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Preface

The Uncertainty in Artificial Intelligence (UAI) Application Workshop was conceived in 2002, and first held
at UAI 2003 in Acapulco, Mexico; the first time a workshop was associated with the Conference. This year
marks the Workshop’s tenth anniversary, having been held in all years since but 2010. The goal of the
workshops has been and will continue to be to look at the practical issues that arise in fielding applications
based on the methods explored in the main conference.

Two half-day application Workshops where held on July 15, 2013 in Bellevue, Washington, USA, after
the main UAI 2013 conference, along with two other workshops on specific topics. This volume collects the
papers from both application workshops.

Application Workshop I: Big Data meet Complex Models

The theme of this workshop was large data sets containing many different kinds of data, and it especially
emphasized the procedures that are used to combine data from various sources as part of the modeling
process. There were 9 submissions. Each submission was reviewed by at least 1, and on the average 2.8
program committee members. The committee decided to accept 6 papers. Because one paper contained
references to proprietary information, one set of authors published only the abstract in this volume.

Application Workshop II: Spatial, Temporal, and Network Models

The theme of this workshop was spatial, temporal, and network data. One may be interested in considering
uncertainty in mobile data, generated by a GPS-enabled phone or a car. Another example is this: A scientist
develops a probabilistic model in the form of a Bayesian network or a Markov random field. A computer
scientist or computer engineer is then concerned about how to efficiently compile and execute the model in
order to compute posterior distributions or estimate parameters on a multi-core CPU, a GPU, a Hadoop
cluster, or a supercomputer. How well has this model worked, and what are current challenges and oppor-
tunities? There were 7 submissions. Each submission was reviewed by 3 program committee members. The
committee decided to accept 5 papers, and all of these are being published in this volume.

Thanks to the program committees who put up with all of our nagging, and to all of the authors who
came to us with a wide variety different applications, making the job of reading the papers much more
interesting. Special thanks to John Mark Agosta of Toyota-ITC who as the UAI Workshop Chair (and past
Applications Workshop Chair) helped us work out many details; and to Marina Meila of the University of
Washington, who handled the local arrangements for us. Thanks also to EasyChair.org for helping with the
submission and review process, to the volunteers who created the ceur-make facility for helping with the
proceedings, and the people at CEUR for hosting our final papers.

Finally, thanks to the Association for Uncertainty in Artificial Intelligence (http://auai.org/) for host-
ing this workshop.

July 15, 2013
Bellevue, Washington, USA

Russell G. Almond and Ole J. Mengshoel



Program Committee

Part I: Big Data meet Complex Models

Russell Almond Florida State University
Marek Druzdzel University of Pittsburg
Julia Flores Universidad de Castilla-La Mancha
Lionel Jouffe Bayesia SAS
Kathryn Laskey George Mason University
Suzanne Mahoney Innovative Decisions
Thomas O’Neil The American Board of Family Medicine
Linda van der Gaag Utrecht University
Additional Reviewers
Bermejo, Pablo
Mart́ınez, Ana Maŕıa
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Debugging the Evidence Chain
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Abstract

In Education (as in many other fields) it is
common to create complex systems to as-
sess the state of latent properties of indi-
viduals — the knowledge, skills, and abili-
ties of the students. Such systems usually
consist of several processes including (1) a
context determination process which identi-
fies (or creates) tasks—contexts in which evi-
dence can be gathered,—(2) an evidence cap-
ture process which records the work product
produced by the student interacting with the
task, (3) an evidence identification process
which captures observable outcome variables
believed to have evidentiary value, and (4)
an evidence accumulation system which in-
tegrates evidence across multiple tasks (con-
texts), which often can be implemented us-
ing a Bayesian network. In such systems,
flaws may be present in the conceptualiza-
tion, identification of requirements or imple-
mentation of any one of the processes. In
later stages of development, bugs are usu-
ally associated with a particular task. Tasks
which have exceptionally high or unexpect-
edly low information associated with their
observable variables may be problematic and
merit further investigation. This paper iden-
tifies individuals with unexpectedly high or
low scores and uses weight-of-evidence bal-
ance sheets to identify problematic tasks for
follow-up. We illustrate these techniques
with work on the game Newton’s Playground :
an educational game designed to assess a stu-
dent’s understanding of qualitative physics.

∗
Paper submitted to Big Data Meets Complex Models, Applica-

tion Workshop at Uncertainty in Artificial Intelligence Conference
2013, Seattle, WA.

Key words: Bayesian Networks, Model Construction,
Mutual Information, Weight of Information, Debug-
ging

1 Introduction

The primary goal of educational assessment is to draw
inferences about the unobservable pattern of student
knowledge, skills and abilities from a pattern of ob-
served behaviors in recognized contexts. The reason-
ing chain of an assessment system has several links:
(1) It must recognize that the student has entered a
context where evidence can be gathered (often, this is
done by providing the student with a problem that pro-
vides the assessment context). We call such a context a
task, as frequently it is the task of solving the problem
which provides the required evidence. (2) The rele-
vant parts of the student’s performance on that task,
the student’s work product, must be captured. (3) The
work product is then distilled into a series of observ-
able outcome variables. (4) These observable outcome
variables are used to update beliefs about the latent
proficiency variables which are the targets of interest.

Bayesian networks are well suited for the fourth link
in the evidentiary chain. Often the network can be
designed to have a favorable topology, where observ-
able variables from different contexts are conditionally
independent given the latent proficiency variables. In
such cases, the Bayesian network can be partitioned
into a student proficiency model—containing only the
latent proficiency variables—and a series of evidence
models (one for each task)—capturing the relation-
ships between the proficiency and evidence models for
a particular task (Almond & Mislevy, 1999).

When the assessment system does not perform as ex-
pected, there is still a model with hundreds of vari-
ables that must be debugged. Furthermore, the prob-
lem may not lie just in the Bayesian network, the last
link of the evidentiary chain, but anywhere along that
chain. By using various information metrics, the prob-
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lem can be traced to the parts of the evidentiary chain
associated with a particular tasks. In particular, if the
anomalous behavior can be associated with a partic-
ular individual attempting a particular task, this can
focus troubleshooting effort to places where it is likely
to provide the most value.

This paper explores the use of information metrics in
troubleshooting the assessment system embedded in
the game Newton’s Playground(NP ; Section 2). Sec-
tion 3 describes a generic four process architecture for
an assessment system. In NP tasks correspond to
game levels; Section 4 describes some information met-
rics used to identify problematic game levels. Section 5
describes some of the problem identified so far, and our
future development and model refinement plans.

2 Newton’s Playground

Shute, Ventura, Bauer, and Zapata-Rivera (2009) ex-
plores the idea that if an assessment system can be
embedded in an activity that students find pleasur-
able (e.g., a digital game), and that the activity re-
quires them exercise a skill that educators care about
(e.g., knowledge of Newton’s laws of motion), then by
observing performance in that activity, educators can
make unobtrusive assessment of the students ability
which can be used to guide future instruction. New-
tons Playground (Shute & Ventura, 2013) is a two-
dimensional physics game, inspired by the commercial
game Crayon Physics Deluxe. It is also designed to be
an assessment of three different aspects of proficiency:
qualitative physics (Ploetzner & VanLehn, 1997), per-
sistence, and creativity. This paper focuses on assess-
ment of qualitative physics proficiency.

2.1 Gameplay

NP is divided into a series of levels, where each level
consists of a qualitative physics problem to solve. In
each game level, the player is presented with a draw-
ing containing both fixed and movable objects. The
goal of the level is to move the ball to a balloon (the
target), by drawing additional objects on the screen.
Most objects (both drawn and preexisting) are sub-
ject to the laws of gravity (with the exception of some
fixed background objects) and Newton’s laws of mo-
tion. (The open source Box 2D (Catto, 2011) physics
engine provides the physics simulation.)

Figure 1 shows the initial configuration of a typical
level called Spider’s Web. Figure 2 shows one possible
solution in which the player has used a springboard
(attached to the ledge with two pins—small round cir-
cles) to provide energy to propel the ball up to the bal-
loon. Deleting the weight will cause the ball to strike

Figure 1: Starting Position for Spider Web Level

Figure 2: Spider Web Level with Springboard Solu-
tion.

ramp attached to the top of the wall which keeps the
ball from flying over the target.

The focus of the current version has been on four
agents of motion (simple machines): ramps, levers,
springboards and pendulums. The game engine de-
tects when one of those four agents was used as part
of the solution. The game awards a trophy when the
player solves a game level. Gold trophies are awarded
if the solution is efficient (uses few drawn objects) and
silver trophies are given as long as the goal is reached.

2.2 Proficiency and Evidence Models

The yellow nodes in Figure 3 show the student pro-
ficiency model for assessing a player’s qualitative
physics understanding. The highest level node, New-
ton’s Three Laws, is the target of inference. It is di-
vided into two components: one related to the applica-
tion of those laws in linear motion, and one in angular
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Figure 3: Physics Proficiency Model and Generic Ob-
servables

motion. The next layer has four nodes representing
the four agents of motion. All of the nodes in the
proficiency model had three levels: High, Medium and
Low, and expected a posterior (EAP) scores could be
calculated by assigning those levels a numerical value
(3, 2, and 1, respectively) and taking the expectation.

The final layer of the model, shown in green represents
the observable outcome variables from a generic level.
These take on three possible values: Gold, Silver or
None. The first two states are observed when the stu-
dent solved using a particular agent. In that case,
the observable for the correspond agent is set to the
color of trophy received and the other observables are
left unobserved. If the student attempts, but does not
solve, the level the the observables corresponding to
agents of motion the level designers thought would lead
to solutions are set to None. The difficulty of a solution
of each type, and the depth of physics understanding
required, varies from level to level. So the green layer
must be repeated for each game level. Version 1.0 (de-
scribed in this paper) used 74 levels, so the complete
Bayesian network had 303 nodes.

2.3 Field Test

In Fall 2012, a field trial was conducted using 169 8th
grade students from a local middle school. The stu-
dents were allowed to play the game for 4 45-minute
class periods. The game engine kept complete logs of
their game play. Students watched video demonstra-
tions of how to create the four agents of motion in
the game, and then were allowed to work through the
game at their own pace. Game levels were grouped
into playgrounds, with earlier playgrounds containing
easier levels than the later playgrounds. Students were
told that the player who got the most gold trophies
would receive an extra reward.

One behavior which was often observed was the draw-
ing of a large number of objects on the screen (often
just under the ball to lift it higher), without a system-

atic plan for how to solve the level. Such “stacking”
solutions had been observed in early playtests, and an
object limit had been put in place to prevent it, but
these “gaming” solutions were still observed during the
field trial. Such solutions could lead to a silver trophy,
but not to a gold trophy.

In addition to playing the game, a nine-item qualita-
tive physics pretest and a matched nine-item posttest
where given to the players. The pretest and posttest
were not very stable measures of qualitative physics.
On six different pendulum items (three from the
pretest, three from the posttest) the students per-
formed only slightly better than the guessing proba-
bilities. The reliabilities (Cronbach’s α Kolen & Bren-
nan, 2004/1995) of the resulting six item tests were
0.5, and 0.4 for Forms A and B respectively.1 This is
a problem as physics understanding as shown on the
posttest was the criterion measure, and these numbers
form an effective upper bound on the correlation ex-
pected between the Bayesian network scores and the
posttest.

We trained the Bayesian network using data from the
field trial, and scored the field trial students. The
correlation between the EAP scores from the highest
level node and the physics pretest and posttest was
around 0.1, which is not significantly different from
zero at this sample size. Clearly there were problems
in the assessment system that needed to be identified
and addressed.

3 Four Process in the Evidence Chain

Because the correlation of the within game measure
of Physics is so low, there must be a bug somewhere
within the assessment system. A high level architec-
ture of the assessment system will help define possi-
ble places. Figure 4, adapted from (Almond, Stein-
berg, & Mislevy, 2002), provides a generic architec-
ture onto which assessment systems can be matched.
It describes an assessment system that consists of four
processes: context determination, evidence capture,2

evidence identification, and evidence accumulation. In
a general system, these can be human or machine pro-
cesses, and several processes may be combined into a
single piece of software, but all of the steps are present.
Throughout, we will assume that the goal is to make
inferences about the state of certain latent variables,
which we will call the targets of inference.

1Half the students received Form A as a pretest and half
as a posttest. This counterbalancing allowed the scores on
the two forms to be equated.

2This process is called presentation in Almond et al.
(2002). It is renamed here because it is the role of capturing
the work product of the task is more important than the
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Context Determination

Evidence Identification

Evidence Accumulation

Evidence Capture

Figure 4: Four Process model of an Evidence Chain

Context determination is a process that identifies con-
texts in which evidence about the targets of interfer-
ence can be gathered. In an educational assessment,
these are often called tasks, as they represent problems
a student must solve, or things a student must do. In a
traditional assessment (like a college entrance exam),
the test designers author tasks which are presented to
the students forming the context for evaluating profi-
ciency. When a student is engaged in free exploration
with a simulator or game, the challenge in context de-
termination is recognizing when current state of the
simulator corresponds to a “task” that can be used to
gather evidence (Mislevy, Behrens, DiCerbo, Frezzo,
& West, 2012).

Other domains of application could use a mixture of
engineered and natural contexts. For example, when
trouble shooting a vehicle, the operators’ reports of
problems form natural contexts, while tests inside the
garage are engineered contexts. Engineered contexts
often provide stronger evidence than natural ones, be-
cause factors that might provide alternative explana-
tions, and hence weaken the evidence for the targets
of inference, can be controlled.

In NP, the contexts (tasks) are the game levels and
they fall somewhere in between the natural and engi-
neered range. Each of the game levels was designed
by a member of the team, and each game level was
designed to be solvable with a particular agent of mo-
tion (sometimes more than one). However, we had
no control over which agent(s) the player would at-
tempt to apply to the problem, and hence that part of

role of presenting the task.

the context was natural. Note that contexts are often
described by variables (task model variables Almond,
Kim, Velasquez, & Shute, 2012) that provide details
about the context. In NP, the agents that the task de-
signer thought provided reasonable solution paths (the
applicable agents) and the task designer’s estimate
of difficulty were two such variables.

Evidence capture is a process that captures the raw
data which will form the basis of the evidence. In ed-
ucational assessment, we call that captured data the
work product and note that this could come in a large
variety of formats (e.g., video, audio, text, a log file of
event traces). In NP, the evidence capture process was
the game itself, and the work product consisted of a
log file containing information about the player’s inter-
action with the system (sufficient to replay the level),
as well as additional information about the attempt
(e.g., how long the player spent, how many objects
were created and deleted, whether the player received
a gold or silver trophy, etc.).

The evidence identification process takes the work
product gathered by the evidence capture process and
extracts certain key features: the observable outcome
variables. One key difference of this process from the
evidence accumulation process is that it always oper-
ates within a single context. The goal here is to reduce
the complexity of the work product to a small, man-
ageable number of variables. For example, a human
rater (or natural language processing software) might
rate an essay on several different traits. Those traits
would be the observable outcome variables.

One design detail which is always tricky is figuring
out how much processing of the work product to put
into the evidence capture and how much is left for the
evidence identification process. In NP, the evidence
identification process was a collection of Perl scripts
that extracted the observables from the log files. In
some cases, it proved more convenient to implement
the evidence identification rules in the game engine.
In particular, it was important to identify if an object
drawn by the player was a ramp, lever, pendulum or
springboard. That was easier to do inside the game
(i.e., evidence capture process) where the physics en-
gine could be queried about the interactions of the ob-
jects. In other cases, it proved more convenient to filter
the observables in the evidence accumulation process.
For example, we did not want to penalize the player
for failing to solve a level with a particular agent if the
level was not designed to be solved with that agent. In
this case, it turned out to be simpler to implement this
on the Bayes net side (i.e., the evidence accumulation
process), and the observable node corresponding to an
agent would not be instantiated to None if the agent
was not applicable for that level.
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The Evidence accumulation process is responsible for
combining evidence about the targets of inference
across multiple contexts. In NP, the evidence accu-
mulation process consisted of a collection of Bayesian
networks: a student proficiency model for each stu-
dent, and a collection of evidence models for each game
level. When it received a vector of observables for a
particular student on a particular game level, it drew
the appropriate evidence model from the library and
attached it to that student’s proficiency model. It then
instantiated nodes in the evidence model correspond-
ing to the observable values, and propagated the evi-
dence into the proficiency model. The evidence model
was then detached from the proficiency model which
remained as a record of student proficiency. It could
be queried at any time to provide a score for a student
(Almond, Shute, Underwood, & Zapata-Rivera, 2009).

The dashed line in Figure 4 from the evidence accumu-
lation process to the context determination process3

is to indicate that in some situations the context de-
termination might query the current beliefs about the
targets of inference before selecting the next task (con-
text). This produces a system that is adaptive (Shute,
Hansen, & Almond, 2008). In NP, the player was free
to choose the order for attempting the levels, hence
this link was not used.

The four processes can be put together into a system
that provides real-time inference or as a series of iso-
lated steps. In version 1.0 of NP, only the evidence
capture system (the game itself) was presented to the
players in real-time. As the design of the other parts
of the system was still undergoing refinement, it was
simpler to implement them as separate post-processing
steps. In a future version, these process will be inte-
grated with the game so that players can get scores
from the Bayes net as they are playing.

Developing each process requires three activities: con-
ceptualization—identifying the key variables and work
products and their relationships,—requirement speci-
fications—writing down the rules by which values of
the variables are determined,—and implementation—
realizing those rules in code. A bug that causes the
system to behave poorly can be related to a flaw in
any one of those three activities, and can affect one or
more of the four processes.

By the time the system was field tested, obvious bugs
had been found and fixed. The remaining bugs only
occur in particular particular game levels, and partic-
ular patterns of interaction with those levels. Once
the levels in which bugs manifest and the patterns of
usage which cause the bugs to manifest are identified,

3Almond et al. (2002) called this the activity selection
process, to emphasize its adaptive nature.

the problems can be addressed. This may entail adjust
parameters for the Bayesian network fragment associ-
ated with that network, changing the level, replacing
the level or making changes to the game engine, evi-
dence identification scripts, or instructions to players.

4 Information Metrics as Debugging
Tools

It is always the case that students interacting with an
assessment system do so in ways that were unantici-
pated by the assessment designers. Information met-
rics provide a mechanism for flagging levels which be-
have in unexpected ways. In particular, we expect that
a properly working game level will provide high infor-
mation for the applicable agents (the ones that the
designers targeted) and low information for the inap-
plicable agents. Extremely high information could also
be an indication of overfitting the model to data.

Section 4.1 looks at the parameters of the conditional
probability table as information metrics. Section 4.2
looks at the mutual information between the observ-
able variable and its immediate parent in the model.
Section 4.3 looks at tracing the score of specific in-
dividuals as they work through the game to identify
problematic player/level combinations.

4.1 Parameters of the Conditional
Probability Tables

Following Almond et al. (2001) and Almond (2010), we
used models based on item response theory (IRT) to
determine the values of the conditional probability ta-
bles. For each table, the effective ability parameter, θ̃,
is determined by the value of the parent variable (the
values were selected based on equally spaced quantiles
of a normal distribution: −0.97 for Low, 0 for Medium,
and 0.97 for High). The model is based on estimates
for two probabilities, the probability of receiving any
trophy at all (using a specified agent), and the prob-
ability of receiving a gold trophy given that a trophy
was received. These are expressed as logistic regres-
sions on the effective theta value:

Pr(Any Trophy|Agent Ability)

= logit−1 1.7aS(θ̃ − bS), (1)

Pr(Gold Trophy|Any Trophy,Agent Ability)

= logit−1 1.7aG(θ̃ − bG); (2)

where the 1.7 is a constant to match the logistic func-
tion to the normal probability curve. The two equa-
tions are combined to form the complete conditional
probabilities using the generalized partial credit model
(Muraki, 1992).
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The silver and gold discrimination parameters, aS and
aG, represent the slope of the IRT curve when θ = b.
They are measures of the strength of the association
between the observable and the proficiency variable
it measures. In high-stakes examinations, discrimina-
tions of around 1 are considered typical, and discrim-
inations of less than 0.5 are considered low. We ex-
pect lower discriminations in game-based assessments
as there may be other reasons (e.g., lack of persis-
tence) that a player would fail to solve a game level.
Still, when a game level is designed to target a player’s
understanding of a particular agent, very low discrim-
ination is a sign that it is not working. High discrim-
inations (above 2.0) are often a sign of difficulty in
parameter estimation.

The silver and gold difficulty parameters, bS and bG,
represent the ability level required to have a 50%
chance of success. They have the opposite sign of a
typical intercept parameter, and they should fall on
a unit normal scale: tasks with difficulties below −3
should be solved by nearly all participants and those
with difficulties above 3 should be solved by almost no
participants.

The complete model had four parameters, two dif-
ficulty and two discrimination parameters, for each
level/agent combination. One member of our level de-
sign team provided initial values for those parameters
based on the design goals, applicable agents, and early
pilot testing.

Correlations between the posttest scores and the Bayes
net scores using the expert parameters were low, so
we developed a method for estimating the parameters
from the field trial data. First, the pretest and posttest
were combined (as they were so short) and then sepa-
rated into subscales based on agent of motion. As the
scores were short, the augmented scoring procedure of
Wainer et al. (2001) was used to shrink the estimates
towards the average ability. Each subscale was split
into High, Medium and Low categories with equal num-
bers of students in each. This provides a proxy for the
unobservable agent abilities for each student.

We used the agent ability proxies and the observed
trophies to calculate a table of trophies by ability for
each level. The tables were rather sparse as many
students did not attempt many levels, and and typ-
ically used only one agent for each level attempted.
To overcome this sparseness, the conditional probabil-
ity tables generated using the expert parameters were
added to the observed data, and then a set of param-
eter (aS , aG, bS , bG) were found that maximized the
likelihood of generated the combined prior + observed
table using a gradient decent algorithm.

Looking for extremely high discrimination values im-

mediately flagged some problems with this procedure.
In particular, cases where only one of two students
attempted a level with a particular agent, but were
successful, could result in an extremely high discrimi-
nation. Increasing the weight placed on the prior when
calculating the prior+observation table reduced the
occurrences of this problem.

There were still some level/agent combinations with
extremely high discrimination, but we noticed that
they had extremely high difficulties as well. Looking at
the conditional probability tables generated by these
parameter values we noticed that they were nearly flat
(in other words, the three points on the logistic curve
corresponding to the possible parent levels were in one
of the tails of the logistic distribution). Because the
conditional probability table was flat, the high discrim-
ination does not correspond to high information, so is
not likely to overweight evidence from that game level.
Consequently, flagging just high discrimination pro-
duced too many false positives, and additional screen-
ing was needed.

4.2 Mutual Information

The mutual information of two variables X and Y is
defined as:

MI(X,Y ) =
∑
x,y

Pr(x, y) log
Pr(x, y)

Pr(x) Pr(y)
. (3)

Calculating the mutual information for all of the
level/agent combinations yielded a maximum mutual
information of 0.09, with most mutual information val-
ues below 0.01. Figure 5 shows the mutual informa-
tion for both applicable agent/level combinations and
inapplicable ones.

Table 1 shows the conditional probability table param-
eters and mutual information for a few selected levels,
looking at just the Lever Trophy observables. The par-
ticular levels were flagged because they had either high
discrimination, high (in absolute value) difficulty or
high mutual information. The game level “Stairs” is
an example of a problem: it has an extremely high dis-
crimination for silver trophies and an extremely high
difficulty as well. Furthermore, the mutual informa-
tion is toward the high end of the range. The level
“Swamp People” is also a problem, it has a high gold
discrimination as well as a high mutual information.
Furthermore, lever was not thought to be a common
way of solving the problem by the game designers.

It is important to use the mutual information as a
screening criteria to eliminate false positives. The
game level “Smiley” is an example of a false posi-
tive. Although the silver discrimination and difficulty
are high, the mutual information is below 0.001, so
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Table 1: Parameters and mutual information for selected lever observables.
applicable aS bS aG bG MI

Diving Board World TRUE 0.897 5.036 0.024 1.974 0.000
Smiley TRUE 3.368 7.255 0.002 1.479 0.000

St. Augustine TRUE 0.897 5.036 0.024 1.974 0.000
Stairs TRUE 11.084 10.756 0.000 0.774 0.064

Swamp People FALSE 0.116 4.782 2.431 3.689 0.033
Ballistic Pendulum FALSE 0.897 5.036 0.024 1.974 0.000
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Figure 5: Histograms of Mutual Agent Distributions

the extreme parameter values are likely not causing a
problem. This level could be a problem for a different
reason: lever was judged to be an applicable solution
agent, but the mutual information is low. The unex-
pectedly week evidentiary value of this level should be
investigated.

4.3 Evidence Balance Sheets

The weight of evidence(Good, 1985) a piece of evidence
E provides for a hypothesis H versus its negation H
is:

W (H:E) = log
Pr(E|H)

Pr(E|H)
= log

Pr(H|E)

Pr(H|E)
−log

Pr(H)

Pr(H)
.

(4)
If the evidence arrives in multiple pieces, E1 and E2

(e.g., the evidence from each game level), the condi-
tional weight of evidence:

W (H:E2|E1) = log
Pr(E2|H,E1)

Pr(E2|H,E1)
. (5)

These sum in much the way that one would expect:

W (H:E1, E2) = W (H:E1) +W (H:E2|E1) . (6)

Madigan, Mosurski, and Almond (1997) suggest a
weight of evidence balance sheet : simple graphical dis-
play for the conditional weights of evidence. Figure 7
shows an example. The leftmost column gives the
game levels in the order that they were scored, as well
as the agent and trophy that was received. The cen-
tral column gives the conditional probability for the
target node, Newton’s Three Laws at various points
in the scoring sequence. The third column gives the
weight of evidence the most recent level provides for
the hypothesis that the target node is at least at the
level of Medium.

Constructing a balance sheet requires selecting a par-
ticular student. Interesting students can be identi-
fied by looking for outliers in the regression of the
posttest (or pretest) scores on the Bayesian network
EAP scores (Figure 6). Certain students were iden-
tified in this plot. Student S259 got no pretest items
right (although that student got about 4 posttest items
right, which was a good score), and had an EAP score
of 2.3 (which is in the medium category for physics
understanding).

Figure 7 shows the pattern of scores for this student.
Early levels tend to have higher weights of evidence
than later levels. Note that somewhere towards the
middle of the sequence there are two huge spike in
the weight of evidence. These correspond to the levels
“jar of coins” and “Jurassic park”; both had weights
of evidence of over 75. Table 2 presents the same in-
formation in a tabular fashion. Here the information
is screened so that only levels with high weights of
evidence are shown.

To systematically investigate what causes the spikes in
the weight of evidence, we reviewed replay files of the
identified students. For example, S259 mostly used
solutions that ”game the system”(e.g., crashing the
system by drawing random large objects) and rarely
tried to use applicable agents. Thus when he some-
how managed to use an applicable agent and earned a
trophy, the weight of evidence jumped.
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***BASELINE***
downhill
lead the ball
on the upswing
scale
sunny day
through the cracks
yippie!.level
diving board.level
dog bone
spider web
spinning arms
golfing
jelly beans
wavy
wedge
move the rocks
pirate ship
support
boulder
roller coaster
shark
tricky
annoying lever
around the tree
catepillar
cramped
crazy seesaw
double bounce
flower power
gravity
heavy blocks
heavy bounce
jar of coins
stiff curtains
work it up
avalanche
diving board world.level
hammer
jurassic park
platforms
smiley
St. Augustine
stairs
starry night
swamp people
swingset
tetherball
timing is everything
attic
ballistic pendulum
can opener
catch it
cog wheels
cosmic cave
cyclops
double hoppy
fez
freefall
hexagon
lightening
maze
Mr Green
need more coffee
perfect bounce
perfect pendulum
rollerball
top spin

Ramp Silver
No Trophy

Pendulum Silver
Pendulum Silver
Pendulum Gold

Ramp Silver
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Pendulum Silver
Pendulum Silver
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Pendulum Silver
Pendulum Silver
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No Trophy
No Trophy
No Trophy
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No Trophy
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No Trophy
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No Trophy
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No Trophy
No Trophy
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No Trophy
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Figure 7: Weight of Evidence Balance Sheet for Student S259
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Figure 6: Scatterplot of Postttest versus Bayes net
scores.

For the case of “jar of coins”, it is one of the levels that
already has an applicable agent built in the level as an
incomplete form (i.e., pendulum for this level), and all
the player needs to do is to make the built-in agent
work by completing it (e.g., add more mass to the
pendulum bob). The review of his replay files revealed
that he exploited the system again for jar of coin, but
the system recognized his solution as an applicable due
to the built-in agent. This finding should lead to one
or more follow-up actions: (a) decrease discrimination
for pendulum in the CPT of jar of coins, (b) revise the
level to make it harder to ”game” the system, and/or
(c) replace the level with one that forces the player to
directly draw the agent. We chose the third option for
the next version of Newton’s Playground.

5 Lessons Learned and Future Work

The work on constructing the assessment system for
Newton’s Playground is ongoing. Using these infor-
mation metrics helped us identify problems in both
the code and level design. For example, one case of
unexpectedly low discrimination led to the discovery
of a bug in the code that built the observed tables
from the data (the labels of the High and Low cat-
egories were swapped and the observation table was
built upside down). Unexpected high and low infor-
mation also forced the designers to take a closer look
at which agents students were actually using to solve
the problems leading to a revision in the agent tables.
Finally, viewing replays led us to identify places where
the agent identification system misidentified the agent

Table 2: Levels with high weights of evidence for Stu-
dent S259

Level WOE
lead the ball -7.84
diving board 22.92

spider web -32.59
golfing 16.97

pirate ship 14.45
shark 35.54

caterpillar -7.99
jar of coins 80.04
work it up -10.2

hammer -9.58
Jurassic park 78.2

platforms -11.21
swamp people 9.22

tether ball -8.32
timing is everything 21.77

ballistic pendulum -9.8
fez 11.38

used to solve the problem. This led to improved values
for the observable outcomes.

Correcting these problems lead to a definite improve-
ment in the correlation between the Bayes net score
and the pretest and posttest. With the revised net-
works and evidence identification code, the correlation
with the pretest is 0.40 and with the posttest is 0.36,
a definite improvement (and close to the limit of the
accuracy available given the lack of reliability of the
pretest and posttest).

We have also identified some conceptual errors that
we are still working to address. In particular, a large
number of the students (e.g., S259) engaged in off-
track “gaming” behaviors, often earning silver trophies
in the process. It is clear that the Bayesian network is
lacking nodes related to that kind of behavior. Also,
we need a better system for detecting that kind of
behavior. These are being implemented in Version 2.0
of Newton’s Playground.
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Abstract

This paper proposes a novel Bayesian method
for the dictionary learning (DL) based clas-
sification using Beta-Bernoulli process. We
utilize this non-parametric Bayesian tech-
nique to learn jointly the sparse codes, the
dictionary, and the classifier together. Exist-
ing DL based classification approaches only
offer point estimation of the dictionary, the
sparse codes, and the classifier and can there-
fore be unreliable when the number of train-
ing examples is small. This paper presents
a Bayesian framework for DL based classifi-
cation that estimates a posterior distribution
for the sparse codes, the dictionary, and the
classifier from labeled training data. We also
develop a Variational Bayes (VB) algorithm
to compute the posterior distribution of the
parameters which allows the proposed model
to be applicable to large scale datasets. Ex-
periments in classification demonstrate that
the proposed framework achieves higher clas-
sification accuracy than state-of-the-art DL
based classification algorithms.

1 Introduction

Sparse signal representation (Wright et al., 2010), has
recently gained much interest in computer vision and
pattern recognition. Sparse codes can efficiently rep-
resent signals using linear combination of basis ele-
ments which are called atoms. A collection of atoms
is referred to as a dictionary. In sparse representation
framework, dictionaries are usually learned from data
rather than specified apriori (i.e wavelet).
It has been demonstrated that using learned dictionar-
ies from data usually leads to more accurate represen-
tation and hence can improve performance of signal
reconstruction and classification tasks (Wright et al.,

2010). Several algorithms have been proposed for the
task of dictionary learning (DL), among which the K-
SVD algorithm (Aharon et al., 2006), and the Method
of Optimal Directions (MOD) (Engan et al., 1999),
are the most well-known algorithms. The goal of these
methods is to find the dictionary D = [d1,d2, ...,dK ],
and the matrix of the sparse codes A = [a1, a2, ..., aN ],
which minimize the following objective function

[Â, D̂] = argminA,D‖X−DA‖2F , s.t. ‖xi‖0 ≤ T ∀i,
(1)

where X = [x1, x2, ..., xN ] is the matrix of N input
signals, K is the number of the dictionary atoms, ‖.‖F
denotes the Frobenius norm, and ‖x‖0 denotes the l0
norm which counts the number of non-zero elements
in the vector x.

2 Related Work

Classical DL methods try to find a dictionary, such
that the reconstructed signals are fairly close to the
original signals, therefore they do not work well for
classification tasks. To overcome this problem, sev-
eral methods have been proposed to learn a dictionary
based on the label information of the input signals.
Wright (Wright et al., 2009), used training data as
the atoms of the dictionary for Face Recognition (FR)
tasks. This method determines the class of each query
face image by evaluating which class leads to the min-
imal reconstruction error. Although the result of this
method on face databases are promising, it is not ap-
propriate for noisy training data. Being unable to uti-
lize the discriminative information of the training data
is another weakness of this method.
Yang (Yang et al., 2010), learned a dictionary for
each class and obtained better FR results than Wright
method. Yang (Yang et al., 2011), utilized Fisher Dis-
criminant Analysis (FDA) to learn a sub-dictionary
for each class in order to make the sparse coefficients
more discriminative. Ramirez (Ramirez et al., 2010),
added a structured incoherence penalty term to the
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objective function of the class specific sub-dictionary
learning problem to make the sub-dictionaries inco-
herent. Mairal (Mairal et al., 2009), introduced a
supervised DL method by embedding a logistic loss
function to learn a single dictionary and a classifier
simultaneously. Given a limited number of labeled ex-
amples, most DL based classification methods suffer
from the following problem: since these algorithms
only provide point estimation of the dictionary, the
sparse codes, and the classifier which could be sensi-
tive to the choice of training examples, they tend to
be unreliable when the number of training examples
is small. In order to address the above problem, this
paper presents a Bayesian framework for supervised
dictionary learning, termed Bayesian Supervised
Dictionary Learning, that targets tasks where the
number of training examples is limited. Using the full
Bayesian treatment, the proposed framework for dic-
tionary learning is better suited to dealing with a small
number of training examples than the non-Bayesian
approach.
Dictionary learning based on the Bayesian non-
parametric models was originally proposed by Zhou
(Zhou et al., 2009), in which a prior distribution is put
on the sparse codes (each sparse code is modeled as an
element-wise multiplication of a binary vector and a
weight vector) which satisfies the sparsity constraint.
Although the results of this method can compete with
the state of the art results in denoising, inpainting,
and compressed sensing applications, it does not work
well for classification tasks due to its incapability of
utilizing the class information of the training data.
To address the above problem, we extend the Bayesian
non-parametric models for classification tasks by
learning the dictionary, the sparse codes, and the clas-
sifier simultaneously. The contributions of this paper
are summarized as follows:

• The noise variance of the sparse codes (the spar-
sity level of the sparse codes) and the dictionary is
learn based on the Beta-Bernoulli process (Paisley
et al., 2009) which allows us to learn the number
of the dictionary atoms as well as the dictionary
elements.

• A logistic regression classifier (multinomial logis-
tic regression (Bohning, 1992), classifier for multi-
class classification) is incorporated into the prob-
abilistic dictionary learning model and is learned
jointly with the dictionary and the sparse codes
which improves the discriminative power of the
model.

• The posterior distributions of the dictionary, the
sparse codes, and the classifier is efficiently com-
puted via the VB algorithm which allows the

proposed model to be applicable to large-scale
datasets.

• The Bayesian prediction rule is used to classify a
test instance and therefore the proposed model is
less prone to overfitting, specially when the size
of the training data is small. Precisely speaking,
test instances are classified by weighted average of
the parameters (the dictionary, the sparse codes of
the test instances , and the classifier), weighted by
the posterior probability of each parameter value
given the training data.

• Using the Beta-Bernoulli process model, many
components of the learned sparse codes are ex-
actly zero, which is different from the widely used
Laplace prior, in which many coefficients of the
sparse codes are small but not exactly zero.

The remainder of this paper is organized as follows:
Section 3 briefly reviews the Beta-Bernoulli process.
The proposed method is introduced in Section 4. Ex-
perimental results are presented in Section 5. We con-
clude and discuss future work in Section 6.

3 Beta-Bernoulli Process

The Beta process B ∼ BP (c,B0) is an example of a
Lévy process which was originally proposed by Hjort
for survival analysis (Hjort, 1990), and can be defined
as a distribution on positive random measures over a
measurable space (Ω,F).
B0 is the base measure defined over Ω and c(ω) is a
positive function over Ω which is assumed constant for
simplicity. The Lévy measure of B ∼ BP (c,B0) is
defined as

ν(dπ, dω) = cπ−1(1− π)c−1dπB0(dω). (2)

In order to draw samples from B ∼ BP (c,B0), King-
man (Kingman, 1993), proposed a procedure based on
the Poisson process which goes as follows.
First, a non-homogeneous Poisson process is defined on
Ω ×R+ with intensity function ν. Then, Poisson(λ)
number of points (πk, ωk) ∈ [0, 1]× Ω are drawn from
the Poisson process (λ =

∫
[0,1]

∫
Ω
ν(dω, dπ) =∞). Fi-

nally, a draw from B ∼ BP (c,B0) is constructed as

Bω =
∞∑
k=1

πkδωk
, (3)

where δωk
is a unit point measure at ωk (δωk

equals
one if ω = ωk and is zero otherwise) . It can be seen
from equation 3, that Bω is a discrete measure (with
probability one), for which Bω(A) =

∑
k:ωk∈A πk, for

any set A ⊂ F .
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If we define Z = Be(B) as a Bernoulli process with Bω
defined as 3, a sample from this process can be drawn
as

Z =
∞∑
k=1

zkδωk
, (4)

where zk is generated by

zk ∼ Bernoulli(πk). (5)

If we draw N samples (Z1, ..., ZN ) from the Bernoulli
process Be(B) and arrange them in matrix form, Z =
[Z1, ..., ZN ], then the combination of the Beta process
and the Bernoulli process can be considered as a prior
over infinite binary matrices, with each column Zi in
the matrix Z corresponding to a location, δωi

. By
marginalizing out the measure B, the joint probability
distribution P (Z1, ..., ZN ) corresponds to the Indian
Buffet Process (Thibaux et al., 2007).

4 Proposed Method

All previous classification based sparse coding and
dictionary learning methods have three shortcomings.
First, the noise variance or the sparsity level of the
sparse codes must be specified apriori in order to define
the stopping criteria for estimating the sparse codes.
Second, the number of the dictionary atoms must be
set in advance (or determined via the cross-validation
technique). Third, a point estimate of the dictionary
and the sparse codes are used to predict the class la-
bel of the test data points which can result in overfit-
ting. To circumvent these shortcomings, we propose
a Bayesian probabilistic model in terms of the Beta-
Bernoulli process which can infer both the dictionary
size and the noise variance of the sparse codes from
data. Furthermore, our approach integrates a logis-
tic regression classifier (multinomial logistic regression
classifier for multiclass classification) into the proposed
probabilistic model to learn the dictionary and the
classifier simultaneously while most of the algorithms
learn the dictionary and the classifier separately.

