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Abstract 

Educational video games and simulations hold 
great potential as measurement tools to assess 
student levels of understanding, identify 
effective instructional techniques, and pinpoint 
moments of learning because they record all 
actions taken in the course of solving each 
problem rather than just the answers given. 
However, extracting meaningful information 
from the log data produced by educational video 
games and simulations is notoriously difficult. 
We extract meaningful information from the log 
data by first utilizing a logging technique that 
results in a far more easily analyzed dataset. We 
then identify different learning trajectories from 
the log data, determine the varying effects of the 
trajectories on learning, and outline an approach 
to automating the process. 

1. INTRODUCTION 

Computer games and simulations hold great potential as 
measurement tools because they can measure knowledge 
that is difficult to assess using paper-and-pencil tests or 
hands-on tasks (Quellmalz & Pellegrino, 2009). These 
measures can then be used to support diagnostic claims 
about students’ learning processes (Leighton & Gierl, 
2007), provide detailed measures of the extent to which 
players have mastered specific learning goals (National 
Science and Technology Council, 2011), and generate 
information that can be used to improve classroom 
instruction (Merceron & Yacef, 2004). 

Log files from games can store complete student answers 
to the problems (Merceron & Yacef, 2004), allowing the 

researcher to record unobtrusively (Kim, Gunn, Schuh, 
Phillips, Pagulayan, & Wixon, 2008; Mostow, Beck, 
Cuneao, Gouvea, Heiner, & Juarez, 2011) the exact 
learning behavior of students (Romero & Ventura, 2007) 
that is not always captured in written or verbal 
explanations of their thought processes (Bejar, 1984). 

Though log data is more comprehensive and more 
detailed than most other forms of assessment data, 
analyzing such data presents a number of problems 
because the log files typically include thousands of pieces 
of information for each student (Romero, Gonzalez, 
Ventura, del Jesus, & Herrera, 2009) with no known 
theory to help identify which information is salient 
(National Research Council, 2011). Additionally, the 
specific information stored in the log files is not always 
easy to interpret (Romero & Ventura, 2007) as the 
responses of individual students are highly context 
dependent (Rupp, Gusta, Mislevy, & Shaffer, 2010) and it 
can be very difficult to picture how student knowledge, 
learning, or misconceptions manifest themselves at the 
level of a specific action taken by the student in the 
course of the game. Due to these difficulties, there is 
currently no systematic approach to extracting relevant 
data from log files (Muehlenbrock, 2005). The 
interpretation of the rich stream of complex data that 
results from the tracking of in-game actions is one of the 
most serious bottlenecks facing researchers examining 
educational video games and simulations today (Mislevy, 
Almond, & Lukas, 2004). 

1.1 RELATED WORK 

Due to the difficulty involved in analyzing log data of 
students’ in-game performance, educational researchers 
occasionally analyze student in-game performance by 
hand, despite the size of the data. Trained human raters 
have been used to extract purposeful sets of actions from 
game logs (Avouris, Komis, Fiotakis, Margaritis, & 



 

Voyiatzaki, 2005) and logs of eye-tracking data (Conati & 
Merten, 2007). One study hand-identified student errors 
in log files from an introductory programming environ-
ment (Vee, Meyer, & Mannock, 2006) and another 
examined behavior patterns in an exploratory learning 
environment by hand to categorize students into learning 
types (Amershi & Conati, 2011). Another had the teacher 
play the role of a game character to score student 
responses and provide live feedback to the students 
(Hickey, Ingram-Goble, & Jameson, 2009).  

Other studies avoided hand-coding log data by using 
easily extracted in-game measures such as percent 
completion or time spent on task to measure performance. 
The number of activities completed in the online learning 
environments Moodle (Romero, Gonzalez, Ventura, del 
Jesus, & Herrera, 2009) and ActiveMath (Scheuer, 
Muhlenbrock, & Melis, 2007) have been used to predict 
student grades. The time spent in each activity in an 
online learning environment has been used to detect 
unusual learning behavior (Ueno & Nagaoka, 2002). 
Combinations of the total time spent in the online 
environment and the number of activities successfully 
completed have been used to predict student success 
(Muhlenbrock, 2005) and report student progress (Rahkila 
& Karjalainen, 1999). 

