the merged matrix for the

last four steps is shown in Table 5. The cells with weak dependencies but without

grey background warrant special attention when considering tool support. They mean

there are needs for informal exchange, while teams do not intersect. Even the non-

empty cells with the background color very light may require special attention as

intersection may not be strong enough to serve as the only channel for informal

exchange. As can be seen from Table 5, in our process, there are a number of empty

cells with the white background, or only a slightly gray one. This requires special

attention when analyzing the tools used for process support.

Table 5. Weak dependencies merged with Teams matrix

 FD-A FD-B IC RM

FD-A Explanations of

code behavior

 Explanation of test

results/bug reports

FD-B Details on the status

Explanations of test

results/bug reports

 Explanations of test

results/bug reports

IC Details on the status Details on the status Details on the status

RM Explanations of

code behavior

Explanations of

code behavior

5 Requirements on tool support

Our previous research on business process support services lists a number of

capabilities to be expected from process support tools [1]. In this paper, we will

consider only three of them, namely: (1) Information Logistics Support (ILS), aimed

at providing process participants with all information they need to complete their

work without being overwhelmed by the details that are not relevant; (2) intra-step

collaboration support aimed at providing a team working on the same step with

means to store/retrieve intermediate results and communicate internally

synchronously and/or asynchronously; (3) inter-step collaboration support for

providing the teams, or individuals working on different steps with means to access

intermediate results obtained in each other’s steps and communicate between them

synchronously and/or asynchronously.

ILS is important to have when there are input/output dependencies between the

steps the teams of which do not coincide and can be provided in two ways: (a) by

sending the results to the next step team, e.g., via email; (b) by providing a shared

space where the results are stored and made available for the participants of the next

step. The second type of logistics is more appropriate when there are loops in

input/output flow and/or there are parallel dependencies. Loops can be detected via

analysis of the input/output matrix (see Section 4.2). Presence of loops is identified by

symmetrical non-empty elements in this matrix (or a derived matrix with transitive

input/output relationships [1]).

In our case, Table 2 shows several loops (they are also visible in Fig. 1 and 2).

Presence of loops indicates that the same input can be provided several times which is

best handled by a shared space with version control. Parallel dependencies identify

that input can be sent in portions, and the next portion can negate what has been sent

in the previous one. When such disrupted input is expected, prompt notification of the

new portion arrival is needed. This can be arranged via shared spaces supplemented

by notification mechanisms. Table 2 shows a number of parallel dependencies which

should be taken care of by process support tools.

Intra-step collaboration support is required when there is a team in at least one

step. The presence of step teams can be seen in the teams matrix (see Section 4.5). As

was mention in Section 4.5 there are teams for each step identified in our process,

which warrants the needs for intra-step collaboration support.

Inter-step collaboration support is required when there is informal information

exchange between the steps the teams of which do not intersect, or their intersection is

too “thin”. These situations can be identified by analysis of the derived matrix

acquired by merging the teams matrix with the weak dependencies matrix, see Section

4.5. Table 5 includes non-empty elements with white background (no intersection) or

very light background (“thin” intersection), showing importance of intra-step

collaboration support for our process.

6 Tools in use

General Purpose Tools (GPT) such as email, word/spreadsheet processors and instant

messaging are used when necessary while the specialized tools listed below have

specific functions:

 AB – Automated Build, continuous integration tool for building snapshots of code

 BR – Bug Tracker, an in-house developed bug reporting tool

 DE – Development Environment for authoring code.

 FT – Tool for function and unit test - automated test framework

 FS – Secure file server, for feature teams to deliver code to Release Management

for integration or to other feature teams in case of feature inter-dependencies.

 PPM – Product and Portfolio Management tool for project management.

 RC – Requirements Composer for defining and following up the requirements.

 ST – Automated System Testing tool for regression testing

 TM – Test Management Tool for documenting test cases

 ST – Scrum Tool for backlog management.

 RP – Version control system, for collaborative code development in feature teams.

The mapping of tools to teams that use them is summarized in Table 6. The diagonal

shows which tools are used in each step, other cells show the tools used for

transferring input/output (Table 2) or as channels for weak dependencies between the

steps. Thus, the non-diagonal part of Table 6 comprises two matrixes: one describes

tools used for ILS (input/output), while the other is related to intra-step collaboration

(weak dependencies).

Table 6. Tool usage

 BR TR AR FD-A FD-B IC RM

BR PPM

TR PPM,GPT RC,PPM

AR RC RC,PPM

FD-A RC DE,FT,FS,

RP,ST,TM

GPT GPT BR,FS

FD-B RC FS,BR,GPT DE,FT,FS,

RP,ST,TM

GPT BR,FS

IC RC GPT GPT RC,PPM BR,GPT

RM RC FS, GPT FS,GPT GPT AB,BR,ST,TM

7 Analysis of tools in use

Through analysis of tools, we found lack of support for weak dependencies between

IC on one hand, and features teams and RM on the other (see the IC-row in Table 5).

In order to learn about the status of the features development, project management

manually checks with each feature team their progress (i.e. through e-mail or phone

conversations), and records information on it in a spreadsheet. Because of the

subjective nature of the progress reports, the project manager we have interviewed has

to invest additional time to keep track of progress for some of the teams. To improve

support for weak dependencies, a tool that provides integrated picture of the teams

activities seems necessary. Such a tool could analyze activities around different

requirements assigned to a team, e.g. code compilations, bug reports, etc. and give

warnings on suspicious too much activity or luck of such.

8 Concluding remarks

In this paper, we applied the theoretical framework for selecting software tools for

business process support from [1] to a real case of software development process in a

multinational telecommunications provider. From our analysis, we found that the

software development process was missing a tool for communicating the progress of

software development from the features teams to Implementation Coordination which

could result in delayed release schedules. In this way, we got a partial prove of

applicability of the framework to complex processes and its usefulness.

References

1. Bider, I. and Perjons E. Preparing for the Era of Cloud Computing: Towards a Framework

for Selecting Business Process Support Services. LNBIP, No 113, 2012, Springer, pp. 16-30

2. Standard for Integration Definition for Function Modeling (IDEF0), National Institute of

Standards and Technology (NIST), FIPS publication, 183, December 1993.