4.1 Problem Formulation

Consider we are given a training set of N labeled sig-
nals X = [x1,x2, ...,xN ] ∈ RM×N , each of them may
belong to any of the c different classes. We first con-
sider the case of c = 2 classes and later discuss the
multiclass extension. Each signal is associated with a
label (yi ∈ {−1, 1}, i = 1, ..., N). We model each signal
xi, as a sparse combination of atoms of a dictionary
D ∈ RM×K , with an additive noise εi. The Matrix
form of the model can be formulated as

X = DA+ E, (6)

where XM×N is the set of the input signals, AK×N
is the set of the K dimensional sparse codes, and
E ∼ N (0, γ−1

x IM ) is the zero-mean Gaussian noise
with precision value γx (IM is an M ×M Identity ma-
trix). Following (Zhou, 2009), we model the matrix
of the sparse codes (A) as an element-wise multiplica-
tion of a binary matrix (Z) and a weight matrix (S).
Hence, the model of equation 6 can be reformulated as

X = D(Z � S) + E, (7)

where � is the element-wise multiplication operator.
We put a prior distribution on the binary matrix Z us-
ing the extension of the Beta-Bernoulli process which
takes two scalar parameters a and b and was origi-
nally proposed by (Paisley, 2009). A sample from the
extended Beta process B ∼ BP (a, b, B0) with base
measure B0 may be represented as

Bω =
K∑
k=1

πkδωk
, (8)

where,

πk ∼ Beta(a/K, b(K − 1)/K), ωk ∼ B0. (9)

This sample will be a valid sample from the extended
Beta process, if K → ∞. Bω can be considered as
a vector of K probabilities that each probability πk
corresponds to the atom ωk. In our framework, we
consider each atom ωk as the k-th atom of the dictio-
nary (dk) and we set the base measure B0 to a multi-
variate zero-mean Gaussian distribution N (0, γ−1

d IK)
(with precision value γd) for simplicity. So, by letting
K → ∞, the number of the dictionary atoms can be
learned from the training data. To model the weights
(si)

N
i=1, we use a zero-mean Gaussian distribution with

precision value γs.
In order to make the dictionary discriminative for the
classification purpose, we incorporate a logistic regres-
sion classifier to our probabilistic model. More pre-
cisely, if αt = zt � st be the sparse code of a test in-
stance xt, the probability of yt = +1 can be computed
using the logistic sigmoid acting on a linear function
of αt so that

P (yt = +1 | zt, st,w, w0) = σ(wT (zt � st) + w0),
(10)

where σ(x) is the logistic function which is defined as

σ(x) =
1

1 + e−x
. (11)

As the probability of the two classes must sum to 1,
we have P (yt = −1 | zt, st,w, w0) = 1 − P (yt = +1 |
zt, st,w, w0). Since the logistic function has the prop-
erty that σ(−x) = 1 − σ(x), we can write the class
conditional probability more concisely as

P (yt | zt, st,w, w0) = σ
(
yt[w

T (zt � st) + w0]
)
, (12)
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where w ∈ RK and w0 ∈ R are the parameters
of the classifier which are drawn from N (0, γ−1

w IK)
and N (0, γ−1

w ) respectively. We typically place non-
informative Gamma hyper-priors on γx, γd, γs and γw.
The proposed hierarchical probabilistic model for the
binary classification given the training data (X,Y ) =
(xi, yi)

N
i=1, can be expressed as

P (X | D,Z, S, γx) ∼
N∏
j=1

N (xj ;D(zj � sj), γ−1
x IM ),

(13)

P (γx | ax, bx) ∼ Gamma(γx; ax, bx), (14)

P (Z | Π) ∼
N∏
i=1

K∏
k=1

Bernoulli(zki;πk), (15)

P (Π | aπ, bπ,K) ∼
K∏
k=1

Beta(πk; aπ/K, bπ(K − 1)/K),

(16)

P (S | γs) ∼
N∏
i=1

K∏
k=1

N (ski; 0, γ−1
s ), (17)

P (γs | as, bs) ∼ Gamma(γs; as, bs), (18)

P (D | γd) ∼
M∏
i=1

K∏
k=1

N (dik; 0, γ−1
d ), (19)

P (γd | ad, bd) ∼ Gamma(γd; ad, bd), (20)

P (Y | Z, S,w, w0) ∼
N∏
j=1

σ(yj [w
T (zj � sj) + w0]),

(21)

P (w | γw) ∼ N (w; 0, γ−1
w IK), (22)

P (γw | aw, bw) ∼ Gamma(γw; aw, bw), (23)

P (w0 | γw0) ∼ N (w0; 0, γ−1
w ), (24)

where Π = [π1, π2, ..., πK ].
Φ = {aπ, bπ, ax, bx, ad, bd, as, bs, aw, bw,K} are the
hyper-parameters of the proposed model. The graphi-
cal representation of the probabilistic proposed model
is shown in Fig. 1. For multiclass extension, we use
the multinomial logistic regression classifier which is a
model of the form

P (yt = c | zt, st,Ξ) =
exp(wT

c (zt � st))∑C
c′=1 exp(w

T
c′(zt � st))

,

(25)
where C is the number of classes and Ξ = [w1, ...,wC ]
are the parameters of the classifier which are drawn
from multivariate zero-mean Gaussian distribution
with precision value γw (wc ∼ N (0, γ−1

w IK)). The

Figure 1: The graphical representation of the proposed
binary classification model (blue shadings indicate ob-
servations).

hierarchical probabilistic model for the multiclass clas-
sification is the same as the model for the binary clas-
sification, except for the equations 21-24 which are re-
placed by

P (Y | Z, S,Ξ) ∼
N∏
j=1

exp
(
wT
yj (zj � sj)

)
C∑
c=1

exp(wT
c (zj � sj))

, (26)

P (Ξ | γw) ∼
C∏
c=1

N (wc; 0, γ−1
w IK), (27)

P (γw | aw, bw) ∼ Gamma(γw; aw, bw). (28)

4.2 Posterior Inference

Due to the intractability of computing the exact pos-
terior distribution of the hidden variables, in this
section, we derive a Variational Bayesian algorithm
(Beal, 2003), to approximate the posterior distribution
over the hidden variables of the proposed probabilistic
model given the training data.
The goal of the variational inference is to approximate
the true posterior distribution over the hidden vari-
ables with a variational distribution which is closest
in KL divergence to the true posterior distribution.
A brief review of the VB algorithm for the exponen-
tional family distributions provided in the Supplemen-
tary Material1 (see appendix A).
In our variational inference framework, we use the fi-
nite Beta-Bernoulli approximation, in which the num-
ber of the dictionary atoms (K) is truncated and set

1The supplementary Material can be downloaded from
http://ce.sharif.edu/∼jourabloo/papers/SM.pdf
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to a finite but large number. If K is large enough, the
analyzed data using this number of dictionary atoms,
will reveal less than K components.
In the following two sections, we derive the variational
update equations for the binary and the multiclass
classification models.

4.2.1 Variational Inference For the Binary
Classification

In the proposed binary classification model, the hidden
variables are

W =

{
Π = [π1, π2, ..., πK ], Z = [z1, z2, ...,zN ],

S = [s1, s2, ..., sN ], D = [d1,d2, ...,dK ],w, w0,

γs, γw, γx, γd

}
.

We use a fully factorized variational distribution which
is as follows

q(Π, Z, S,D,w, w0, γs, γw, γx, γd) =

K∏
k=1

M∏
i=1

qπk
(πk)qdik(dik)

N∏
j=1

K∏
k=1

qzkj
(zkj)qskj

(skj)×

qw(w)qw0
(w0)qγs(γs)qγw(γw)qγx(γx)qγd(γd).

It’s worth noting that instead of using the parame-
terized variational distribution, we use the factorized
form of the variational inference which is called Mean
Field method (Beal, 2003). More precisely, we derive
the form of the distribution q(x) by optimizing the KL
divergence over all possible distributions.
Based on the graphical model of Fig. 1, the joint prob-
ability distribution of the observations (training data)
and the hidden variables can be expressed as

P (X,Y,W | Φ) =

N∏
j=1

(
P (xj | zj , sj , D, γx)P (yj | zj , sj ,w, w0)

)
×

K∏
k=1

(
P (πk | aπ, bπ)

N∏
j=1

P (zkj | πk)P (skj | γs)×

M∏
i=1

P (dik | γd)
)
P (w | γw)P (w0 | γw)P (γs | as, bs)×

P (γx | ax, bx)P (γw | aw, bw)P (γd | ad, bd). (29)

In the binary classification model, all of the distribu-
tions are in the conjugate exponential family except
for the logistic function. Due to the non-conjugacy
between the logistic function and Guassian distribu-
tion, deriving the VB update equations in closed-form
is intractable. To overcome this problem, we use the

local lower bound to the sigmoid function proposed by
(Jaakkola et al., 2000), which states that for any x ∈ R
and ξ ∈ [0,+∞]

1

1 + exp(−x)
≥ σ(ξ)exp

(
(x− ξ)/2− λ(ξ)(x2 − ξ2)

)
,

(30)
where,

λ(ξ) =
−1

2ξ

( 1

1 + exp(−ξ)
− 1

2

)
. (31)

ξ is the free variational parameter which is optimized
to get the tightest possible bound. Hence, we replace
each sigmoid factor in the joint probability distribu-
tion (equation 29) with the above lower bound (equa-
tion 30), then we use the EM algorithm to optimize the
factorized variational distribution and the free param-
eters (ξ = {ξ1, ξ2, ..., ξN}) which computes the varia-
tional posterior distribution in the E-step and maxi-
mizes the free parameters in the M-step. All update
equations are available in the Supplementary Material
(see appendix B).

4.2.2 Variational Inference For the
Multiclass Classification

In the proposed multiclass classification model, be-
cause of non-conjugacy between the multinomial lo-
gistic regression function (equation 25) and the Gaus-
sian distribution, deriving the VB update equations
in closed-form is intractable. To tackle this non-
conjugacy problem, we utilize the following simple in-
equality which was originally proposed by (Bouchard,
2007), which states that for every {βc}Cc=1 ∈ R and
α ∈ R,

log
( C∑
c=1

eβc
)
≤ α+

C∑
c=1

log
(
1 + eβc−α

)
. (32)

If we replace x with α − βc in the equation 30, and
take the logarithm of the both sides of that equation,
we have

log(1 + eβc−α) ≤ λ(ξ)
(
(βc − α)2 − ξ2

)
−

log σ(ξ) +
(
(βc − α) + ξ

)
/2. (33)

Then, by replacing each term in the summation of
the right hand side of the equation 32 with the up-
per bound of the equation 33, we have

log
( C∑
c=1

eβc
)
≤ α+

C∑
c=1

log
(
1 + eβc−α

)
≤

C∑
c=1

(
λ(ξc)

(
(βc − α)2 − ξ2

c

)
− log σ(ξc)

)
+

α+
1

2

C∑
c=1

(βc − α+ ξc). (34)

15



We utilize the above inequality for approximating the
denominator of the right hand side of the equation 26.
So, for the proposed multiclass classification model,
the free parameters are

{
{αi}Ni=1, {ξij}

N ,C
i=1,j=1

}
.

We derive an EM algorithm that computes the vari-
ational posterior distribution in the E-step and maxi-
mizes the free parameters in the M-step. Details of the
update equations are available in the Supplementary
Material (see appendix C).

4.3 Class Label Prediction

After computing the posterior distribution, in or-
der to determine the target class-label yt of a given
test instance xt, we first compute the predictive dis-
tribution of the target class label given the test
instance by integrating out the hidden variables
({D, γx, zt, st,w, w0} for binary classification model,
and {D, γx, zt, st, [wc]

C
c=1} for multiclass classification

model), then we pick the label with the maximum
probability value. For binary classification, this pro-
cedure can be formulated as

ŷt = argmaxyt∈{−1,1}P (yt | xt, T ), (35)

where T = (xj , yj)
N
j=1 is the training data. P (yt |

xt, T ) can be computed as

P (yt | xt, T ) =∑
zt

∫∫∫
P (yt, st, zt,w, w0 | xt, T )dst dw dw0

=
∑
zt

∫∫∫
P (yt | st, zt,w, w0, xt, T )×

P (st, zt,w, w0 | xt, T )dst dw dw0

=
∑
zt

∫∫∫
σ(yt[w

T (st � zt) + w0])P (st, zt | xt, T )×

P (w | T )P (w0 | T )dst dw dw0

≈
∑
zt

∫∫∫
σ(yt[w

T (st � zt) + w0])P (st, zt | xt, T )×

q∗(w)q∗(w0)dst dw dw0, (36)

where we replaced P (w | T ) and P (w0 | T ) with the
approximate posterior distributions q∗(w) and q∗(w0)
respectively.
Since the above expression cannot be computed in
closed form, we resort to Monte Carlo sampling to ap-
proximate that expression. In other words, we approx-
imate the distribution P (st, zt | xt, X, Y )q∗(w)q∗(w0)
with l samples, then we compute P (yt | xt, T ) as

P (yt | xt, T ) ≈ 1

l

∑
l

σ(yt[(w
l)T (slt�zlt) +wl0]), (37)

where rl is the l-th sample of the hidden variable r.
Since the approximate posterior distributions q∗(w)

Figure 2: The graphical model of the Gibbs sampling
method.

and q∗(w0) are Gaussian (see the appendix B of the
Supplementary Material), sampling from these distri-
butions is straightforward. P (st, zt | xt, T ) can be
computed as

P (st, zt | xt, T ) =
P (xt | st, zt, T )P (st, zt | T )

P (xt | T )
,

(38)

which cannot be directly sampled from. Therefore,
to sample from P (st, zt | xt, T ), we sample from
P (st, zt, D,Π, γs, γx | xt, T ) based on the Gibbs sam-
pling method (Robert et al., 2004), then simply ig-
nore the values for D,Π, γs, γx in each sample. The
graphical model in Fig. 2 shows all the relevant pa-
rameters and conditional dependence relationships, by
which the Gibbs sampling equations are derived. The
detailes of the Gibbs sampling equations are avalable
in the Supplementary Material (see appendix D). It
should be noted that the parameters of the variables
in Fig. 2 are the updated parameters of the variational
posterior distribution which were computed using VB
algorithm (see appendix B of the Supplementary Ma-
terial). For multiclass extension, the posterior distri-
bution over the class label of a test instance xt can be
approximated as

P (yt = c | xt, T ) ≈ 1

l

∑
l

exp
(
(wl

c)
T (zlt � slt)

)∑C
c′=1 exp((w

l
c′)

T (zlt � slt))
,

(39)
where {wl

c}Cc=1 are the l-th samples of the approximate
posterior distributions {q∗(wc)}Cc=1, and (zlt, s

l
t) is the

l-th sample of the posterior distribution P (st, zt |
xt, T ).
Sampling from {q∗(wc)}Cc=1 is straightforward. Sam-
pling from the distribution P (st, zt | xt, T ) for multi-
class classification model is the same as sampling from
that distribution for the binary classification model
(see appendix D).
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5 Experimental Results

In this section, we verify the performance of the pro-
posed method on various applications such as digit
recognition, face recognition, and spoken letter recog-
nition. For applications which include more than two
classes, we use one versus all binary classification (one
classifier for each class) based on the proposed binary
classification model (PMb) as well as the proposed
multiclass classification model (PMm).
All of the experimental results are averaged over sev-
eral runs of randomly generated splits of the data.
Moreover, in all experiments, all Gamma priors are
set as Gamma (10−6, 10−6) to make the prior distri-
butions uninformative. The parameters aπ, bπ of the
Beta distribution are set with aπ = K and bπ = K/2
(many other settings of aπ and bπ yield similar results).
For the Gibbs sampling inference, we discard the ini-
tial 500 samples (burn-in period), and collect the next
1000 samples to present the posterior distribution over
the sparse code of a test instance.

5.1 Digit Recognition

We apply the proposed method on two handwritten
digit recognition datasets MNIST (LeCun et al., 1998),
and USPS (Hull, 1994). The MNIST dataset consists
of 70000 28 × 28 images, and the USPS dataset com-
poses of 9298 16 × 16 images. We reduced the di-
mensionality of both datasets by retaining only the
first 100 principal components to speed up training.
Details of the experiments for the digit databases are
summarized in Table 1.
We compare the proposed models (PMb, PMm) with
state of the art methods such as the Sparse Repre-
sentation for Signal Classification (denoted by SRSC)
(Huang et al., 2006), the supervised DL method with
generative training and discriminative training (de-
noted by SDL-G and SDL-D) (Mairal, 2009), and the
Fisher Discriminant Dictionary learning (denoted by
FDDL) (Yang et al., 2011). Furthermore, the results of
two classical classification methods, K-nearest neigh-
bor (K=3) and linear SVM are also reported. The
average recognition accuracies (over 10 runs) together
with the standard deviation is shown in Table 2, from
which we can see that the proposed methods outper-
form the other methods approximately by 3.5%.
The improvement in performance compared to other

methods is due to the fact that the number of the
training data points are small. Precisely speaking, the
methods SRSC, SDL-G, SDL-D and FDDL are op-
timization based learners (MAP learners from prob-
abilistic point of view) which can overfit small-size
training data. In contrast, the proposed method does
weighted averaging over the dictionary, the sparse
codes, and the classifier, weighted by their posterior

Table 1: Properties of the digit datasets and experi-
mental parameters

MNIST USPS
examples (train) 250 250
examples (test) 1000 1000
classes 10 10
input dimensions 784 256
features after PCA 100 100
runs 10 10
K (number of dictionary atoms) 250 250

distributions and hence is relatively immune to over-
fitting. From Table 2, We also observe that the one
versus all binary classifier (PMb) has slightly better
performance than the multiclass classifier (PMm), but
has more computational complexity than the multi-
class classifier. Moreover, because of small number of
the training data, generative SDL (SDL-G) has better
performance than discriminative SDL (SDL-D).
In order to demonstrate the ability of the proposed
method to learn the number of the dictionary atoms
as well as the dictionary elements, we plot the sorted
values of 〈Π〉 For the MNIST dataset, inferred by the
algorithm (Fig. 3). As can be seen, the algorithm
inferred a sparse set of factors, fewer than the 250 ini-
tially provided.
To further analyze the performance of the proposed
method on various number of training data points, we
illustrate the change in the classification accuracy on
the MNIST digit dataset over successive iterations, for
which we add more labeled samples at each iteration.
Fig. 5 plots the recognition rates of different methods
versus different number of training data points, from
which we can see that improvement in the accuracy
of the optimization based methods (FDDL, SDL-G,
SDL-D) is larger than the proposed multi class clas-
sification method. This is due to the fact that when
the number of the training data grows, the likelihood
of overfitting the training data is reduced.
We also plot the sorted values of 〈Π〉 For the MNIST
dataset for 1000 training data points, inferred by the
algorithm (Fig. 4). As can be seen, when the num-
ber of the training data points increases, we need more
dictionary atoms to capture the complexity of the data
points.

5.2 Face Recognition

We then perform the face recognition task on the
widely used extended Yale B (Lee et al., 2005), and
AR (Martinez et al., 1998), face databases. The ex-
tended Yale B database consists of 2, 414 frontal-face

17



Figure 3: Inferred 〈Π〉 for the MNIST dataset (250
training samples).

Figure 4: Inferred 〈Π〉 for the MNIST dataset (1000
training samples).

images from 38 individuals (about 64 images per in-
dividual), and the AR database consists of over 4,000
frontal images from 126 individuals which was gener-
ated in two sessions, each of them consists of 14 images
per individual. The extended Yale B and AR images
are normalized to 54×48 and 60×40 respectively. We
use the Eigenface (Turk et al., 1991), with dimension
300 for both extended Yale B and AR datasets. For
the extended Yale B database, each training set com-
prised of 20 images per individual, and the remaining
images were used to test. For AR dataset, seven im-
ages from the first session are used for training, the
remaining seven images from the second session are
used for testing. Details of the experiments for the
face databases are summarized in Table 3.
To illustrate the superiority of the proposed models,
we compare our methods with the best result of dis-
criminative KSVD (denoted DKSVD) (Zhang et al.,
2010), dictionary learning with structure incoherence
(denoted DLSI) (Ramirez et al., 2010), FDDL, K-NN,
and SVM. The results of these experiments on the face
databases are listed in Table 4. Again, due to the lack
of enough number of the training data, our methods
have better performance than the other methods.

5.3 Spoken Letter Recognition

Finally, we apply our method on the Isolet database
(Blake et al., 1998), from UCI Machine Learning
Repository which consists of 6238 examples and 26
classes corresponding to letters of the alphabet. We
reduced the input dimensionality (originally at 617)
by projecting the data onto its leading 100 principal
components. We use 250 samples for training and 1000
samples for testing. The truncation level K for this ex-

Table 2: Classification accuracy of different methods
on Digit datasets.

MNIST USPS
SVM 79.3± 2.0 80.7± 1.5

3-NN 80.4± 1.4 81.4± 2.1

SDL-D 80.2± 2.1 83.5± 1.9

SRSC 78.9± 1.2 80.2± 1.2

SDL-G 81.3± 1.4 84.0± 1.3

FDDL 81.1± 1.8 83.8± 1.7

PMm 84.9 ± 1.3 86.6 ± 1.0

PMb 85.8 ± 1.1 87.4 ± 0.9

Figure 5: The recognition rate of different methods
versus the number of training data for MNIST dataset.

periment is set to 400. We also use only a subset of 10
classes of the Isolet dataset. The average recognition
accuracies (over 10 runs) is shown in Table 5, from
which we can see that the proposed methods outper-
form the other methods approximately by 3%.

6 Conclusion

We developed new models for the dictionary learning
based pattern classification tasks based on the Beta-
Bernoulli process, and a new algorithm based on the
variational inference which allows our method scales to
large data sets. We also used Bayesian prediction rule
to determine the label of the unknown samples which

Table 3: Properties of data sets and experimental pa-
rameters.

E-Yale B AR
examples (train) 760 700
examples (test) 1654 700
classes 38 100
input dimensions 2592 2400
features after PCA 300 300
runs 10 10
K 500 600
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Table 4: Classification accuracy of different methods
on Face datasets.

E-Yale B AR
SVM 88.8± 1.2 87.1± 1.3

3-NN 65.9± 1.8 73.5± 2.1

DLSI 85.0± 1.6 73.7± 1.4

DKSVD 75.3± 1.4 85.4± 1.2

FDDL 91.9± 1.0 92.0± 1.3

PMm 94.7± 1.3 94.2± 1.2

PMb 95.1± 1.1 94.9± 1.0

Table 5: Classification accuracy of different methods
on Isolet dataset.

Method SVM DLSI FDDL PMb PMm

Accuracy 90.9 88.6 90.5 93.3 92.9

makes our method be suitable for small size training
data. The experimental results on digit recognition,
face recognition and spoken letter classification clearly
demonstrated the superiority of the proposed model to
many state-of-the-art dictionary learning based classi-
fication methods. For the future work, we will apply
our method on the semi-supervised classification tasks.

References

M. Aharon, M. Elad, and A. Bruckstein (2006). k
-svd: An algorithm for designing overcomplete dictio-
naries for sparse representation. IEEE Transactions
on Signal Processing, 4311-4322.

M. Beal (2003). Variational algorithms for approxi-
mate bayesian inference. Doctoral dissertation, Uni-
versity College London.

C.L. Blake, and C.J. Merz (1998). Uci repository of
machine learning databases. University of California,
Department of Information and Computer Science.

D. Bohning (1992). Multinomial logistic regression al-
gorithm. Annals Inst. Stat. Math.

G. Bouchard (2007). Efficient bounds for the softmax
function.In NIPS.

N.L. Hjort (1990). Nonparametric bayes estimators
based on beta processes in models for life history data.
Annals of Statistics, 1259-1294.

K. Huang, and S. Aviyente (2006). Sparse representa-
tion for signal classification. In NIPS.

J. J. Hull (1994). A database for handwritten text
recognition research. IEEE Trans. Pattern Anal.
Mach. Intell, 550-554.

T. Jaakkola, and M. I. Jordan (2000). Bayesian pa-
rameter estimation via variational methods. Statistics
and Computing, 25-37.

J. F. C. Kingman (1993). Poisson Processes.Oxford
University Press.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner
(1998). Gradient-based learning applied to document
recognition. Proc. of the IEEE.

K. Lee, J. Ho, and D. Kriegman (2005). Acquiring lin-
ear subspaces for face recognition under variable light-
ing. In IEEE TPAMI, 27(5): 684-698.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisser-
man (2009). Supervised dictionary learning. In NIPS.

A. Martinez, and R. benavente (1998). The AR face
database. CVC Tech. Report.

J. Paisley, and L. Carin (2009). Nonparametric factor
analysis with beta process priors. In Proc. Interna-
tional Conference on Machine Learning.

I. Ramirez, P. Sprechmann, and G. Sapiro (2010).
Classification and clustering via dictionary learning
with structured incoherence and shared features. In
CVPR.

C.P. Robert, and G. Casella (2004). Monte carlo sta-
tistical methods. Springer Verlag.

R. Thibaux, and M. I. Jordan (2007). Hierarchical
beta processes and the Indian buffet process. In AIS-
TATS.

M. Turk, and A. Pentland (1991). Eigenfaces for
recognition. J. Cognitive Neuroscience, 3(1):71-86.

J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang,
and S. Yan (2010). Sparse representation for com-
puter vision and pattern recognition, Proceedings of
the IEEE.

J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and
Y. Ma (2009). Robust Face Recognition via Sparse
Representation. IEEE TPAMI, 210-227.

M. Yang, L. Zhang, X. Feng, and D. Zhang (2011).
Fisher discrimination dictionary learning for sparse
representation. In ICCV.

M. Yang, L. Zhang, J. Yang, and D. Zhang (2010).
Metaface learning for sparse representation based face
recognition. In ICIP.

Q. Zhang, and B.X. Li (2010). Discriminative K-SVD
for dictionary learning in face recognition. In CVPR.

M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro, and
L. Carin (2009). Non-Parametric Bayesian Dictionary
Learning for Sparse Image Representations. In NIPS.

19



 

Identifying Learning Trajectories in an Educational Video Game 

Deirdre Kerr 

UCLA/CRESST 
Peter V. Ueberroth Building (PVUB) 

10945 Le Conte Ave., Suite 1400 
Los Angeles, CA 90095-7150 

dkerr@gseis.ucla.edu 

Gregory K.W.K. Chung 

UCLA/CRESST 
Peter V. Ueberroth Building (PVUB) 

10945 Le Conte Ave., Suite 1355 
Los Angeles, CA 90095-7150 

greg@ucla.edu 

 
Abstract 

Educational video games and simulations hold 
great potential as measurement tools to assess 
student levels of understanding, identify 
effective instructional techniques, and pinpoint 
moments of learning because they record all 
actions taken in the course of solving each 
problem rather than just the answers given. 
However, extracting meaningful information 
from the log data produced by educational video 
games and simulations is notoriously difficult. 
We extract meaningful information from the log 
data by first utilizing a logging technique that 
results in a far more easily analyzed dataset. We 
then identify different learning trajectories from 
the log data, determine the varying effects of the 
trajectories on learning, and outline an approach 
to automating the process. 

1. INTRODUCTION 

Computer games and simulations hold great potential as 
measurement tools because they can measure knowledge 
that is difficult to assess using paper-and-pencil tests or 
hands-on tasks (Quellmalz & Pellegrino, 2009). These 
measures can then be used to support diagnostic claims 
about students’ learning processes (Leighton & Gierl, 
2007), provide detailed measures of the extent to which 
players have mastered specific learning goals (National 
Science and Technology Council, 2011), and generate 
information that can be used to improve classroom 
instruction (Merceron & Yacef, 2004). 

Log files from games can store complete student answers 
to the problems (Merceron & Yacef, 2004), allowing the 

researcher to record unobtrusively (Kim, Gunn, Schuh, 
Phillips, Pagulayan, & Wixon, 2008; Mostow, Beck, 
Cuneao, Gouvea, Heiner, & Juarez, 2011) the exact 
learning behavior of students (Romero & Ventura, 2007) 
that is not always captured in written or verbal 
explanations of their thought processes (Bejar, 1984). 

Though log data is more comprehensive and more 
detailed than most other forms of assessment data, 
analyzing such data presents a number of problems 
because the log files typically include thousands of pieces 
of information for each student (Romero, Gonzalez, 
Ventura, del Jesus, & Herrera, 2009) with no known 
theory to help identify which information is salient 
(National Research Council, 2011). Additionally, the 
specific information stored in the log files is not always 
easy to interpret (Romero & Ventura, 2007) as the 
responses of individual students are highly context 
dependent (Rupp, Gusta, Mislevy, & Shaffer, 2010) and it 
can be very difficult to picture how student knowledge, 
learning, or misconceptions manifest themselves at the 
level of a specific action taken by the student in the 
course of the game. Due to these difficulties, there is 
currently no systematic approach to extracting relevant 
data from log files (Muehlenbrock, 2005). The 
interpretation of the rich stream of complex data that 
results from the tracking of in-game actions is one of the 
most serious bottlenecks facing researchers examining 
educational video games and simulations today (Mislevy, 
Almond, & Lukas, 2004). 

1.1 RELATED WORK 

Due to the difficulty involved in analyzing log data of 
students’ in-game performance, educational researchers 
occasionally analyze student in-game performance by 
hand, despite the size of the data. Trained human raters 
have been used to extract purposeful sets of actions from 
game logs (Avouris, Komis, Fiotakis, Margaritis, & 
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Voyiatzaki, 2005) and logs of eye-tracking data (Conati & 
Merten, 2007). One study hand-identified student errors 
in log files from an introductory programming environ-
ment (Vee, Meyer, & Mannock, 2006) and another 
examined behavior patterns in an exploratory learning 
environment by hand to categorize students into learning 
types (Amershi & Conati, 2011). Another had the teacher 
play the role of a game character to score student 
responses and provide live feedback to the students 
(Hickey, Ingram-Goble, & Jameson, 2009).  

Other studies avoided hand-coding log data by using 
easily extracted in-game measures such as percent 
completion or time spent on task to measure performance. 
The number of activities completed in the online learning 
environments Moodle (Romero, Gonzalez, Ventura, del 
Jesus, & Herrera, 2009) and ActiveMath (Scheuer, 
Muhlenbrock, & Melis, 2007) have been used to predict 
student grades. The time spent in each activity in an 
online learning environment has been used to detect 
unusual learning behavior (Ueno & Nagaoka, 2002). 
Combinations of the total time spent in the online 
environment and the number of activities successfully 
completed have been used to predict student success 
(Muhlenbrock, 2005) and report student progress (Rahkila 
& Karjalainen, 1999). 

1.2 OUR CONTRIBUTION 

In this study, we identify learning trajectories from 
information stored in log data generated by an educational 
video game. We do this by extracting the number of 
attempts required to solve each level (rather than the time 
spent or the number of levels completed) and then hand 
clustering the individual learning trajectories that result 
from plotting the attempts over time. We show that this 
process results in the identification of substantively 
different types of learning trajectories that differ on a 
variety of measures. We also discuss the benefits of our 
logging, preprocessing, and exploratory analysis 
techniques in regards to ease of interpretation and 
potential use in data mining techniques.  

1.3 SAMPLE 

This study uses data from 859 students who played an 
educational video game about identifying fractions called 
Save Patch in their classrooms for four days as part of a 
larger study. These students were given a paper-and-
pencil pretest to measure their prior knowledge of 
fractions. After they played the game, students were given 
both an immediate posttest and a delayed posttest. The 
immediate posttest was computerized and was given on 
the last day of game play. The delayed posttest was a 
paper-and-pencil test that was given a few weeks later. 
All three tests consisted of both a set of content items and 
a set of survey items. In addition, the game generated log 
data consisting of each action taken by each student in the 
course of game play. The resulting dataset consisted of 
1,288,103 total actions, 17,685 of which were unique.  

2. DATA PREPARATION 

The Data Preprocessing and Intelligent Data Analysis 
article (Famili, Shen, Weber, & Simoudis, 1997) lists 
eleven problems with real-world data that should be 
addressed in preprocessing. Our data comes from a single 
source, so we do not have to worry about merging data 
from multiple sources or combining incompatible data. 
The nine remaining problems and how they are applicable 
to our data are shown in Table 1. 

Table 1: Potential Problems with Save Patch Data 

PROBLEM DESCRIPTION 

Corruption and 
noise 

Interruptions during data recording 
can lead to missing actions 

Feature 
extraction 

Important events must be identified 
from sets of individual actions 

Irrelevant  
data 

Not all actions taken in the game are 
meaningful 

Volume  
of data 

Hundreds or thousands of actions 
are recorded for each student 

Missing 
attributes 

Logs can fail to capture all relevant 
attributes 

Missing 
attribute values 

Logs can fail to record all values for 
all captured attributes 

Numeric and 
symbolic data 

Data for each action contains both 
numeric and symbolic components 

Small data at a 
given level 

We only have data for 859 students 

Multiple  
levels 

Data are recorded at multiple levels 
of granularity for each action 

Our approach to minimizing the impact of these problems 
is explained in the following sections. Missing attributes 
are addressed in Section 2.1 (Game Design) and Section 
2.2 (Logging). Corruption and noise, missing attribute 
values, numeric and symbolic data, and multiple levels 
are addressed in Section 2.2 (Logging). Feature extraction 
is addressed in Section 2.3 (Preprocessing), irrelevant 
data is addressed in Section 2.3.1 (Data Cleaning), and 
volume of data and small data at a given level are 
addressed in Section 3.1 (Exploratory Analysis). 

2.1 GAME DESIGN 

The educational video game used in this study is Save 
Patch. The development of Save Patch was driven by the 
findings that fluency with fractions is critical to perform-
ance in algebra (U.S. Department of Education, 2008), 
and that the understanding of fractions is one of the most 
difficult mathematical concepts students learn before 
algebra (Carpenter, Fennema, Franke, Levi, & Empson, 
2000; McNeil & Alibali, 2005; National Council of 
Teachers of Mathematics, 2000; Siebert & Gaskin, 2006).  
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Once fractions concepts were identified as the subject 
area for the game, the most important concepts involved 
in fractions knowledge were analyzed and distilled into a 
set of knowledge specifications delineating precisely what 
students were expected to learn in the game (Vendlinski, 
Delacruz, Buschang, Chung, & Baker, 2010). These 
knowledge specifications, in turn, drove game design.  

Because the game was designed specifically to measure 
student understanding of a predetermined set of 
knowledge specifications, both game mechanics and level 
design reflected those knowledge specifications and 
helped assure that all important attributes were measured 
in the game and recorded in the log files. 

 

Figure 1: Example Level from Save Patch 

In Save Patch, students must identify the fractional 
distances represented in each level, break ropes into 
pieces representing that distance, and place the correct 
number of rope pieces on each sign on the game grid to 
guide the puppet to the cage containing the prize. Units 
are represented by dirt paths and large gray posts, and 
small red posts break the units into fractional pieces. The 
level in Figure 1 is two units wide and one unit tall, and 
each unit is broken into thirds. To solve the level 
correctly, students must place four thirds on the first sign, 
one third on the second sign, and change the direction on 
the second sign so that it points down.  

Save Patch is broken into stages based on content. All 
levels in a given stage represent the same fractions 
content. The game starts with whole number 
representations so that students can learn how to play, and 
then advances to unit fractions, whole numbers and unit 
fractions, proper fractions, and mixed numbers. After the 
fractions content stages, the game contains a test stage 
that was intended to be an in-game measure of learning 
and a series of challenge levels. The test stage includes an 
exact replica of one level from each of the previous stages 
and the challenge levels provide complicated 

combinations of the earlier material. This study focuses 
on the mixed numbers stage, because it contains the most 
complex representation of fractions in the game. 

2.2 LOGGING 

The data from Save Patch was generated by the logging 
technique outlined in Chung and Kerr (2012). As opposed 
to most log data from educational video games that 
consists of only summary information about student 
performance, such as the number of correct solutions or a 
probability that the content is known, the log data from 
this system consists of each action taken by each student 
in the course of game play. 

However, such actions are not fully interpretable without 
relevant game context information indicating the precise 
circumstances under which the action was taken 
(Koedinger, Baker, Cunningham, Skogsholm, Leber, & 
Stamper, 2011). For this reason, each click that 
represented a deliberate action was logged in a row in the 
log file that included valuable context information such as 
the game level in which the action occurred and the time 
at which it occurred, as well as both general and specific 
information about the action itself. 

As shown in Table 2, general information is stored in the 
form of a Data Code that is unique to each type of action 
(e.g., Data Code 3000 = selecting a rope piece from the 
Path Options). Each Data Code has a unique Description, 
for human readers and for documentation purposes, that 
identifies the action type and lists the interpretation of the 
following three columns. Data_01, Data_02, and Data_03 
contain specific information about each action in the form 
of values that correspond to the bracketed information in 
the Description. For example, the third row in the table 
indicates that a rope was added (Data Code 3010) to the 
first sign (1/0 in Data_01), that the rope was a 1/3 piece 
(1/3 in Data_02), and that the resulting value on the sign 
was 1/3 (1/3 in Data_03). Additionally, the Gamestate 
records the values already placed on all signs in the level 
at the time of each action. 

Logging the data in this manner allows for the easy 
interpretation of numeric and symbolic data because all 
comparable data is stored in the same format (e.g., 1/3 
rather than .33) and because different representations of 
the same values have different interpretations in the game 
(e.g., 1/3 differs from 2/6). Additionally, the redundancy 
of carrying down each level of granularity (e.g., storing 
student ID and Level Number in each action) allows data 
to be recorded and analyzed at multiple levels without 
having to combine different datasets. This also reduces 
the negative effects of corruption and noise stemming 
from interruptions during data recording, because each 
action can be interpreted independently. Even if a given 
action is corrupted, all other actions in the level are still 
recorded correctly and each action contains all the 
information necessary for interpretation. While data 
corruption may result in missing attribute values in many 

22



 

Table 2: Example Log Data from Save Patch 

ID Level Game 
Time 

Data 
Code 

Description Data_01 Data_02 Data_03 Gamestate 

1115 14 3044.927 2050 Scrolled rope from [initial 
value] to [resulting value] 

1/1 3/3  0/0_on_Sign1 

1115 14 3051.117 3000 selected coil of [coil value] 1/3   0/0_on_Sign1 
1115 14 3054.667 3010 added fraction at [position]: 

added [value] to yield 
[resulting value] 

1/0 1/3 1/3 0/0_on_Sign1 

1115 14 3058.443 3000 selected coil of [coil value] 1/3   1/3_on_Sign1 
1115 14 3064.924 3010 added fraction at [position]: 

added [value] to yield 
[resulting value] 

1/0 1/3 2/3 1/3_on_Sign1 

1115 14 3088.886 3020 Submitted answer: clicked Go 
on [stage] – [level] 

2 3  2/3_on_Sign1 

1115 14 3097.562 3021 Moved: [direction] from 
[position] length [value] 

Right 1/0 2/3 2/3_on_Sign1 

1115 14 3106.224 4020 Received feedback: [type] 
consisting of [text] 

Success Congrat
ulations! 

 2/3_on_Sign1 

1115 14 3108.491 5000 Advanced to next level: 
[stage] – [level] 

2 4  2/3_on_Sign1 

 

other logging techniques, this is rarely the case with data 
logged in this manner because attribute values are re-
corded at the action level rather than calculated over time. 

2.3 PREPROCESSING 

The game design and logging techniques addressed a 
number of potential issues with the data, but it was still 
necessary to extract relevant features from the data. 

In this study we were interested in examining student 
performance over time. In order to create these learning 
trajectories, we needed to identify a measure of 
performance in each level of the mixed numbers stage. 
Simply calculating whether students had correctly solved 
the level was insufficient, because students could replay a 
level as many times as was necessary and students could 
not advance to the next level without solving the current 
one. Therefore, we determined that the number of 
attempts it took a student to solve each level was the best 
measure of performance. 

Attempts were not an existing feature of the log data, so 
each new attempt had to be calculated from existing 
information. We defined an attempt as all actions from the 
start of a level to either a reset of that level or advancing 
to the next level. The start of each attempt was identified 
using the following SPSS code, wherein Data Code 4010 
indicates a reset: 

If  $casenum = 1 attempt = 1. 
If  id < > lag(id, 1) attempt = 1. 

If  curr_level < > lag(curr_level, 1) attempt = 1. 
If  lag(data_code, 1) = 4010  attempt = 1. 