1.2 OUR CONTRIBUTION 

In this study, we identify learning trajectories from 
information stored in log data generated by an educational 
video game. We do this by extracting the number of 
attempts required to solve each level (rather than the time 
spent or the number of levels completed) and then hand 
clustering the individual learning trajectories that result 
from plotting the attempts over time. We show that this 
process results in the identification of substantively 
different types of learning trajectories that differ on a 
variety of measures. We also discuss the benefits of our 
logging, preprocessing, and exploratory analysis 
techniques in regards to ease of interpretation and 
potential use in data mining techniques.  

1.3 SAMPLE 

This study uses data from 859 students who played an 
educational video game about identifying fractions called 
Save Patch in their classrooms for four days as part of a 
larger study. These students were given a paper-and-
pencil pretest to measure their prior knowledge of 
fractions. After they played the game, students were given 
both an immediate posttest and a delayed posttest. The 
immediate posttest was computerized and was given on 
the last day of game play. The delayed posttest was a 
paper-and-pencil test that was given a few weeks later. 
All three tests consisted of both a set of content items and 
a set of survey items. In addition, the game generated log 
data consisting of each action taken by each student in the 
course of game play. The resulting dataset consisted of 
1,288,103 total actions, 17,685 of which were unique.  

2. DATA PREPARATION 

The Data Preprocessing and Intelligent Data Analysis 
article (Famili, Shen, Weber, & Simoudis, 1997) lists 
eleven problems with real-world data that should be 
addressed in preprocessing. Our data comes from a single 
source, so we do not have to worry about merging data 
from multiple sources or combining incompatible data. 
The nine remaining problems and how they are applicable 
to our data are shown in Table 1. 

Table 1: Potential Problems with Save Patch Data 

PROBLEM DESCRIPTION 

Corruption and 
noise 

Interruptions during data recording 
can lead to missing actions 

Feature 
extraction 

Important events must be identified 
from sets of individual actions 

Irrelevant  
data 

Not all actions taken in the game are 
meaningful 

Volume  
of data 

Hundreds or thousands of actions 
are recorded for each student 

Missing 
attributes 

Logs can fail to capture all relevant 
attributes 

Missing 
attribute values 

Logs can fail to record all values for 
all captured attributes 

Numeric and 
symbolic data 

Data for each action contains both 
numeric and symbolic components 

Small data at a 
given level 

We only have data for 859 students 

Multiple  
levels 

Data are recorded at multiple levels 
of granularity for each action 

Our approach to minimizing the impact of these problems 
is explained in the following sections. Missing attributes 
are addressed in Section 2.1 (Game Design) and Section 
2.2 (Logging). Corruption and noise, missing attribute 
values, numeric and symbolic data, and multiple levels 
are addressed in Section 2.2 (Logging). Feature extraction 
is addressed in Section 2.3 (Preprocessing), irrelevant 
data is addressed in Section 2.3.1 (Data Cleaning), and 
volume of data and small data at a given level are 
addressed in Section 3.1 (Exploratory Analysis). 

2.1 GAME DESIGN 

The educational video game used in this study is Save 
Patch. The development of Save Patch was driven by the 
findings that fluency with fractions is critical to perform-
ance in algebra (U.S. Department of Education, 2008), 
and that the understanding of fractions is one of the most 
difficult mathematical concepts students learn before 
algebra (Carpenter, Fennema, Franke, Levi, & Empson, 
2000; McNeil & Alibali, 2005; National Council of 
Teachers of Mathematics, 2000; Siebert & Gaskin, 2006).  



 

Once fractions concepts were identified as the subject 
area for the game, the most important concepts involved 
in fractions knowledge were analyzed and distilled into a 
set of knowledge specifications delineating precisely what 
students were expected to learn in the game (Vendlinski, 
Delacruz, Buschang, Chung, & Baker, 2010). These 
knowledge specifications, in turn, drove game design.  

Because the game was designed specifically to measure 
student understanding of a predetermined set of 
knowledge specifications, both game mechanics and level 
design reflected those knowledge specifications and 
helped assure that all important attributes were measured 
in the game and recorded in the log files. 

 

Figure 1: Example Level from Save Patch 

In Save Patch, students must identify the fractional 
distances represented in each level, break ropes into 
pieces representing that distance, and place the correct 
number of rope pieces on each sign on the game grid to 
guide the puppet to the cage containing the prize. Units 
are represented by dirt paths and large gray posts, and 
small red posts break the units into fractional pieces. The 
level in Figure 1 is two units wide and one unit tall, and 
each unit is broken into thirds. To solve the level 
correctly, students must place four thirds on the first sign, 
one third on the second sign, and change the direction on 
the second sign so that it points down.  