The first action in each attempt was then numbered 
consecutively using the following SPSS code: 

Sort Cases By attempt(D) id curr_level uber_sn. 
If  id = lag(id,1) and  attempt = 1  
and  curr_level = lag(curr_level, 1)  
attempt = lag(attempt, 1) + 1. 

Finally, the following SPSS code propagated the attempt 
number to all subsequent actions in that attempt: 

Sort Cases By id curr_level uber_sn. 
If attempt = 0 attempt = lag(attempt, 1). 

2.3.1 Data Cleaning 

Given the game design, logging technique, and pre-
processing, little additional data cleaning was required 
after the attempts were calculated. However, irrelevant 
data still needed to be identified. 

Irrelevant data in this analysis were defined as invalid 
attempts, which were attempts wherein students made no 
meaningful actions. In Save Patch, invalid attempts 
occurred largely because the student clicked reset twice in 
a row (either accidentally or due to impatience with the 
speed of the avatar) or because the student accidentally 
clicked “Go” immediately after a new level loaded (due to 
the initial location of the cursor directly above the “Go” 
button). If left in the dataset, these invalid attempts would 
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artificially inflate the number of attempts those students 
required to solve each level and thereby indicate a greater 
level of difficulty than was actually the case. 

Invalid attempts were identified and dropped using the 
following SPSS code, wherein Code_3000 was a count of 
the number of times a rope was selected in that attempt: 

Calculate DropAttempt = 0. 
If Code_3000 = 0 DropAttempt = 1. 
Select If DropAttempt = 0. 

Remaining attempts were renumbered after all invalid 
attempts were dropped. 

Additionally, a small number of students had not reached 
the portion of the game being analyzed. Approximately 
five percent of the students were dropped from the 
analysis because they had not reached the mixed numbers 
levels and therefore their learning trajectories for this 
content area could not be calculated. 

3. EXPLORATORY ANALYSIS 

Extracting the number of attempts each student required 
to solve each level reduced the dataset from over a million 
rows to only 21,713 rows of data (2,316 of which 
belonged to the subsample of students in the first 10% of 
the dataset, 413 of which occurred in the levels of 
interest). While this is too large of a volume of data for 
standard educational statistics, the data is also too small at 
this level for unsupervised, exploratory data mining 
techniques. Therefore, we decided to run some 
exploratory analyses to give us the information we would 
need to run a supervised data mining analysis. 

 

Figure 2: Mean Number of Attempts Per Level 

An initial plot of the mean number of attempts students 
required to solve each of the mixed numbers levels is 
shown in Figure 2. This graph seems to indicate that the 
second level is more difficult than the other three levels, 
but does not otherwise seem to indicate any change in 

student performance as they move through the stage. 
Even given that the first level in the stage was designed as 
a training level and was intended to be much easier than 
other levels in the stage, it is difficult to make any claims 
about increased performance over time that might indicate 
student learning occurred. However, when examining 
performance curves over time, examining only mean 
values can hide more meaningful differences in learning 
trajectories between individuals (Gallistel, Fairhurst, & 
Balsam, 2004). Therefore, we decided to examine the 
individual learning trajectories of each of the students in 
our subset by hand. 

3.1 IDENTIFYING LEARNING TRAJECTORIES 

Only the first 10% of students in the sample was selected 
for the hand clustering dataset. The remaining 90% of the 
data was retained for subsequent data mining techniques. 
The individual learning trajectories for each of these 78 
students were printed out. Similar to a hierarchical 
agglomerative clustering approach, we started with the 
first student’s trajectory in a single cluster. Each 
subsequent student’s trajectory was added to an existing 
cluster if it appeared substantively similar, or placed in a 
separate pile forming a new cluster if it appeared 
substantively different.  

 

Figure 3: Identified Types of Learning Trajectories 

The hand clustering resulted in six different groups of 
students, corresponding to six different types of learning 
trajectories (see Figure 3). The first type of learning 
trajectory demonstrated increasingly worse performance 
throughout the stage. In each consecutive level, these 
students (Steady Worse) took as many or more attempts 
to solve the level than they had required to solve the 
previous level. The second type of learning trajectory 
(Unsteady Worse) also demonstrated poorer performance 
later in the stage, but performed better on the third level in 
the stage than they had on the second level in the stage, 
resulting in a more ragged uphill trajectory.  

The third type of learning trajectory (Better) performed 
consistently better on each of the last three levels of the 
stage, and the fourth type of learning trajectory (Better To 
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Figure 4: Student Learning Trajectories by Type 

1) improved consistently better on the last three levels to 
the point that they solved the final level in their first 
attempt. The fifth type of learning trajectory (Slip From 1) 
solved all levels in the stage on their first attempt, except 
for one level which they took two attempts to solve. The 
sixth type of learning trajectory (Stay At 1) solved all 
levels in the stage on their first attempt, making no 
mistakes at all. 

The individual learning trajectories for each student are 
plotted in Figure 4. The top three graphs represent (from 
left to right) students in the Steady Worse, Unsteady 
Worse, and Better learning trajectory types. The bottom 
three graphs represent students in the Better To 1, Slip 
From 1, and Stay At 1 learning trajectory types. 

3.2 FINDING DIFFERENCES 

In order to determine whether the learning trajectories 
were substantively different, and therefore worth further 
analysis, a number of exploratory ANOVAs were run  

Students in the six different learning trajectory types 
differed significantly on both prior knowledge measures: 
the pretest score (p < .001) and prior math grades (p = 

.024). Slip From 1 and Stay At 1 had the highest mean 
pretest scores (4.42 and 4.22 respectively) and Unsteady 
Worse had the lowest (1.17). Similarly, Slip From 1 had 
the highest mean prior math grades (1.0 where 1 is an A) 
and Unsteady Worse and Better had the lowest (2.17 and 
2.50 respectively). See Table 3 for results. 

The learning trajectory types also differed significantly on 
in-game performance measures. There were significant 
differences between types in the percent of game levels 
completed (p < .001), but not the time they spent playing 
(p = .889), with Slip From 1 and Stay At 1 having the 
highest mean percentage of levels completed (84% and 
87% respectively) and Better having the lowest (65%). 

There were also significant differences in the percentage 
of students in the group solving the mixed numbers test 
level in their first attempt (p < .001) and in improvement 
between their performance on the corresponding level in 
the mixed numbers stage and the test level (p < .001). All 
students in Slip From 1 solved the mixed numbers test 
level on their first attempt (as did 82% of Stay At 1 
students). Only 20% of Unsteady Worse, and none of the 
Better students, solved the mixed numbers test level on 
their first attempt. However, the Better, Better To 1, and 
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Table 3: ANOVA Results 

MEASURE SIGNIFICANCE BEST MEANS WORST MEANS 

Pretest Score  p < .001 Slip From 1 (4.42) 
Stay At 1 (4.22) 

Unsteady Worse (1.17)  

Prior Math Grades  p = .024 Slip From 1 (1.0)  Unsteady Worse (2.17) 
Better (2.50)  

Number of Game Levels Completed  p < .001 Stay At 1 (87%) 
Slip From 1 (84%)  

Better (65%)  

Time Spent Playing  p = .889 no difference  no difference  
Solved Test Level on First Attempt  p < .001 Slip From 1 (100%) 

Stay At 1 (82%)  
Unsteady Worse (20%) 
Better (0%)  

Improve on Test Level  p < .001 Better (3.18) 
Unsteady Worse (2.80) 
Better To 1 (2.48)  

Know (-0.18) 
Worse (-0.80)  

Immediate Posttest p = .012 Stay At 1 (5.78) 
Slip From 1 (5.50) 

Unsteady Worse (2.71) 

Delayed Posttest p = .010 Stay At 1 (5.84) 
Slip From 1 (4.75) 

Unsteady Worse (2.82) 

Self-Belief in Math Before the Game p = .221 no difference  no difference  
Self-Belief in Math After the Game p = .022 Stay At 1 (3.44) 

Slip From 1 (3.21)  
Steady Worse (2.57) 
Unsteady Worse (2.33) 

 

Unsteady Worse students all showed improvement 
between the corresponding level in the stage and the test 
level, taking an average of 3.18, 2.48, and 2.80 fewer 
attempts respectively to solve the test level. 

Students in the different learning trajectory types also 
differed significantly on the immediate posttest (p = .012) 
and delayed posttest (p = .010), retaining most of the 
significant differences present in the pretest measures. As 
with the pretest, Slip From 1 and Stay At 1 had the 
highest mean immediate posttest scores (5.50 and 5.78 
respectively) and delayed posttest (4.75 and 5.84), and 
Unsteady Worse had the lowest immediate posttest (2.71) 
and delayed posttest (2.82). However, the learning 
trajectory types also differed in their self-belief in math 
after the game (p = .022), though there was no significant 
difference before the game (p = .221). Slip From 1 and 
Stay At 1 had highest self-belief in math after the game 
(3.21 and 3.44 respectively), followed by Better and 
Better To 1 (3.07 and 2.82 respectively), with Steady 
Worse and Unsteady Worse having the lowest self-belief 
in math (2.57 and 2.33 respectively). 

4. NEXT STEPS 

Now that the six different learning trajectory types have 
been identified and evidence exists that the differences 
between the groups are substantive, the next step in our 
research is to test different cluster analysis techniques to 

determine which one best classifies students into these 
groups.  

However, the accuracy of a cluster analysis technique 
depends, at least in part, on the appropriateness of the 
attributes used to create the distance matrix it operates on. 
There are three possible sets of attributes that might be 
used. First, the learning trajectories could be seen as 
splines. In this case, the attribute set would consist of the 
spline values, initial values, and ending values of each 
trajectory.  

On the other hand, it might be more appropriate to treat 
the learning trajectories as a series of connected line 
segments. In this case, the attribute set would consist of 
the initial value, slope, and ending value of each line 
segment in each learning trajectory.  

However, examination of the learning trajectories plotted 
in Figure 4 indicate that the value of each point may not 
be as important in determining which cluster a given 
learning trajectory falls in as the general shape of the 
trajectory. In this case, the attribute set would consist of a 
binary indicator of whether or not the initial value of each 
line segment was 1 or more than 1, a binary indicator of 
whether or not the ending value of each line segment was 
1 or more than 1, and a set of binary indicators of whether 
the slope of each line segment was positive, negative, or 
neutral. These three options are summarized below. 
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1. Splines: initial value, spline values, ending value 
2. Line Segments: initial value, slope, ending value 
3. Binary Line Segments: initial value of 1 or more than 

1, positive, negative, or neutral slope, ending value of 
1 or more than 1 

The distance matrix created from each of these three 
attribute sets will be fed into a hierarchical, partitioning, 
and fuzzy clustering algorithm. This will result in nine 
clustering techniques. Each of these clustering techniques 
will be run over the 10% of students whose learning 
trajectories have already been hand clustered in order to 
determine which technique best classifies the students.  

Once the best clustering technique has been identified, it 
will be used to classify the remaining 90% of students in 
the sample into the learning trajectory type which best 
describes their in-game performance. Then a MANOVA 
will be run to determine which learning trajectory types 
differ on which measures across the entire sample (as 
opposed to the 10% reported in Table 3). If differences 
are found, the clustering technique could then be used 
(without requiring additional manual analysis) on attempt 
data from other stages in Save Patch, other Save Patch 
data collections, or other stages in similar games. 

5. DISCUSSION 

The logging technique used in this study resulted in a 
dataset that eased preprocessing and feature extraction. 
Additionally, the hand clustering led to the identification 
of six different types of learning trajectories who differed 
substantively on measures of prior knowledge, in-game 
performance, and posttest performance. 

Perhaps the most interesting types of learning trajectories 
are the Better To 1, Better, and Unsteady Worse types. 
These trajectories appear to identify the potential learners 
for a given game, students who don’t know the material 
but are capable of learning from the game play. In 
contrast, the Stay At 1 and Slip From 1 trajectory types 
seem to identify students who already know the material 
and the Steady Worse trajectory type seems to identify 
students who do not know the material and are not 
learning from the game.  

The results of this study seem to indicate that using data 
mining techniques to cluster learning trajectories would 
be a worthwhile endeavor, as the different clusters appear 
to correspond to substantively different groups of 
students. If the data mining results support the results of 
this study, it would not only support claims that 
educational video games and simulations can be used as 
stand-alone measures of student knowledge, but also 
provide the designers of those games with the information 
about which students’ needs are being met by the game. 

However, it is possible that the findings of this study will 
not be supported by the data mining. This is only partially 
because the data mining might classify students 
differently than the hand clustering, and is mostly due to 

the fact that the small sample size in the hand clustered 
subset combined with the use of multiple ANOVAs rather 
than a single MANOVA might have identified some 
differences between learning trajectory types that 
occurred merely by chance. Currently, this study 
represents a promising process for analyzing data from 
educational video games, but the specific findings about 
performance should not be considered definitive without 
support from further studies. 
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Abstract
An approach focused on inferring probabilis-
tic narratives from personal artifacts (in-
cluding photographs) is presented in this
work using personal photos metadata (times-
tamp, location, and camera parameters), for-
mal event models, mobile device connec-
tivity, external data sources and web ser-
vices. We introduce plausibility measure —
the occurrence-likelihood of an event node in
the output graph. This measure is used to
find the best event among the merely pos-
sible candidates. In addition, we propose a
new clustering method that uses timestamp,
location, and camera parameters in the EXIF
header of the input photos to create event
boundaries used to detect events.

1 INTRODUCTION
The technology of current smart phones comes with
multiple sensors like camera, and GPS, which enables
the device to record time, GPS location, and camera
parameters with the photo’s EXIF header. There is
a high-demand for searching through personal photo
archives to relive the events evidenced by the pho-
tos. Annotating personal artifacts with expressive tags
supports this demand. We propose a technique that
automatically creates a context-aware event graph by
combining event models with contextual information
related to personal photos and information, and het-
erogeneous data sources. Our technique automatically
computes the occurrence-likelihood for the event nodes
in the output graph; we refer to this value as plausi-
bility measure. Events are key cues to recall personal
photos (Naaman,2004); they can be used to create
searchable description metadata for them. Events, in
general, are structured and their subevents have rel-
atively more expressive power (Rafatirad, 2009), e.g.,
the event Giving a Talk is more expressive than its
superevent, Professional Trip. In addition, instance
events are contextual and should be augmented with

context cues (like place, time, weather). This makes
instance events more expressive than event types. For
example, the instance event Giving a Talk at UCF at
most two hours before meeting with Ted on a windy
day is far more expressive than the event type Giv-
ing a Talk. We define flexible expressiveness as fol-
lows: a) multi-granular conceptual description: pro-
vides conceptual hierarchy in multiple levels using con-
tainment event relationships e.g. subevent-of, subClas-
sOf; b) multi-context adaptation of conceptual descrip-
tion: adapts a concept to multiple contextual descrip-
tions (e.g., event type visit-landmark may have two in-
stances; one instance associated with Forbidden City
and the other to Great Wall of China). Consider the
following example: A person takes a photograph at
an airport less than 1 hour after his flight arrives. To
explain this photograph, we first need the background
knowledge about the events that generally occur in
the domain of a trip. These semantics can only come
from an event-ontology that provides the vocabulary
for event/entity and event relationships related to a
domain. An event-ontology allows explicit specifica-
tion of models that could be modified using context in-
formation to provide very flexible models for high-level
semantics of events. We refer to this modification as
Event Ontology Augmentation or EOA. It constructs a
more robust and refined version of an event-ontology
either fully or semi-automatically. Secondly, given the
uncertain metadata of a photo (like GPS that is not
always accurate), the event type that the photo wit-
nesses is not decisive; it might either be rent a car,
or baggage claim that are two possible conclusions —
sometimes no single obvious explanation is available,
but rather, several competing explanations exist and
we must select the best one. In this work, reasoning
from a set of incomplete information (observations) to
the most related conclusion out of all possible ones
(explanations) is performed through a ranking algo-
rithm that incorporates the plausibility measure; this
ranking process is used in EOA.
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Problem Formulation

We assume that every input photo has context in-
formation (specifically, timestamp, location, and cam-
era parameters) and a user/creator. Each photo be-
longs to a photo stream P of an event with a basic
domain event-ontology O(V,E) whose nodes (V ) are
event/entity classes, and edges (E) are event/entity
relationships, handcrafted by a group of domain ex-
perts. We assume that there is a bucket (B) in which
external data sources are represented with a schema.
The sources in B can be queried using the metadata
of the input photographs and information about the
associated user. Given P , B, O, and information asso-
ciated to the user, how does one find the finest possible
event tag that can be assigned to a photo or a group
of similar photographs in P?
Solution Strategy: We propose Event Ontology Aug-
mentation (EOA) technique described as follows: se-
lect a relevant domain event ontology O(V,E) through
the information related to both the user and P . Us-
ing P , B, O, and the user information, infer S that
consists of the best relevant subevent categories to P
where S ⊆ V . An event category in S is the most
plausible one among other competing candidates that
have failed to be selected. For each competing candi-
date si, a plausibility measure mp

ij is calculated using
function f to rank si and indicate how much it is rele-
vant to cj such that cj ⊂ P and cj is a group of similar
photographs: f(si, cj) = mp

ij . Next, augment S us-
ing the information from B to obtain expressive event
tags T . We define an event tag tei ∈ T as a subevent
of an event that either exists in O, or can be derived
from O such that tei is the finest subevent tag that
can be assigned to a group of similar photos. Also, if
tei is an assignable tag to any photo, and tei does not
exist in O, we intend to augment O by adding tei to
O using the shortest composition path such that the
constraints governing O are preserved. Simply put,
the final step is adding T to O by preserving the rules
that govern O if T 6∈ O. The output is an extension
to O that is referred as Or. We argue that Or (see fig
1) can be used for an event recognition task in photo
annotation applications. The key insight in our pro-
posed approach is to infer event characteristics from
the image metadata, information about the user, on-
tological event model, mobile device connectivity, web
services, and external data sources. We argue that
attribute values related to an inferred event need to
be obtained, refined, and validated as much as possi-
ble to create very expressive and reliable metadata for
digital photographs and facilitate image search and re-
trieval. Fig 4 depicts the processing components of our
proposed approach in the context of personal photo
annotation. Several event semantics are utilized in
this work like spatiotemporal attributes/constraints of

events, subevent structure, and spatiotemporal prox-
imity. Unlike machine learning approaches that are
limited to the training data set and require an ex-
tensive amount of annotation, we propose a technique
in which existing knowledge sources are modified and
expanded with context information in personal data
sources (like Google Calendar, and social interactions),
public data sources (like public event/weather direc-
tories, local business databases), and digital media
archives (like personal photographs). With this knowl-
edge expansion, new infrastructures are constructed to
serve relevant data to communities. Event tags are
propagated with event title, place information (like
city, category, place name), time, weather, etc. Our
proposed technique provides two unique key benefits
as follows: 1) A sufficiently flexible structure to ex-
press context attributes for events such that the at-
tributes are not hardwired to events, but rather they
are discovered on the fly. This feature does not limit
our approach to a single data set; 2) leveraging context
data across multiple sources could facilitate building a
consistent, unambiguous knowledge base.

Figure 1: An Example of Augmented Event Ontology.

EOA has several challenges: a) we need a language
that can model different types of entity properties and
relationships related to a domain. OWL is widely used
for developing ontologies. However, this language is
limited in terms of its capability of describing the se-
mantics of events. A major challenge is to create an ex-
tension of OWL and provide the grammar for that ex-
tension; b) collecting and combining information from
multiple sources is a daunting task. It needs a general
mechanism to automatically query sources and rep-
resent the output. It also needs a validation mech-
anism to ensure the coherency of the obtained data;
c) currently, publicly available benchmark data sets
such as those offered by TRECVid do not suit the pur-
pose of this research (they deal with low level events
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i.e.,activities). However, higher-level events have rela-
tively more contextual characteristics; d) according to
the useful properties of photoset, relevant event cat-
egories in the model must be discovered. This paper
is organized as follows: in section 2, we review the
prior art for annotating photos; in section 3 we explain
our clustering method; in section 4 and 5, our solu-
tion strategy is explained; followed by section 6 that
demonstrates our experiments, and section 7 which is
the conclusion.

2 RELATED WORK

The important role of context in image retrieval is
emphasized in (Datta, 2008) and (Jain, 2010). Con-
text information and ontological event models are used
in conjunction by (Viana, 2007,2008), (Fialho, 2010).
(Cao, 2008) presents an approach for event recognition
in image collections using image timestamp, location,
and a compact ontology of events and scenes. In this
work, event tags do not address the subevents of an
event. (Liu, 2011) reports a framework that converts
each event description from existing event directories
(like Last.fm) into an event ontology that is a minimal
core model for any general event. This approach is not
flexible to describe domain events (like ’trip’) and their
structure (like ’subevent’ structure). (Paniagua, 2012)
propose an approach that builds a hierarchy of events
using the contextual information of a photo based on
moving away from routine locations, and string anal-
ysis of English album titles (annotated by people) for
public web albums in Picasaweb. The limitations of
this approach are: 1) human-induced tags are noisy,
and 2) subevent relationship is more than just spa-
tiotemporal containment. For instance, albeit a ’car
accident’ may occur in the spatiotemporal extent of
a ’trip’, it is not part of the subevent-structure of the
’trip’. According to (Brown, 2005), events form a hier-
archical narrative-like structure that is connected by
causal, temporal, spatial and subevent relations. If
these aspects are carefully modeled for events, they
can be used to create a descriptive knowledge base
for interpreting multimedia data. The importance of
building event hierarchies is also addressed in (Rafati-
rad, 2009) where the main focus is on the issues of
event composition using the subeventOf relationship
between events. In (Rafatirad, 2011), an image an-
notation mechanism is proposed that exploits context
sources in conjunction with subevent-structure of an
event. The limitation of this approach is no matter
how much an event category is relevant to a group of
photos in a photo stream, it is used in photo anno-
tation. As a result of this operation, the quality of
annotation degrades.

3 CLUSTERING
We consider two images to be similar if they belong to
the same type of event. Partitioning a photo stream
based on the context of its digital photographs can cre-
ate separate event boundaries for the photos related
to one event (Pigeau, 2005). An event is a tempo-
ral entity. However, using time as the only dimension
in clustering means ignoring other context semantics
about events. Much better results can be obtained
with time and location information. (Gong, 2008) pro-
pose a framework for photo stream from single user
that applies hierarchical mixture of Gaussian models
based on context information including time, location,
and optical camera parameters (such as ISO, Focal
Length, Flash, Scene Capture Type, Metering Mode,
and Subject Distance). In photos, optical camera pa-
rameters provide useful information related to the en-
vironment at which an event occurs, like ’indoor’, ’out-
door’, and ’night’ (Sinha, 2008). We propose an ag-
glomerative clustering that partitions a photo stream
hierarchically according to the context information of
photos, specifically timestamp, location, and Optical
Camera Parameters (OCP). Agglomerative clustering
has several advantages; it is (a) fully unsupervised,
(b) applicable to any attribute types, and (c) clus-
ters can be formed flexibly at multiple levels (from
coarser to finer). In general, larger events like ’trip’
are often described using spatiotemporal characteris-
tics whereas the subevent structure is limited by space
and time. However, the depth of a spatiotemporal
agglomerative clustering dendrogram can be extended
using OCP to refine the precision of the clusters. Our
clustering approach is described as follows: primarily,
a photo stream is partitioned using timestamp, gps-
latitude, and gps-longitude; the blue cluster structure
in Fig 2, referred as ST-cluster tree, shows the output
for this stage of the clustering. Next, for each ST-
cluster in the blue structure, its content is partitioned
based on OCP to create ST-OCP cluster tree. The or-
ange structure in fig 2 shows the output of this stage.
Although the orange hierarchy extends the blue one,
it is important to know that these two structures are
orthogonal to each other. We refer to this approach
as ST-OCP Agglomerative Clustering. We asked 20
people (including the owner of photos, the people in
the photos, and third party judges) to relatively assign
a number to the result of each clustering experiment
between the range of 0 to 6 based on the event bound-
aries produced by our clustering approach. This ex-
periment was conducted on 30 different photo streams
captured in different cities inside US. Our technique
did a better job compared to the other agglomera-
tive clustering approaches in terms of providing coarser
and finer precision for event and subevent boundaries.
We compared the dendrograms of ST (location and
time), ST-OCP (our approach), OCP, and STOCP

31



clustering (in which location and time and OCP at-
tributes are used together in the distance function).
The arrangement of clusters depends on the image at-
tributes used in the clustering. The photos are sorted
in chronological order. Image content features are
not used in these cluster arrangements. The equation
’OCP ≺ S ≺ T ≺ STOCP ≺ ST ≺ ST − OCP ’ shows
that the arrangement of clusters improved from left to
right — S and T, respectively, mean that agglomera-
tive clustering is conducted using the location, and the
timestamp attributes of photos. We used single link-
age clustering and Euclidean distance in our clustering
technique. However, one can use other approaches and
refine the results.

Figure 2: ST-OCP Agglomerative Clustering.

4 EOA
We present the observations with a set of descriptors.
Each descriptor is a formula for a photo or a cluster —
a cluster is a group of contextually similar photos. In
this section, we show that it is feasible to go from a set
of descriptors D to the best subevent category, when
the following conditions are satisfied: (a) the descrip-
tors in D are consistent among themselves, (b) the de-
scriptors in D satisfy subevent categories, (c) axioms
of a subevent category are consistently formulated in
an event ontology, and (d) the inferred subevent cate-
gories are sound and complete.

4.1 EVENT MODEL
We use a basic derivation of E* model (Gupta, 2011)
as our core event model, to specify the general relation-
ships between events and entities. Specifically, we uti-
lized the relationships subeventOf, which specifies the
event structure and event containment. The expres-
sion e1 subeventOf e2 indicates that e1 occurs within
the spatiotemporal bounds of e2, and e1 is part of
the regular structure of e2. Additionally, we used the
spatiotemporal relationships like occurs-during and
occurs-at to specify the space and time properties of
an event. The time and space model in this work
is mostly derived from E*. We use the relationships
co-occurring-with, and co-located-with, spatially-near,
temporal-overlap , before, and after to describe the
spatiotemporal neighborhood of an event. We used
several other relationships to describe additional con-
straints about events (e.g., e1 has-ambient-constraint

A, and A has-value indoor). To express a certain
group of temporal constraints, we utilized some of
Linear Temporal Logic, Metric Temporal Logic, and
Real-Time Temporal Logic formulas (Koymans, 1990),
(Alur, 1991). We developed a language L with a syn-
tax and grammar as an extension to OWL to embrace
complex temporal formulas. Further, we extended the
language to support a combination of classical propo-
sitional operators, linear spatial constraints, and spa-
tial distance functions which can not be expressed in
OWL; equation feucDist(e1, e2,@ ≤ 100) shows a rel-
ative spatial constraint in L, which states the event
e1 occurs at most 100 meters away from the place at
which event e2 occurs.

Domain Event Ontology
A domain event ontology provides specialized taxon-
omy for a certain domain like trip, see fig 3. The Mis-
cellaneous subevent category in this model is used to
annotate the photos that are not matched with any
other category. The general vocabulary in a core event
model is reused in a domain event ontology. For in-
stance, Parking in fig 3, is a subClassOf of Occurrent
(or event) concept in the core event ontology. Also,
relationships like subeventOf are reused from the core
event ontology. We assume that domain event ontolo-
gies are handcrafted by a group of domain experts.

4.2 DESCRIPTOR REPRESENTATION
MODEL

We represent a descriptor using the schema in script
{typed : valued, confidenced : val}, in which typed,
valued, and val indicate the type, value,and certainty
(between 0 and 1) of the descriptor, respectively. For
instance, the descriptor {Flash : ‘off ‘, confidence :
1.0} for a photo, states that the flash was off when
the photo was captured with 100% certainty. Photo
and cluster descriptors follow the same representation
model, however the rules for computing the value of
confidenced are different. We will describe these rules
in the following paragraphs. The descriptor model of
a cluster includes two fields in addition to that of a
photo: plausibility-weight ≥ 0 , and implausibility-
weight < 0. Later, we will explain the usage of these
fields. All descriptors are either direct or derived. For
photo descriptors, by convention, we assume that a di-
rect descriptor is straightly extracted from the EXIF
metadata of a photo, and its confidence is 1, as in the
above example. The direct descriptors that we used
in this paper are related to time, location, and opti-
cal parameters of photos like GPSLatitude ,GPSLon-
gitude , Orientation, Timestamp, and ExposureTime.
For a derived descriptor like {sceneType : ‘indoor‘,
confidence : 0.6}, the descriptor value ‘indoor‘ is com-
puted using direct descriptors like Flash, through a se-
quence of computations that extract information from
a bucket of data sources. Some of these descriptors are
PlaceCategory1, and HoursOfOperation2. The confi-
dence score is obtained from the processing unit used

1
The nearest local business category to a photo’s location.

2
The hours during which a local business is open.
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to compute the descriptor value — we developed sev-
eral information retrieval algorithms for this purpose
including the tools in our lab (Sinha, 2008). If a de-
scriptor value is directly extracted from an external
data source, confidenced is equal to 1. Direct descrip-
tors of a cluster must represent all photos contained
in it; some of these descriptors represent boundingbox,
time-interval, and size of the cluster. The confidence
value for direct descriptors is equal to 1, for instance,
the descriptor {size : 5, confidenced : 1.0} indicates
the number of photos in a cluster. Given a photo pi
in a photo stream P , and the cluster c that groups pi
with the most similar photos in P , a processing unit
produces the descriptors of c using the descriptors of
the photos in c, and more importantly, this process is
guided by the descriptors of pi. Every photo in c must
support every derived descriptor of pi; such cluster is
referred as a sound cluster for pi, and the derived de-
scriptors for c are represented by the distinct union of
the derived descriptors of the photos in c. For a de-
rived cluster descriptor d, the value of confidenced is
calculated using the formula in equation 1, in which
|c| is the size of the cluster, pj is every photo in c that
is represented by d, and g(pj , d) gives the confidence
value of d in pj . To find a sound cluster for a photo,
the hierarchical structure that is produced by the clus-
tering unit, is traversed using depth-first search — the
halting condition for this navigation, if no sound clus-
ter was found, is when current cluster is a leaf node.

confidenced =
1

|c|
×

∑
g(pj , d) (1)

Descriptor Consistency
Consistency among a set of descriptors is a manda-
tory condition to infer the best possible conclu-
sion from it. We make sure that consistency ex-
ists among the descriptors of a photo as well as
the descriptors of a cluster, using entailment rules
described below. (a) vi → vk: if vi implies vk,
then the rules for vk must also be applied to vi.
This is referred as transitive entailment rule. For
instance, suppose a photo/cluster has the following
description, ′outdoorSeating : true′ ; ′sceneType :
outdoor′; ′weatherCondition : storm′, which implies
that the nearest local business (e.g. restaurant) to the
photo/cluster, offers outdoorSeating, and the weather
was stormy when the photo(s) were captured. Given
the sequence of rules below,
outdoorSeating ∧ outdoor → fineWeather; fineWeather → ¬storm

rule outdoorSeating ∧ outdoor → ¬storm is entailed that
indicates an inconsistency among the descriptors of a
photo/cluster. (b) vi → funcremove(vk): vi implies
removing the descriptor vk. This is referred as a de-
terministic entailment rule. (c) vi∧vk → truth value:
rules of this type are referred as non-deterministic en-
tailment rules in which the inconsistency is expressed
by a false truth value e.g. closeShot ∧ landscape →
false. In that case, further decisions on keep-
ing,modifying, or discarding either of the descriptors
vi or vk will be based on the confidence value as-
signed to each descriptor — this operation is referred
as update, which is executed when an inconsistency oc-
curs between two candidate descriptors. The following
rules are used by this process: (a) for two descriptors

with the same type, the descriptor with lower confi-
dence score is discarded, (b) for two descriptors with
different types, the one with lower confidence score
gets modified until the descriptors are consistent. The
modification is defined as either negation or expan-
sion within the search space. In case of negation, e.g.
¬outdoor → indoor, the confidence value for indoor
descriptor is calculated by subtracting the confidence
value of outdoor descriptor from 1. An example of ex-
pansion is increasing a window size to discover more
local businesses near a location. To avoid falling in-
side an infinite loop, we limit the count of negation,
and the size of search space during expansion, by a
threshold. We assign null to the descriptor that has
already reached a threshold and is still inconsistent.
null is universally consistent with any descriptor. The
vocabulary that is used to model the descriptors for
a photo/cluster is taken from the vocabulary that is
specified in the core event model.

4.3 BUCKET OF DATA SOURCES
We represent each data source with a declarative
schema, using the vocabulary of the core event model.
This schema indicates the type of source output, as
well as the type of input attributes a source needs to
deliver the output. Data sources are queried using the
SPARQL language. The following script shows an ex-
ample used to query a source; var1 is a query variable
(output that must be delivered by the source); attr1

is the input attribute of the source; classw indicates a
class type, and rela indicates a relationship. The class
types and relationships used in such queries are con-
structed using the vocabulary of the core event model.
SELECT ?var1 FROM < SourceURI > WHERE{
attr1 core : typeOf classw; var1 core : typeOf classu;

?var1 core : rela ?x; ?x core : relb ?y; ?y core : reld attr1. }

The above query is constructed automatically using
the schema of data sources, and the available infor-
mation. Simply put, a source is selected if its input
attributes match the available information I. At ev-
ery iteration, I is incrementally updated with new data
that is delivered by a source. The next source is se-
lected if its input attributes are included in I. This
process continues until no more source with matching
attributes is left in the bucket B.

4.4 EVENT INFERENCE
From a set of consistent cluster descriptors (observa-
tions), we developed an algorithm to infer the most
plausible subevent category described in a domain
event ontology. This algorithm, uses the domain event
model, which is a graph; we represent this graph
with the notation O(V,E) in which V includes event
classes, and E includes event relationships. Travers-
ing the event graph O starts with the root of hierar-
chical subevent structure. The algorithm visits event
candidates in E through some of the relationships
in E like subeventOf, co-occurring-with, co-located-
with, spatially-near, temporal-overlap, before, and af-
ter — these relationships help to reach other event
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Figure 3: An event ontology for the domain professional trip.

candidates that are in the spatiotemporal neighbor-
hood of an event. An expandable list, referred as
Lv, is constructed from E, to maintain the visited
event/subevent nodes during an iteration i — if an
event is added to Lv, it cannot be processed again
during the extent of i. At the end of each iteration,
Lv is cleared. In every iteration, the best subevent
category is inferred through a ranking process, from
a set of consistent observations. We introduce Mea-
sure of Plausibility (mp

ij) to rank event candidates,
and find the most plausible subevent category. We
compute mp

ij using 2 parameters (a) granularity score

(wg), and (b) plausibility score (wAX). wg is equiv-
alent to the level of the event in the subevent hierar-
chy in the domain event ontology. To compute wAX ,
we used ’plausibility-weight’ (w+) and ’implausibility-
weight’ (w−) which are two fields of a cluster descrip-
tor. The value of w+ is equal to the confidence value
assigned to a descriptor, and the value of w− is equal
to −w+. If a descriptor could not be mapped to any
event constraint, wAX remains unchanged. If a de-
scriptor with w+ = α satisfies an event constraint,
then w+ is added to wAX , otherwise, w− is added to
wAX (i.e., wAX = wAX−α). The only exception is for
the cluster descriptors time-interval and boundingbox;
if either one of these descriptors satisfies an explana-
tion, then w+ = 1; in the opposite case, w− ≤ −100
— when a cluster has no overlap with the spatiotem-
poral extent of an event si, w

− ≤ −100 makes si the
least plausible candidate in the ranking. According to
the formula in 4.4, wAX also depends on the fraction
of satisfied event constraints; N is the total number of
constraints for an event candidate.

wAX =
1

N

∑
w

j
AX , 1 ≤ j ≤ N (2)

The following instructions are used to compare two
event candidates e1 and e2: when e1 is subsumed by e2,
mp

ij for each event candidate is normalized using the
formula in equation 3, in which ei ≡ e1 and ej ≡ e2,
otherwise, ei.m

p
ij = ei.wAX . The candidate with the

highest mp
ij is the most plausible subevent category.

ei.m
p
ij =

ei.wAX

max(ei.wAX , ej .wAX)
+

ei.wg

max(ei.wg, ej .wg)
(3)

When a subevent category is inferred from a set of
observations, it will not be considered again as a can-
didate for the next set of observations. Event inference
halts if no more subevent category is left to be inferred
from the domain event ontology.

4.5 REFINEMENT, VALIDATION,
EXTENSION

The inferred subevent categories E′ are refined with
the context data extracted from data sources in the
bucket B, through the refinement process. First, let
us elaborate this process by introducing the notion of
seed event, which is an instance of an inferred cate-
gory in E′, which is not yet augmented with informa-
tion. An augmented seed-event is an expressive event
tag. The seed-event is continuously refined with infor-
mation from multiple sources. Our algorithm uses a

Figure 4: The Big Picture. Photos and their metadata are stored in
photo-base and metadata-base respectively. Using user info, includ-
ing events’ type, time, and space in a user’s calendar, a photo stream
is queried, and its metadata is passed to clustering. In descriptor
validation, a set of consistent descriptors is obtained from the clus-
ter that best represents an individual photo — the component event
inference uses these descriptors in addition to a domain event ontol-
ogy that is selected according to user info. EOA derives the most
relevant subevent categories to the input photo stream, and refines
the derived categories by propagating their instances with the in-
formation extracted from data sources. The subevent tags are then
validated using external sources. These tags are added to the event
ontology (extension) — the extended event ontology is used in fil-
tering that integrates visual concept verification tool. In this stage,
first, irrelevant cluster branches are pruned. Next, for each matched
cluster, less relevant photos to a subevent tag are filtered. The out-
put is a set of photos labeled with some tags; these tags are then
stored as new metadata for the photos. The remaining photos are
tagged as miscellaneous.

similar strategy to what we described earlier in sub-
section 4.3. The only difference is that the attributes
of a data source at each iteration is supplemented by
the user information and the attributes of a seed-event
(I) that is represented with the same schema that is
described in the event ontology. Given a sequence of
input attributes, if a data source returns an output-
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array of size K, then our algorithm creates K new
instances of events with the same type as in the seed-
event, and augments them with the information in the
output-array. The augmented seed-events are added
to I for the next iteration; I is constantly updated un-
til all the event categories in E′ are augmented, and/or
there is no more data source (in the bucketB) to query.
To avoid falling into an infinite loop of querying data
sources, we set the following condition: a data source
cannot be queried more than once for each seed-event.
We defined some queries manually that are expressed
through the relative spatiotemporal relationships in
the event ontology, and the augmented seed-events;
these queries are used to augment the seed-events with
relative spatiotemporal properties. When a seed-event
gets augmented with information, our technique val-
idates the event tag by using the event constraints,
augmented event attributes, and a sequence of entail-
ment rules that specify the cancel status for an event.
For instance, if the weather attribute for an event is
heavy rain, and the weather constraint fine weather
is defined for an event, then the status of the event
tag becomes canceled. After the validation, event tags
are added to the domain event ontology by extending
event classes through typeOf relationship. This step
produces an augmented event ontology that is the ex-
tended version of the prior model (see fig 1).

5 FILTERING
Filtering is a two-step process; (1) redundant and irrel-
evant clusters are pruned from the hierarchical cluster
structure produced by the clustering component, see
fig 5-step-1. Equation 4 describes the prune-rule, and
match-rule in this step. traverse-rule in equation 4 is
used to visit cluster nodes— c implies cluster.

¬InsideST (tage , c)→ Prune(c). (4)

InsideST (c , tage)→Match(c, tage). (5)

InsideST (tage, c) ∧ hasChild(c)→ Trvs(c.child). (6)

(2) filter redundant photos from the matched cluster,
see fig 5-step-2. This is accomplished by applying the
context and visual constraints of the expressive tag
that is matched to the cluster. We used a concept ver-
ification tool3 to verify the visual constraints of events
using image features. This tool uses pyramids of color
histogram and GIST features. Filtering operation is
deeply guided by the expressive tags. During this op-
eration, subevent relations are used for navigating the
augmented event model.

6 EXPERIMENTAL EVALUATIONS
We focused on 3 domain scenarios vacation, profes-
sional trip, and wedding.

6.0.1 Experimental Data Set

We crawled Flickr, Picasaweb, and our lab data sets.
Based on the assumption that people store their per-

3
http://socrates.ics.uci.edu/Pictorria/public/demo

Figure 5: Filtering Operation.

sonal photos according to events,we collected the data
sets based on time, space, and event types (like travel,
conference, meeting, workshop, vacation, and wed-
ding). We developed some crawlers to download about
700 albums of the day’s featured photos. In addition,
we crawled photo albums uploaded since the year 2010;
the reason was that most of the older collections did
not contain geo-tagged photos. After 4 months, we col-
lected 84,021 albums (about 6M photos) from which
only 570 albums (about 60K photos) had the required
EXIF information containing location, timestamp, and
optical camera parameters. We ignored the albums a)
smaller than 30 photos, b) with non-English annota-
tions. The average number of photos per album was
105. We used the albums from the most active users
based on the amount of user annotation; we ended
up with a diverse collection of 20 users with heteroge-
neous photo albums in terms of time period and ge-
ographical sparseness. The geographic sparseness of
albums ranged from being across continents, to cities
of the same country/state. Some of the users return to
prior locations, and some do not. Fig 6 sketches the
geographic distribution of our data set. We noticed
that data sources do not equally support all the ge-
ographic regions; for instance,only a small number of
data sources supported the data sets captured inside
India. The photos for vacation/professional-trip do-
mains have higher temporal and geographical sparse-
ness compared to photos related to wedding domain.
The number of albums for vacation domain exceeds
the other two.

6.0.2 Experimental Set-Up

We picked the 4 most active users (based on the
amount of user annotation) from our non-lab, down-
loaded data set, and 2 most active users from our lab
data set (based on the number of collections they own).
As ground-truth for the lab data set, we asked the
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Figure 6: Data set geographical distribution. The black bars show
the number of albums in each geographic region, and the gray bars
show the number of data sources that supported the corresponding
geographic region.

owners to annotate the photos using their personal
experiences, and an event model that best describes
the data set, while providing them with three domain
event ontologies (wedding, professional trip, and va-
cation). For the non-lab data set, the ground truth
provides a manual and subjective event labeling done
by the very owner of the data set being unaware of
the experiments. Because of the subjective nature of
the non-lab data set, the event types that were not
contained in the event domain ontology are replaced
with event type miscellaneous that is an event type in
every domain event ontology in this work. For each ex-
periment, we compute standard information retrieval
measures (precision, recall, and F1-measure), for the
event types used in tags. In addition to that, we in-
troduce a measure of correctness for event tags. The
score is obtained based on multiple context cues. For
instance, label meeting with Tom Johnson at RA Sushi
Japanese Restaurant in Broadway, San Diego, during
time interval ”blah” in a sunny day, in an outdoor en-
vironment, specifies type of the event, its granularity in
the subevent hierarchy, place, time, and environment
condition. We developed an algorithm that evaluates
each cue with a number in the range of 0 to 1 as fol-
lows: 1) event type: wrong = 0, correct = 1, somehow

correct =
Lp

LTP
such that Lp is the subevent-granularity

level for a predicted tag and LTP is the subevent gran-
ularity level for the true-positive tag (the predicted tag
is the direct or indirect superevent of the true-positive

tag i.e.,
Lp

LTP
≤ 1); 2) place: includes place name, cat-

egory and geographical region. If the place name is
correct, score 1 is assigned and the other attributes
will not be checked. Otherwise, 0 is assigned; for the
category and/or geographical region if correct, score
1 is assigned, and 0 otherwise. The average of these
values represent the score for place; 3) for weather,
optical, and visual constraint: wrong=0, correct =1,
unsure = 0.5; 4) time interval: if the predicted event
tag occurs anytime during the true-positive event tag,
1 is the score, otherwise 0. The average of the above
scores represents the correctness measure for a pre-

Figure 7: Role of context in improving the correctness of event tags.

dicted event tag. We introduce average correctness
of annotation that is calculated using the formula in
equation 7, where wj is the score for the jth predicted
tag.

correctness =

∑L
j=1 wj

L
; context = 1− Err (7)

The metric context in equation 7 is used to measure
the average context provided by data sources for an-
notating a photo stream; parameter Err is the av-
erage error related to the information provided by
data sources used for annotating a photo stream (0 ≤
Err ≤ 1); the following guidelines are applied auto-
matically, to measure this value: (a) if the information
in a data source is related to the domain of a photo
stream, but it is irrelevant to the context of the photo
stream, assign error-score 1. For instance, data source
TripAdvisor returns zero results related to Things-To-
Do for the country at which a photo stream is created.
Also, if a photo stream for a vacation trip does not
include any picture taken in any landmark location,
TripAdvisor does not provide any coverage; (b) assign
error-score 0 if the type of a source is relevant as well as
its data (i.e. non-empty results); (c) if the data from
a relevant source is insufficient for a photo stream, as-
sign error-score 0.5. For instance, only a subset of
business venues in a region are listed in data source
Yelp; as a result, the data source returns information
for less than 30% of the photo stream; (d) for a data
source, multiply the error-score by a fraction in which
the numerator is the number of photos tagged using
this data source, and the denominator is the size of the
photo stream. Do this for all the sources and obtain
the weighted average of the error-scores. The result is
Err. The implication of our result in fig 7 is as fol-
lows: while the correctness of event tags (for a photo
stream of an event) peaks with the increase in context,
relatively, smaller percentage of photos are tagged us-
ing non-miscellaneous events, and larger percentage
of photos are tagged using miscellaneous event. This
means if the suitable event type for a group of photos
does not exist in an event ontology, the photos are not
tagged with an irrelevant non-miscellaneous event; in-
stead, they are tagged with miscellaneous event which
means other. The right side of the figure indicates
that even though the number of miscellaneous and
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non-miscellaneous event tags does not change, the cor-
rectness is still increasing; this means that the tags get
more expressive since more context cues are attached
to them. The quality of annotations is increased when
more context information is available. This shows that
event ontology by itself is not as effective as augmented
event ontology. We demonstrate three classes of exper-
iments in table 1. This table shows the average values
(between 0 to 1) for the measure metrics discussed
earlier (precision, recall, F1, correctness). We use the
work proposed in (Paniagua, 2012) as a baseline. It
is based on space and time to detect event boundaries
in conjunction with using English album descriptions.
This baseline approach, with F1-measure about 0.6
and correctness of almost 0.56, illustrates that time
and space are important parameters to detect event
boundaries. On the other hand, the baseline approach
is limited to using only spatiotemporal containment for
detecting subevent hierarchy, it does not support other
types of relationships among events (like co-occurring
events, relative temporal relationships) and other se-
mantic knowledge about the structure of events. Also,
it requires human-induced tags which are noisy. For
the second set of experiments, we use an event domain
ontology without augmenting it with context informa-
tion. This approach gives worse results since the con-
text information is disregarded during detecting event
boundaries. It provides the F1-measure of almost 0.32
and correctness of 0.13. Our last experiment leverages
our proposed approach, and achieves F1-measure of
about 0.85, and correctness of 0.82. Compared to our
baseline approach, we obtain about 26% improvement
in the quality of tags which is a very promising result.

6.0.3 CPU-Performance

The running time for EOA, and visual concept verifi-
cation is shown in fig 8, which illustrates the results for
data sets of two sources i.e., lab, and non-lab (includ-
ing Flickr, and Picasaweb), and three event domains.

Stage 1: Intra-Domain Comparison

In general, we found smaller number of context sources
for wedding data sets compared to the other two do-
mains; as a result, the EOA process exits relatively
faster, and the running time for the concept verifica-
tion process increases. We observed the correctness
of event tags degrades when EOA process exists fast.
This observation confirms the findings of fig 7.

Stage 2: Intra-Source Comparison

Within each domain, we compared the cpu-
performance among lab and non-lab data sets; EOA
exits relatively faster for non-lab data sets. The justifi-
cation for this observation is that we could obtain user-
related context like facebook events/check-ins from
our lab users (U3, U4), but such information was miss-
ing in the case of non-lab data sets. This absence of

Figure 8: CPU-Time for experimental data sets of the 6 most ac-
tive users. Each data set is represented by its owner, domain type,
source, and size. The domain wed implies wedding domain.

Table 1: Results for automatic photo annotation for the data sets
owned by the 6 most active users.

Users U1 U2 U3 U4 U5 U6

baseline

prec 0.65 0.58 0.39 0.53 0.74 0.61
recall 0.89 0.4 0.61 0.64 0.8 0.43
f1 0.75 0.47 0.48 0.6 0.77 0.5
corr 0.63 0.62 0.52 0.62 0.28 0.69

event ontology

prec 0.41 0.17 0.3 0.48 0.12 0.53
recall 0.4 0.2 0.5 0.43 0.24 0.3
f1 0.4 0.18 0.37 0.45 0.16 0.38
corr 0.2 0.08 0.12 0.2 0.03 0.19

proposed

prec 0.74 0.83 0.95 0.92 0.88 0.79
recall 0.91 0.93 0.88 0.7 0.97 0.82
f1 0.81 0.88 0.91 0.79 0.92 0.8
corr 0.8 0.75 0.85 0.79 0.9 0.88

information impacts wedding data sets the most, since
the context information in the wedding scenario largely
includes personal information such as guest list, and
wedding schedule that are not publicly available on
photo sharing websites. In professionalTrip scenario,
this impact is smaller than wedding, and larger than
vacation; the missing data is due to the lack of context
information related to personal meetings, and confer-
ence schedules. In vacation scenario, data sources are
mostly public; only a small portion of context informa-
tion comes from the user-related context such as flight
information,and facebook check-ins; therefore, we did
not find a significant change in the cpu-time between
lab and non-lab data sets.

7 CONCLUSIONS
Our proposed technique addresses a broad range of
research challenges to achieve a powerful event-based
system that can adapt to different scenarios and ap-
plications like those in intelligence community, multi-
media applications, and emergency response. This is
the starting step for combining complex models with
big data.
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Abstract

We consider the case where a large number
of human and machine agents collaborate to
estimate a joint distribution on events. Some
of these agents may be statistical learners
processing large volumes of data, but typi-
cally any one agent will have access to only
some of the data sources. Prediction mar-
kets have proven to be an accurate and ro-
bust mechanism for aggregating such esti-
mates (Chen and Pennock, 2010), (Barbu
and Lay, 2011). Agents in a prediction mar-
ket trade on futures in events of interest.
Their trades collectively determine a prob-
ability distribution. Crucially, limited trad-
ing resources force agents to prioritize ad-
justments to the market distribution. Op-
timally allocating these resources is a chal-
lenging problem. In the economic spirit of
specialization, we expect prediction markets
to do even better if agents can focus on be-
liefs, and hand off those beliefs to an opti-
mal trading algorithm. Kelly (1956) solved
the optimal investment problem for single-
asset markets. In previous work, we devel-
oped efficient methods to update both the
joint probability distribution and user’s as-
sets for the graphical model based prediction
market (Sun et al., 2012). In this paper we
create a Kelly rule automated trader for com-
binatorial prediction markets and evaluate its
performance by numerical simulation.

1 INTRODUCTION

There was a time when “big” data meant too big to
fit into memory. As memory capacity expanded, what
was once big became small, and “big” grew ever big-
ger. Then came cloud computing and the explosion of

“big” data to a planetary scale. Whatever the scale
of “big,” a learner faced with big data is by defini-
tion forced to subsample, use incremental methods, or
otherwise specialize. Humans are no strangers to spe-
cialization: scientific knowledge alone has exceeded the
capacity of any single head for at least four centuries.
In this paper we consider a mechanism for fusing the
efforts of many specialized agents attempting to learn
a joint probability space which is assumed to be larger
than any one of them can encompass. We seek a mech-
anism where agents contribute only where they have
expertise, and where each question gets the input of
multiple agents. As we discuss below, our mechanism
is a kind of prediction market. However, in contrast
to (Barbu and Lay, 2011), we wish our human and
machine agents to concentrate on their beliefs, not on
playing the market. Therefore we formulate and de-
velop a helper agent which translates partial beliefs
into near-optimal trades in a combinatorial market of
arbitrary size. We do not here actually apply it to a
big dataset.

It is well known that prediction accuracy increases as
more human and/or machine forecasters contribute to
a forecast (Solomonoff, 1978). While one approach is
to ask for and average forecasts from many individu-
als, an approach that often works better is to combine
forecasts through a prediction market (Chen and Pen-
nock, 2010; Barbu and Lay, 2011). In a market-maker
based prediction market, a consensus probability dis-
tribution is formed as individuals either edit probabil-
ities directly or trade in securities that pay off con-
tingent on an event of interest. Combinatorial pre-
diction markets allow trading on any event that can
be specified as a combination of a base set of events.
However, explicitly representing the full joint distri-
bution is infeasible for markets with more than a few
base events. Tractable computation can be achieved
by using a factored representation (Sun et al., 2012).
Essentially, the probabilities being edited by users are
the parameters of the underlying graphical model rep-
resenting the joint distribution of events of interest. In
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another words, prediction markets work as a crowd-
sourcing tool for learning model parameters from hu-
man or automated agents.

Prediction markets appear to achieve improved accu-
racy in part because individuals can focus on con-
tributing to questions about which they have the most
knowledge, and in part because individuals can learn
by watching the trades of others. However, one impor-
tant disadvantage of prediction markets is that users
must figure out how to translate their beliefs into
trades. That is, users must decide when to trade how
much, and whether to make a new offer or to accept an
existing offer. Prediction markets with market makers
can simplify this task, allowing users to focus on ac-
cepting existing offers. Edit-based interfaces can fur-
ther simplify the user task, by having users browse for
existing estimates they think are mistaken, and then
specify new values they think are less mistaken.

However, even with these simplifications, participants
must think about resources as well as beliefs. For ex-
ample, if users just make edits whenever they notice
that market estimates differ from their beliefs, par-
ticipants are likely to quickly run out of available re-
sources, which will greatly limit their ability to make
further edits. To avoid this problem, users must try
to keep track of their best opportunities for trading
gains, and avoid or undo trades in other areas in order
to free up resources to support their best trades.

This problem is made worse in combinatorial predic-
tion markets. By allowing users to trade on any be-
liefs in a large space of combinations of some base set
of topics, combinatorial markets allow users to con-
tribute much more information, and to better divide
their labors. But the more possible trades there are,
the harder it becomes for users to know which of the
many possible trades to actually make.

Ideally, prediction market users could have a trading
tool available to help them manage this process of
translating beliefs into trades. Users would tell this
tool about their beliefs, and the tool would decide
when to trade how much. But how feasible is such
a tool? One difficulty is that optimal trades depend
in principle on expectations about future trading op-
portunities. A second difficulty is that users must not
only tell the tool about their current beliefs, they must
also tell the tool how to change such stated beliefs in
response to changes in market prices. That is, the
trading tool must learn from prices in some manner
analogous to the way the user would have learned from
such prices.

To make this problem manageable, we introduce four
simplifications. First, we set aside the problem of how
users can easily and efficiently specify their current be-

liefs, and assume that a user has somehow specified a
full joint probability distribution over some set of vari-
ables. Second, we set aside the problem of guessing
future trading opportunities, by assuming that future
opportunities will be independent of current opportu-
nities. Third, we assume that a user can only accept
trade offers made by a continuous market maker, and
cannot trade directly with other users. Fourth, we set
aside the problem of how a tool can learn from market
prices, by assuming that it would be sufficient for the
tool to optimize a simple utility function depending on
the user’s assets and market prices.

Given these assumptions, the prediction market trad-
ing tool design problem reduces to deciding what pre-
diction market trades to make any given moment,
given some user-specified joint probability distribution
over a set of variables for which there is a continuous
combinatorial market maker. It turns out that this
problem has largely been solved in the field of evolu-
tionary finance.

That is, if the question is how, given a set of beliefs, to
invest among a set of available assets to minimize one’s
chances of going broke, and maximize one’s chance
of eventually dominating other investors, the answer
has long been known. The answer is the “Kelly rule”
(Kelly, 1956), which invests in each category of as-
sets in proportion to its expected distant future frac-
tion of wealth, independent of the current price of
that category. When they compete with other trad-
ing rules, it has been shown that Kelly rule traders
eventually come to dominate (Lensberg and Schenk-
Hoppé, 2007).

In this paper we report on an implementation of such a
Kelly rule based trading tool in the context of a combi-
natorial prediction market with a continuous market
maker. Section 2 reviews the basics of such a com-
binatorial prediction market. Section 3 reviews the
basics of a Kelly rule and then describes how to apply
the Kelly rule in a combinatorial prediction market to
achieve automated trading. Section 4 reports on sim-
ulation tests of an implementation of the Kelly auto-
trader. Last, in Section 6 we summarize our work and
point to potentially promising future research oppor-
tunities.

2 COMBINATORIAL PREDICTION
MARKETS

In a prediction market, forecasters collaboratively
form a probability distribution by trading on assets
that pay off contingent on the occurrence of relevant
events. In a logarithmic market scoring rule based
(LMSR-based) prediction market, a market maker of-
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fers to buy and sell assets on any relevant events, vary-
ing its price exponentially with the quantity of assets
it sells. Tiny trades are fair bets at the consensus
probabilities (Hanson, 2003). Larger trades change
the consensus probabilities; we call such trades “ed-
its.” Suppose {zi, i = 1, · · · , n} is a set of n possible
outcomes for a relevant event, and prior to making a
trade, the user’s assets contingent on occurrence of zi
are ai. Suppose the user makes an edit that changes
the current consensus probability from pi to xi. In
a LMSR-based market, as a result of the trade, the
user’s assets contingent on occurrence of zi will now
be ai + b log2(xi

pi
).

A combinatorial prediction market increases the ex-
pressivity of a traditional prediction market by allow-
ing trades on Boolean combinations of a base set of
events (e.g., “A and B”) or contingent events defined
on the base events (e.g., “A given B”). While it is
in general NP-hard to maintain correct LMSR prices
across an exponentially large outcome space (Chen
et al., 2008), limiting the consensus distribution to a
factored representation of the joint distribution pro-
vides a tractable way to achieve the expressiveness of a
combinatorial market. Sun, et al. (2012) showed how
adapt the junction tree algorithm to jointly manage
each user’s assets along with a market consensus prob-
ability distribution for a combinatorial prediction mar-
ket. Our probability and asset management approach
has been implemented in a combinatorial prediction
market for forecasting geopolitical events (Berea et al.,
2013).

3 KELLY RULE AUTO-TRADER

Unlike financial or commodities markets, where finan-
cial gain or loss is the primary purpose, the aim of a
prediction market is to form consensus forecasts from
a group of users for events of interest. A successful
prediction market depends on participants who are
knowledgeable about and interested in the events in
the market. However, lack of experience with or inter-
est in the management of assets can be a significant
barrier to participation for some forecasters. Find-
ing a way to engage such content-knowledgeable but
market-challenged forecasters could significantly im-
prove the performance of a prediction market. Thus,
there is a need for a tool to translate beliefs of forecast-
ers into market trades that efficiently allocate assets
according to the forecaster’s beliefs.

Fortunately, just such a tool is available from the fi-
nance literature. A firmly established result is that we
should expect financial markets in the long run to be
dominated by investment funds which follow a ”Kelly
Rule” of investing. Such a strategy invests in each

category of assets in proportion to its expected future
financial value (Evstigneev et al., 2006; Lensberg and
Schenk-Hoppé, 2007; Amir et al., 2001). That is, a
Kelly Rule fund that expects real estate to be 20% of
distant future wealth should invest 20% of its hold-
ings in real estate. In our context this is equivalent to
maximizing an expected log asset holdings, as shown
below.

3.1 OPTIMAL ASSET ALLOCATION

The Kelly rule (Kelly, 1956) determines the best pro-
portion of a user’s assets to invest in order to achieve
the maximum asset growth rate. We briefly review
how the Kelly rule works in a simple binary lottery,
where a loss means losing one’s investment and a win
means gaining the amount bet times the payoff odds.
Suppose an investor starts with assets y0; the return is
z for a unit bet; and each investment is a fixed percent-
age c of the user’s current assets. After each lottery,
the user’s assets are multiplied by (1 + zc) in case of
a win and (1 − c) in case of a loss. This yields an
expected exponential growth rate of

g(c) = E

[
log(

yn
y0

)
1
n

]
= E

[
w

n
log(1 + zc) +

l

n
log(1− c)

] (1)

where n is the number of trades the user has made; w
is the number of times the user has won; and l is the
number of times the user has lost. As n approaches
infinity, Eq. 1 becomes

lim
n→+∞

E

[
log(

yn
y0

)
1
n

]
= p log(1 + zc) + (1− p) log(1− c)

(2)

Now, suppose there are n possible outcomes {zi, i =
1, · · · , n}; the user’s probability for outcome zi is hi;
and the user’s current assets if zi occurs are ai. The
current market distribution is {pi, i = 1, · · · , n}, and
the user is contemplating a set of edits that will change
the distribution to xi, i = 1, · · · , n. Given these ed-
its, the user’s assets if outcome zi occurs will be
log(ai + b log2(xi

pi
)). The maximum asset growth rate

is obtained by solving the following optimization prob-
lem:

max
x

N∑
i=1

[
hi × log(ai + b log2(

xi
pi

))

]
(3)

subject to
N∑
i=1

(xi) = 1

0 < xi < 1,∀i
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and

ai + b log2(
xi
pi

) >= 0.

where i is the global joint state.

3.2 APPROXIMATELY OPTIMAL
ALLOCATION

It is straightforward to define the optimization shown
in Equation (3) for a joint probability space. How-
ever, as noted above, representing the full joint space
is in general intractable. We therefore consider the
problem in which the user’s edits are further con-
strained to structure-preserving edits, which respect
the underlying factored representation, ensuring com-
putational tractability (if probabilistic inference itself
is tractable).

The objective function in Equation (3) is the expected
updated asset w.r.t. the user’s beliefs {hi} over the
entire joint space. It is desirable to decompose the op-
timization according to the cliques in the junction tree
of the graphical model. However, this is non-trivial
because of the logarithm. If edits are structure pre-
serving, assets decompose additively (Sun et al., 2012)
as:

ai =
∑
c∈C

ac −
∑
s∈S

as, (4)

where C is the set of cliques and S is the set of sep-
arators in the junction tree. Therefore (Cowell et al.,
1999), computation of expected assets can be decom-
posed via a local propagation algorithm. However, the
logarithmic transformation log(ai + b log2(xi

pi
)) is not

additively separable, and no local propagation algo-
rithm exists for computing the expected utility.

We therefore seek a local approximate propagation al-
gorithm. It is often reasonable to assume that a user
has beliefs on only a few of the variables in the mar-
ket. If all the edited variables are confined to a single
clique cj , we know

xi
pi

=
xicj
picj

.

One approximation approach is to initialize the user’s
asset tables {ac, c ∈ C} and {as, s ∈ S} with all zeros,
and keep a separate cash account containing the user’s
assets prior to any trades. Each single trade is confined
to a single clique. At the time of the trade, we move
the cash amount into the asset table into the clique the
user is editing. We then solve the optimization prob-
lem 3 for the single clique of interest. The user invests
the optimal amount. We then find the minimum post-
trade assets for the clique of interest. Because of the
logarithmic utility, this amount will be greater than

zero. We then subtract this positive amount from the
clique asset table and add it back to the cash account.
We then move to another clique and make the optimal
edit there in the same way.

We call this process local cash-asset management. This
process iteratively moves all cash into a clique, finds
the optimal edit confined to that clique, and then
moves the maximal amount back to cash while en-
suring that all entries in the clique asset table are
non-negative. This process proceeds through all the
cliques, and increases the expected utility at each step.
Local cash-asset management always leaves all separa-
tors with zero assets, thus removing the need to man-
age separators. Furthermore, the global asset compu-
tation is simplified to be the sum of all clique assets.

The separately maintained cash amount is guaranteed
to be less than or equal to the global minimum assets
as computed by the algorithm of (Sun et al., 2012).
Thus, this approach is a conservative strategy, improv-
ing the user’s expected utility but is not guaranteed to
reach the maximum expected utility.

4 NUMERICAL SIMULATION

We implemented the Kelly Auto-Trader in MATLAB
with an open-source nonlinear optimization solver
called IPOPT (Wächter and Biegler, 2006).

4.1 EXPERIMENT DESIGN

To test market performance with the Kelly auto-
trader, we simulated a market over a 37-node network
whose structure matches ALARM (Beinlich et al.,
1989). The ALARM network (see Figure 1) is often
used as a benchmark for graphical model algorithms,
and is substantial enough to provide a reasonable test
of our approach. The approach itself is limited only
by the efficiency of the nonlinear solver.
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Figure 1: ALARM

ALARM has 27 cliques in its junction tree, among
which the biggest clique has 5 variables and table size
of 108.

To ensure consistency of beliefs across cliques, we use
the following procedure to generate a simulated user’s
beliefs:

1. Choose n cliques to have beliefs, usually about
1/3 of the total number of cliques;

2. Proceeding sequentially for each of the chosen
cliques, generate its random belief by a random
walk, simulating an efficient market. Update be-
liefs on the clique and propagate to other cliques
using the junction tree algorithm. This procedure
gives n junction tree propagations in total.

3. After all propagations, take the potentials on the
chosen cliques as the user’s final beliefs.

We simulate market participation using three types of
traders.

Type 1: EVmaxer invests all of her cash in the market
to achieve the maximum asset gain. Formally, EV-
maxer solves the following optimization to find the
best edit x with her beliefs h,

max
x

N∑
i=1

[
hi × b log2(

xi
pi

)

]
(5)

subject to
N∑
i=1

(xi) = 1

0 < xi < 1,∀i

and
ai + b log2(

xi
pi

) >= 0.

where i is the global joint state. EVmaxer can suffer
catastrophic losses.

Type 2: Kelly-trader is risk-averse and theoretically
has the best growth rate in long run. Kelly-trader
uses Equation 3 to find the best edit at each trade
opportunity.

Type 3: Noiser trades randomly. In any market, we
expect a number of noisy traders who have less knowl-
edge than other traders. We simulated Noiser’s be-
havior by moving the current market distribution by
random walk of white noise with 15% deviation.

At each trade step, we determine the trader type by
taking a random draw from a distribution on the pro-
portion of trader types. Assuming both EVmaxer and
Kelly-trader know the pre-generated beliefs, we allow
them to determine their optimal edits according to
their respective objective functions. They make their
edits and the market distribution is updated. Ed-
its continue in this way until interrupted by a ques-
tion is resolved – that is, its value becomes known to
all participants, and all trades depending on the re-
solved question are paid off by the market maker. The
inter-arrival time for question resolutions is modeled
by an exponential distribution with mean µt. When
resolving, we track the min-asset and max-asset for
EVmaxer and Kelly-traders to measure their perfor-
mance. Further, after resolving a question, we add
a new question back to the model at the same place
where the resolved question was located in the net-
work. Finally, after a certain number of trades, we
resolve all questions one by one based on their proba-
bilities. The final assets for different types of users are
then calculated and compared.

There are some free parameters in the simulation set-
ting, such as the user’s initial assets, the market scal-
ing parameter b, the proportions of different types of
traders, etc. The following are the parameter values
for a typical simulation run, with explanation of how
to choose appropriate values:

• Initial assets S = 20 – the small starting assets of
20 will show how EVmaxer goes broke because of
her aggressive trading, and how the Kelly-trader
is able to grow her assets from a small starting
point;

• Market scaling parameter b = 1000 – the bigger b,
the less influence each trader has; a large b mimics
a thick market with many traders;

• Number of trades 1000 – to model the concept of
long run effect;

• Mean time between resolutions 30 trades – actual
resolutions are drawn from an exponential inter-
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arrival distribution with this mean; 30 trades
provides sufficient opportunities for well-informed
traders to move the market to the correct direc-
tion before resolving questions.

• Market participants are composed of 20%, 20%,
60% of EVmaxer, Kelly-trader, and Noiser re-
spectively. Basically, we expect better accuracy of
the market probability estimation when there are
more Kelly traders, and/or more frequent editing
by Kelly traders.

4.2 RESULTS AND ANALYSIS

For a typical run of 1000 trades, Figure 2 presents the
marginal probabilities of the resolving states (totally
35 resolutions in this run). At each resolution point,
a question was randomly chosen from the market and
resolved based on its marginal distribution at the mo-
ment. Those resolving probabilities are the “ground
truth” values generated by the random walk. Figures
3 and 4 show, in the same simulation run, the perfor-
mance for EVmaxer and Kelly-trader in terms of their
min-asset and max-asset at each resolution point.
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Figure 2: Marginal Probabilities of Resolving State
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Figure 3: Min-asset Comparison between EVmaxer
and Kelly-trader
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Figure 4: Max-asset Comparison between EVmaxer
and Kelly-trader

As expected, Figure 3 shows that the Kelly trader
always reserves some assets, while EVmaxer makes
very aggressive bets. Notice in Figure 4 that EV-
maxer went broke twice at the 7th and 12th question
resolution points (we re-initialize EVmaxers’ assets at
bankruptcy to let them continue to trade). Basically,
EVmaxer has a lot bigger volatility while Kelly-trader
grows assets consistently. In the simulation, we re-
initialize the EVmaxer with the starting asset. But
in practice, just one strike will make the EVmaxer
deeply hurt. At the end of this run, we sampled the
market distribution for 1000 times. Using each sam-
ple as the final resolving states for all questions, we
compared the final payoff asset for both EVmaxer and
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Kelly-trader. Histograms of the final assets are shown
in Figure 5, and 6. As you may notice, Kelly-trader
has very consistent distribution with mean of 58, and
standard deviateion of about 31. But EVmaxer’s final
asset is distributed very sparsely. Most of time (al-
most dominant), EVmaxer will have final asset close
to zero, although its possible maximum value can be
more than 1000.
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Figure 5: Histogram of the final assets for Kelly-trader
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Figure 6: Histogram of the final assets for EVmaxer

5 TAYLOR APPROXIMATION

In this section, we present an alternate approach in
which we approximate the utility function by a second-
order Taylor series, yielding an approximation to the
expected utility in terms of first and second moments

of the utility random variable. We then apply meth-
ods for local computation of moments of real-valued
functions defined on graphical models (Nilsson, 2001;
Cowell et al., 1999) to obtain an approximation to the
expected utility.

5.1 NOTATION AND DEFINITIONS

Let {Zv : v ∈ V } be a set of finitely many discrete
random variables; let Ωv denote the set of possible
values of Zv, and let zv denote a typical element of
Ωv. For C ⊂ V , we write ZC for {Zv : v ∈ C}, ΩC

for the Cartesian product ×c∈CΩc and zc for a typical
element of ΩC .

A junction tree T on V is an undirected graph in
which the nodes are labeled with subsets C ⊂ V
called cliques; each arc is labeled with the intersection
S = C ∩D, called the separator, of the cliques at the
ends of the arc; every v ∈ V is in at least one clique;
there is exactly one path between any two cliques, i.e.,
T is a tree; and C ∩ D is contained in very clique
along the path from C to D. We let C denote the set
of cliques and S denote the set of separators.

We say a real-valued function f on ΩV factorizes on the
junction tree T if there exist non-negative real-valued
functions {hC : C ∈ C} on ΩC and and {hD : D ∈ D}
on ΩD such that for all v ∈ V :

f(zV ) =

∏
C∈C hC(zC)∏
D∈D hD(zD)

(6)

where zC and zD denote the components of zV corre-
sponding to C and D, respectively, and hD(zD) = 0
only if there is at least one clique D with D ∩ C 6= ∅
and hC(zC) = 0. In case hD(zD) = 0 and hC(zC) = 0
for D ∩ C 6= ∅, we take hC(zC)/hD(zD) to be 0.

We say a function f on ΩV decomposes additively on
the junction tree T if there exist non-negative real-
valued functions {hC : C ∈ C} on ΩC and and {hD :
D ∈ D} on ΩD such that for all v ∈ V :

f(zV ) =
∑
C∈C

hC(zC)−
∑
D∈D

hD(zD) (7)

where zC and zD denote the components of zV cor-
responding to C and D, respectively. The func-
tions hC(xc) and hD(xD) in (6) and (7) are called
potentials; the set {hB : B ∈ C∪D} is called a (multi-
plicative or additive, respectively) potential represen-
tation of f .

45



5.2 ASSETS AND PROBABILITIES

We assume the user’s probability distribution g fac-
torizes according to the junction tree T . We assume
trades are constrained to be structure preserving with
respect to T ; hence, the before-trade market distribu-
tion p and the market distribution x after a structure
preserving trade also factorize according to T . Con-
sequently, as proven in (Sun et al., 2012), the user’s
current assets a(zV ) decompose additively on T . Fur-
ther, if the user makes a structure-preserving trade to
change p to x, the user’s new assets

y(zV ) = a(zV ) + b log
x(zV )

p(zV )
(8)

decompose additively on T .

The expected assets µY =
∑

zV
g(zV )y(zV ) can be

computed efficiently by junction tree propagation
(Nilsson, 2001).

We assume the user has a logarithmic utility function

u(zV ) = log y(zV ) = log

(
a(zV ) + b log

x(zV )

p(zV )

)
. (9)

We seek to maximize

EU =
∑
zV

q(zV ) log

(
a(zV ) + b log

x(zV )

p(zV )

)
(10)

The utility (9) does not decompose additively, and ex-
act computation of the expected utility is intractable.
However, we can approximate the utility by the first-
order Taylor expansion of log y(zV ) around µY as:

u(zV ) ≈ log y(zV ) +
(y(zV )− µY )

µY
− (y(zV )− µY )2

2µ2
Y

.

(11)

We therefore wish to optimize

EU ≈
∑
zV

log q(zV )

(
y(zV )− (y(zV )− µY )2

2µ2
Y

)
= logµY −

σ2
Y

2µ2
Y

,

(12)

where σ2
Y is the variance of Y . The objective func-

tion (12) can be calculated from the first and second
moments of Y . Nilsson (2001) showed how to modify
the standard junction tree propagation algorithm to

compute first and second moments of additively de-
composable functions efficiently. These results can be
applied to efficient calculation of the approximate ex-
pected utility (12), as described below.

5.3 PROPAGATING SECOND MOMENTS

The standard junction tree algorithm (Jensen, 2001;
Dawid, 1992; Lauritzen and Spiegelhalter, 1988) oper-
ates on a potential representation {hB : B ∈ C∪D} for
a probability distribution g that factorizes on a junc-
tion tree T . A clique C is said to be eligible to receive
from a neighboring clique D if either C is D’s only
neighbor or D has already received a message from all
its neighbors other than C. Any schedule is allowable
that sends messages along arcs only when the recipient
is eligible to receive from the sender, and that termi-
nates when messages have been sent in both directions
along all arcs in the junction tree.

Passing a message from D to C has the following effect:

h′S(zS) =
∑
D\S

hD(zD), and (13)

h′C(zC) = hC(zC)

(
h′S(zS)

hS(zS)

)
(14)

That is, the new separator potential is obtained by
marginalizing the sender’s potential over the variables
not contained in the separator, and the new recipient
clique potential is obtained by multiplying the old re-
cipient potential by the ratio of new to old separator
potentials.

It is clear that message passing preserves the fac-
torization constraint (6). Furthermore, when the al-
gorithm terminates, the new clique and separator
potentials are the marginal distributions gB(zB) =∑

V \B gV (zV ), B ∈ C ∪ S.

Now, suppose in addition to the multiplicative poten-
tial representation for g, we have an additive poten-
tial representation {tB : B ∈ C ∪ S} for an addi-
tively decomposable function y on ΩV . We modify
the message-passing algorithm to pass a bivariate mes-
sage along each arc. Now, in addition to the effects on
the multiplicative potential for the probability distri-
bution g, a message from D to C results in the follow-
ing change to the additive potential for y:

t′S(zS) =

∑
D\S hD(zD)tD(zD)∑

D\S hD(zD)
, and (15)

t′C(zC) = tC(zC) + t′S(zS)− tS(zS) (16)

46



After the algorithm terminates with messages sent in
both directions along all arcs, the final clique and sep-
arator multiplicative potentials contain the associated
marginal distributions; and the clique and separator
additive potentials contain the conditional expecta-
tion of Y given the clique/separator state µY |B(zB) =∑

V \B gV (zV )yV (zV )/
∑

V \B gV (zV ), B ∈ C ∪ S.

After propagation, finding the first moment of Y is
straightforward: we simply marginalize the additive
potential on any clique or separator:

µY =
∑
B

µY |B(zB) (17)

Recall that after propagation, the multiplicative po-
tentials are the marginal probabilities gB(zB) and the
multiplicative potentials are the conditional expecta-
tions µY |B(zB) for B ∈ C ∪ S. Nilsson (2001) proved
that the second moment of the additively decompos-
able function Y can be calculated from the post-
propagation additive and multiplicative potentials as
follows:

E[Y 2] =
∑
C∈C

∑
zC

gC(zC)µY |C(zC)2

−
∑
S∈S

∑
zS

gD(zS)µY |S(zS)2.
(18)

To see why (18) is correct, note that by definition,
E[Y 2] =

∑
zu
g(zu)y(zu)2. Then:

E[Y 2] =
∑
zu

g(zu)y(zu)2

=
∑
zu

g(zu)y(zu)

(∑
C∈C

µY |C(zC)−
∑
S∈S

µY |S(zS)µ

)
=
∑
C∈C

∑
zu

{gu(zu)y(zu)µY |C(zC)}

−
∑
D∈D

∑
zu

{gu(zu)y(zu)µY |S(zS)}

=
∑
C∈C
{
∑
zC

µY |C(zC)
∑
zU\C

gu(zu)y(zu)}

−
∑
S∈S
{
∑
zS

µY |S(zS)
∑
zU\S

{gu(zu)y(zu)}

=
∑
C∈C

∑
zC

gC(zC)µY |C(zC)2

−
∑
S∈S

∑
zS

gS(zS)µY |S(zS)2.

For a more accurate approximation, we can add addi-
tional terms to the Taylor expansion and apply Cow-

ell’s method (1999, Sec. 6.4.7) for local propagation
of higher moments. In general, we need to propagate
n+ 1 potentials to compute the first n moments of the
distribution of Y .

6 SUMMARY

By any definition, big data requires learners to con-
sider only a portion of the data at a time. The problem
is then to fuse the beliefs of these specialized agents.
We consider a market to be an effective mechanism for
fusing the beliefs of an arbitrary mixture of human ex-
perts and machine learners, by allowing each agent to
concentrate on those areas where they can do the most
good (and therefore earn the most points). However,
agents that are good at learning are not necessarily
good at trading. Our contribution is a general formu-
lation of an agent which will translate a set of beliefs
into optimal or near-optimal trades on a combinato-
rial market that has been represented in factored form
such as a Bayesian network.

It is known from theory and empirical results in evo-
lutionary finance that an informed trader seeking to
maximize her wealth should allocate her assets accord-
ing to the Kelly (1956) rule. This rule is very general,
and applies even to combinatorial markets. However,
it would be intractable to solve on an arbitrary joint
state. We have derived two efficient ways to calculate
Kelly investments given beliefs specified in a factored
joint distribution – such as a Bayesian network. We
tested the more conservative rule and found that it
has the desired properties: an exponential wealth in-
crease which never goes broke, slightly underperform-
ing an EV-maximizer in the short run, but outper-
forming it in the long run because the EV-maximizer
will go broke.

Our results mean that we can let experts focus on their
beliefs in any effective manner, and let an automated
agent convert those beliefs into trades. This ability
has frequently been requested by participants in the
IARPA ACE geopolitical forecasting tournament, and
we expect to offer the feature this autumn in our new
Science & Technology market.