Save Patch is broken into stages based on content. All 
levels in a given stage represent the same fractions 
content. The game starts with whole number 
representations so that students can learn how to play, and 
then advances to unit fractions, whole numbers and unit 
fractions, proper fractions, and mixed numbers. After the 
fractions content stages, the game contains a test stage 
that was intended to be an in-game measure of learning 
and a series of challenge levels. The test stage includes an 
exact replica of one level from each of the previous stages 
and the challenge levels provide complicated 

combinations of the earlier material. This study focuses 
on the mixed numbers stage, because it contains the most 
complex representation of fractions in the game. 

2.2 LOGGING 

The data from Save Patch was generated by the logging 
technique outlined in Chung and Kerr (2012). As opposed 
to most log data from educational video games that 
consists of only summary information about student 
performance, such as the number of correct solutions or a 
probability that the content is known, the log data from 
this system consists of each action taken by each student 
in the course of game play. 

However, such actions are not fully interpretable without 
relevant game context information indicating the precise 
circumstances under which the action was taken 
(Koedinger, Baker, Cunningham, Skogsholm, Leber, & 
Stamper, 2011). For this reason, each click that 
represented a deliberate action was logged in a row in the 
log file that included valuable context information such as 
the game level in which the action occurred and the time 
at which it occurred, as well as both general and specific 
information about the action itself. 

As shown in Table 2, general information is stored in the 
form of a Data Code that is unique to each type of action 
(e.g., Data Code 3000 = selecting a rope piece from the 
Path Options). Each Data Code has a unique Description, 
for human readers and for documentation purposes, that 
identifies the action type and lists the interpretation of the 
following three columns. Data_01, Data_02, and Data_03 
contain specific information about each action in the form 
of values that correspond to the bracketed information in 
the Description. For example, the third row in the table 
indicates that a rope was added (Data Code 3010) to the 
first sign (1/0 in Data_01), that the rope was a 1/3 piece 
(1/3 in Data_02), and that the resulting value on the sign 
was 1/3 (1/3 in Data_03). Additionally, the Gamestate 
records the values already placed on all signs in the level 
at the time of each action. 

Logging the data in this manner allows for the easy 
interpretation of numeric and symbolic data because all 
comparable data is stored in the same format (e.g., 1/3 
rather than .33) and because different representations of 
the same values have different interpretations in the game 
(e.g., 1/3 differs from 2/6). Additionally, the redundancy 
of carrying down each level of granularity (e.g., storing 
student ID and Level Number in each action) allows data 
to be recorded and analyzed at multiple levels without 
having to combine different datasets. This also reduces 
the negative effects of corruption and noise stemming 
from interruptions during data recording, because each 
action can be interpreted independently. Even if a given 
action is corrupted, all other actions in the level are still 
recorded correctly and each action contains all the 
information necessary for interpretation. While data 
corruption may result in missing attribute values in many 



 

Table 2: Example Log Data from Save Patch 

ID Level Game 
Time 

Data 
Code 

Description Data_01 Data_02 Data_03 Gamestate 

1115 14 3044.927 2050 Scrolled rope from [initial 
value] to [resulting value] 

1/1 3/3  0/0_on_Sign1 

1115 14 3051.117 3000 selected coil of [coil value] 1/3   0/0_on_Sign1 

1115 14 3054.667 3010 added fraction at [position]: 
added [value] to yield 
[resulting value] 

1/0 1/3 1/3 0/0_on_Sign1 

1115 14 3058.443 3000 selected coil of [coil value] 1/3   1/3_on_Sign1 

1115 14 3064.924 3010 added fraction at [position]: 
added [value] to yield 
[resulting value] 

1/0 1/3 2/3 1/3_on_Sign1 

1115 14 3088.886 3020 Submitted answer: clicked Go 
on [stage] – [level] 

2 3  2/3_on_Sign1 

1115 14 3097.562 3021 Moved: [direction] from 
[position] length [value] 

Right 1/0 2/3 2/3_on_Sign1 

1115 14 3106.224 4020 Received feedback: [type] 
consisting of [text] 

Success Congrat
ulations! 

 2/3_on_Sign1 

1115 14 3108.491 5000 Advanced to next level: 
[stage] – [level] 

2 4  2/3_on_Sign1 

 

other logging techniques, this is rarely the case with data 
logged in this manner because attribute values are re-
corded at the action level rather than calculated over time. 