As a reminder, we assume we have a current set of
beliefs from our expert. In practice, we will have to
specify a rate at which expressed beliefs converge to
the market, in the absence of future updates from the
expert, so as not forever to chain our participants with
the ghosts of expired beliefs. In addition, we plan to
extend our results for systems using approximate in-
ference to update the probability distribution.
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Abstract. Making a prediction that is useful for decision makers is not the same as 
building a model that fits data well. One reason for this is that we often need to pre-
dict the true state of a variable that is only indirectly observed, using measurements. 
Such ‘latent’ variables are not present in the data and often get confused with meas-
urements. We present a methodology for developing Bayesian network (BN) models 
that predict and reason with latent variables, using a combination of expert 
knowledge and available data. The method is illustrated by a case study into the pre-
diction of acute traumatic coagulopathy (ATC), a disorder of blood clotting that can 
cause fatality following traumatic injuries. There are several measurements for ATC 
and previous models have predicted one of these measurements instead of the state 
of ATC itself. Our case study illustrates the advantages of models that distinguish 
between an underlying latent condition and its measurements, and of a continuing 
dialogue between the modeller and the domain experts as the model is developed us-
ing knowledge as well as data. 
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Abstract

We demonstrate a two phase classifica-
tion method, first of individual pixels,
then of fixed regions of pixels for scene
classification—the task of assigning posteri-
ors that characterize an entire image. This
can be realized with a probabilistic graphical
model (PGM), without the characteristic seg-
mentation and aggregation tasks characteris-
tic of visual object recognition. Instead the
spatial aspects of the reasoning task are de-
termined separately by a segmented partition
of the image that is fixed before feature ex-
traction. The partition generates histograms
of pixel classifications treated as virtual evi-
dence to the PGM. We implement a sampling
method to learn the PGM using virtual ev-
idence. Tests on a provisional dataset show
good (+70%) classification accuracy among
most all classes.

1 Introduction

Scene recognition is a field of computer understanding
for classification of scene types by analysis of a visual
image. The techniques employed for scene recognition
are well known, relying on methods for image analysis
and automated inference. The fundamental process is
to assign probabilities over a defined set of categories—
the scene characteristics—based on analysis of the cur-
rent visual state. This paper shows the practicability
of a lightweight approach that avoids much of the com-
plexity of object recognition methods, by reducing the
problem to a sequence of empirical machine learning
tasks.

The problem we have applied this to is classification
of scene type by analysis of a video stream from a
moving platform, specifically from a car. In this pa-
per we address aspects of spatial reasoning—clearly

there is also a temporal reasoning aspect, which is not
considered here. In figurative terms the problem may
be compared with Google’s Streetview R© application.
Streetview’s purpose is to tell you what your surround-
ings look like by knowing your location. The scene
recognition problem is the opposite: to characterize
your location from what your surroundings look like.

In this paper we consider a classification scheme for
images where the image is subject to classification in
multiple categories. We will consider outdoor roadway
scenes, and these classification categories:

1. surroundings, zoning, development (urban, resi-
dential, commercial, mountainous, etc.)

2. visibility (e.g., illumination and weather),

3. roadway type,

4. traffic and other transient conditions,

5. roadway driving obstacles.

An image will be assigned one label from each of the
set of five categories.

1.1 Uses of Scene Classification

There are numerous uses where the automated classi-
fication assigned to a scene can help. The purpose of
scene classification is to capture the gist of the current
view from its assigned category labels. For example,
how would you describe a place from what you see?
Certainly this is different from what you would know
from just the knowledge of your lat-long coordinates.
These are some envisioned uses:

• A scene classification provides context. For ex-
ample in making a recommendation, the context
could be to consider the practicality of the re-
quest: For instance, “Do you want to get a latte
now? This is not the kind of neighborhood for
that.”
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• Supplement search by the local surroundings. For
example, “Find me a winery in a built-up area.”
“Find me a restaurant in a remote place.” “Find
a park in a less-travelled residential area.”

• Coming up with a score for the current conditions.
How is the view from this place? How shaded or
sunny is the area? What fraction of the surround-
ings are natural versus artificial? Taking this one
step further, given an individual driver’s ratings of
preferred locations, suggest other desirable routes
to take, possibly out of the way from a “best”
route.

• Distributed systems could crowd-source their
findings about nearby locations to form a com-
prehensive picture of an area. For example, “How
far does this swarm (road-race, parade) extend?”

1.2 Relevant previous work

One of the earliest formulations of image understand-
ing as a PGM is found in Levitt, Agosta, and Binford
(1989) and Agosta (1990). The approach assumed
an inference hierarchy from object categories to low-
level image features, and proposed aggregation opera-
tors that melded top-down (predictive) with bottom-
up (diagnostic) reasoning over the hierarchy.

The uses of PGMs in computer vision have expanded
into a vast range of applications. Just to mention a
couple of examples, L. Fei-Fei, Fergus and P. Perona
(2003) developed a Bayesian model for learning new
object categories using a “constellation” model with
terms for different object parts. In a paper that im-
proved upon this, L. Fei-Fei and P. Perona (2005)
proposed a Bayesian hierarchical theme model that
automatically recognizes natural scene categories such
as forest, mountains, highway, etc. based on a gen-
eralization of the original texton model by T. Leung
and J. Malik (2001) and, L. Fei-Fei R. VanRullen, C.
Koch, and P. Perona (2002). In another application
of a Bayesian model, Sidenbladh, Black, and Fleet
(2000) develop a generative model for the appearance
of human figures. Both of these examples apply model
selection methods to what are implicitly PGMs, if not
explicitly labeled as such.

Computer vision approaches specifically to scene
recognition recognize the need to analyze the image as
a whole. Hoiem, Efros, and Hebert (2008) approach
the problem by combining results from a set of in-
trinsic images, each a map of the entire image for one
aspect of the scene. Oliva and Torralba (2006) develop
a set of scene-centered global image features that cap-
ture the spatial layout properties of the image. Sim-
ilar to our approach, their method does not require
segmentation or grouping steps.

1.3 How Scene Classification differs from
Object Recognition

Scene classification implies a holistic image-level in-
ference task as opposed to the task of recovering the
identity, presence, and pose of objects within an im-
age. Central to object recognition is to distinguish
the object from background of the rest of the image.
Typically this is done by segmenting the image into re-
gions of smoothly varying values separated by abrupt
boundaries, using a bottoms-up process. Pixels may
be grouped into “super-pixels” whose grouping is fur-
ther refined into regions that are distinguished as part
of the foreground or background. Object recognition
then considers the features and relationships among
foreground regions to associate them with parts to be
assembled into the object, or directly with an entire
object to be recovered.

Scene classification as we approach it does not neces-
sarily depend on segmenting the image into regions,
or identifying parts of the image. Rather it achieves
a computational economy by treating the image as a
whole; for example, to assign the image to the class
of “indoor,” “outdoor,” “urban landscape,” or “rural
landscape,” etc. from a set of pre-defined categories.
We view classification as assigning a posterior to class
labels, where the image may be assigned a value over
multiple sets of labels; equivalently, the posterior may
be a joint distribution over several scene variables.

Despite the lack of a bottoms-up segmentation step in
our approach, our method distinguishes regions of the
image by a partition that is prior to analyzing the im-
age contents. This could be a fixed partition, which
is appropriate for a camera in a fixed location such as
a security camera, or it could depend on inferring the
geometry of the location from sources distinct from
the image contents, such as indicators of altitude and
azimuth of the camera. In our case, the prior pre-
sumption is that the camera is on the vehicle, facing
forward, looking at a road.

The rest of this paper is organized as follows. Section 2
describes the inference procedure cascade; the specific
design and learning of the Bayes network PGM is the
subject of Section 3, and the results of the learned
model applied to classification of a set of images is
presented in Section 4.

2 Lightweight inference with virtual
evidence

In treating the image as a whole, our approach to infer-
ence for scene classification takes place by a sequence
of two classification steps:
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• First the image’s individual pixels are classified,
based on pixel level features. This classifier re-
solves the pixel into one of n discrete types, rep-
resenting the kind of surface that generated it.
In our examples n = 8: sky, foliage, building-
structure, road-surface, lane, barrier-sidewalk, ve-
hicle, and pedestrian.

• In the second step, the pre-defined partitions are
applied to the image and in each partition the
pixel types are histogrammed, to generate a like-
lihood vector for the partition. These likelihoods
are interpreted as virtual evidence1 for the second
level image classifier, the scene classifier, imple-
mented as a PGM. The classifier returns an joint
distribution over the scene variables, inferred from
the partitions’ virtual evidence.

There is labeled data for both steps, to be able to learn
a supervised classifier for each. Each training image is
marked up into labeled regions using the open source
LabelMe tool, (Russell, Torralba, K. Murphy and Free-
man, 2007) and also labeled by one label from each
category of scene characteristics. From the region la-
belings a dataset of pixels, with color and texture as
features, and the region they belong to as labels can
be created. In the second step we learn the structure
and parameters of a Bayes network—a discrete valued
PGM—from the set of training images that have been
manually labeled with scene characteristics. Each im-
age has one label assigned for each scene characteristic.
The training images are reduced to a set of histograms
of the predicted labels for the pixels, one for each par-
tition. The supervised data for an image consists of
the histogram distributions and the label set.

Scene recognition output is a summarization of a visual
input as an admittedly modest amount of information
from a input source orders of magnitude greater–even
mores than for the object recognition task. From the
order of 106 pixel values we infer a probability distri-
bution over a small number of discrete scene classifi-
cation variables. To obtain computational efficiency,
we’ve devised an approach that summarizes the infor-
mation content of the image in an early stage of the
process that is adequate at later stages for the classi-
fication task.

2.1 Inference Cascade

The two phases in the inference cascade can be for-
malized as follows, starting from the pixel image and

1Sometimes called “soft evidence.” We prefer the term
virtual evidence, since soft evidence is also used to mean an
application of Jeffrey’s rule of conditioning that can change
the CPTs in the network.

resulting in a probability distribution over scene char-
acteristics. Consider an image of pixels pij over i× j,
each pixel described by a vector of features fij . The
features are derived by a set of filters, e.g. for color
and texture, centered at coordinate (i, j). A pixel-level
classifier is a function from the domain of f to one of
a discrete set of n types, C : f → {c(1), · · · c(n)}. The
result is an array of classified image pixels.

A pre-determined segmentation, Gm partitions the
pixels in the image into M regions by assign-
ing each pixel to one region, rm = {pij | pij ∈
Gm},m = 1 . . .M , to form regions that are con-
tiguous sets of pixels. Each region is described
by a histogram of the pixel types it contains:
Hm =

(
|C(fij) = c(1)|, · · · |C(fij) = c(n)|

)
s.t. fij ∈

Gm, for which we introduce the notation, Hm =(
|c(1)

ij |m, · · · |c(n)
ij |m

)
, where |c(i)|m denotes the count

of pixels of type c(i) in region m. The scene classi-
fier is a PGM with virtual evidence nodes correspond-
ing to the M regions of the image. See Figure 3.
Each evidence node receives virtual evidence in the
form of a lambda message, λm, with likelihoods in the
ratios given by Hm. The PGM model has a subset
of nodes S = {S1, · · ·Sv}, distinct from its evidence
nodes, for scene characteristic variables, each with a
discrete state space. Scene classification is completely
described by P(S |λ1, · · ·λM ), the joint of S when the
λm are applied, or by a characterization of the joint
by the MAP configuration over S, or just the posterior
marginals of S.

2.2 Partitions of Pixel-level Data

As mentioned we avoid segmenting the image based
on pixel values by using a fixed partition to group
classified pixels. We introduce a significant simplifi-
cation over conventional object recognition methods
by using such a segmentation. This makes sense be-
cause we are not interested in identifying things that
are in the image, but only in treating the image as a
whole. For instance in the example we present here,
the assumption is that the system is classifying an out-
door roadway scene, with sky above, road below, and
surroundings characteristic of the scene to either side.
The partitions approximate this division. The image is
partitioned symmetrically into a set of twelve wedges,
formed by rays emanating from the image center.

For greater efficiency the same method could be ap-
plied over a smoothed, or down-sampled image, so that
every pixel need not be touched, only pixels on a reg-
ular grid. The result of the classification step is a dis-
crete class-valued image array. See Figure 2. Despite
the classifier ignoring local dependencies, neighboring
pixels tend to be classed similarly, and the class-valued
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image resembles a cartoon version of the original.

Figure 1: The original image. The barriers bordering
the lane are a crucial feature that the system is trained
to recognize.

Figure 2: The image array of C(fij), the pixel classi-
fier, on an image down-sampled to 96 by 54. Rays em-
anating from the image center show the wedge-shaped
regions. Colors are suggestive of the pixel class, e.g.
green indicates foliage and beige indicates barriers.

2.2.1 Inferring partition geometry

The point chosen as the image center, where the ver-
tices of the wedges converge approximates the vanish-
ing point of the image. Objects in the roadway scene
tend to conform (very) roughly to the wedge outlines
so that their contents are more uniform, and hence,
likelihoods are more informative. For example, the
contents of the image along the horizon will fall within
one wedge, and the road surface within another.

2.3 The image as a source of virtual evidence

For each wedge that partitions the image, the evidence
applied to the Bayes network from the wedge m is:
λm ∝ |c(1)

ij |m : |c(2)
ij |m : · · · : |c(n)

ij |m. One typically
thinks of virtual evidence as a consequence of mea-
surements coming from a sensor that garbles the pre-

cise value of the quantity of interest—where the actual
observed evidence value is obscured by an inaccuracy
in the sensor reading. Semantically, one should not
think of the virtual image evidence as a garbled sensor
variable. Rather it is the evidence that describes the
region.

3 Bayes network design

Formally a Bayes network is a factorization of a joint
probability distribution into local probability mod-
els, each corresponding to one node in the network,
with directed arcs between the nodes showing the
conditioning of one node’s probability model on an-
other’s (Koller and Friedman, 2010). Inference—
for example, classification—operates in the direction
against the causal direction of the arc. In short, in-
ference flows from lower level evidence in the network
upward to the class nodes at the top of the network
where it generates the posterior distributions over the
class variables, in this case, the scene characteristics.
We learn a fully observable Bayes network with virtual
evidence for scene classification.

3.1 How the structure and parameters are
defined

The design of the Bayes network model is fluid: It is
easily re-learned under different partition inputs, out-
put categories and structural constraints. The ability
to easily modify the model to test different kinds of
evidence as inputs, or differently defined nodes as out-
puts is an advantage of this approach. The structure
of the model discovers dependencies among the model
variables that reveal properties of the domain.

Learning the Bayes network is composed of two as-
pects; the first, learning the variables’ structure, the
second, learning the parameters of the variable con-
ditional probability tables. The algorithm used is
SMILE’s Bayesian Search (Druzdzel et al., 1997), a
conventional fully observable learning algorithm, with
a Bayesian scoring rule used to select the preferred
model. Learning structure and parameters occur si-
multaneously.

The model is structured into two levels, the top level of
outputs and the lower level of inputs as shown in Fig-
ure 3. This is the canonical structure for classification
with a Bayes network, in this case a multi-classifier
with multiple output nodes. In the learning procedure
this node ordering is imposed as a constraint on the
structure, so that conditioning arcs cannot go from the
lower level to the upper level.

Further constraints are used to limit in-degree and
node ordering. The in-degree of evidence nodes is
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limited to two. Node ordering of output nodes fol-
lows common sense causal reasoning: for instance, the
“Surroundings” variable influences the “Driving Con-
ditions” and not the other way around. The model
consequently follows an approximately näive Bayes
structure for each scene variable, but with additional
arcs that are a consequence of the model selection per-
formed during learning. The resulting network is rela-
tively sparse and hence learning a network of this size,
let alone running inference on it can be done interac-
tively.

3.2 Bayes Network Learning Dataset

An interesting challenge in learning this model is that
there is no conventional procedure for learning from
virtual evidence, such as the histogram data.

3.2.1 Consideration of partition contents as
virtual evidence

We considered three ways to approximate learning the
Bayes network from samples that include virtual evi-
dence.

1) Convert the dataset into an approximate equiva-
lent observed evidence dataset by generating multi-
ples of each evidence row, in proportion to the likeli-
hood fraction for each state of the virtual evidence. If
there are multiple virtual evidence nodes, then to cap-
ture dependencies among virtual evidence nodes this
could result in a combinatorial explosion of row sets,
one multiple for each combination of virtual evidence
node states, with multiplicities in proportion to the
likelihood of the state combination. This is equivalent
in complexity to combining all virtual evidence nodes
into one node for sampling.

Similarly one could sample from the combination of all
virtual evidence nodes and generate a sample of rows
based on the items in the sample. This is a bit like
logic sampling the virtual states.

Both these methods make multiple copies of a row in
the learning set as a way to emulate a training weight.
Instead one could apply a weight to each row in the
sampled training set, in proportion to its likelihood.

2) One could also consider a mixture, a “multi-net,”
of learned deterministic evidence models. The mod-
els would have the same structure, so the result would
be a mixture of CPTs, weighted (in some way) by the
likelihoods. It appears this would also suffer a combi-
natorial explosion of mixture components, and might
be amenable to reducing the set by sampling.

3) Alternatively, one could consider the virtual evi-
dence by a virtual node that gets added as a child

to the evidence node, which is then instantiated to
send the equivalent lambda msg to its parent. This is
the method used in Refaat, Choi and Darwiche (2012).
With many cases, there would be a set of virtual nodes
added to the network for each case, again generating
a possibly unmanageable method. Perhaps there is an
incremental learning method that would apply: Build
a network with one set of nodes, do one learning step,
then replace the nodes with the next set, and repeat a
learning step.

4 Results on a sample dataset

In this section we present the evaluation of the Bayes
network as a classifier. We argue that the first-stage
pixel-level classifier, whose accuracy approaches 90%,
is a minor factor in the scene classification results,
since the partition-level inputs to the Bayes network
average over a large number of pixels, although this
premise could be tested.

4.1 Learning from a sampled dataset

The sample dataset to learn the model was a further
approximation on alternative 1), where each virtual
evidence node was sampled independently to convert
the problem into an equivalent one with sampled data.
Each histogram was sampled according to its likeli-
hood distribution, to generate a set of conventional
evidence samples that approximated the histogram.
The result was an expanded dataset that multiplied
the number rows by the sample size for each row in
the histogram dataset. The resulting dataset descrip-
tion is:

1. Original data set: 122 rows of 12 region his-
tograms of images labeled by 5 scene labels.

2. Each region histogram is sampled 10 times, to
generate 1220 rows

3. Final data set of 5 labels and 12 features by 1220
rows

4.2 Inference Results

As mentioned, the second-stage Bayes network classi-
fier infers a joint probability distribution over the set
of scene characteristic nodes—the nodes shown in or-
ange in Figure 3. We will evaluate the scene classifier
by the accuracy of the predicted marginals, comparing
the highest posterior prediction for each scene variable
with the true value.2

2The “dynamic environment” variable is not counted
in the evaluation results, since most all labeled data was
collected under overcast conditions, making the predicted
results almost always correct, and uninteresting.
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Figure 3: The entire Bayes network used for scene classification. Input nodes, corresponding to the wedges
that partition the image are shown in light blue, and output nodes for the scene variables are in orange. The
input nodes are arranged roughly in the positions of the corresponding wedges in the image. The input node
histograms show the virtual evidence applied from that wedge. The labels used here for virtual evidence states,
s 1, . . . s 8 correspond to the classifier outputs c(1), . . . c(8).

The matrix of counts of the true class by the predicted
class is called a confusion matrix. The row sum of the
confusion matrix for any class divided into the diag-
onal (true count) is the fraction of correct cases out
of those possible, known as the recall or the coverage
for that class. The column sum divided into the diago-
nal element is the fraction classified with that columns
class label that truly belong to that class, which is
called the precision. Tables 1− 4 show the recall and
precision for each class, for each of the scene variables.
As may be expected “Surroundings” that takes in the
entire image performs better than “Road obstacles”
that requires attention to detail in just the car’s lane.
This poor performance is even more true with “Bicy-
cles and pedestrians,” in Table 3 that appear in small
areas of the image. In other classes either precision or
recall approach 1.0, except for “Local” roads, where all
cases were confused with “Curves and grades,” again
due to the limited variety in the training set.

Beyond evaluating the accuracy of marginal predic-
tions, we can also make observations about the struc-
ture learned for the Bayes network. Arcs in the learned

model show which wedge histograms are relevant to
which scene variables. These arcs are relatively sparse,
in part due to the afore-mentioned design constraint
in-degree arc limit of two. The arcs chosen by the
structure learning algorithm show a strong association
between the location of the partitions, and different
scene variables. We see this in the associations where
the “Driving conditions” scene variable connects to
partitions at the base of the image, and “Surround-
ings” connects to partitions on the image periphery.
The relevance of the two wedges at the bottom of the
diagram is limited, since their only incoming arcs are
from other wedges, indicating that their evidence is
supported entirely by neighboring wedges. We leave
them in the model, since in the case of virtual evidence
they will still have some information value for classi-
fication. Further along these lines, in terms of wedge
dependencies, only one arc was learned between wedge
histograms, indicating that the evidence contributed
to the scene is conditionally independent in all but
this case. The sub-network of scene variables is more
connected, indicating strong dependencies among the
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scene variables. Some of these are to be expected, for
instance “Curves and grades” correlates strongly with
“Mountainous” surroundings. Some are spurious, as
a result of biased selection of the training sample im-
ages, (e.g. all divided highway images corresponded
to overcast scenes) and have been corrected by adding
more samples.

4.3 Discussion and Conclusion

We have demonstrated a novel scene classification al-
gorithm that takes advantage of the presumed geom-
etry of the scene to avoid computationally expensive
image processing steps characteristic of object recogni-
tion methods, such as pixel segmentation, by a cascade
of a pixel level and fixed partition level multi-classifier,
for which we learn a Bayes network. As a consequence
of the partition-level data we learn the Bayes network
with virtual evidence.

The Bayes network classifies the scene in several de-
pendent dimensions corresponding to a set of cate-
gories over which a joint posterior of scene character-
istics is generated. Here we have only considered the
marginals over categories, however it is a valid ques-
tion whether a MAP interpretation—of the most likely
combination of labels—is more appropriate.

The use of virtual evidence also raises questions about
whether it is proper to consider the virtual evidence
likelihood as a convex combination of “pure” image
data. Another interpretation is that the histograms
we are using are better“sliced and diced” to generate
strong evidence from certain ratios of partition con-
tent. For instance a partition that includes a small
fraction of evidence of roadway obstacles—think evi-
dence of a small person—may be a larger concern than
a partition obviously full of obstacles, and should not
be considered a weaker version of the extreme parti-
tion contents. These subtleties could be considered
as we expand the applicability of the system. In this
early work it suffices that given the approximations,
useful and accurate results can be achieved at modest
computational cost.
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Mountainous
Open
rural Residential Urban

Recall 1.0 0.9 0.794 0.45
Precision 0.642 1.0 0.964 1.0
Accuracy 0.784

Table 1: Surroundings

Curves
and

grades

Limited
access

highway
Local

No
shoulder

Streetside
parking

Recall 1.0 0.75 0.0 0.85 0.56
Precision 0.61 1.0 NaN 1.0 1.0
Accuracy 0.770

Table 2: Roadways

Bicycles and
pedestrians

Traffic and
congestion Unimpeded

Recall 0.56 0.6 0.98
Precision 0.875 0.93 0.67
Accuracy 0.754

Table 3: Driving Conditions

Clear road Construction
Merge

intersection

Tree
trunks

and poles
Recall 0.42 0.96 0.6 1.0
Precision 1.0 0.92 0.86 0.55
Accuracy 0.738

Table 4: Road Obstacles
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Abstract

Gaussian process (GP) regression is a pow-
erful technique for nonparametric regression;
unfortunately, calculating the predictive vari-
ance in a standard GP model requires time
O(n2) in the size of the training set. This
is cost prohibitive when GP likelihood cal-
culations must be done in the inner loop of
the inference procedure for a larger model
(e.g., MCMC). Previous work by Shen et al.
(2006) used a k-d tree structure to approxi-
mate the predictive mean in certain GP mod-
els. We extend this approach to achieve effi-
cient approximation of the predictive covari-
ance using a tree clustering on pairs of train-
ing points. We show empirically that this sig-
nificantly increases performance at minimal
cost in accuracy. Additionally, we apply our
method to “primal/dual” models having both
parametric and nonparametric components
and show that this enables efficient computa-
tions even while modeling longer-scale varia-
tion.

1 Introduction

Complex Bayesian models often tie together many
smaller components, each of which must provide its
output in terms of probabilities rather than discrete
predictions. As a natively probabilistic technique,
Gaussian process (GP) regression (Rasmussen and
Williams, 2006) is a natural fit for such systems, but
its applications in large-scale Bayesian models have
been limited by computational concerns: training a
GP model on n points requires O(n3) time, while com-
puting the predictive distribution at a test point re-
quires O(n) and O(n2) operations for the mean and
variance respectively.

This work focuses specifically on the fast evaluation of

GP likelihoods, motivated by the desire for efficient in-
ference in models that include a GP regression compo-
nent. In particular, we focus on the predictive covari-
ance, since this computation time generally dominates
that of the predictive mean. In our setting, training
time is a secondary concern: the model can always be
trained offline, but the likelihood evaluation occurs in
the inner loop of an ongoing inference procedure, and
must be efficient if inference is to be feasible.

One approach to speeding up GP regression, com-
mon especially to spatial applications, is the use of
covariance kernels with short lengthscales to induce
sparsity or near-sparsity in the kernel matrix. This
can be exploited directly using sparse linear algebra
packages (Vanhatalo and Vehtari, 2008) or by more
structured techniques such as space-partitioning trees
(Shen et al., 2006; Gray, 2004); the latter approaches
create a query-dependent clustering to avoid consid-
ering regions of the data not relevant to a particular
query. However, previous work has focused on effi-
cient calculation of the predictive mean, rather than
the variance, and the restriction to short lengthscales
also inhibits application to data that contain longer-
scale variations.

In this paper, we develop a tree-based method to
efficiently compute the predictive covariance in GP
models. Our work extends the weighted sum algo-
rithm of Shen et al. (2006), which computes the pre-
dictive mean. Instead of clustering points with sim-
ilar weights, we cluster pairs of points having simi-
lar weights, where the weights are given by a kernel-
dependent distance metric defined on the product space
consisting of all pairs of training points. We show how
to efficiently build and compute using a product tree
constructed in this space, yielding an adaptive covari-
ance computation that exploits the geometric struc-
ture of the training data to avoid the need to explicitly
consider each pair of training points. This enables us
to present what is to our knowledge the first account of
GP regression in which the major test-time operations
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(predictive mean, covariance, and likelihood) run in
time sublinear in the training set size, given a suitably
sparse kernel matrix. As an extension, we show how
our approach can be applied to GP models that com-
bine both parametric and nonparametric components,
and argue that such models present a promising option
for modeling global-scale structure while maintaining
the efficiency of short-lengthscale GPs. Finally, we
present empirical results that demonstrate significant
speedups on synthetic data as well as a real-world seis-
mic dataset.

2 Background

2.1 GP Regression Model

We assume as training input a set of labeled points
{(xi, yi)|i = 1, . . . , n}, where we suppose that

yi = f(xi) + εi

for some unknown function f(·) and i.i.d. Gaussian ob-
servation noise εi ∼ N (0, σ2

n). Treating the estimation
of f(·) as a Bayesian inference problem, we consider
a Gaussian process prior distribution f(·) ∼ GP (0, k),
parameterized by a positive-definite covariance or ker-
nel function k(x, x′). Given a set X∗ containing m
test points, we derive a Gaussian posterior distribu-
tion f(X∗) ∼ N (µ∗,Σ∗), where

µ∗ = K∗TK−1y y (1)

Σ∗ = K∗∗ −K∗TK−1y K∗ (2)

and Ky = K(X,X) + σ2
nI is the covariance matrix of

training set observations, K∗ = k(X,X∗) denotes the
n×m matrix containing the kernel evaluated at each
pair of training and test points, and similarly K∗∗ =
k(X∗, X∗) gives the kernel evaluations at each pair
of test points. Details of the derivations, along with
general background on GP regression, can be found in
Rasmussen and Williams (2006).

In this work, we make the additional assumption that
the input points xi and test points x∗p lie in some met-
ric space (M, d), and that the kernel is a monotoni-
cally decreasing function of the distance metric. Many
common kernels fit into this framework, including the
exponential, squared-exponential, rational quadratic,
and Matérn kernel families; anisotropic kernels can be
represented through choice of an appropriate metric.

2.2 k-d and Metric Trees

Tree structures such as k-d trees (Friedman et al.,
1977) form a hierarchical, multiresolution partition-
ing of a dataset, and are commonly used in machine
learning for efficient nearest-neighbor queries. They

Figure 1: Cover tree decomposition of seismic event
locations recorded at Fitzroy Crossing, Australia (with
X marking the station location).

have also been adapted to speed up nonparametric re-
gression (Moore et al., 1997; Shen et al., 2006); the
general approach is to view the regression computa-
tion of interest as a sum over some quantity associ-
ated with each training point, weighted by the kernel
evaluation against a test point. If there are sets of
training points having similar weight – for example,
if the kernel is very wide, if the points are very close
to each other, or if the points are all far enough from
the query to have effectively zero weight – then the
weighted sum over the set of points can be approxi-
mated by an unweighted sum (which does not depend
on the query and may be precomputed) times an es-
timate of the typical weight for the group, saving the
effort of examining each point individually. This is
implemented as a recursion over a tree structure aug-
mented at each node with the unweighted sum over all
descendants, so that recursion can be cut off with an
approximation whenever the weight function is shown
to be suitably uniform over the current region.

Major drawbacks of k-d trees include poor perfor-
mance in high dimensions and a limitation to Eu-
clidean spaces. By contrast, we are interested in non-
Euclidean metrics both as a matter of practical appli-
cation (e.g., in a geophysical setting we might consider
points on the surface of the earth) and because some
choices of kernel function require our algorithm to op-
erate under a non-Euclidean metric even if the under-
lying space is Euclidean (see section 3.2). We therefore
consider instead the class of trees having the following
properties: (a) each node n is associated with some
point xn ∈M, such that all descendants of n are con-
tained within a ball of radius rn centered at xn, and
(b) for each leaf L we have xL ∈ X, with exactly one
leaf node for each training point xi ∈ X. We call any
tree satisfying these properties a metric tree.
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function WeightedMetricSum(node n, query points (x∗
i , x∗

j ),

. accumulated sum Ŝ, tolerances εrel, εabs)
δn ← δ((x∗

i ,x
∗
j ), (n1,n2))

if n is a leaf then

Ŝ ← Ŝ + (K−1
y )n ·

(
k(d(x∗

i ,n1)) · k(d(x∗
j ,n2))

)
else

wmin ← kprodlower (δn + rn)

wmax ← kprodupper (max(δn − rn, 0))

if wmax · SAbs
n ≤

(
εrel

∣∣∣Ŝ + wmin · SUW
n

∣∣∣+ εabs

)
then

Ŝ ← Ŝ + 1
2 (wmax + wmin) · SUW

n
else

for each child c of n
sorted by ascending δ((x∗

i ,x
∗
j ), (c1, c2)) do

Ŝ ← Ŝ + WeightedMetricSum(c, (x∗
i ,x

∗
j ), Ŝ, εrel, εabs)

end for
end if

end if
return Ŝ

end function

Figure 2: Recursive algorithm to computing GP co-
variance entries using a product tree. Abusing nota-
tion, we use n to represent both a tree node and the
pair of points n = (n1,n2) associated with that node.

Examples of metric trees include many structures de-
signed specifically for nearest-neighbor queries, such as
ball trees (Uhlmann, 1991) and cover trees (Beygelz-
imer et al., 2006), but in principle any hierarchical
clustering of the dataset, e.g., an agglomerative clus-
tering, might be augmented with radius information to
create a metric tree. Although our algorithms can op-
erate on any metric tree structure, we use cover trees
in our implementation and experiments. A cover tree
on n points can be constructed in O(n log n) time, and
the construction and query times scale only with the
intrinsic dimensionality of the data, allowing for ef-
ficient nearest-neighbor queries in higher-dimensional
spaces (Beygelzimer et al., 2006). Figure 1 shows a
cover-tree decomposition of one of our test datasets.

3 Efficient Covariance using Product
Trees

We consider efficient calculation of the GP covari-
ance (2). The primary challenge is the multiplication
K∗TK−1y K∗. For simplicity of exposition, we will fo-
cus on computing the (i, j)th entry of the resulting
matrix, i.e., on the multiplication k∗i

TK−1y k∗j where
k∗i denotes the vector of kernel evaluations between
the training set and the ith test point, or equivalently
the ith column of K∗. Note that a näıve implementa-
tion of this multiplication requires O(n2) time.

We might be tempted to apply the vector multiplica-
tion primitive of Shen et al. (2006) separately for each
row of K−1y to compute K−1y k∗j , and then once more
to multiply the resulting vector by k∗i . Unfortunately,
this requires n vector multiplications and thus scales
(at least) linearly in the size of the training set. In-

stead, we note that we can rewrite k∗i
TK−1y k∗j as a

weighted sum of the entries of K−1y , where the weight
of the (p, q)th entry is given by k(x∗i ,xp)k(x∗j ,xq):

k∗i
TK−1y k∗j =

n∑
p=1

n∑
q=1

(K−1y )pqk(x∗i ,xp)k(x∗j ,xq). (3)

Our goal is to compute this weighted sum efficiently
using a tree structure, similar to Shen et al. (2006),
except that instead of clustering points with similar
weights, we now want to cluster pairs of points having
similar weights.

To do this, we consider the product spaceM×M con-
sisting of all pairs of points fromM, and define a prod-
uct metric δ on this space. The details of the product
metric will depend on the choice of kernel function, as
discussed in section 3.2 below. For the moment, we will
assume a SE kernel, of the form kSE(d) = exp(−d2),
for which a natural choice is the 2-product metric:

δ((xa,xb), (xc,xd)) =
√
d(xa,xc)2 + d(xb,xd)2.

Note that this metric, taken together with the SE ker-
nel, has the fortunate property

kSE(d(xa,xb))kSE(d(xc,xd)) = kSE(δ((xa,xb), (xc,xd))),

i.e., the property that evaluating the kernel in the
product space (rhs) gives us the correct weight for our
weighted sum (3) (lhs).

Now we can run any metric tree construction algo-
rithm (e.g., a cover tree) using the product metric to
build a product tree on all pairs of training points. In
principle, this tree contains n2 leaves, one for each pair
of training points. In practice it can often be made
much smaller; see section 3.1 for details. At each leaf
node L, representing a pair of training points, we store
the element (K−1y )L corresponding to those two train-
ing points, and at each higher-level node n we cache
the unweighted sum SUWn of these entries over all of
its descendant leaf nodes, as well as the sum of abso-
lute values SAbsn (these cached sums will be used to
determine when to cut off recursive calculations):

SUW
n =

∑
L∈leaves(n)

(K−1y )L (4)

SAbs
n =

∑
L∈leaves(n)

∣∣(K−1y )L
∣∣ . (5)

Given a product tree augmented in this way, the
weighted-sum calculation (3) is performed by the
WeightedMetricSum algorithm of Figure 2. This
algorithm is similar to the WeightedSum and
WeightedXtXBelow algorithms of Shen et al.
(2006) and Moore et al. (1997) respectively, but
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adapted to the non-Euclidean and non-binary tree set-
ting, and further adapted to make use of bounds on the
product kernel (see section 3.2). It proceeds by a recur-
sive descent down the tree, where at each non-leaf node
it computes upper and lower bounds on the weight of
any descendant, and applies a cutoff rule to determine
whether to continue the descent. Many cutoff rules are
possible; for predictive mean calculation, Moore et al.
(1997) and Shen et al. (2006) maintain an accumulated
lower bound on the total overall weight, and cut off
whenever the difference between the upper and lower
weight bounds at the current node is a small fraction
of the lower bound on the overall weight. However, our
setting differs from theirs: since we are computing a
weighted sum over entries of K−1y , which we expect to
be approximately sparse, we expect that some entries
will contribute much more than others. Thus we want
our cutoff rule to account for the weights of the sum
and the entries of K−1y that are being summed over.
We do this by defining a rule in terms of the current
running weighted sum,

wmax · SAbs
n ≤

(
εrel

∣∣∣Ŝ + wmin · SUW
n

∣∣∣+ εabs

)
, (6)

which we have found to significantly improve per-
formance in covariance calculations compared to the
weight-based rule of Moore et al. (1997) and Shen
et al. (2006). Here Ŝ is the weighted sum accumu-
lated thus far, and εabs and εrel are tunable approxi-
mation parameters. We interpret the left-hand side of
(6) as computing an upper bound on the contribution
of node n’s descendents to the final sum, while the ab-
solute value on the right-hand side gives an estimated
lower bound on the magnitude of the final sum (note
that this is not a true bound, since the sum may con-
tain both positive and negative terms, but it appears
effective in practice). If the leaves below the current
node n appear to contribute a negligible fraction of
the total sum, we approximate the contribution from
n by 1

2 (wmax +wmin) ·SUW
n , i.e., by the average weight

times the unweighted sum. Otherwise, the computa-
tion continues recursively over n’s children. Following
Shen et al. (2006), we recurse to child nodes in order of
increasing distance from the query point, so as to ac-
cumulate large sums early on and increase the chance
of cutting off later recursions.

3.1 Implementation

A näıve product tree on n points will have n2

leaves, but we can reduce this and achieve substan-
tial speedups by exploiting the structure of K−1y and
of the product space M×M:

Sparsity. IfKy is sparse, or can be well-approximated
by a sparse matrix, then K−1y is often also sparse (or

well-approximated as sparse) in practice. This oc-
curs in the case of compactly supported kernel func-
tions (Gneiting, 2002; Rasmussen and Williams, 2006),
but also even when using standard kernels with short
lengthscales. Note that although there is no guaran-
tee that the inverse of a sparse matrix must itself be
sparse (with the exception of specific structures, e.g.,
block diagonal matrices), it is often the case that when
Ky is sparse many entries of K−1y will be very near
to zero, since points with negligible covariance gener-
ally also have negligibly small correlations in the pre-
cision matrix, so K−1y can often be well-approximated
as sparse. When this is the case, our product tree need
include only those pairs (xp,xq) for which (K−1y )pq is
non-negligible. This is often a substantial advantage.

Symmetry. Since K−1y is a symmetric matrix, it is re-
dundant to include leaves for both (xp,xq) and (xq,xp)
in our tree. We can decompose K−1y = U + D + UT ,
where D = diag(K−1y ) is a diagonal matrix and U =
triu(K−1y ) is a strictly upper triangular (zero diagonal)
matrix. This allows us to rewrite

k∗i
TK−1y k∗j = k∗i

TUk∗j + k∗i
TDk∗j + k∗i

TUTk∗j ,

in which the first and third terms can be implemented
as calls to WeightedMetricSum on a product tree
built from U ; note that this tree will be half the size
of a tree built for K−1y since we omit zero entries. The
second (diagonal) term can be computed using a sep-
arate (very small) product tree built from the nonzero
entries of D. The accumulated sum Ŝ can be car-
ried over between these three computations, so we can
speed up the later computations by accumulating large
weights in the earlier computations.

Factorization of product distances. In general,
computing the product distance δ will usually involve
two calls to the underlying distance metric d; these
can often be reused. For example, when calculating
both δ((xa,xb), (xc,xd)) and δ((xa,xe), (xc,xd)), we
can reuse the value of d(xa,xc) for both computations.
This reduces the total number of calls to the distance
function during tree construction from a worst-case n4

(for all pairs of pairs of training points) to a maximum
of n2, and in general much fewer if other optimiza-
tions such as sparsity are implemented as well. This
can dramatically speed up tree construction when the
distance metric is slow to evaluate. It can also speed
up test-time evaluation, if distances to the same point
must be computed at multiple levels of the tree.

3.2 Other Kernel Functions

As noted above, the SE kernel has the lucky property
that, if we choose product metric δ =

√
d21 + d22, then

the product of two SE kernels is equal to the kernel of
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Kernel k(d) k(d1)k(d2) δ(d1, d2) kprodlower(δ) kprodupper(δ)

SE exp
(
−d2

)
exp

(
−d21−d

2
2

) √
d21+d22 exp

(
−(δ)2

)
exp

(
−(δ)2

)
γ-exponential exp (−dγ) exp

(
−dγ1−d

γ
2

) (
d
γ
1 +d

γ
2

)1/γ exp (−(δ)γ) exp (−(δ)γ)

Rational Quadratic

(
1+ d2

2α

)−α (
1+

d21+d22
2α

+
d21d

2
2

4α2

)−α √
d21+d22

(
1+

(δ)2

2α
+

(δ)4

16α2

)−α (
1+

(δ)2

2α

)−α

Matérn (ν = 3/2)
(
1+
√

3d
)

· exp
(
−
√

3d]
)

(
1+
√

3 (d1+d2) +3d1d2

)
· exp

(
−
√

3(d1+d2)
) d1+d2

(
1+
√

3δ
)

· exp
(
−
√

3δ
)

(
1+
√

3δ+3(δ/2)2
)

· exp(−
√

3δ)

Piecewise polynomial
(compact support),
q = 1, dimension D,

j =
⌊
D
2

⌋
+2

(1−d)j+1
+

· ((j+1)d+1)

(
(1−d1)+(1−d2)+

)j+1

·
(
(j+1)2d1d2

+ (j+1)(d1+d2)+1)

d1+d2 (1−δ)j+1
+

· ((j+1)δ+1)

(
1−δ+ (δ)2

4

)j+1

+

·
(

(j+1)2
(
δ
2

)2
+(j+1)δ+1

)

Table 1: Bounds for products of common kernel functions. All kernel functions are from Rasmussen and Williams
(2006).

the product metric δ:

kSE(d1)kSE(d2) = exp
(
−d21 − d22

)
= kSE(δ).

In general, however, we are not so lucky: it is not
the case that every kernel we might wish to use has
a corresponding product metric such that a product
of kernels can be expressed in terms of the product
metric. In such cases, we may resort to upper and
lower bounds in place of computing the exact kernel
value. Note that such bounds are all we require to
evaluate the cutoff rule (6), and that when we reach a
leaf node representing a specific pair of points we can
always evaluate the exact product of kernels directly
at that node. As an example, consider the Matérn
kernel

kM(d) = (1 +
√

3d) exp(−
√

3d)

(where we have taken ν = 3/2); this kernel is popu-
lar in geophysics because its sample paths are once-
differentiable, as opposed to infinitely smooth as with
the SE kernel. Considering the product of two Matérn
kernels,

kM(d1)kM(d2) =

(1+
√

3(d1+d2)+3d1d2) exp(−
√

3(d1+d2))

we notice that this is almost equivalent to kM(δ) for the
choice of δ = d1 + d2, but with an additional pairwise
term of 3d1d2. We bound this term by noting that
it is maximized when d1 = d2 = δ/2 and minimized
whenever either d1 = 0 or d2 = 0, so we have 3(δ/2)2 ≥
3d1d2 ≥ 0. This yields the bounds kprodlower and kprodupper as
shown in Table 1. Bounds for other common kernels
are obtained analogously in Table 1.

4 Primal / Dual and Mixed GP
Representations

In this section, we extend the product tree approach
to models combining a long-scale parametric compo-
nent with a short-scale nonparametric component. We

introduce these models, which we refer to as mixed pri-
mal/dual GPs, and demonstrate how they can mediate
between the desire to model long-scale structure and
the need to maintain a short lengthscale for efficiency.
(Although this class of models is well known, we have
not seen this particular use case described in the litera-
ture). We then show that the necessary computations
in these models can be done efficiently using the tech-
niques described above.

4.1 Mixed Primal/Dual GP Models

Although GP regression is commonly thought of as
nonparametric, it is possible to implement paramet-
ric models within the GP framework. For example, a
Bayesian linear regression model with Gaussian prior,

y = xTβ + ε, β ∼ N (0, I), ε ∼ N (0, σ2
n),

is equivalent to GP regression with a linear kernel
k(x,x′) = 〈x,x′〉, in the sense that both models yield
the same (Gaussian) predictive distributions (Ras-
mussen and Williams, 2006). However, the two rep-
resentations have very different computational prop-
erties: the primal (parametric) representation allows
computation of the predictive mean and variance in
O(D) and O(D2) time respectively, where D is the
input dimensionality, while the dual (nonparametric)
representation requires time O(n) and O(n2) respec-
tively for the same calculations. When learning simple
models on large, low-dimensional (e.g., spatial) data
sets, the primal representation is obviously more at-
tractive, since we can store and compute with model
parameters directly, in constant time relative to n.

Of course, simple parametric models by themselves
cannot capture the complex local structure that often
appears in real-world datasets. Fortunately it is pos-
sible to combine a parametric model with a nonpara-
metric GP model in a way that retains the advantages
of both approaches. To define a combined model, we
replace the standard zero-mean GP assumption with a
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(a) MAD= 1.11
polynomial(5)

(b) MAD= 1.77
GP w/ ` = 0.02

(c) MAD= 0.73
Mixed:
polynomial(5) +
GP w/ ` = 0.02

(d) MAD= 0.65
True GP w/
`1 = 0.5
`2 = 0.02

Figure 3: A primal/dual mixture approximating a longer-scale GP.

parametric mean function h(x)Tβ, yielding the model

y = f(x) + h(x)Tβ + ε

where h(x) is a vector of feature values
[h1(x), . . . , hD(x)]. The GP model is then learned
jointly along with a posterior distribution on the co-
efficients β. Assuming a Gaussian prior β ∼ N (b, B)
on the coefficients, the predictive distribution
g(X∗) ∼ N (µ′∗,Σ

′
∗) can be derived (Rasmussen and

Williams, 2006) as

µ′∗ = H∗T β̄ +K∗TK−1y (y −H∗T β̄) (7)

Σ′∗ = K∗∗ −K∗TK−1y K∗

+RT (B−1 +HK−1y HT )R
(8)

where we define Hij = hj(xi) for each training point
xi, similarly H∗ for the test points, and we have β̄ =
(B−1+HK−1y HT )−1(HK−1y y+B−1b) and R = H∗−
HK−1y K∗. Section 2.7 of Rasmussen and Williams
(2006) gives further details.

Note that linear regression in this framework corre-
sponds to a choice of basis functions h1(x) = 1 and
h2(x) = x; it is straightforward to extend this to
polynomial regression and other models that are lin-
ear in their parameters. In general, any kernel which
maps to a finite-dimensional feature space can be rep-
resented parametrically in that feature space, so this
framework can efficiently handle kernels of the form
k(x,x′) =

∑
i ki(x,x

′)+kS(x,x′), where kS is a short-
lengthscale or compactly supported kernel, monoton-
ically decreasing w.r.t. some distance metric as as-
sumed above, and each ki either has an exact finite-
dimensional feature map or can be approximated using
finite-dimensional features Rahimi and Recht (2007);
Vedaldi and Zisserman (2010).

As an example, Figure 3 compares several approaches
for inferring a function from a GP with long and short-

lengthscale components. We drew training data from
a GP with a mixture of two SE kernels at lengthscales
`1 = 0.5 and `2 = 0.02, sampled at 1000 random
points in the unit square. Figure 3 displays the poste-
rior means of four models on a 100 by 100 point grid,
reporting the mean absolute deviation (MAD) of the
model predictions relative to the “true” values (drawn
from the same GP) at 500 random test points. Note
that although the short-scale GP (3b) cannot by itself
represent the variation from the longer-scale kernel,
when combined with a parametric polynomial com-
ponent (3a) the resulting mixed model (3c) achieves
accuracy approaching that of the true model (3d).

4.2 Efficient Operations in Primal/Dual
Models

Likelihood calculation in primal/dual models is a
straightforward extension of the standard case. The
predictive mean (7) can be accommodated within the
framework of Shen et al. (2006) using a tree repre-
sentation of the vector K−1y

(
y −H∗T β̄

)
, then adding

in the easily evaluated parametric component H∗T β̄.
In the covariance (8) we can use a product tree to
approximate K∗TK−1y K∗ as described above; of the

remaining terms, β̄ and B−1 +HK−1y HT can be pre-
computed at training time, and H∗ and K∗∗ don’t
depend on the training set. This leaves HK−1y K∗ as
the one remaining challenge; we note that this quan-
tity can be computed efficiently using mD applications
of the vector multiplication primitive from Shen et al.
(2006), re-using the same tree structure to multiply
each column of K∗ by each row of HK−1y . Thus, all of
the the operations required for likelihood computation
can be implemented efficiently with no explicit depen-
dence on n (i.e., with no direct access to the training
set except through space-partitioning tree structures).
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Figure 4: Mean runtimes for dense, sparse, hybrid,
and product tree calculation of GP variance on a 2D
synthetic dataset.

5 Evaluation

We compare calculation of the predictive variance us-
ing a product tree to several other approaches: a näıve
implementation using dense matrices, a direct calcu-
lation using a sparse representation of K−1y and dense
representation of k∗i , and a hybrid tree implementation
that attempts to also construct a sparse k∗i by query-
ing a cover tree for all training points within distance
r of the query point x∗i , where r is chosen such that
k(r′) is negligible for r′ > r, and then filling in only
those entries of k∗i determined to be non-negligible.

Our product tree implementation is a Python exten-
sion written in C++, based on the cover tree imple-
mentation of Beygelzimer et al. (2006) and implement-
ing the optimizations from section 3.1. The approxi-
mation parameters εrel and εabs were set appropriately
for each experiment so as to ensure that the mean ap-
proximation error is less than 0.1% of the exact vari-
ance. All sparse matrix multiplications are in CSR for-
mat using SciPy’s sparse routines; we impose a spar-
sity threshold of 10−8 such that any entry less than
the threshold is set to zero.

Figure 4 compares performance of these approaches on
a simple two-dimensional synthetic data set, consist-
ing of points sampled uniformly at random from the
unit square. We train a GP on n such points and then
measure the average time per point to compute the

predictive variance at 1000 random test points. The
GP uses an SE kernel with observation noise σ2

n = 0.1
and lengthscale ` =

√
vπ/n, where v is a parame-

ter indicating the average number of training points
within a one-lengthscale ball of a random query point
(thus, on average there will be 4v points within two
lengthscales, 9v within three lengthscales, etc.).

The results of Figure 4 show a significant advantage
for the tree-based approaches, which are able to take
advantage of the geometric sparsity structure in the
training data. The dense implementation is relatively
fast on small data sets but quickly blows up, while the
sparse calculation holds on longer (except in the rel-
atively dense v = 5.0 setting) but soon succumbs to
linear growth, since it must evaluate the kernel be-
tween the test point and each training point. The
hybrid approach has higher overhead but scales very
efficiently until about n = 48000, where the sparse
matrix multiplication’s Ω(n) runtime (Bank and Dou-
glas, 1993) begins to dominate. Conversely, the prod-
uct tree remains efficient even for very large, sparse
datasets, with v = 0.25 runtimes growing from 0.08ms
at n = 1000 to just 0.13ms at n = 200000. Due to
memory limitations we were unable to evaluate v = 1.0
and v = 5.0 for values of n greater than 32000.

Our second experiment uses amplitude data from 3105
seismic events (earthquakes) detected by a station in
Fitzroy Crossing, Australia; the event locations are
shown in Figure 1. The amplitudes are normalized
for event magnitude, and the task is to predict the
recorded amplitude of a new event given that event’s
latitude, longitude, and depth. Here our distance met-
ric is the great-circle distance, and we expect our data
to contain both global trends and local structure, since
events further away from the detecting station will
generally have lower amplitudes, but this may vary
locally as signals from a given source region generally
travel along the same paths through the earth and are
dampened or amplified in the same ways as they travel
to the detecting station.

Table 2 considers several models for this data. A sim-
ple parametric model, the fifth-order polynomial in
event-to-station distance shown in Figure 5, is not very
accurate but does allow for very fast variance evalua-
tions. The GP models are more accurate, but the most
accurate GP model uses a relatively long lengthscale of
50km, with correspondingly slow variance calculations.
Depending on application requirements, the most ap-
pealing tradeoff might be given by the mixed model
combining a fifth-degree polynomial with a 10km SE
GP: this model achieves accuracy close to that of the
50km models, but with significantly faster variance
calculations due to the shorter lengthscale, especially
when using a product tree.
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Figure 5: Normalized amplitude as a func-
tion of event-station distance, with a fifth-
degree polynomial fit shading ±2std.

Model Error Sparse (ms) Tree (ms)

Polynomial in distance (deg 5) 0.78 0.050 n/a

GP, SE, ` = 10km 0.67 0.722 ± 0.032 0.216 ± 0.224

poly/GP, deg 5,SE, 10km 0.62 0.795 ± 0.033 0.413 ± 0.307

GP, Matérn, ` = 10km 0.65 1.256 ± 0.592 0.337 ± 0.365

poly/GP, deg 5, Matérn, 10km 0.62 1.327 ± 0.602 0.654 ± 0.499

GP, SE, ` = 50km 0.61 1.399 ± 0.661 1.168 ± 1.242

poly/GP, deg 5, SE, 50km 0.60 1.490 ± .677 1.551 ± 1.409

Table 2: Models for Fitzroy Crossing amplitude data, with
mean absolute prediction error from five-fold cross validation
and (mean ± std) time to compute the predictive variance via
a direct sparse calculation versus a product tree.

6 Related Work

Previous approximations for GP mean prediction
(Moore et al., 1997; Shen et al., 2006; Gray, 2004),
which inspired this work, use tree structures to imple-
ment an efficient matrix-vector multiplication (MVM);
the Improved Fast Gauss Transform (Morariu et al.,
2008) also implements fast MVM for the special case of
the SE kernel. It is possible to accelerate GP training
by combining MVM methods with a conjugate gra-
dient solver, but models thus trained do not allow
for the computation of predictive variances. One ar-
gument against MVM techniques (and, by extension,
our product tree approach) is that their efficiency re-
quires shorter lengthscales than are common in ma-
chine learning applications (Murray, 2009); however,
we have found them quite effective on datasets which
do have genuinely sparse covariance structure (e.g.,
geospatial data), or in which the longer-scale variation
can be represented by a parametric component.

Another set of approaches to speeding up GP regres-
sion, sparse approximations (Csató and Opper, 2002;
Seeger et al., 2003; Snelson and Ghahramani, 2006;
Quiñonero-Candela and Rasmussen, 2005), attempt
to represent n training points using a smaller set of
m points, allowing training in O(nm2) time and pre-
dictive covariance (thus likelihood) computation in
O(m2) time. This is philosophically a different ap-
proach from that of this paper, where we generally
want to retain all of our training points in order to
represent local structure. However, there is no for-
mal incompatibility: many sparse approaches, includ-
ing all of those discussed by Quiñonero-Candela and
Rasmussen (2005), yield predictive covariances of the
form k∗i

TQk∗j for some matrix Q (or a sum of terms
of this form), where this product could be computed
straightforwardly using a product tree. Several non-

sparse approximations, e.g., the Nyström approxima-
tion (Williams and Seeger, 2001), also yield predictive
covariances of this form.

More closely related to our setting are local approxi-
mations, in which different GPs are trained in different
regions of the input space. There is some evidence that
these can provide accurate predictions which are very
fast to evaluate (Chalupka et al., 2013); however, they
face boundary discontinuities and inaccurate uncer-
tainty estimates if the data do not naturally form inde-
pendent clusters. Since training multiple local GPs is
equivalent to training a single global GP with a block
diagonal covariance matrix, it should be possible to
enhance local GPs with global parametric components
as in section 4, similarly to the combined local/global
approximation of Snelson and Ghahramani (2007).

7 Conclusion and Future Work

We introduce the product tree structure for efficient
adaptive calculation of GP covariances using a mul-
tiresolution clustering of pairs of training points. Spe-
cific contributions of this paper include product met-
rics and bounds for common kernels, the adaptation
to metric trees, a novel cutoff rule incorporating both
the weights and the quantity being summed over, and
covariance-specific performance optimizations. Addi-
tionally, we describe efficient calculation in GP models
incorporating both primal and dual components, and
show how such models can model global-scale variation
while maintaining the efficiency of short-lengthscale
GPs.

A limitation of our approach is the need to explicitly
invert the kernel matrix during training; this can be
quite difficult for large problems. One avenue for fu-
ture work could be an iterative factorization of Ky
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analogous to the CG training performed by MVM
methods (Shen et al., 2006; Gray, 2004; Morariu et al.,
2008). Another topic would be a better understanding
of cutoff rules for the weighted sum recursion, e.g., an
empirical investigation of different rules or a theoreti-
cal analysis bounding the error and/or runtime of the
overall computation.

Finally, although our work has been focused primar-
ily on low-dimensional applications, the use of cover
trees instead of k-d trees ought to enable an exten-
sion to higher dimensions. We are not aware of pre-
vious work applying tree-based regression algorithms
to high-dimensional data, but as high-dimensional co-
variance matrices are often sparse, this may be a nat-
ural fit. For high-dimensional data that do not lie
on a low-dimensional manifold, other nearest-neighbor
techniques such as locality-sensitive hashing (Andoni
and Indyk, 2008) may have superior properties to tree
structures; the adaptation of such techniques to GP
regression is an interesting open problem.
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Abstract

Group-deal websites, where customers pur-
chase products or services in groups, are an
interesting phenomenon on the Web. Each
purchase is kicked off by a group initiator,
and other customers can join in. Customers
form communities with people with similar
interests and preferences (as in a social net-
work), and this drives bulk purchasing (sim-
ilar to online stores, but in larger quantities
per order, thus customers get a better deal).
In this work, we aim to better understand
what factors influence customers’ purchasing
behavior for such social group-deal websites.
We propose two probabilistic graphical mod-
els, i.e., a product-centric inference model
(PCIM) and a group-initiator-centric infer-
ence model (GICIM), based on Latent Dirich-
let Allocation (LDA). Instead of merely us-
ing customers’ own purchase history to pre-
dict purchasing decisions, these two models
include other social factors. Using a lift curve
analysis, we show that by including social fac-
tors in the inference models, PCIM achieves
35% of the target customers within 5% of the
total number of customers while GICIM is
able to reach 85% of the target customers.
Both PCIM and GICIM outperform random
guessing and models that do not take social
factors into account.

1 Introduction

Group purchasing is a business model that offers var-
ious deals-of-the-day and an extra discount depend-
ing on the size of the purchasing group. After group-
deal websites, such as Groupon and LivingSocial, have
gained attention, similar websites, such as ihergo1

1http://www.ihergo.com

and Taobao,2 have introduced social networks as a
feature for their users. These group-deal websites pro-
vide an interesting hybrid of social networks (e.g.,
Facebook.com and LinkedIn.com) and online stores
(e.g., Amazon.com and Buy.com). Customers form
communities with people with similar interests and
preferences (as in a social network), and this drives
bulk purchasing (similar to online stores, but in larger
quantities per order, thus customers get a better deal).
As we see more and more social interactions among
customers in group-deal websites, it is critical to un-
derstand the interplay between social factors and pur-
chasing preferences.

In this paper, we analyze a transactional dataset
from the largest social group-deal website in Taiwan,
ihergo.com. Figure 1 shows a screenshot from the
group-deal page of ihergo.com. Each group-purchasing
event on ihergo.com consists of three major compo-
nents: (1) a group initiator, (2) a number of group
members, and (3) a group-deal product. A group ini-
tiator starts a group-purchasing event for a specific
group-deal product. While this event will be posted
publicly, the group initiator’s friends will also be no-
tified. A user can choose to join the purchasing event
to become a group member.

Group initiators play important roles on this kind of
group-deal websites. Usually, the merchants would of-
fer incentives for the group initiators to initiate group-
purchasing events by giving them products for free if
the size of the group exceeds some threshold. In addi-
tion, to save shipping costs, the group can choose to
have the whole group-deal order shipped to the initia-
tor. In this case, the initiator would need to distribute
the products to group members in person. Hence, the
group members usually reside or work in the proximity
of the group initiator. Sometimes, they are friends or
co-workers of the initiator.

Understanding customers’ purchasing behavior in this

2http://www.taobao.com
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kind of social group-purchasing scenario could help
group-deal websites strategically design their offerings.
Traditionally, customers search for or browse products
of their interests on websites like Amazon.com. How-
ever, on social group-deal websites, customers can per-
form not only product search, but they can also browse
group deals and search for initiators by ratings and lo-
cations. Therefore, a good recommender system [1]
for social group-deal websites should take this into ac-
count. If the website can predict which customers are
more likely to join a group-purchasing event started
by a specific initiator, it can maximize group sizes and
merchants’ profits in a shorter period of time by de-
livering targeted advertising. For example, instead of
spamming everyone, the website can send out notifi-
cations or coupons to the users who are most likely to
join the group-purchasing events.

In this work, we aim to predict potential customers
who are most likely to join a group-purchasing event.
We apply Latent Dirichlet Allocation (LDA) [2] to cap-
ture customers’ purchasing preferences, and evaluate
our proposed predictive models based on a one-year
group-purchasing dataset from ihergo.com.

Our contributions in understanding the importance of
social factors for group-deal customers’ decisions are
the following:

• A new type of group-purchasing dataset.
We introduce and analyze a new type of group-
purchasing dataset, which consists of 5,602 users,
26,619 products and 13,609 group-purchasing
events.

• Predictive models for group-deal cus-
tomers. Based on topic models, we propose two
predictive models that include social factor. They
achieve higher prediction accuracy compared to
the baseline models.

In the next section, we describe related work in the
area of group purchasing behavior, social recommen-
dations, and topic models for customer preferences.
Section 3 introduces and analyzes the characteristics
of our real-world group-purchasing dataset. In Sec-
tion 4, we first review LDA, then present two proposed
predictive models for group-deal customer prediction.
Experimental results are given in Section 5. Finally,
conclusion and future research direction are presented
in Section 6.

2 Related Work

In this section, we review related work in three areas:
(1) group purchasing behavior, (2) social recommen-
dations, and (3) topic models for customer preferences.

to initiate a groupnumber of 
group members

initiator

group-deal product
filter by 

initiator's rating
active period 
of group deal

filter by 
meet-up location

Figure 1: Screenshot of the group-deal page from
ihergo.com.

Group Purchasing Behavior. Since group-deal
websites such as Groupon and LivingSocial gained at-
tention, several studies have been conducted to under-
stand factors influencing group purchasing behavior.
Byers et al. analyzed purchase histories of Groupon
and LivingSocial [3]. They showed that Groupon op-
timizes deal offers strategically by giving “soft” incen-
tives, such as deal scheduling and duration, to encour-
age purchases. Byers et al. also compared Groupon
and LivingSocial sales with additional datasets from
Yelp’s reviews and Facebook’s like counts [4]. They
showed that group-deal sites benefit significantly from
word-of-mouth effects on users’ reviews during sales
events. Edelman et al. studied the benefits and draw-
backs of using Groupon from the point of view of the
merchants [6]. Their work modeled whether adver-
tising and price discrimination effects can make dis-
counts profitable. Ye et al. introduced a predictive
dynamic model for group purchasing behavior. This
model incorporates social propagation effects to pre-
dict the popularity of group deals as a function of
time [19]. In this work, we focus on potential cus-
tomer prediction, as opposed to modeling the overall
deal purchasing sales over time.

Social Recommendations. In real life, a cus-
tomer’s purchasing decision is influenced by his or her
social ties. Guo et al. analyzed the dataset from the
largest Chinese e-commerce website, Taobao, to study
the relationship between information passed among
buyers and purchasing decision [7]. Leskovec et al.
used a stochastic model to explain the propagation of
recommendations and cascade sizes [11]. They showed
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that social factors have a different level of impact on
user purchasing decision for different products. More-
over, previous work also tried to incorporate social
information into existing recommendation techniques,
such as collaborative filtering [13, 14, 20, 12]. Re-
cently, many recommendation systems have been im-
plemented, taking advantage of social network infor-
mation in addition to users’ preferences to improve rec-
ommendation accuracy. For example, Yang et al. pro-
posed a Bayesian-inference based movie recommenda-
tion system for online social networks [18]. Our work
considers the relationship between the group initiator
and the group members as a social tie to augment cus-
tomer prediction for group-purchasing events.

Topic Models for Customer Preference. Topic
models such as LDA have been widely and successfully
used in many applications including language model-
ing [2], text mining [17], human behavior modeling [9],
social network analysis [5], and collaborative filter-
ing [8]. Researchers have also proposed new topic mod-
els for purchasing behavior modeling. For example,
topic models have been extended with price informa-
tion to analyze purchase data [10]. By estimating the
mean and the variance of the price for each product,
the proposed model can cluster related items by taking
their price ranges into account. Iwata and Watanabe
proposed a topic model for tracking time-varying con-
sumer purchase behavior, in which consumer interests
and item trends change over time [9]. In this paper,
we use LDA to learn topic proportions from purchase
history to represent customers’ purchasing preferences.

3 Group-Purchasing Dataset

The dataset for our data analysis comes from users’
transactional data of a group-deal website, ihergo. It
is the largest social group-deal website in Taiwan. We
collected longitudinal data between October 1st 2011
and October 1st 2012. From the users’ geographical
profile, we are able to group them based on their living
area. For this study, we include all 5,602 users living
in Taipei, the capital of Taiwan. In total, our dataset
contains 26,619 products and 13,609 group-purchasing
events.

On ihergo, users can purchase a product by joining a
group-purchasing event. There are two roles among
the users: 1) the group initiator and 2) the group
member. A group initiator initiates a purchase group
which other users can join to become group members.
Once the group size exceeds some threshold, the group
members can get a discount on the product while the
initiator can get the product for free. Sometimes the
group initiator and the group members already know
each other before they join the same group-purchasing

Figure 2: Part of group deal graph for ihergo dataset:
illustration of the member-centric relationships be-
tween group members and initiators from a subset of
randomly sampled joined group members. A directed
edge is from a joined customer (dark blue) to an ini-
tiator (light orange).

event. Sometimes they become friends after the event.
Moreover, each user can become a follower of a group
initiator. When a new group-purchasing event is initi-
ated by an initiator, the system will notify his or her
followers.

Each group-purchasing deal in our dataset is composed
of a set of attributes: the product description (e.g.,
discounted price, limited quantity, and product cate-
gory), the group size, the group initiator, the group
members, and the time period in which the deal is ac-
tive. Group-purchasing deals are defined by a time se-
ries D = (D1, D2,..., Dn), where Di is a tuple (t, p, o,
m) denoting that a group-purchasing deal for product
p is initiated by an organizer (initiator) o with joined
group members m = {m1, ..., mk} at time t.

We represent group-purchasing events as a directed
graph. Each user is a vertex in the graph. For ev-
ery group-purchasing deal, we build directed edges
from each group member to the initiator. There
are 5,602 vertices and 16,749 edges in our ihergo
dataset. The directed edges are defined by E =
∪i∈[1,n] ∪j∈[1,d(i)](mi,j , oi), where d(i) is the number
of joined customers for group deal i. The vertices in
the graph are defined by V = M ∪ O, where M de-
notes all group members M = m1 ∪ . . .∪mn and O
denotes total group-purchasing organizers (initiators)
O = {o1}∪ . . .∪{on}.

Figure 2 illustrates the joined customer centric graph
structure by showing the relationships among a sub-
set of randomly sampled joined customers. Light or-
ange and dark blue vertices represent the group initia-
tors and group members, respectively. According to
this dataset, each user has joined 84 group-purchasing
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Figure 3: Node out-degree distribution for the group-
purchasing graph of ihergo. 80% of the users follow
five or fewer initiators.

events on average. However, one interesting obser-
vation from the graph is that the number of outgo-
ing edges from dark blue vertices is far less than 84.
This property can be even clearly seen from the out-
degree distribution for the overall group-purchasing
graph shown in Figure 3. We see that 80% of the
users only join group-purchasing events initiated by
5 or fewer different initiators. Group members have
a tendency to repeatedly join group-purchasing initi-
ated by a relatively small number of initiators they
co-bought with before.

Therefore, we hypothesize that customers’ purchasing
decisions are not only influenced by their own purchas-
ing preferences but also strongly influenced by who the
group initiator is. In the next section, we propose two
new models to predict which customers are most likely
to join a particular group-purchasing event.

4 Methodology

In this section, we first describe in Section 4.1 how we
apply topic modeling to learn user purchasing pref-
erences under the group-purchasing scenario. During
the training phase, we compute for each user a mix-
ture topic proportion by combining topic proportions
of this user and the initiators with whom this user has
co-bought products.

Given a new group-purchasing event, we would like to
predict which customers are more likely to join. We
propose two predictive models in Section 4.2. One
model, which we denote as the product-centric infer-
ence model (PCIM), computes the posterior probabil-
ity that a user would purchase this product given his or
her mixture topic proportion. The other model, which
we denote the group initiator centric inference model
(GICIM), computes the posterior probability that a
user would join the group-purchasing event initiated
by this initiator given user’s or initiator’s mixture topic
proportion.

↵ ✓

z�

� x

K UNu

Figure 4: Graphical model representation of the latent
Dirichlet allocation model.

4.1 Topic Model for User Purchasing
Preference

We use topic modeling to characterize a user’s pur-
chasing preference. In particular, we apply LDA to our
group-purchasing dataset. In a typical LDA model for
text mining [2], a document is a mixture of a number
of hidden topics which can be represented by a multi-
nomial distribution, i.e. the topic proportion. A word
can belong to one or more hidden topics with different
probabilities. Figure 4 shows the graphical model for
LDA. LDA is a generative model where each word in
a document is generated by two steps: 1) sample a
topic from its topic distribution and 2) draw a word
from that topic. One can also use Bayesian inference
to learn the particular topic proportion of each docu-
ment.

In our model, we treat a user’s purchase history as a
document. Each purchased product can be seen as a
word in a document. We make an analogy between
text documents and purchasing patterns as shown in
Table 1. We replace words with each purchased prod-
uct and a document is one user’s purchasing history.
Assume that there are U users in our training data.
Let U denote the set of users. Each user u ∈ U has
a vector of purchased products xu = {xun}Nu

n=1 where
Nu is the number of products that user u purchased.

The generative process of the LDA model for learning
a user’s purchasing preferences is described as follow-
ing. Each user u has his or her own topic proportion
(i.e., purchasing preference) θu that is sampled from
a Dirichlet distribution. Next, for each product xun

purchased by user u, a topic zun is firstly chosen from
the user’s topic proportion θu. Then, a product xun

is drawn from the multinomial distribution φzun
. To

estimate θu and φzun
, we use the collapsed Gibbs sam-

pling method [15].
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Symbol Description for Group Purchase History Description for Text Documents
U Number of users Number of documents
K Number of latent topics Number of latent topics
Nu Number of purchased products of user u Number of words of document u
zun Latent co-purchasing category of nth product Latent topic of nth word of document u
xun nth purchased product of user u nth word of document u
θu Latent co-purchasing category proportion for user u Topic proportin for document u
φk Multinomial distribution over products for topic k Mult. distribution over words for topic k
α Dirichlet prior parameters for all θu Dirichlet prior parameters for all θu

β Dirichlet prior parameters for all φk Dirichlet prior parameters for all φk

Table 1: Latent Dirichlet allocation plate model notation

4.2 Proposed Models for Predicting
Group-Deal Customers

A group-purchasing event contains two kinds of critical
information: who the group initiator is and what the
group-deal product is. Our goal is to predict which
customers are more likely to join a specific group-
purchasing event. Intuitively, one may think that
whether a customer would join a group-purchasing
event solely depends on what the group-deal product
is. However, from our observations in the dataset, we
hypothesize a correlation between a customer’s pur-
chasing decision and who the group initiator is. There-
fore, we would like to study how these two kinds of
group-purchasing information affect the prediction ac-
curacy by asking two questions:

1. What is the likelihood that a customer would join
the event given what the group-deal product is?

2. What is the likelihood that a customer would join
the event given who the group-initiator is?

This leads to our two proposed predictive models,
the product centric inference model (PCIM ) and the
group initiator centric inference model (GICIM ).

4.2.1 Product Centric Inference Model
(PCIM)

Figure 5(a) shows the graphical structure of PCIM.
For each user, we train a PCIM. PCIM computes the
posterior probability that a user would purchase a
product given his or her mixture topic proportion. Let
C denote the user’s own topic proportion, which we
learned from LDA. Suppose that this user has joined
group-purchasing events initiated by n group initia-
tors, we use {Ii}n

i=1 to denote the learned topic pro-
portions of these initiators. Our model computes the
weighted topic proportions of initiators W by linearly
combining {Ii}n

i=1 with the frequency distribution that
the user co-bought products with them.

Intuitively, if a user joins a group-purchasing event
initiated by a group initiator, they might share sim-
ilar interests. Therefore, our model characterizes the
user’s purchasing preferences by a weighting scheme
that combines C and W with a weighting parameter
w. We use M to denote such a mixture topic propor-
tion which encodes the overall purchasing preferences
of the user.

Let P denote the product random variable. Ω(P) =
{p1, ..., pm}, where pi is the product. From each data
record Di ∈D , we have a tuple (ti, pi, oi, mi) and
know what group-deal product pi corresponds to a par-
ticular group-purchasing event ei. Our goal is to com-
pute Pr(P = pi), the probability that the user would
join a group-purchasing event ei to buy a product pi.

Given the topic proportion C and {Ii}n
i=1 correspond-

ing to the user and the weighting parameter w, we are
able to compute

Pr(P ) =
∑

Y=Xp\{P}

Pr(P,Y) (1)

where Xp = {P,M,C,W, I1, ..., In}; P a is product
random variable; M is a mixture topic proportion.

To predict which users are more likely to join a group-
purchasing event, we rank {P(u1)

pi , . . . ,P(uU )
pi } in de-

scending order where {u1, . . . , uU} denotes the set of
users in our dataset and P(uj)

pi denotes Pr(P = pi) of
user uj .

4.2.2 Group Initiator Centric Inference
Model (GICIM)

The graphical illustration of GICIM is shown in Figure
5(b). GICIM computes the posterior probability that
a user would join a group-purchasing event initiated
by a particular initiator given user’s or initiator’s mix-
ture topic proportion. GICIM and PCIM only differ
in their leaf nodes. While PCIM considers only what
the group-deal product is, GICIM models our observa-
tion that the decision of whether or not a user joins a
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Figure 5: Our proposed models for predicting poten-
tial customers given a group-purchasing event. (a)
Product centric inference model (PCIM). (b) Group
initiator centric inference model (GICIM).

group-purchasing event is strongly influenced by who
the group initiator of that event is.

Let I denote the initiator random variable and ii de-
note the initiator of the group-purchasing event ei.
Again, from each data record Di ∈D , we know who the
group initiator is. Instead of evaluating Pr(P = pi) as
in PCIM, we use GICIM to compute

Pr(I) =
∑

Y=Xp\{I}

Pr(I,Y) (2)

where Xp = {I, M, C, W, I1, ..., In}; I is an initiator
random variable; M is a mixture topic proportion.

To predict which users are more likely to join a group-
purchasing event ei, we rank {P(u1)

oi , . . . ,P(uU )
oi } in de-

scending order where {u1, . . . , uU} denotes the set of
users in our dataset and P(uj)

oi denotes Pr(I = oi) of
user uj .

5 Experimental Evaluation

5.1 Data Pre-processing

We evaluate the proposed PCIM and GICIM mod-
els with the ihergo group-purchasing dataset. In or-
der to capture meaningful user purchasing preferences,
we remove users who purchased fewer than 10 prod-
ucts during the pre-processing step. We use ten-fold
cross-validation to generate our training and testing
datasets.

5.2 LDA Topic Modeling on Group
Purchasing Dataset

To measure the performance of LDA for different num-
ber of topics (20, 40, 60, 80, 100) in our group-
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Figure 6: Perplexity as function of collapsed Gibbs
sampling iterations for different number of topics used
in LDA.

purchasing dataset, we compute the perplexity. It
measures how well the model generalizes and predicts
new documents [2]. Figure 6 shows that the per-
plexity decreases as the number of iteration increases
and converges within 200 iterations. In addition, as
we increase the number of topics, the perplexity de-
creases. Unless mentioned specifically, all topic pro-
portions used in our experiments are learned with LDA
using 100 topics.

Figure 7 shows three example product topics learned
by LDA using 100 topics. Each table shows the ten
products that are most likely to be bought in that
topic. Columns in the table represent the product
name, the probability of the product being purchased
in that topic, and the ground-truth category of the
product, respectively. We see that Topic 1 is about
“pasta.” It contains a variety of cooked pasta and
pasta sauce. Topic 18 and 53 are respectively about
“bread and cakes” and “women accessories.”

Figure 8 shows the topic proportions of four randomly
selected users learned by LDA using 60 topics. We see
that different users have distinguishable topic propor-
tions, representing their purchasing preferences. For
example, user #3617 purchased many products that
are about “beauty” and “clothing” so her or his topic
proportion has higher probabilities at topic 4 and topic
17. Similarly, user #39 tends to buy products in the
“dim sum” category which can be represented in her
or his topic proportion.
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(a) User #3617 (b) User #5 (c) User #2618 (d) User #39
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Figure 8: Examples illustrating learned topic proportions of four randomly selected users. For user #3617, the
two most probable topics are “beauty” and “clothing”.

(a) Topic 1, "pasta"

(b) Topic 18, "bread and cakes"

(c) Topic 53, "women accessories"

Symbol Description
U Number of users
I Number of products
K Number of latent topics
Nu Number of purchased products of user u

zun Latent topic of nth purchased product of user u

xun nth purchased product of user u

✓u Topic proportion for user u, ✓u={✓uk}K
k=1, ✓uk � 0,

KP
k=1

✓uk = 1

�k Multinomial distribution over products for topic k, �k={�ki}I
i=1, �ki � 0,

IP
i=1

�ki = 1

↵ Dirichlet prior parameters for all ✓u

� Dirichlet prior parameters for all �k

Table 1: LDA plate model notation

their purchase preference. For example, user2 purchased
many products that are most likely in ”Seafood” category,
hence, his topic proportion has higher probability at topic 4,
”Seafood” category. Similarly, user10 tends to buy products
in ”Pasta” category which can be represented in his topic
proportion.

5.3 Performance of PCIM and GICIM
To evaluate the performance of PCIM and GICIM, we use

lift chart to measure the e↵ectiveness of prediction result for
group-buying buyers. In a lift chart, the x-axis represents is
the percentage of users sorted by our prediction score and
the y-axis is the cumulative percentage of the ground-truth
buyers we would predict.

For the evaluation of PCIM and GICIM, we use users’
topic proportions and product’s topic proportion as input.
Figure 7 shows the performance of PCIM model with dif-
ferent weighting of co-occurrence initiator influence. As we
can observe, PCIM with user’s topic proportion only (w=1)
has better prediction with 25% of predicted buyers. How-
ever, the performance degrades and is worse than random
sample (baseline) after including 65% of predicted users.
This e↵ect can be explained that users who have no strong
purchase preference have low prediction score and PCIM
model cannot correctly predict. On the other hand, us-
ing co-occurrence initiator topic proportions (w<1), PCIM
achieves better prediction after including 40% of predicted
users. Overall performance is better than random sample
with co-occurrence initiator topic proportions only (w=0),
though the positive response rate is slightly lower than user’s
topic proportion only setting (w=1) before including 40%
predicted users.

Figure 8 demonstrates the performance of GICIM model
with di↵erent weighting of co-occurrence initiator influence.
GICIM model significantly outperforms PCIM and it achieves
90% positive response by only including 10% predicted buy-
ers. The performance change due to the di↵erent weighting
of co-occurrence initiator influence is not as significant as
in PCIM. The high prediction rate of GICIM explains that
most of users choose join the purchase group or not based
on who the group initiator is.