2.3 PREPROCESSING 

The game design and logging techniques addressed a 
number of potential issues with the data, but it was still 
necessary to extract relevant features from the data. 

In this study we were interested in examining student 
performance over time. In order to create these learning 
trajectories, we needed to identify a measure of 
performance in each level of the mixed numbers stage. 
Simply calculating whether students had correctly solved 
the level was insufficient, because students could replay a 
level as many times as was necessary and students could 
not advance to the next level without solving the current 
one. Therefore, we determined that the number of 
attempts it took a student to solve each level was the best 
measure of performance. 

Attempts were not an existing feature of the log data, so 
each new attempt had to be calculated from existing 
information. We defined an attempt as all actions from the 
start of a level to either a reset of that level or advancing 
to the next level. The start of each attempt was identified 
using the following SPSS code, wherein Data Code 4010 
indicates a reset: 

If  $casenum = 1 attempt = 1. 

If  id < > lag(id, 1) attempt = 1. 

If  curr_level < > lag(curr_level, 1) attempt = 1. 
If  lag(data_code, 1) = 4010  attempt = 1. 

The first action in each attempt was then numbered 
consecutively using the following SPSS code: 

Sort Cases By attempt(D) id curr_level uber_sn. 

If  id = lag(id,1) and  attempt = 1  

and  curr_level = lag(curr_level, 1)  
attempt = lag(attempt, 1) + 1. 

Finally, the following SPSS code propagated the attempt 
number to all subsequent actions in that attempt: 

Sort Cases By id curr_level uber_sn. 

If attempt = 0 attempt = lag(attempt, 1). 

2.3.1 Data Cleaning 

Given the game design, logging technique, and pre-
processing, little additional data cleaning was required 
after the attempts were calculated. However, irrelevant 
data still needed to be identified. 

Irrelevant data in this analysis were defined as invalid 
attempts, which were attempts wherein students made no 
meaningful actions. In Save Patch, invalid attempts 
occurred largely because the student clicked reset twice in 
a row (either accidentally or due to impatience with the 
speed of the avatar) or because the student accidentally 
clicked “Go” immediately after a new level loaded (due to 
the initial location of the cursor directly above the “Go” 
button). If left in the dataset, these invalid attempts would 



 

artificially inflate the number of attempts those students 
required to solve each level and thereby indicate a greater 
level of difficulty than was actually the case. 

Invalid attempts were identified and dropped using the 
following SPSS code, wherein Code_3000 was a count of 
the number of times a rope was selected in that attempt: 

Calculate DropAttempt = 0. 

If Code_3000 = 0 DropAttempt = 1. 
Select If DropAttempt = 0. 

Remaining attempts were renumbered after all invalid 
attempts were dropped. 

Additionally, a small number of students had not reached 
the portion of the game being analyzed. Approximately 
five percent of the students were dropped from the 
analysis because they had not reached the mixed numbers 
levels and therefore their learning trajectories for this 
content area could not be calculated. 

3. EXPLORATORY ANALYSIS 

Extracting the number of attempts each student required 
to solve each level reduced the dataset from over a million 
rows to only 21,713 rows of data (2,316 of which 
belonged to the subsample of students in the first 10% of 
the dataset, 413 of which occurred in the levels of 
interest). While this is too large of a volume of data for 
standard educational statistics, the data is also too small at 
this level for unsupervised, exploratory data mining 
techniques. Therefore, we decided to run some 
exploratory analyses to give us the information we would 
need to run a supervised data mining analysis. 

 

Figure 2: Mean Number of Attempts Per Level 

An initial plot of the mean number of attempts students 
required to solve each of the mixed numbers levels is 
shown in Figure 2. This graph seems to indicate that the 
second level is more difficult than the other three levels, 
but does not otherwise seem to indicate any change in 

student performance as they move through the stage. 
Even given that the first level in the stage was designed as 
a training level and was intended to be much easier than 
other levels in the stage, it is difficult to make any claims 
about increased performance over time that might indicate 
student learning occurred. However, when examining 
performance curves over time, examining only mean 
values can hide more meaningful differences in learning 
trajectories between individuals (Gallistel, Fairhurst, & 
Balsam, 2004). Therefore, we decided to examine the 
individual learning trajectories of each of the students in 
our subset by hand. 

3.1 IDENTIFYING LEARNING TRAJECTORIES 

Only the first 10% of students in the sample was selected 
for the hand clustering dataset. The remaining 90% of the 
data was retained for subsequent data mining techniques. 
The individual learning trajectories for each of these 78 
students were printed out. Similar to a hierarchical 
agglomerative clustering approach, we started with the 
first student’s trajectory in a single cluster. Each 
subsequent student’s trajectory was added to an existing 
cluster if it appeared substantively similar, or placed in a 
separate pile forming a new cluster if it appeared 
substantively different.  

 

Figure 3: Identified Types of Learning Trajectories 

The hand clustering resulted in six different groups of 
students, corresponding to six different types of learning 
trajectories (see Figure 3). The first type of learning 
trajectory demonstrated increasingly worse performance 
throughout the stage. In each consecutive level, these 
students (Steady Worse) took as many or more attempts 
to solve the level than they had required to solve the 
previous level. The second type of learning trajectory 
(Unsteady Worse) also demonstrated poorer performance 
later in the stage, but performed better on the third level in 
the stage than they had on the second level in the stage, 
resulting in a more ragged uphill trajectory.  

The third type of learning trajectory (Better) performed 
consistently better on each of the last three levels of the 
stage, and the fourth type of learning trajectory (Better To 



 

 

Figure 4: Student Learning Trajectories by Type 

1) improved consistently better on the last three levels to 
the point that they solved the final level in their first 
attempt. The fifth type of learning trajectory (Slip From 1) 
solved all levels in the stage on their first attempt, except 
for one level which they took two attempts to solve. The 
sixth type of learning trajectory (Stay At 1) solved all 
levels in the stage on their first attempt, making no 
mistakes at all. 

The individual learning trajectories for each student are 
plotted in Figure 4. The top three graphs represent (from 
left to right) students in the Steady Worse, Unsteady 
Worse, and Better learning trajectory types. The bottom 
three graphs represent students in the Better To 1, Slip 
From 1, and Stay At 1 learning trajectory types. 

3.2 FINDING DIFFERENCES 

In order to determine whether the learning trajectories 
were substantively different, and therefore worth further 
analysis, a number of exploratory ANOVAs were run  

Students in the six different learning trajectory types 
differed significantly on both prior knowledge measures: 
the pretest score (p < .001) and prior math grades (p = 

.024). Slip From 1 and Stay At 1 had the highest mean 
pretest scores (4.42 and 4.22 respectively) and Unsteady 
Worse had the lowest (1.17). Similarly, Slip From 1 had 
the highest mean prior math grades (1.0 where 1 is an A) 
and Unsteady Worse and Better had the lowest (2.17 and 
2.50 respectively). See Table 3 for results. 

The learning trajectory types also differed significantly on 
in-game performance measures. There were significant 
differences between types in the percent of game levels 
completed (p < .001), but not the time they spent playing 
(p = .889), with Slip From 1 and Stay At 1 having the 
highest mean percentage of levels completed (84% and 
87% respectively) and Better having the lowest (65%). 

There were also significant differences in the percentage 
of students in the group solving the mixed numbers test 
level in their first attempt (p < .001) and in improvement 
between their performance on the corresponding level in 
the mixed numbers stage and the test level (p < .001). All 
students in Slip From 1 solved the mixed numbers test 
level on their first attempt (as did 82% of Stay At 1 
students). Only 20% of Unsteady Worse, and none of the 
Better students, solved the mixed numbers test level on 
their first attempt. However, the Better, Better To 1, and 



 

Table 3: ANOVA Results 

MEASURE SIGNIFICANCE BEST MEANS WORST MEANS 

Pretest Score  p < .001 Slip From 1 (4.42) 
Stay At 1 (4.22) 

Unsteady Worse (1.17)  

Prior Math Grades  p = .024 Slip From 1 (1.0)  Unsteady Worse (2.17) 
Better (2.50)  

Number of Game Levels Completed  p < .001 Stay At 1 (87%) 
Slip From 1 (84%)  

Better (65%)  

Time Spent Playing  p = .889 no difference  no difference  

Solved Test Level on First Attempt  p < .001 Slip From 1 (100%) 
Stay At 1 (82%)  

Unsteady Worse (20%) 
Better (0%)  

Improve on Test Level  p < .001 Better (3.18) 
Unsteady Worse (2.80) 
Better To 1 (2.48)  

Know (-0.18) 
Worse (-0.80)  