In Figure 10, we found PCIM and GICIM models have
the consistent performance over di↵erent product categories
(e.g., food, bodycare, apparel, toys, and living). Moreover,
GICIM outperforms PICIM over all product categories.

product prob. category
Chicken pasta (cream sauce) 0.0197 Pasta
Chicken pasta (pesto sauce) 0.0193 Pasta
Pork pasta (tomato sauce) 0.0167 Pasta
Pork steak 0.0155 Meat
Bacon pasta (cream sauce) 0.0153 Pasta
Spicy pasta (tomato sauce) 0.0149 Pasta
Clam garlic linguine 0.0146 Pasta
Tomato sauce pasta 0.0142 Pasta
German sausage sauce 0.0132 Pasta
Italian pasta (cooked) 0.0129 Pasta

Table 2: Illustration of product topics created by
LDA. Category is from ground truth.

product prob. category
Ham sandwich 0.0101 Bread
Cheese sandwich 0.0089 Bread
Milk bar cookie 0.0080 Cookie
Cherry chocolate tart 0.0078 Cake
Cheese roll 0.0077 Cake
Cheese almond tart 0.0074 Cake
Taro toast 0.0073 Bread
Creme Brulee 0.0073 Cake
Raisin toast 0.0071 Bread
Wheat ham sandwich 0.0070 Bread

Table 3: Topic 18.

product prob. category
Knit Hat 0.0169 Accessory
Knit Scarf 0.0165 Accessory
Legging 0.0133 Clothing
Wool scarf 0.0120 Accessory
Long Pant 0.0111 Clothing
Cotton Socks 0.0099 Accessory
Wool Gloves 0.0097 Accessory
Facial Masks 0.0090 BodyCare
Wool socks 0.0088 Accessory
Brown knit scarf 0.0081 Accessory

Table 4: Topic 53.

Symbol Description
U Number of users
I Number of products
K Number of latent topics
Nu Number of purchased products of user u

zun Latent topic of nth purchased product of user u

xun nth purchased product of user u

✓u Topic proportion for user u, ✓u={✓uk}K
k=1, ✓uk � 0,

KP
k=1

✓uk = 1

�k Multinomial distribution over products for topic k, �k={�ki}I
i=1, �ki � 0,

IP
i=1

�ki = 1

↵ Dirichlet prior parameters for all ✓u

� Dirichlet prior parameters for all �k

Table 1: LDA plate model notation

their purchase preference. For example, user2 purchased
many products that are most likely in ”Seafood” category,
hence, his topic proportion has higher probability at topic 4,
”Seafood” category. Similarly, user10 tends to buy products
in ”Pasta” category which can be represented in his topic
proportion.

5.3 Performance of PCIM and GICIM
To evaluate the performance of PCIM and GICIM, we use

lift chart to measure the e↵ectiveness of prediction result for
group-buying buyers. In a lift chart, the x-axis represents is
the percentage of users sorted by our prediction score and
the y-axis is the cumulative percentage of the ground-truth
buyers we would predict.

For the evaluation of PCIM and GICIM, we use users’
topic proportions and product’s topic proportion as input.
Figure 7 shows the performance of PCIM model with dif-
ferent weighting of co-occurrence initiator influence. As we
can observe, PCIM with user’s topic proportion only (w=1)
has better prediction with 25% of predicted buyers. How-
ever, the performance degrades and is worse than random
sample (baseline) after including 65% of predicted users.
This e↵ect can be explained that users who have no strong
purchase preference have low prediction score and PCIM
model cannot correctly predict. On the other hand, us-
ing co-occurrence initiator topic proportions (w<1), PCIM
achieves better prediction after including 40% of predicted
users. Overall performance is better than random sample
with co-occurrence initiator topic proportions only (w=0),
though the positive response rate is slightly lower than user’s
topic proportion only setting (w=1) before including 40%
predicted users.

Figure 8 demonstrates the performance of GICIM model
with di↵erent weighting of co-occurrence initiator influence.
GICIM model significantly outperforms PCIM and it achieves
90% positive response by only including 10% predicted buy-
ers. The performance change due to the di↵erent weighting
of co-occurrence initiator influence is not as significant as
in PCIM. The high prediction rate of GICIM explains that
most of users choose join the purchase group or not based
on who the group initiator is.

In Figure 10, we found PCIM and GICIM models have
the consistent performance over di↵erent product categories
(e.g., food, bodycare, apparel, toys, and living). Moreover,
GICIM outperforms PICIM over all product categories.

product prob. category
Chicken pasta (cream sauce) 0.0197 Pasta
Chicken pasta (pesto sauce) 0.0193 Pasta
Pork pasta (tomato sauce) 0.0167 Pasta
Pork steak 0.0155 Meat
Bacon pasta (cream sauce) 0.0153 Pasta
Spicy pasta (tomato sauce) 0.0149 Pasta
Clam garlic linguine 0.0146 Pasta
Tomato sauce pasta 0.0142 Pasta
German sausage sauce 0.0132 Pasta
Italian pasta (cooked) 0.0129 Pasta

Table 2: Illustration of product topics created by
LDA. Category is from ground truth.

product prob. category
Ham sandwich 0.0101 Bread
Cheese sandwich 0.0089 Bread
Milk bar cookie 0.0080 Cookie
Cherry chocolate tart 0.0078 Cake
Cheese roll 0.0077 Cake
Cheese almond tart 0.0074 Cake
Taro toast 0.0073 Bread
Creme Brulee 0.0073 Cake
Raisin toast 0.0071 Bread
Wheat ham sandwich 0.0070 Bread

Table 3: Topic 18.

product prob. category
Knit Hat 0.0169 Accessory
Knit Scarf 0.0165 Accessory
Legging 0.0133 Clothing
Wool scarf 0.0120 Accessory
Long Pant 0.0111 Clothing
Cotton Socks 0.0099 Accessory
Wool Gloves 0.0097 Accessory
Facial Masks 0.0090 BodyCare
Wool socks 0.0088 Accessory
Brown knit scarf 0.0081 Accessory

Table 4: Topic 53.

Symbol Description
U Number of users
I Number of products
K Number of latent topics
Nu Number of purchased products of user u

zun Latent topic of nth purchased product of user u

xun nth purchased product of user u

✓u Topic proportion for user u, ✓u={✓uk}K
k=1, ✓uk � 0,

KP
k=1

✓uk = 1

�k Multinomial distribution over products for topic k, �k={�ki}I
i=1, �ki � 0,

IP
i=1

�ki = 1

↵ Dirichlet prior parameters for all ✓u

� Dirichlet prior parameters for all �k

Table 1: LDA plate model notation

their purchase preference. For example, user2 purchased
many products that are most likely in ”Seafood” category,
hence, his topic proportion has higher probability at topic 4,
”Seafood” category. Similarly, user10 tends to buy products
in ”Pasta” category which can be represented in his topic
proportion.

5.3 Performance of PCIM and GICIM
To evaluate the performance of PCIM and GICIM, we use

lift chart to measure the e↵ectiveness of prediction result for
group-buying buyers. In a lift chart, the x-axis represents is
the percentage of users sorted by our prediction score and
the y-axis is the cumulative percentage of the ground-truth
buyers we would predict.

For the evaluation of PCIM and GICIM, we use users’
topic proportions and product’s topic proportion as input.
Figure 7 shows the performance of PCIM model with dif-
ferent weighting of co-occurrence initiator influence. As we
can observe, PCIM with user’s topic proportion only (w=1)
has better prediction with 25% of predicted buyers. How-
ever, the performance degrades and is worse than random
sample (baseline) after including 65% of predicted users.
This e↵ect can be explained that users who have no strong
purchase preference have low prediction score and PCIM
model cannot correctly predict. On the other hand, us-
ing co-occurrence initiator topic proportions (w<1), PCIM
achieves better prediction after including 40% of predicted
users. Overall performance is better than random sample
with co-occurrence initiator topic proportions only (w=0),
though the positive response rate is slightly lower than user’s
topic proportion only setting (w=1) before including 40%
predicted users.

Figure 8 demonstrates the performance of GICIM model
with di↵erent weighting of co-occurrence initiator influence.
GICIM model significantly outperforms PCIM and it achieves
90% positive response by only including 10% predicted buy-
ers. The performance change due to the di↵erent weighting
of co-occurrence initiator influence is not as significant as
in PCIM. The high prediction rate of GICIM explains that
most of users choose join the purchase group or not based
on who the group initiator is.

In Figure 10, we found PCIM and GICIM models have
the consistent performance over di↵erent product categories
(e.g., food, bodycare, apparel, toys, and living). Moreover,
GICIM outperforms PICIM over all product categories.

product prob. category
Chicken pasta (cream sauce) 0.0197 Pasta
Chicken pasta (pesto sauce) 0.0193 Pasta
Pork pasta (tomato sauce) 0.0167 Pasta
Pork steak 0.0155 Meat
Bacon pasta (cream sauce) 0.0153 Pasta
Spicy pasta (tomato sauce) 0.0149 Pasta
Clam garlic linguine 0.0146 Pasta
Tomato sauce pasta 0.0142 Pasta
German sausage sauce 0.0132 Pasta
Italian pasta (cooked) 0.0129 Pasta

Table 2: Illustration of product topics created by
LDA. Category is from ground truth.

product prob. category
Ham sandwich 0.0101 Bread
Cheese sandwich 0.0089 Bread
Milk bar cookie 0.0080 Cookie
Cherry chocolate tart 0.0078 Cake
Cheese roll 0.0077 Cake
Cheese almond tart 0.0074 Cake
Taro toast 0.0073 Bread
Creme Brulee 0.0073 Cake
Raisin toast 0.0071 Bread
Wheat ham sandwich 0.0070 Bread

Table 3: Topic 18.

product prob. category
Knit Hat 0.0169 Accessory
Knit Scarf 0.0165 Accessory
Legging 0.0133 Clothing
Wool scarf 0.0120 Accessory
Long Pant 0.0111 Clothing
Cotton Socks 0.0099 Accessory
Wool Gloves 0.0097 Accessory
Facial Masks 0.0090 BodyCare
Wool socks 0.0088 Accessory
Brown knit scarf 0.0081 Accessory

Table 4: Topic 53.
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Prob. Category

Prob. Category

Prob. Category

Pasta
Pasta
Pasta

Pasta
Pasta
Pasta
Pasta
Pasta
Pasta
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Cake
Cake
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Clothing
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Figure 7: Illustration of product topics learned by
LDA using 100 topics. Category is from ground truth.

5.3 Performance of PCIM and GICIM

We use lift charts to measure the effectiveness of
PCIM and GICIM for predicting group-purchasing
customers. In a lift chart, the x-axis represents the
percentage of users sorted by our prediction score and
the y-axis represents the cumulative percentage of the
ground-truth customers we would predict. For all lift
charts shown in this section, we also include two base-
line models for comparison. One baseline model is
to predict potential customers by randomly sampling
from the set of users. Therefore, it is a straight line
with slope 1.0 on the lift chart. Another baseline
model, which we call category frequency, is to predict
customers with the most frequent purchase history in
a given product category. Specifically, to predict po-
tential customers given a group-deal product category,
we rank each customer in descending order of their
normalized purchase frequency for the given product
category.

Effect of w. We first measure the effect of the weight-
ing parameter w in PCIM, which is shown in Figure 9.
The particular w controls how much the user’s own
topic proportion is used in the mixture topic propor-
tion. For example, w = 1 means that only the user’s
own topic proportion is used as the mixture topic pro-
portion. We see that for all w values, PCIM performs
much better than the baseline models between 0% and
25% of the customers predicted. For instance, PCIM
is able to reach 50% of the targeted customers while
the two baseline models only reach respectively 25%
and 40% of the customers.

We also see that with w = 1, the curve first rises very
fast, then flattens between 25% and 50%. It even
performs worse than the baseline models starting at
around 60% of the customers predicted; however this
is the least interesting part of the curve. The intuition
behind this behavior is that with w = 1, PCIM is good
at predicting customers who have strong purchasing
preferences that match the targeted group-deal prod-
uct. On the other hand, for users without such strong
purchasing preferences, the model is not able to per-
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Figure 9: Lift chart of PCIM with different weight-
ing parameter values. With w = 1, the model only
includes the user’s own topic proportion.
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Figure 10: Lift chart of GICIM with different weight-
ing parameter values. With w = 1, the model only
includes the user’s own topic proportion.
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Figure 11: Lift charts of PCIM and GICIM over differ-
ent product categories. The zoomed-in windows on the
right show that performance is slightly better on fre-
quently purchased items (Food) than on infrequently
purchased items (Body Care).

form well. In general, by introducing the topic propor-
tions of initiators with whom the user has co-bought
products (w < 1), PCIM is able to reduce the flatten-
ing effect. With w = 1, we see that the lift curve is
always above the baseline.

Figure 10 shows the effect of w in GICIM. We see
that GICIM always performs better than PCIM and
the baseline model even for the case where w = 1.
In particular, for the cases where w < 0.8, GICIM
achieves 90% positive response with only 10% of the
predicted customers. The high prediction success of
GICIM can be explained by the fact that whether a
user chooses to join a group-purchasing event or not
depends on who the group initiator is. We also note
that the performance change due to different w values
is not as significant as for PCIM.

Performance on different product categories.
We next investigate whether frequently purchased
items (e.g., drinks and food items) make PCIM and
GICIM perform differently. We test on five different
categories of group-deal products: food, body care, ap-
parel, toys, and living. The ground-truth categories
are from the dataset.
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Figure 12: Lift charts of PCIM and GICIM over dif-
ferent number of topics.

Figure 11 shows the results. We see that, for all prod-
uct categories tested, GICIM still performs better than
PCIM. Moreover, from Figure 11, we see that both
models are slightly better at predicting potential cus-
tomers for the food category than for the body care
category. We hypothesize that this may be related to
the fact that purchases in the food category are more
frequent and predictable compared to purchases in the
body care category. A customers may buy one or more
products in the food category repeatedly, while the
same does not appear to be the case for all products in
the body care category. For example, once someone has
purchased a sunscreen spray (a product in body care),
they are probably unlikely to buy it again, at least for
the time span that our dataset covers. However, note
that the differences between categories in Figure 11 are
small, and developing a better understanding of them
is an area of future research.

Effect of different number of topics. We ran
PCIM and GICIM on different number of topics used
in LDA. Results are given in Figure 12. We find that
increasing the number of topics increases prediction
accuracy for both models. This agrees with the above
perplexity analysis that higher number of topics results
in better performance.

6 Conclusion

In this paper, we study group-purchasing patterns
with social information. We analyze a real-world
group-purchasing dataset (5,602 users, 26,619 prod-
ucts, and 13,609 events) from ihergo.com. To the
best of our knowledge, we are the first to ana-
lyze the group-purchasing scenario where each group-
purchasing event is started by an initiator. Under this
kind of social group-purchasing framework, each user
builds up social ties with a set of group initiators. Our
analysis of the dataset shows that a user usually joins
group-purchasing events initiated by a certain and rel-
atively small number of initiators. That is, if a user has
co-bought a group-deal product with a group initia-
tor, he or she is more likely to join a group-purchasing
event started by that initiator again.

We develop two models to predict which users are most
likely to join a group-purchasing event. Experimental
results show that by including the weighted topic pro-
portions of the initiators, we achieve higher prediction
accuracy. We also find that whether a user decides to
join a group-purchasing event is strongly influenced by
who the group initiator of that event is.

Our model can be further improved in several ways.
First, we can use Labeled LDA [16] by exploiting the
ground-truth category of the products or user profile
from the dataset. Second, we can incorporate other
information such as the geographical and demographic
information of users, and the seasonality of products in
a more complex topic model. We are also interested in
investigating the model to deal with cold start, where a
new user or group-deal product is added to the system.
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Abstract

Willow encroachment into the naturally
mixed landscape of vegetation types in the
Upper St. Johns River Basin in Florida,
USA, impacts upon biodiversity, aesthetic
and recreational values. To control the ex-
tent of willows and their rate of expansion
into other extant wetlands, spatial context
is critical to decision making. Modelling
the spread of willows requires spatially ex-
plicit data on occupancy, an understanding
of seed production, dispersal and how the key
life-history stages respond to environmental
factors and management actions. Nichol-
son et al. (2012) outlined the architecture
of a management tool to integrate GIS spa-
tial data, an external seed dispersal model
and a state-transition dynamic Bayesian net-
work (ST-DBN) for modelling the influence
of environmental and management factors on
temporal changes in willow stages. That
paper concentrated on the knowledge en-
gineering and expert elicitation process for
the construction and scenario-based evalua-
tion of the prototype ST-DBN. This paper
extends that work by using object-oriented
techniques to generalise the knowledge or-
ganisational structure of the willow ST-DBN
and to construct an object-oriented spatial
Bayesian network (OOSBN) for modelling
the neighbourhood spatial interactions that
underlie seed dispersal processes. We present
an updated architecture for the management
tool together with algorithms for implement-
ing the dispersal OOSBN and for combining
all components into an integrated tool.

1 INTRODUCTION

The highly-valued Upper St. Johns River in Florida,
USA has been the focus of considerable restoration in-
vestment (Quintana-Ascencio et al., 2013). However,
woody shrubs, primarily Carolina willow (Salix car-
oliniana Michx.), have invaded areas that were histor-
ically herbaceous marsh (Kinser et al., 1997). This
change to the historical composition of mixed vegeta-
tion types is considered undesirable, as extensive wil-
low thickets detract from biodiversity, aesthetic and
recreational values. Overabundance of willows reduces
local vegetation heterogeneity and habitat diversity.
People also prefer open wetlands that offer a view-
shed, navigable access and scope for recreation activi-
ties such as wildlife viewing, fishing and hunting.

Managers seek to control the overall extent of willows,
their rate of expansion into other extant wetland types
and encroachment into recently restored floodplain
habitats. Spatial context is critical to decision-making
as areas differ in terms of biodiversity, aesthetic and
recreational value, “invasibility” and applicable inter-
ventions. For instance, vegetation communities that
are intact or distant from willow populations (seed
sources) are less susceptible to invasion. With respect
to interventions, mechanical clearing is restricted to
areas where the substrate can support heavy machin-
ery; prescribed fire depends on water levels and the
quantity of “burnable” understorey vegetation.

Modelling willow spread requires spatially explicit
data on willow occupancy, an understanding of seed
production, dispersal, germination and survival, and
how the key life-history stages respond to environmen-
tal factors and management actions. Data and knowl-
edge on these pieces of the puzzle are available from
ecological and physiological theory, surveys, field and
laboratory experiments and domain experts.

State-transition (ST) models are a convenient means
of organising information and synthesising knowledge
to represent system states and transitions that are of
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management interest. We build on recent studies that
combine ST models with BNs to incorporate uncer-
tainty in hypothesised states and transitions, and en-
able sensitivity, diagnostic and scenario analysis for de-
cision support in ecosystem management (e.g. Bashari
et al., 2009; Rumpff et al., 2011). Our approach uses
the template described by Nicholson and Flores (2011)
to explicitly model temporal changes in willow stages.

Nicholson et al. (2012) outlined the architecture of
a management tool that would integrate GIS spatial
data, a seed dispersal model and a state-transition
dynamic Bayesian network (ST-DBN) for modelling
the influence of environmental and management fac-
tors on temporal changes in willow stages. That pa-
per described the knowledge engineering and expert
elicitation process for the construction and scenario-
based evaluation of the prototype ST-DBN. This paper
extends that work, using object-oriented techniques
to generalise the knowledge organisational structure
of the willow ST-DBN and to construct an object-
oriented spatial Bayesian network (OOSBN) for mod-
elling the neighbourhood spatial interactions that un-
derlie seed dispersal processes. We present an updated
architecture for the management tool that incorpo-
rates GIS data and the new ST-OODBN and OOSBN
structures, together with algorithms for implementing
the dispersal OOSBN and for combining all compo-
nents into an integrated tool.

2 BACKGROUND

Dynamic Bayesian Networks (DBNs) are a variant
of ordinary BNs (Dean and Kanazawa, 1989; Nichol-
son, 1992) that allow explicit modelling of changes over
time. A typical DBN has nodes for N variables of inter-
est, with copies of each node for each time slice. Links
in a DBN can be divided into those between nodes in
the same time slice, and those in the next time slice.
While DBNs have been used in some enviromental ap-
plications (e.g. Shihab, 2008), their uptake has been
limited.

State-and-transition models (STMs) have been
used to model changes over time in ecological sys-
tems that have clear transitions between distinct states
(e.g., in rangelands and woodlands, see Bestelmeyer
et al., 2003; Rumpff et al., 2011). Nicholson and Flo-
res (2011) proposed a template for state-transition dy-
namic Bayesian networks (ST-DBNs) which formalised
and extended Bashari et al.’s model, combining BNs
with the qualitative STMs.

The influence of environmental and management fac-
tors on the main willow stages of management interest
and their transitions is shown in our updated version
of the Nicholson et al. (2012) ST-DBN (see Figure 1).

For each cell (spatial unit), data on attributes such as
soil, vegetation type and information about landscape
position and context is supplied from GIS data. This
data provides inputs to parameterise the ST-DBN and
dispersal model. A cell size of 100m x 100m (1 ha) was
chosen to represent a modelling unit. This reflects the
resolution of available spatial data for environmental
attributes, makes the computational demand associ-
ated with seed dispersal modelling feasible, and is a
reasonable scale with respect to candidate manage-
ment actions. A time step of one year was consid-
ered appropriate given the willow’s growth and seed
production cycle (Nicholson et al., 2012).

Seed production depends on the size and number of
reproductive (adult) stems within each cell. However,
Seed Availability, the amount of seed available for ger-
mination within a cell, depends on willow seed pro-
duction and dispersal from surrounding cells. As these
processes are not accounted for in the ST-DBN (Fig-
ure 1), a key focus of this paper is the development
and integration of an object-oriented spatial Bayesian
network (OOSBN) to model the neighbourhood spa-
tial interactions that underlie this process.

The purpose of the integrated tool is to synthesise cur-
rent understanding and quantify important sources of
uncertainty to support decisions on where, when and
how to control willows most effectively. The ST-DBN
models willow state transitions and characteristics in
response to environmental and management factors
within a single spatial unit and time step. For co-
herent, effective and well-coordinated landscape-scale
management however, we want to be able to predict
willow response across space (at every cell) in the tar-
get area and across time frames of management in-
terest (e.g. 10-20 years). Such predictions can then
be mapped and also aggregated across the target area
to produce evaluation metrics for managers. Such a
tool would enable managers to “test”, visually com-
pare and quantitatively evaluate different candidate
management strategies.

This real-world management problem is naturally de-
scribed in terms of hierarchies of components that in-
clude similar, repetitive structures. Object-oriented
(OO) modelling has obvious advantages in this con-
text. We apply OO techniques to generalise the knowl-
edge organisational structure of the willow ST-DBN
and design and construct the seed production and dis-
persal spatial network.

3 AN ST-OODBN FOR WILLOWS

Various authors have advocated the use of OO mod-
elling techniques to: a) help manage BN complexity
via abstraction and encapsulation, b) facilitate the
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Figure 1: State-and-transition dynamic Bayesian network (ST-DBN) for modelling the response of key willow
stages to environmental factors and management actions within a single spatial unit. The willow stages of
management interest are: unoccupied, yearling, sapling, adult and burnt adult. Colours indicate: (i) aspects of
willow state in tan; (ii) seed availability, germination and seedling survival processes in orange; (iii) environmental
factors in green; (iv) management options in red; and (v) willow state-transitions in purple.

construction of classes of objects that are internally
cohesive and potentially more reuseable, and c) for-
malise interfaces prior to integration (Koller and Pfef-
fer, 1997; Neil et al., 2000; Kjærulff and Madsen, 2008;
Korb and Nicholson, 2010; Molina et al., 2010). How-
ever, examples in ecological and environmental man-
agement are scant (Molina et al., 2010; Carmona et al.,
2011; Johnson and Mengersen, 2012).

We follow the definition of OOBNs used in Kjærulff
and Madsen (2008), and implemented in the Hugin BN
software package. A standard BN is made up of ordi-
nary nodes, representing random variables. An OOBN
class is made up of both nodes, and objects, which are
instances of other classes. Thus an object may encap-
sulate multiple sub-networks, giving a composite and
hierarchical structure. Objects are connected to other
nodes via some of its own ordinary nodes, called its
interface nodes. The rest of the nodes are not visible
to the outside world, thus hiding information detail,
another key OO concept. A class can be thought of
as a self-contained ‘template’ for an OOBN object, de-
scribed by its name, its interface and its hidden part.

Finally, interface nodes are divided into input nodes
and output nodes. Input nodes are the root nodes
within an OOBN class, and when an object (instance)
of that class becomes part of another class, each in-
put node may be mapped to a single node (with the
same state space) in the encapsulating class. The out-
put nodes are the only nodes that may become parents
of nodes in the encapsulating class. When displaying
an OOBN, we show Hugin1 screen shots, where input
nodes are indicated with a dotted and shaded outline,
and output nodes with a bold and shaded outline.

We converted the ST-DBN (Figure 1) into a ST-
OODBN as follows. Using the five conceptual cate-
gories of nodes from the original network as a guide,
the network was split into two abstract class types.
The first represents abstract influencing factors and
consists of three sub-classes that define Environmen-
tal Conditions, Management Options and the germi-
nation and seedling survival Processes Factors. The
second type represents state transitions of willows

1Note that Hugin OOBNs do not support inheritance,
so there are no super-classes or sub-classes.
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(see Figure 2) and defines five sub-classes, Transi-
tionFromUnoccupied, TransitionFromYearling, Tran-
sitionFromSapling, TransitionFromAdult and Transi-
tionFromBurntAdult. Figure 3 illustrates the defini-
tion of the TransitionFromYearling class.

E1 Ei M1 Mj

Tn

TransitionFromXx,y,t

Xm

S1 Sk P1 Pl

Figure 2: An abstract OOBN class for state transi-
tions. Each implementation of a state transition out-
put node Tn is defined by a combination of environ-
mental conditions E1...i, management options M1...j ,
previous state variables S1...k, process factors P1...l and
any number of Xm hidden nodes. The only required
input is the node that defines the previous state, all
others are optional and are based on the implement-
ing class. Dotted arrows indicate possible connections
between input, hidden and output nodes.

TransitionFromYearlingx,y,t

Figure 3: The TransitionFromY earling implementa-
tion of the abstract TransitionFromX type showing
Management Options in red, State Variables in yellow
and Environmental Conditions in green. The output
Transition node Transition from Yearling to: is shown
in blue with a bold and shaded outline.

These classes are instantiated as objects within a ST-
OODBN class and when integrated with the seed dis-
persal OOSBN (described below) defines the complete
ST model over a single time step (Figure 4). Recast-
ing the network as a ST-OODBN makes the knowl-
edge organisational structure explicit, whilst allowing
network complexity to be hidden and integration ef-
forts to focus on the interfaces between components of
the network. Note that in the ST-OODBN (Figure 4)

Seed Availability is an input node. Seed Production
and its spatial dispersal is modelled by a separate OO
network, which we present next.

4 AN OOSBN FOR SEED
PRODUCTION AND DISPERSAL

S.caroliana flowers in early spring and produces very
large numbers of small seeds (∼165,000 per average
adult)that disperse by wind and water. Seed produc-
tion is modelled by the Willow Seed Production OOBN
(Figure 5), which is embedded in a broader seed dis-
persal model described below.

The number of seeds produced by an adult is given
by the product of the number of Inflorescences, the
number of Fruits per inflorescence and the number of
Seeds per fruit. Fruits per inflorescence and Seeds per
fruit are defined by distributions estimated from em-
pirical data. The number of Inflorescences increases as
a function of adult size (represented by Rooted Basal
Stem Diameter) and this relationship has also been
estimated from empirical data.

Cover is the percentage of a 1 hectare cell that is oc-
cupied by willows and Average Canopy Area is mod-
elled as a function of Rooted Basal Stem Diameter.
Together these two variables provide an estimate of
the number of reproductive stems. Overall seed pro-
duction within a cell, Seeds per Hectare, is then sim-
ply the product of the seed production per stem, by
the number of reproductive stems. This Willow Seed
Production OOBN models seed production processes
explicitly rather than implicitly as in the ST-DBN pro-
totype (Figure 1); an example of iterative and incre-
mental knowledge engineering.

Willow seeds do not exhibit dormancy and have only a
short period of viability – those that fail to germinate
in the year they are produced are lost. The amount of
seed available for germination within a cell depends on
seed production and dispersal from surrounding cells.
Thus, neighbourhood seed production and dispersal
in combination with environmental and management
factors determines patterns of willow spread and colo-
nization.

Our approach to modelling seed dispersal is phe-
nomenological rather than mechanistic. Wind-
mediated seed dispersal is calculated using the Clark
et al. (1999) dispersal kernel:

SDx′,y′

x,y = SPx′,y′ × 1

2πα2
e−(

d
α ) (1)

where SDx′,y′

x,y is the number of seeds arriving at cell
(x, y) from those produced at a cell (x′, y′); it is the
product of seed produced SPx′,y′ and an exponential
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Willows ST-OODBNx,y,t

Figure 4: The resultant ST-OODBN class showing the four input nodes (Seed Availability, Rooted Basal Stem
Diameter (T), Stage (T) and Cover (T)) along with the Environmental Conditions, Management Options, Process
Factors and five TransitionFromX objects that define the outputs (Stage (T+1), Rooted Basal Stem Diameter
(T+1) and Cover (T+1)) after one time step. Input nodes are illustrated with a dotted and shaded outline,
instances of OOBN classes as round cornered boxes and output nodes with a bold and shaded outline.

kernel where d is the distance between cells (x, y) and
(x′, y′), and α is a distance parameter. To simulate
stochasticity in dispersal events, α is a random vari-
able that can be sampled from distributions designed
to reflect the expected nature of dispersal (e.g. short
versus long distance dispersal) (Fox et al., 2009). This
seed dispersal model is captured within the WindDis-
persalKernelx′,y′,t OOBN (Figure 5), where the input
Distance node is set for the particular (x, y) and α is
set as a discretised normal distribution with a mean of
1 and a variance of 0.25.

For our purposes, we want to compute the seed avail-
ability SAx,y for a target cell (x, y), which is the sum
of the seeds dispersed to it from every cell in the study
area:

SAx,y =
∑

x′,y′∈Area

SDx′,y′

x,y (2)

A naive BN model of this additive function would
mean a Seed Availability node with all the Seeds Dis-
persed nodes (one for every cell) as its parents! For a
study area with width w cells, height h cells, a Seed
Availability node discretized to n states, and the Seeds
Dispersed node discretized to m states, the CPT for
Seed Availability would include n×mw×h probabilities
–clearly infeasible.

From an ecological perspective, however, not all cells
within a study area are expected to contribute towards
final Seed Availability at any given cell. Indeed, be-
cause the number of seeds dispersed from a seed pro-
ducing cell declines exponentially with increasing dis-
tance from that cell, we can make a simplifying as-
sumption that after a certain distance, the number of
seeds dispersed is effectively negligible. As a starting
point we assume a circular region of influence for the
target cell, defined by a dispersal mask with radius
r. So for instance, a radius of eight cells (800 meters)
implies π82, or ∼201 cells providing parents to the fi-
nal Seed Availability node. This is still far too many,
particularly as we are using a standard BN software
package with discrete nodes and exact inference.

However, since Seed Availability is a simple additive
function, we use the simple modelling trick of adding
the Seed Availability from each cell to the cumula-
tive seed availability so far (via node Cumulative Seed
Availability). This is equivalent to repeatedly divorc-
ing parents to reduce the size of the state space. We
can think of this is as sequentially scanning over the
spatial dimension in a similar way to rolling out a DBN
over time. We call this a spatial Bayesian network
(SBN), and the object-oriented variety an OOSBN.
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SeedDispersal OOSBNt

WillowSeedProductionx'+n,y'+n,t

WindDispersalKernelx'+n,y'+n,t SeedAvailabilityx,y,t

TotalSeedAvailabilityx,y,t

TotalSeedAvailabilityx',y',t

TotalSeedAvailabilityx'+1,y'+1,t

TotalSeedAvailabilityx+n-1,y+n-1,t

Figure 5: The OOSBN architecture showing how Cover, Rooted Basal Stem Diameter, Cumulative Seed Avail-
ability and Distance at locations (x′, y′) to (x′+n, y′+n) are combined to provide total seed availability for each
cell at location (x, y) at time t. Dashed arcs indicate that nodes are connected via the seed availability PTLayer.
Multiple TotalSeedAvailability objects are illustrated within the SeedDispersal OOSBN reflecting that the total
seeds available at a given (x, y) is dependant on seeds being produced in multiple locations. These synthetic
TotalSeedAvailabilty objects are shown as collapsed objects, hiding their private nodes, and showing just the
four input nodes that define the seeds dispersed from each producing cell to the target cell.

Our approach to integrating the seed dispersal makes
use of such an OOSBN, that is run πr2 times (i.e. once
for every cell (x′, y′) within dispersal range) for each
cell (x, y) in the study area to disperse and then sum
the seed availability at each cell. The dispersal mask
is flexible and can be designed to take on different
shapes to reflect potentially important influences on
wind dispersal such wind direction, wind strength and
terrain characteristics. However, in the results given
Section 6, we use a radius of eight cells.

Overall, our approach here is to mitigate the problem
of large CPT sizes by turning the problem in to one
of computation time. This has the added benefit of
potentially being able to be computed easily in parallel
and thus regaining some computation efficiency.

5 Integrating the ST-OODBN with
the OOSBN

Figure 6 is an abstract representation of the system
architecture, specifically, the interactions between the
GIS layers and the OO networks as the tool is used for
prediction at yearly intervals over the required man-
agement time frame.

For each cell in the GIS, there is conceptually one
state-transition network (ST-OODBN ) and one seed
production and dispersal spatial network, (OOSBN ).
In practice, we do not store all these as separate net-
works, but rather re-use a single network structure,
whose input nodes are re-parameterised for each cell,
for each time step.

For the first time step, the system takes GIS data,
which represents the initial conditions of the study
area. These are stored in an internal data structure,
PTLayer, that combines the spatial structure of the
GIS, with distributions for the (discrete) nodes in the
networks. PTLayers are used to store and pass the
spatially referenced prior distributions of input nodes
and posterior distributions of output nodes for both
the OOSBN and ST-OODBN (Figure 6). Each PT-
Layer contains a number of fields, one for each of the
node states of the linked input and output nodes. Each
field stores the probability mass of the corresponding
node state.

The PTLayer distributions are used to set the pri-
ors for the input nodes at each time step t. Then in-
ference (belief updating) is performed within the OO
network, producing new posterior probability distri-
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SeedAvailability

PTLayers
SeedAvailability

Figure 6: An abstract representation of the management tool architecture.

butions from the output nodes for each OO network,
which are then transferred back to the corresponding
PTLayer. This is equivalent to the standard “roll-out”
followed by “roll-up” steps done in prediction with two
time slice DBNs (Boyen and Koller, 1998) to avoid the
computational complexity of rolling out a DBN over a
large number of time steps. But here, in addition, the
PTLayers are being used as an intermediate storage
across the spatial grid, with the inputs for the next
time t + 1 coming not only from both the network
for the same cell, but from outputs from networks for
other cells. This is done via the seed dispersal OOSBN,
which uses the Seed Availability PTLayer to accumu-
late the seed availability arising from seed production
in other cells within the dispersal mask. In effect, the
PTLayer replaces both the temporal arcs if the net-
work was rolled-out over many time steps, and the
spatial arcs between the networks for different cells,
which are essentially the cross-network arcs from seed
production in one place to seed availability in another.
Note that this method is limited to prediction only
–we cannot use the model for diagnosis, or to identify
the starting states and management actions to achieve
a preferred end-state.

More formally, using the notation from Figure 6, at
time t and at each cell location (x, y), PTLayers1...l
are used to initialise the priors of nodes I1...m and
I1...M of ST-OODBN x,y,t and OOSBN t respectively.
After propagation within OOSBN t, beliefs from the
output node SA are stored in PTLayerSeedAvailabilty

and then used to update the priors of input node SA
of ST-OODBN x,y,t. Then belief updating is done for
the ST-OODBN x,y,t for each cell(x, y) and the beliefs
from output nodes O1...n propagated back to PTLay-

ers1..l at time t+1. Although the mapping between the
set of PTLayers1...l and input nodes I1...m is one-to-
one, there may be cases where there are no GIS layers
available for an input, in which case a prior distribu-
tion is used. Finally, with respect to OOSBN propaga-
tion, the range of locations x′, y′ . . . x′ + n, y′ + n (i.e.
neighbourhood cells) that are included is defined by
the dispersal mask described in the previous section.

Algorithm 1 An algorithm for propagating a
GIS coupled ST-OODBN with spatial OOSBN sub-
networks
1: function propagate(ST– OODBN,OOSBN, ptlayers, t)
2: I ← I(ST-OODBN)
3: O ← O(ST-OODBN)
4: SA← getLayer(ptlayers, SeedAvailability)
5: for t := 0 to t do
6: PROPAGATE(OOSBN,ptlayers,dispMask)
7: // computes all Seed Availabilities
8: for all (x, y) ∈ Area do
9: p(SeedAvailability)← SAx,y

10: for all Ii ∈ I do
11: Lj ← getLayer(ptlayers, Ii)
12: p(Ii)← Lj(x, y)
13: end for
14: update beliefs in ST-OODBN
15: for all Oi ∈ O do
16: Lj ← getLayer(ptlayers,Oi)
17: Lj(x, y)← Bel(Oi)
18: end for
19: end for
20: end for
21: end function

The process is detailed in Algorithm 1, as a function
PROPAGATE which takes the ST-OODBN (shown
in Fig. 4), and OOSBN (shown in Fig. 5) networks,
a list of ptlayers (previously initialised from the GIS
layers) whose cells correspond to the area under con-
sideration, and the number of time steps T over which
to propagate the network. In the algorithm, we use
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I(OOBN) (respectively O(OOBN)) to denote a func-
tion that returns the input (resp. output) nodes of
the interface of the OOBN, and getLayer(ptlayers,V)
to denote a function that returns the PTLayer corre-
sponding to a node V .

Algorithm 2 An algorithm for dispersing seeds by
wind using an OOSBN class
1: function propagate(OOSBN, ptlayers, dispMask)
2: SA← getLayer(ptlayers, SeedAvailability)
3: for all (x, y) ∈ Area do
4: P (SAx,y = none)← 1
5: end for
6: for all (x, y) ∈ Area do
7: for all Ii ∈ Ix,y(OOSBN) do
8: Lj ← getLayer(ptlayers, Ii)
9: p(Ii)← Lj(x, y)
10: end for
11: for all (x′, y′) ∈ dispMask do
12: p(CumSeedAvail)← SAx,y
13: d←

√
(x− x′)2 + (y − y′)2

14: p(Distance = d)← 1
15: update beliefs in OOSBN
16: SAx,y ← Bel(SeedAvailability)
17: end for
18: end for
19: end function

First, seed dispersal is done with the OOSBN using
Algorithm 2. Then for each cell (x, y) in the area, for
each input node Ii, the distribution for that cell from
its corresponding ptlayer is set as the prior of the in-
put node. Belief updating of the ST-OODBN is done,
propagating the new priors through to updated pos-
terior distributions for the output nodes. Finally the
beliefs for each output node (Bel(Oi)) are copied back
to the distribution at the (x, y) cell for the correspond-
ing ptlayer (i.e. into SAx,y).

Algorithm 2 details the propagation process using the
SeedDispersal OOSBN class illustrated in Figure 5.
The algorithm starts by taking the OOSBN, a list of
PTLayers whose cells correspond to the area under
consideration, and a dispersal mask (dispMask). Be-
fore starting the dispersal process, the provided Seed
Availability PTLayer is initialised with no seeds avail-
able at all (x, y) co-ordinates. It then loops through
each cell (x, y) in the area, setting the distribution for
each input node Ii (i.e., Cover, Rooted Basal Stem Di-
ameter and Cumulative Seed Availability) from its cor-
responding PT layer cell. The algorithm then enters a
second loop for every cell that is a possible seed source
based on the dispersal mask. The Distance node is set
using the Euclidean distance between the current cell
and the target co-ordinates. Finally, belief updating
is done within the OOSBN (Figure 5) and the beliefs
(i.e. the posterior probability distribution) from the
Seed Availability node at each point are transferred
into the Cumulative Seed Availability for the subse-
quent cell at each iteration. After all the cells (x′, y′)
within the dispersal mask have been visited, the Seed
Availability PTLayer, SAx,y contains the overall seed

availability in that cell, which is used for modelling
germination in the ST-OODBN in Algorithm 1.