Immediate Posttest p = .012 Stay At 1 (5.78) 
Slip From 1 (5.50) 

Unsteady Worse (2.71) 

Delayed Posttest p = .010 Stay At 1 (5.84) 
Slip From 1 (4.75) 

Unsteady Worse (2.82) 

Self-Belief in Math Before the Game p = .221 no difference  no difference  

Self-Belief in Math After the Game p = .022 Stay At 1 (3.44) 
Slip From 1 (3.21)  

Steady Worse (2.57) 
Unsteady Worse (2.33) 

 

Unsteady Worse students all showed improvement 
between the corresponding level in the stage and the test 
level, taking an average of 3.18, 2.48, and 2.80 fewer 
attempts respectively to solve the test level. 

Students in the different learning trajectory types also 
differed significantly on the immediate posttest (p = .012) 
and delayed posttest (p = .010), retaining most of the 
significant differences present in the pretest measures. As 
with the pretest, Slip From 1 and Stay At 1 had the 
highest mean immediate posttest scores (5.50 and 5.78 
respectively) and delayed posttest (4.75 and 5.84), and 
Unsteady Worse had the lowest immediate posttest (2.71) 
and delayed posttest (2.82). However, the learning 
trajectory types also differed in their self-belief in math 
after the game (p = .022), though there was no significant 
difference before the game (p = .221). Slip From 1 and 
Stay At 1 had highest self-belief in math after the game 
(3.21 and 3.44 respectively), followed by Better and 
Better To 1 (3.07 and 2.82 respectively), with Steady 
Worse and Unsteady Worse having the lowest self-belief 
in math (2.57 and 2.33 respectively). 

4. NEXT STEPS 

Now that the six different learning trajectory types have 
been identified and evidence exists that the differences 
between the groups are substantive, the next step in our 
research is to test different cluster analysis techniques to 

determine which one best classifies students into these 
groups.  

However, the accuracy of a cluster analysis technique 
depends, at least in part, on the appropriateness of the 
attributes used to create the distance matrix it operates on. 
There are three possible sets of attributes that might be 
used. First, the learning trajectories could be seen as 
splines. In this case, the attribute set would consist of the 
spline values, initial values, and ending values of each 
trajectory.  

On the other hand, it might be more appropriate to treat 
the learning trajectories as a series of connected line 
segments. In this case, the attribute set would consist of 
the initial value, slope, and ending value of each line 
segment in each learning trajectory.  

However, examination of the learning trajectories plotted 
in Figure 4 indicate that the value of each point may not 
be as important in determining which cluster a given 
learning trajectory falls in as the general shape of the 
trajectory. In this case, the attribute set would consist of a 
binary indicator of whether or not the initial value of each 
line segment was 1 or more than 1, a binary indicator of 
whether or not the ending value of each line segment was 
1 or more than 1, and a set of binary indicators of whether 
the slope of each line segment was positive, negative, or 
neutral. These three options are summarized below. 

 



 

1. Splines: initial value, spline values, ending value 
2. Line Segments: initial value, slope, ending value 
3. Binary Line Segments: initial value of 1 or more than 

1, positive, negative, or neutral slope, ending value of 
1 or more than 1 

The distance matrix created from each of these three 
attribute sets will be fed into a hierarchical, partitioning, 
and fuzzy clustering algorithm. This will result in nine 
clustering techniques. Each of these clustering techniques 
will be run over the 10% of students whose learning 
trajectories have already been hand clustered in order to 
determine which technique best classifies the students.  

Once the best clustering technique has been identified, it 
will be used to classify the remaining 90% of students in 
the sample into the learning trajectory type which best 
describes their in-game performance. Then a MANOVA 
will be run to determine which learning trajectory types 
differ on which measures across the entire sample (as 
opposed to the 10% reported in Table 3). If differences 
are found, the clustering technique could then be used 
(without requiring additional manual analysis) on attempt 
data from other stages in Save Patch, other Save Patch 
data collections, or other stages in similar games. 

5. DISCUSSION 

The logging technique used in this study resulted in a 
dataset that eased preprocessing and feature extraction. 
Additionally, the hand clustering led to the identification 
of six different types of learning trajectories who differed 
substantively on measures of prior knowledge, in-game 
performance, and posttest performance. 