6 PRELIMINARY RESULTS

To implement the software architecture described we
chose to use Hugin Researcher 7.7(2013) to develop the
ST-OODBN and dispersal model OOSBN, the Hugin
Researcher Java API 7.7 (2013) to provide program-
matic access to the developed networks, the Image-
IO-ext (2013) java library to provide access to GIS
raster layer formats, and the Java programming lan-
guage to implement the algorithms tying the compo-
nents together. Hugin was chosen as the OOBN devel-
opment platform as it currently has one of the most
complete OOBN implementations. Java was chosen
as the implementing language as it is platform inde-
pendent and provides for a well established and un-
derstood OO development environment. We imple-
mented the tool as a standalone program allowing pre-
processing of GIS data to be performed in whatever
program the end user was most familiar with. In our
case we used a combination of ArcGIS (2013), Quan-
tum GIS (2013)and SAGA GIS(2013).

To demonstrate our working implementation, we ran
the model for the Blue Cypress Marsh Conservation
Area (138 x 205 cells) within the Upper St. Johns
River basin. We used a simplified (and unrealistic)
management rule set that says if a cell is next to a
canal, mechanical clearing is carried out, otherwise for
landlocked cells, burning is prescribed (with a proba-
bility of 0.1). Maps of willow cover and seed produc-
tion were generated at yearly intervals for a 25 year
prediction window. This took about 8 hours of com-
putation on a 64bit machine with a 2.8GHz processor.
Figure 7 shows seed availability across the study area
using output from the SeedAvailability nodes in the
OOSBN at 5 yearly intervals. To produce the maps,
the seed availability interval with the highest posterior
probability distribution is used to produce a grayscale
value where zero seeds is black, and 1012 is white. In
the run shown, seed availability decreases over time as
the level of willow cover is reduced by the management
regime.

7 DISCUSSION AND FUTURE
WORK

For coherent, coordinated and effective landscape-
scale decision support, managers need the capability
to predict willow state changes across space and time.
We have tackled the challenges of this real-world prob-
lem by synthesising ideas and techniques from object-
oriented knowledge engineering, dynamic BNs, GIS-
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Figure 7: Seed availability predicted by the Willows ST-OODBN at t = 0, 5, 10, 15, 20, 25 years, across the Blue
Cypress Marsh Conservation Area (138 x 208 cells). Adult willow occupancy at t = 0 is shown in the bottom
right panel; black indicates absence, grey presence.

coupled BNs and dispersal modelling. To our knowl-
edge, this is the first environmental management ap-
plication in which OOBNs are used to model spatially-
explicit process interactions.

Further work in the development of this management
tool includes developing a water dispersal model and
updating the parametrisation of the ST-OODBN and
OOSBN using judgements from a larger pool of do-
main experts, together with specific empirical data
where available. In addition, we will work with man-
agers and domain experts to identify: i) realistic man-
agement scenarios, ii) useful summary descriptors for
the various model outputs and iii) desirable features
for a tool interface.

Throughout the research and integration process we
encountered challenges with the development, man-
agement and use of OOBNs. While there have been
advances in OOBN software, they still lack a lot of the
useful features available in other development tools.
For instance, modern software engineering IDEs pro-
vide easy to use re-factoring, documentation and inte-
gration with version control tools. The tools we used
to design and implement the underlying OOBNs for

our tool still lack powerful refactoring, making the
management of object interface changes a time con-
suming and error prone task. Integrated source control
is non-existent and documentation tools rudimentary.
Improvements in these areas would make working with
OOBNs far more accessible to the type of user that
wishes to make use of OOBNs for natural resource
management.

With respect to spatialising the ST-OOBN with the
use of OOSBNs, there is currently no graphical tool
up to the task of facilitating the integration of the re-
quired components. This means that anyone wanting
to replicate our work would need to make use of the
available APIs and this constitutes a barrier to usage
by people with no or little programming background.

Acknowledgements

This work was supported by ARC Linkage Project
LP110100304 and the Australian Centre of Excellence
for Risk Analysis. John Fauth (UCF), and Dianne
Hall, Kimberli Ponzio and Ken Snyder (SJWRMD)
provided critical information about the St Johns River
ecosystem, and knowledge about willow invasion.

85



References

Bashari, H., Smith, C., and Bosch, O. (2009). De-
veloping decision support tools for rangeland man-
agement by combining state and transition models
and Bayesian belief networks. Agricultural Systems,
99(1):23–34.

Bestelmeyer, B. T., Brown, J. R., Havstad, K. M.,
Alexander, R., Chavez, G., and Herrick, J. E.
(2003). Development and use of state-and-transition
models for rangelands. Journal of Range Manage-
ment, (2):114–126.

Boyen, X. and Koller, D. (1998). Tractable inference
for complex stochastic processes. In Proceedings of
the Fourteenth Conference on Uncertainty in Arti-
ficial Intelligence, UAI’98, pages 33–42, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Carmona, G., Molina, J., and Bromley, J. (2011).
Object-Oriented Bayesian networks for participa-
tory water management: two case studies in Spain.
Journal of Water Resources Planning and Manage-
ment, 137(4):366–376.

Clark, J. D., Silman, M., Kern, R., Macklin, E., and
Hille Ris Lambers, J. (1999). Seed dispersal near and
far: patterns across temperate and tropical forests.
Ecology, 80(5):1475–1494.

Dean, T. and Kanazawa, K. (1989). A model for rea-
soning about persistence and causation. Computa-
tional Intelligence, 5:142–150.

Esri (2013). ArcGIS (Version 10.1) [Software].
http://www.esri.com/software/arcgis.

Fox, J. C., Buckley, Y. M., Panetta, F. D., Bourgoin,
J., and Pullar, D. (2009). Surveillance protocols for
management of invasive plants: modelling Chilean
needle grass (Nassella neesiana) in Australia. Di-
versity and Distributions, 15(4):577–589.

GeoSolutions (2013). Image-IO-ext Java
Library (Version 1.1.7) [Software].
http://github.com/geosolutions-it/.

Hugin Expert A/S (2013). Hugin Researcher (Version
7.7) [Software]. http://www.hugin.com.

Johnson, S. and Mengersen, K. (2012). Integrated
Bayesian network framework for modeling complex
ecological issues. Integrated Environmental Assess-
ment and Management, 8(3):480–90.

Kinser, P., Lee, M. A., Dambek, G., Williams, M.,
Ponzio, K., and Adamus, C. (1997). Expansion
of Willow in the Blue Cypress Marsh Conservation
Area, Upper St. Johns River Basin. Technical re-
port, St. Johns River Water Management District,
Palatka, Florida.

Kjærulff, U. B. and Madsen, A. (2008). Bayesian Net-
works and Influence Diagrams: A Guide to Con-
struction and Analysis. Springer Verlag, New York.

Koller, D. and Pfeffer, A. (1997). Object-oriented
Bayesian networks. In Proceedings of the Thirteenth

Conference on Uncertainty in Artificial Intelligence,
UAI’97, pages 302–313, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Korb, K. B. and Nicholson, A. (2010). Bayesian arti-
ficial intelligence. Chapman&Hall/CRC, Boca Ra-
ton, FL, 2nd edition.

Molina, J., Bromley, J., Garćıa-Aróstegui, J., Sulli-
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Abstract

Belief propagation over junction trees is
known to be computationally challenging in
the general case. One way of addressing this
computational challenge is to use node-level
parallel computing, and parallelize the com-
putation associated with each separator po-
tential table cell. However, this approach is
not efficient for junction trees that mainly
contain small separators. In this paper,
we analyze this problem, and address it by
studying a new dimension of node-level par-
allelism, namely arithmetic parallelism. In
addition, on the graph level, we use a clique
merging technique to further adapt junction
trees to parallel computing platforms. We
apply our parallel approach to both marginal
and most probable explanation (MPE) infer-
ence in junction trees. In experiments with a
Graphics Processing Unit (GPU), we obtain
for marginal inference an average speedup
of 5.54x and a maximum speedup of 11.94x;
speedups for MPE inference are similar.

1 INTRODUCTION

Bayesian networks (BN) are frequently used to repre-
sent and reason about uncertainty. The junction tree
is a secondary data structure which can be compiled
from a BN [2, 4, 5, 9, 10, 19]. Junction trees can be
used for both marginal and most probable explanation
(MPE) inference in BNs. Sum-product belief propaga-
tion on junction tree is perhaps the most popular ex-
act marginal inference algorithm [8], and max-product
belief propagation can be used to compute the most
probable explanations [2, 15]. However, belief propa-
gation is computationally hard and the computational
difficulty increases dramatically with the density of the
BN, the number of states of each network node, and

the treewidth of BN, which is upper bounded by the
generated junction tree [13]. This computational chal-
lenge may hinder the application of BNs in cases where
real-time inference is required.

Parallelization of Bayesian network computation is a
feasible way of addressing this computational challenge
[1,6,7,9,11,12,14,19,20]. A data parallel implementa-
tion for junction tree inference has been developed for
a cache-coherent shared-address-space machine with
physically distributed main memory [9]. Parallelism
in the basic sum-product computation has been in-
vestigated for Graphics Processing Units (GPUs) [19].
The efficiency in using disk memory for exact infer-
ence, using parallelism and other techniques, has been
improved [7]. An algorithm for parallel BN inference
using pointer jumping has been developed [14]. Both
parallelization based on graph structure [12] as well as
node level primitives for parallel computing based on
a table extension idea have been introduced [20]; this
idea was later implemented on a GPU [6]. Gonzalez
et al. developed a parallel belief propagation algorithm
based on parallel graph traversal to accelerate the com-
putation [3].

A parallel message computation algorithm for junc-
tion tree belief propagation, based on the cluster-
sepset mapping method [4], has been introduced [22].
Cluster-sepset based node level parallelism (denoted
element-wise parallelism in this paper) can accelerate
the junction tree algorithm [22]; unfortunately the per-
formance varies substantially between different junc-
tion trees. In particular, for small separators in junc-
tion trees, element-wise parallelism [22] provides lim-
ited parallel opportunity as explained in this paper.

Our work aims at addressing the small separator issue.
Specifically, this paper makes these contributions that
further speed up computation and make performance
more robust over different BNs from applications:

• We discuss another dimension of parallelism,
namely arithmetic parallelism (Section 3.1). Inte-
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grating arithmetic parallelism with element-wise
parallelism, we develop an improved parallel sum-
product propagation algorithm as discussed in
Section 3.2.

• We also develop and test a parallel max-product
(Section 3.3) propagation algorithm based on the
two dimensions of parallelism.

• On the graph level, we use a clique merging tech-
nique (Section 4), which leverages the two dimen-
sions of parallelism, to adapt the various Bayesian
networks to the parallel computing platform.

In our GPU experiments, we test the novel two-
dimensional parallel approach for both regular sum-
propagation and max-propagation. Results show that
our algorithms improve the performance of both kinds
of belief propagation significantly.

Our paper is organized as follows: In Section 2, we
review BNs, junction trees parallel computing using
GPUs, and the small-separator problem. In Section
3 and Section 4, we describe our parallel approach to
message computation for belief propagation in junc-
tion trees. Theoretical analysis of our approach is in
Section 5. Experimental results are discussed in Sec-
tion 6, while Section 7 concludes and outlines future
research.

2 BACKGROUND

2.1 Belief Propagation in Junction Trees

A BN is a compact representation of a joint distribu-
tion over a set of random variables X . A BN is struc-
tured as a directed acyclic graph (DAG) whose vertices
are the random variables. The directed edges induce
dependence and independence relationships among the
random variables. The evidence in a Bayesian network
consists of instantiated random variables.

The junction tree algorithm propagates beliefs (or pos-
teriors) over a derived graph called a junction tree. A
junction tree is generated from a BN by means of mor-
alization and triangulation [10]. Each vertex Ci of the
junction tree contains a subset of the random variables
and forms a clique in the moralized and triangulated
BN, denoted by Xi ⊆ X . Each vertex of the junction
tree has a potential table φXi

. With the above nota-
tions, a junction tree can be defined as J = (T,Φ),
where T represents a tree and Φ represents all the po-
tential tables associated with this tree. Assuming Ci
and Cj are adjacent, a separator Sij is induced on a
connecting edge. The variables contained in Sij are
defined to be Xi ∩ Xj .

The junction tree size, and hence also junction tree
computation, can be lower bounded by treewidth,
which is defined to be the minimal size of the largest
junction tree clique minus one. Considering a junction
tree with a treewidth tw, the amount of computation is
lower-bounded by O(exp(c∗tw)) where c is a constant.

Belief propagation is invoked when we get new evi-
dence e for a set of variables E ⊆ X . We need to up-
date the potential tables Φ to reflect this new informa-
tion. To do this, belief propagation over the junction
tree is used. This is a two-phase procedure: evidence
collection and evidence distribution. For the evidence
collection phase, messages are collected from the leaf
vertices all the way up to a designated root vertex.
For the evidence distribution phase, messages are dis-
tributed from the root vertex to the leaf vertices.

2.2 Junction Trees and Parallelism

Current emerging many-core platforms, like the recent
Graphical Processing Units (GPUs) from NVIDIA and
Intel’s Knights Ferry, are built around an array of pro-
cessors running many threads of execution in parallel.
These chips employ a Single Instruction Multiple Data
(SIMD) architecture. Threads are grouped using a
SIMD structure and each group shares a multithreaded
instruction unit. The key to good performance on such
platforms is finding enough parallel opportunities.

We now consider opportunities for parallel computing
in junction trees. Associated with each junction tree
vertex Ci and its variables Xi, there is a potential ta-
ble φXi containing non-negative real numbers that are
proportional to the joint distribution of Xi. If each
variable contains sj states, the minimal size of the

potential table is |φXi
| =

∏|Xi|
j=1 sj , where |Xi| is the

cardinality of Xi.

Message passing from Ci to an adjacent vertex Ck, with
separator Sik, involves two steps:

1. Reduction step. In sum-propagation, the po-
tential table φSik of the separator is updated to
φ∗Sik by reducing the potential table φXi :

φ∗Sik =
∑
Xi/Sik

φXi
. (1)

2. Scattering step. The potential table of Ck is
updated using both the old and new table of Sik:

φ∗Xk
= φXk

φ∗Sik
φSik

. (2)

We define 0
0 = 0 in this case, that is, if the de-

nominator in (2) is zero, then we simply set the
corresponding φ∗Xk

to zeros.
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Figure 1: Histograms of the separator potential table
sizes of junction trees Pigs and Munin3. For both junc-
tion trees, the great majority of the separator tables
contain 20 or fewer elements.

Equation (1) and (2) reveal two dimensions of par-
allelism opportunity. The first dimension, which we
return to in Section 3, is arithmetic parallelism. The
second dimension is element-wise parallelism [22].

Element-wise parallelism in junction trees is based on
the fact that the computation related to each sepa-
rator potential table cell are independent, and takes
advantage of an index mapping table, see Figure 2. In
Figure 2, this independence is illustrated by the white
and grey coloring of cells in the cliques, the separa-
tor, and the index mapping tables. More formally, an
index mapping table µX ,S stores the index mappings
from φX to φS [4]. We create |φSik | such mapping
tables. In each mapping table µXi,φSik (j)

we store the
indices of the elements of φXi

mapping to the j-th sep-
arator table element. Mathematically,

µXi,φSik (j)
= {r ∈ [0, |φXi

| − 1] |
φXi

(r) is mapped to φSik(j)}.

With the index mapping table, element-wise paral-
lelism is obtained by assigning one thread per map-
ping table of a separator potential table as illustrated
in Figure 2 and Figure 3. Consequently, belief prop-
agation over junction trees can often be sped up by
using a hybrid CPU/GPU approach [22].

2.3 Small Separator Problem

Figure 1 contains the histograms of two real-world BNs
Pigs and Munin3.1 We see that most separators in
these two BNs are quite small and have a potential
table size of less than 20.

In general, small separators can be found in these three
scenarios: (i) due to two small neighboring cliques (we

1These BNs can be downloaded at http://bndg.cs.
aau.dk/html/bayesian_networks.html

Figure 2: Due to the small separator in the B-S-S
pattern, a long index mapping table is produced. If
only element-wise parallelism is used, there is just one
thread per index mapping table, resulting in slow se-
quential computation.

call it the S-S-S pattern); (ii) due to a small intersec-
tion set of two big neighboring cliques (the B-S-B pat-
tern); and (iii) due to one small neighboring clique and
one big neighboring clique (the B-S-S pattern).2 Due
to parallel computing issues, detailed next, these three
patterns characterize what we call the small-separator
problem.

Unfortunately, element-wise parallelism may not pro-
vide enough parallel opportunities when a separator
is very small and the mapping tables to one or both
cliques are very long. A small-scale example, reflect-
ing the B-S-S pattern, is shown in Figure 2.3 While
the mapping tables may be processed in parallel, the
long mapping tables result in a significant amount of
sequential computation within each mapping table.

A state of the art GPU typically supports more than
one thousand concurrent threads, thus message pass-
ing through small separators will leave most of the
GPU resources idle. This is a major bottleneck for the
performance, which we address next.

In this paper, to handle the small separator problem,
we use clique merging to eliminate small separators
(see Section 4) resulting from the S-S-S pattern and
arithmetic parallelism (see Section 3) to attack the B-

2These patterns, when read left-to-right, describe the
size of a clique, the size of a neigboring separator, and
the size of a neigboring clique (different from the first) as
found in a junction tree. For example, the pattern B-S-S
describes a big clique, a small separator, and a small clique.

3In fact, both the “long” and “short” index mapping
tables have for presentation purposes been made short–in
a realistic junction tree a “long” table can have more than
10,000 entries.
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Figure 3: Example of data structure for two GPU
cliques and their separator. Arithmetic parallelism
(the reverse pyramid at the bottom) is integrated with
element-wise parallelism (mapping tables at the top).
The arithmetic parallelism achieves parallel summa-
tion of 2d terms in d cycles.

S-S and B-S-B patterns.

3 PARALLEL MESSAGE PASSING
IN JUNCTION TREES

In order to handle the small-separator problem, we
discuss another dimension of parallelism in addition
to element-wise parallelism, namely arithmetic paral-
lelism. Arithmetic parallelim explores the parallel op-
portunity in the sum of (1) and in the multiplication
of (2). By considering also arithmetic parallelism, we
can better match the junction tree and the many-core
GPU platform by optimizing the computing resources
allocated to the two dimensions of parallelism.

Mathematically, this optimization can be modeled as
a computation time minimization problem:

minpe,pa T (pe, pa, Ci, Cj ,Φ),
subject to : pe + pa ≤ ptot

(3)

where T (·) is the time consumed for a message pass-
ing from clique Ci to clique Cj ; pe and pa are the num-
ber of parallel threads allocated to the element-wise
and arithmetic dimensions respectively; ptot is the to-
tal number of parallel threads available in the GPU;
and Φ is a collection of GPU-related parameters, such
as the cache size, etc. Equation (3) is a formulation of
optimizing algorithm performance on a parallel com-
puting platform. Unfortunately, traditional optimiza-
tion techniques can typically not be applied to this
optimization problem. This is because the analytical
form of T (·) is usually not available, due to the com-
plexity of the hardware platform. So in our work we
choose pe and pa empirically for our implementation.

In the rest of this section, we will describe our algo-
rithm design, seeking to explore both element-wise and
arithmetic parallelism.

3.1 Arithmetic Parallelism

Arithmetic parallelism needs to be explored in different
ways for reduction and scattering, and also integrated
with element-wise parallelism, as we will discuss now.

For reduction, given a certain fixed element j, Equa-
tion (1) is essentially a summation over all the clique
potential table φXi elements indicated by the corre-
sponding mapping table µXi,φSik (j)

. The number of

sums is |µXi,φSik (j)
|. We compute the summation in

parallel by using the approach illustrated in Figure 3.
This improves the handling of long index mapping ta-
bles induced, for example, by the B-S-B and B-S-S
patterns. The summation is done in several iterations.
In each iteration, the numbers are divided into two
groups and the corresponding two numbers in each
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group are added in parallel. At the end of this recur-
sive process, the sum is obtained, as shown in Algo-
rithm 1. The input parameter d is discussed in Section
3.2; the remaining inputs are an array of floats.

Algorithm 1 ParAdd(d, op(0), . . . , op(2d − 1))

Input: d, op(0), . . . , op(2d − 1).
sum = 0
for i = 1 to d do
for j = 0 to 2d−i − 1 in parallel do
op(j) = op(j) + op(j + 2d−i)

end for
end for
return op(0)

For scattering, Equation (2) updates the elements
of φXk

independently despite that φSik and φ∗Sik are
re-used to update different elements. Therefore, we
can compute each multiplication in (2) with a single
thread. The parallel multiplication algorithm is given
in Algorithm 2. The input parameter p is discussed
in Section 3.2; the remaining inputs are an array of
floats.

Algorithm 2 ParMul(p, op1, op2(0), . . . , op2(p− 1))

Input: p, op1, op2(0), . . . , op2(p− 1).
sum = 0
for j = 0 to p− 1 in parallel do
op2(j) = op1 ∗ op2(j)

end for

3.2 Parallel Belief Propagation

Combining element-wise and arithmetic parallelism,
we design the reduction and scattering operations as
shown in Algorithm 3 and Algorithm 4. Both of these
algorithms take advantage of arithmetic parallelism.
In Algorithm 3, the parameter d is the number of cy-
cles used to compute the reduction (summation), while
in Algorithm 4, p is the number of threads operating
in parallel. Both p and d are parameters that deter-
mine the degree of arithmetic parallelism. They can
be viewed as a special form of pa in (3). Based on
Algorithm 3 and Algorithm 4, junction tree message
passing can be written as shown in Algorithm 5.

Belief propagation can be done using both breadth-
first and depth-first traversal over a junction tree. We
use the Hugin algorithm [5], which adopts depth-first
belief propagation. Given a junction tree J with root
vertex Croot, we first initialize the junction tree by
multiplying together the Bayesian network potential
tables (CPTs). Then, two phase belief propagation
is adopted [10]: collect evidence and then distribute
evidence [22].

Algorithm 3 Reduction(d, φXi , φSik , µXi,Sik)

Input: d, φXi
, φSik , µXi,Sik .

for n = 1 to |φSik | in parallel do
for j = 0 to d|µXi,Sik(n)|/2de do

sum = sum + ParAdd(d, φXi
(µXi,Sik(n)(j ∗

2d)), . . . , φXi
(µXi,Sik(n)((j + 1) ∗ 2d − 1)))

end for
end for

Algorithm 4 Scattering(p, φXk
, φSik , µXk,Sik)

Input: p, φXk
, φSik , µXk,Sik .

for n = 1 to |φSik | in parallel do
for j = 0 to d|φSik |/pe do

sum = sum +

ParMul(p,
φ∗Sik

(n)

φSik (n)
, φXk

(µXk,Sik(n)(j ∗
p)), . . . , φXk

(µXk,Sik(n)((j + 1) ∗ p− 1)))
end for

end for

3.3 Max-product Belief Propagation

In this paper, we also apply our parallel tech-
niques to max-product propagation (or in short, max-
propagation), which is also referred as the Viterbi
algorithm. Max-propagation solves the problem of
computing a most probable explanation. For max-
propagation, the

∑
in (1) is replaced by max [2,15]. In

this paper we use sum-product propagation to explain
our parallel algorithms; the explanation can generally
be changed to discuss max-propagation by replacing
add with max.

4 CLIQUE MERGING FOR
JUNCTION TREES

The performance of our parallel algorithm is to a large
extent determined by the degree of parallelism avail-
able in message passing, which intuitively can be mea-
sured by the separator size |φSik |, which determines
the element-wise parallelism, and the mapping table
size |µXi,Sik(n)| which upper bounds the arithmetic
parallelism. In other words, the larger |φSik | and
|µXi,Sik(n)| are, the greater is the parallelism opportu-
nity. Therefore, message passing between small cliques
(the S-S-S pattern), where |φSik | and |µXi,Sik(n)| are
small, is not expected to have good performance.
There is not enough parallelism to make full use of

Algorithm 5 PassMessage(p, d, φXi
, φXk

, φSik , µXi,Sik)

Input: p, d, φXi , φXk
, φSik , µXi,Sik .

Reduction(d, φXi
, φSik , µXi,Sik)

Scattering(p, φXk
, φSik , µXk,Sik)
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a GPU’s computing resources.

In order to better use the GPU computing power,
we propose to remove small separators (that follow
the S-S-S pattern) by selectively merging neighboring
cliques. This increases the length of mapping tables,
however the arithmetic parallelism techniques intro-
duced in Section 3 can handle this. Clique merging
can be done offline according to this theorem [8].

Theorem 4.1 Two neighboring cliques Ci and Cj in
a junction tree J with the separator Sij can be merged
together into an equivalent new clique Cij with the po-
tential function

φ(xCij ) =
φ(xCi

)φ(xCj
)

φ(xSij
)

, (4)

while keeping all the other part of the junction tree
unchanged.

The result of merging cliques is three-fold: (i) it pro-
duces larger clique nodes and thus longer mapping ta-
bles; (ii) it eliminates small separators; and (iii) it re-
duces the number of cliques. Larger clique nodes will
result in more computation and therefore longer pro-
cessing time for each single thread, but getting rid of
small separators will improve utilization of the GPU
and reduce computation time. We have to manage
these two conflicting objectives to improve the overall
performance of our parallel junction tree algorithm.

Our algorithm for clique merging is shown in Algo-
rithm 6. It uses two heuristic thresholds, the sepa-
rator size threshold τs and the index mapping table
size threshold τµ, to control the above-mentioned two
effects. We only merge two neighboring cliques Ci
and Cj into a new clique Cij when |φSij | < τs and
|µXj ,φS

| < τµ.

Algorithm 6 MergeCliques(J , τs, τµ)

merge flag = 1
while merge flag do

merge flag = 0
for each adjacent clique pair (Ci, Cj) in J do
if φS < τs and |µXj ,φS

| < τµ then
Merge (J,Ci, Cj)
merge flag = 1

end if
end for

end while

Given an S-S-S-S-S pattern, Algorithm 6 may merge
two S cliques and produce an S-B-S pattern. Here, B
is the merged clique. Note that the B-S sub-pattern
creates a long index mapping table, which is exactly
what arithmetic parallelism handles. There is in other

words potential synergy between clique merging and
arithmetic parallelism, as is further explored in exper-
iments in Section 6.

5 ANALYSIS AND DISCUSSION

In this section, we analyze the theoretical speedup for
our two-dimensional parallel junction tree inference al-
gorithm under the idealized assumption that there is
unlimited parallel threads available from the many-
core computing platform.

The degree of parallelism opportunity is jointly de-
termined by the size of the separators’ potential ta-
ble, |φS |, and the size of the index mapping table
|µX ,φS

|. Consider a message passed from Ci to Ck.
Since we employ separator table element-wise paral-
lelism in our algorithm, we only need to focus on the
computation related to one particular separator table
element. With the assumption of unlimited parallel
threads, we can choose d = dlog |µXi,φS

|e. The time
complexity for the reduction is then dlog |µXi,φS

|e, due
to our use of summation parallelism.4 Note since

|µXi,φS
| =

|φXi
|

|φS | , the time complexity can be written

as dlog |φXi
| − log |φS |e. For the scattering phase, we

choose p = |µXk,φS
| and the time complexity is given

by |µXk,φS
|/p+ 1 = 2 due to the multiplication paral-

lelism. Thus the overall time complexity of the two-
dimensional belief propagation algorithm is:

dlog |φXi
| − log |φS |e+ 2, (5)

which is the theoretical optimal time complexity un-
der the assumption of an infinite number of threads.
Nevertheless, this value is hard to achieve in practice
since the value of d and p are subject to the concur-
rency limit of the computing platform. For example, in
the above-mentioned BN Pigs, some message passing
requires p = 1120 while the GTX460 GPU supports at
most 1024 threads per thread block.

Belief propagation is a sequence of messages passed in
a certain order [10], for both CPU and GPU [22]. Let
Ne(C) denote the neighbors of C in the junction tree.
The time complexity for belief propagation is∑

i

∑
k∈Ne(Ci)

(dlog |φXi | − log |φS |e+ 2) ,

Kernel invocation overhead, incurred each time Algo-
rithm 5 is invoked, turns out to be an important per-
formance factor. If we model the invocation overhead
for each kernel call to be a constant τ , then the time

4We assume, for simplicity, sum-propagation. The anal-
ysis for max-propagation is similar.
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complexity becomes∑
i

diτ +
∑
i

∑
k∈Ne(Ci)

(dlog |φXi
| − log |φS |e+ 2) ,

where di is the degree of a node Ci. In a tree structure,∑
di = 2(n− 1). Thus the GPU time complexity is

2(n− 1)τ +
∑
i

∑
k∈Ne(Ci)

(dlog |φXi | − log |φS |e+ 2) .

From this equation, we can see that the junction tree
topology impacts GPU performance in at least two
ways: the total invocation overhead is proportional to
the number of nodes in the junction tree, while the
separator and clique table sizes determine the degree
of parallelism.

The overall speedup of our parallel belief propagation
approach is determined by the equation

Speedup =

∑
i

∑
k∈Ne(Ci)(|φXi

|+ |φXk
|)

2(n− 1)τ +
∑
i

∑
k∈Ne(Ci)

(⌈
log
|φXi
|

|φS |

⌉
+ 2
) .

Clearly, the speedup depends on the distribution of
the sizes of the separators’ and cliques’ potential ta-
bles. That is the reason we propose the clique merging
technique. Using clique merging, we change the num-
ber of nodes in the junction tree and distribution of
the size of the separators’ and cliques’ potential ta-
ble as well, adapting the junction tree for the specific
parallel computing platform.

From the equations above, we can estimate the overall
belief propagation speedup. However, taking into ac-
count that the CPU/GPU platform incurs invocation
overhead and the long memory latency when loading
data from slow device memory to fast shared memory,
the theoretical speedup is hard to achieve in practice.
We take an experimental approach to study how the
structure of the junction trees affects the performance
of our parallel technique on the CPU/GPU setting in
Section 6.

6 EXPERIMENTAL RESULTS

In experiments, we study Bayesian networks compiled
into junction trees. We not only want to compare
the two-dimensional parallel junction tree algorithm to
the sequential algorithm, but also study how effective
the arithmetic parallelism and clique merging methods
are. Consequently, we experiment with different com-
binations of element-wise parallelism (EP), arithmetic
parallelism (AP), and clique merging (CM).

6.1 Computing Platform

We use the NVIDIA GeForce GTX460 as the platform
for our implementation. This GPU consists of seven
multiprocessors, and each multiprocessor consists of
48 cores and 48K on-chip shared memory per thread
block. The peak thread level parallelism achieves
907GFlop/s. In addition to the fast shared memory,
a much larger but slower off-chip global memory (785
MB) that is shared by all multiprocessors is provided.
The bandwidth between the global and shared mem-
ories is about 90 Gbps. In the junction tree compu-
tations we are using single precision for the GPU and
the thread block size is set to 256.

6.2 Methods and Data

For the purpose of comparison, we use the same set
of BNs as used previously [22] (see http://bndg.cs.

aau.dk/html/bayesian_networks.html). They are
from different domains, with varying structures and
state spaces. These differences lead to very differ-
ent junction trees, see Table 1, resulting in varying
opportunities for element-wise and arithmetic paral-
lelism. Thus, we use clique merging to carefully con-
trol our two dimensions of parallelism to optimize per-
formance. The Bayesian networks are compiled into
junction trees and merged offline and then junction
tree propagation is performed.

6.3 GPU Optimization: Arithmetic
Parallelism

Arithmetic parallelism gives us more freedom to match
the parallelism in message passing and the concur-
rency provided by a GPU: when there is not enough
potential table element-wise parallelism available, we
can increase the degree of arithmetic parallelism. The
number of threads assigned to arithmetic parallelism
affects the performance significantly. The parameter
p in parallel scattering and the parameter 2d in the
parallel reduction should be chosen carefully (see Al-
gorithm 1 and 2). Since the GPU can provide only
limited concurrency, we need to balance the arithmetic
parallelism and the element-wise parallelism for each
message passing to get the best performance.

Consider message passing between big cliques, for ex-
ample according to the B-S-B pattern. Intuitively, the
values of the arithmetic parallelism parameters p and
d should be set higher than for the message passing
between smaller cliques. Thus, based on extensive ex-
perimentation, we currently employ a simple heuristic
parameter selection scheme for the scattering param-
eter p

p =

{
4 if|µXi,Sik(n)| ≤ 100

128 if|µXi,Sik(n)| > 100
(6)

93



Dataset Pigs Munin2 Munin3 Munin4 Mildew Water Barley Diabetes
# of original JT nodes 368 860 904 872 28 20 36 337
# of JT nodes after merge 162 553 653 564 22 18 35 334
Avg. CPT size before merge 1,972 5,653 3,443 16,444 341,651 173,297 512,044 32,443
Avg. CPT size after merge 5,393 10,191 7,374 26,720 447,268 192,870 527,902 33,445
Avg. SPT size before merge 339 713 533 2,099 9,273 26,065 39,318 1,845
Avg. SPT size after merge 757 1,104 865 3,214 11,883 29,129 40,475 1,860
GPU time (sum-prop) [ms] 22.61 86.40 74.99 141.08 41.31 16.33 81.82 68.26
GPU time (max-prop) [ms] 22.8 86.8 72.6 114.9 38.6 12.1 94.3 78.3
CPU time (sum-prop) [ms] 51 210 137 473 355 120 974 397
CPU time (max-prop) [ms] 59 258 119 505 259 133 894 415
Speedup (sum-prop) 2.26x 2.43x 1.82x 3.35x 8.59x 7.35x 11.94x 5.81x
Speedup (max-prop) 2.58x 2.97x 1.64x 4.39x 6.71x 10.99x 9.48x 5.30x

Table 1: Junction tree (JT) statistics and belief propagation (BP) performance for various junction trees, with
speedup for our GPU approach (GPU EP + AP + CM) compared to CPU-only in the two bottom rows. The
row “CPU time (sum-prop)” gives previous results [22].

(a) Junction tree sum-propagation

(b) Junction tree max-propagation

Figure 4: Comparison of combinations of junction
tree optimization techniques CM, AP, and EP for (a)
sum- and (b) max-propagation. Best performance is
achieved for GPU EP + AP + CM.

Figure 5: GPU execution times with CM (GPU EP
+ AP + CM) and without CM (GPU EP + AP) for
junction trees compiled from sparse BNs representing
electrical power systems.

and the reduction parameter d

d =

{
2 if|µXi,Sik(n)| ≤ 100
7 if|µXi,Sik(n)| > 100

(7)

We compare the execution time when using element-
wise parallelism alone and the case when element-wise
parallelism is used in combination with arithmetic par-
allelism. Results, for both sum-propagation and max-
propagation, are shown in Figure 4(a) and Figure 4(b).
In all cases, the GPU EP + AP + CM outperforms all
the other approaches.5

6.4 GPU Optimization: Clique Merging

Clique merging is based on the observation that many
junction trees mostly consist of small cliques. This
lack of parallelism opportunity will hinder the efficient

5The GPU EP + CM combination is included for com-
pleteness, but as expected it often performs very poorly.
The reason for this is that CM, by merging cliques, creates
larger mapping tables that EP is not equipped to handle.
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use of the available computing resources, since a single
message passing will not be able to occupy the GPU.
Merging neighboring small cliques, found in the S-S-S
pattern, can help to increase the average size of sep-
arators and cliques. Clique merging also reduces the
total number of nodes in the junction tree, which in
turn reduces the invocation overhead.

We use two parameters to determine which cliques
should be merged–one is τs, the threshold for separa-
tors’ potential table size and the other is τµ, the thresh-
old for the size of the index mapping table. These pa-
rameters are set manually in this paper, however in
a companion paper [21] this parameter optimization
process is automated by means of machine learning.

In the experiments, we used both arithmetic paral-
lelism and element-wise parallelism. This experiment
presents how much extra speedup can be obtained by
using clique merging and arithmetic parallelism. The
experimental results can be found in Table 1, in the
rows showing the GPU execution times for both sum-
propagation and max-propagation. In junction trees
Pigs, Munin2, Munin3 and Munin4, a considerable
fraction of cliques (and consequently, separators) are
small, in other words the S-S-S pattern is common.
By merging cliques, we can significantly increase the
average separators’ and cliques’ potential size and thus
provide more parallelism.

Comparing GPU EP + AP with GPU EP + AP +
CM, the speedup for these junction trees ranged from
10% to 36% when clique merging is used. However,
in junction trees Mildew, Water, Barley and Diabetes,
clique merging does not help much since they mainly
consist of large cliques to start with.

Another set of experiments were performed with junc-
tion trees that represent an electrical power system
ADAPT [16–18]. These junction trees contain many
small cliques, due to their underlying BNs being rel-
atively sparsely connected.6 The experimental results
are shown in Figure 5. Using clique merging, the GPU
execution times are shortened by 30%-50% for these
BNs compared to not using clique merging.

6.5 Performance Comparison: CPU

As a baseline, we implemented a sequential program
on an Intel Core 2 Quad CPU with 8MB cache and
a 2.5GHz clock. The execution time of the program
is comparable to that of GeNie/SMILE, a widely used
C++ software package for BN inference.7 We do not
directly use GeNie/SMILE as the baseline here, be-
cause we do not know the implementation details of

6http://works.bepress.com/ole_mengshoel/
7http://genie.sis.pitt.edu/

GeNie/SMILE.

In Table 1, the bottom six rows give the execution
time comparison for our CPU/GPU hybrid versus a
traditional CPU implementation. The CPU/GPU hy-
brid uses arithmetic parallelism, element-wise paral-
lelism and clique merging. The obtained speedup for
sum-propagation ranges from 1.82x to 11.94x, with an
arithmetic average of 5.44x and a geometric average of
4.42.

The speedup for max-propagation is similar to, but dif-
ferent from sum-propagation in non-trivial ways. The
performance is an overall effect of many factors such
as parallelism, memory latency, kernel invocation over-
head, etc. Those factors, in turn, are closely correlated
with the underlying structures of the junction trees.
The speedup for max-propagation ranges from 1.64x
to 10.99x, with an arithmetic average of 5.51x and a
geometric average of 4.61x.

6.6 Performance Comparison: Previous GPU

We now compare the GPU EP + AP + CM tech-
nique introduced in this paper with our previous GPU
EP approach [22]. From results in Table 1, compared
with the GPU EP approach [22], the arithmetic av-
erage cross platform speedup increases from 3.38x (or
338%) to 5.44x (or 544%) for sum-propagation. For
max-propagation8 the speedup increases from 3.22x
(or 322%) to 5.51x (or 551%).

7 CONCLUSION AND FUTURE
WORK

In this paper, we identified small separators as bottle-
necks for parallel computing in junction trees and de-
veloped a novel two-dimensional parallel approach for
belief propagation over junction trees. We enhanced
these two dimensions of parallelism by careful clique
merging in order to make better use of the parallel
computing resources of a given platform.

In experiments with a CUDA implementation on an
NVIDIA GeForce GTX460 GPU, we explored how the
performance of our approach varies with different junc-
tion trees from applications and how clique merging
can improve the performance for junction trees that
contains many small cliques. For sum-propagation, the
average speedup is 5.44x and the maximum speedup
is 11.94x. The average speedup for max-propagation
is 5.51x while the maximum speedup is 10.99x.

In the future, we would like to see research on parame-
ter optimization for both clique merging and message

8We implemented max-propagation based on the ap-
proach developed previously [22].
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passing. It would be useful to automatically change
the merging parameters for different junction trees
based on the size distribution of the cliques and sep-
arators. In addition, we also want to automatically
change the kernel running parameters for each single
message passing according to the size of a message. In
fact, we have already made progress along these lines,
taking a machine learning approach [21].
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