Perhaps the most interesting types of learning trajectories 
are the Better To 1, Better, and Unsteady Worse types. 
These trajectories appear to identify the potential learners 
for a given game, students who don’t know the material 
but are capable of learning from the game play. In 
contrast, the Stay At 1 and Slip From 1 trajectory types 
seem to identify students who already know the material 
and the Steady Worse trajectory type seems to identify 
students who do not know the material and are not 
learning from the game.  

The results of this study seem to indicate that using data 
mining techniques to cluster learning trajectories would 
be a worthwhile endeavor, as the different clusters appear 
to correspond to substantively different groups of 
students. If the data mining results support the results of 
this study, it would not only support claims that 
educational video games and simulations can be used as 
stand-alone measures of student knowledge, but also 
provide the designers of those games with the information 
about which students’ needs are being met by the game. 

However, it is possible that the findings of this study will 
not be supported by the data mining. This is only partially 
because the data mining might classify students 
differently than the hand clustering, and is mostly due to 

the fact that the small sample size in the hand clustered 
subset combined with the use of multiple ANOVAs rather 
than a single MANOVA might have identified some 
differences between learning trajectory types that 
occurred merely by chance. Currently, this study 
represents a promising process for analyzing data from 
educational video games, but the specific findings about 
performance should not be considered definitive without 
support from further studies. 

Acknowledgements 

The work reported herein was supported under the 
Educational Research and Development Centers Program, 
PR/Award Number R305C080015. The findings and 
opinions expressed here do not necessarily reflect the 
positions or policies of the National Center for Education 
Research, the Institute of Education Sciences, or the U.S. 
Department of Education. 

References 

Amershi, S., & Conati, C. (2011). Automatic recognition 
of learner types in exploratory learning environments. In 
C. Romero, S. Ventura, M. Pechenizkiy, & R. S.J.d. 
Baker (Eds.), Handbook of Educational Data Mining (pp. 
389-416). Boca Raton, FL: CRC Press. 

Avouris, N, Komis, V., Fiotakis, G., Margaritis, M., & 
Voyiatzaki, E. (2005). Logging of fingertip actions is not 
enough for analysis of learning activities. In Proceedings 
of the Workshop on Usage Analysis in Learning Systems 
at the 12th International Conference on Artificial 
Intelligence in Education. 

Bejar, I. I. (1984). Educational diagnostic assessment. 
Journal of Educational Measurement, 21(2), 175-189. 

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L. W., 
& Empson, S. B. (2000). Cognitively Guided Instruction: 
A Research-Based Teacher Professional Development 
Program for Elementary School Mathematics. Madison, 
WI: National Center for Improving Student Learning and 
Achievement in Mathematics and Science. 

Chung, G. K. W. K., & Kerr, D. (2012). A primer on data 
logging to support extraction of meaningful information 
from educational games: An example from Save Patch 
(CRESST Report 814). Los Angeles, CA: University of 
California, National Center for Research on Evaluation, 
Standards, and Student Testing. 

Conati, C., & Merten, C. (2007). Eye-tracking for user 
modeling in exploratory learning environments: An 
empirical evaluation. Knowledge Base Systems, 20(6), 
557-574. 

Famili, F., Shen, W. M., Weber, R., & Simoudis, E. 
(1997). Data pre-processing and intelligent data analysis. 
International Journal on Intelligent Data Analysis, 1(1), 
3-23. 



 

Gallistel, C. R., Fairhurst, S., & Balsam, B. (2004). The 
learning curve: Implications of a quantitative analysis. 
Proceedings of the National Academy of Sciences, 
101(36), 13124-13131. 

Hickey, D. T., Ingram-Goble, A. A., & Jameson, E. M. 
(2009). Designing assessments and assessing designs in 
virtual educational environments. Journal of Science 
Education and Technology, 18, 187-208. 

Kim, J. H., Gunn, D. V., Schuh, E., Phillips, B. C., 
Pagulayan, R. J., & Wixon, D. (2008). Tracking real-time 
user experience (TRUE): A comprehensive instrument-
ation solution for complex systems. In Proceedings of the 
26th annual SIGCHI Conference on Human Factors in 
Computing Systems (pp. 443-452). 

Koedinger, K. R., Baker, R. S.J.d., Cunningham, K., 
Skogsholm, A., Leber, B., & Stamper, J. (2011). A data 
repository for the EDM community: The PSLC DataShop. 
In C. Romero, S. Ventura, M. Pechenizkiy, & R. S.J.d. 
Baker (Eds.) Handbook of Educational Data Mining (pp. 
43-55). Boca Raton, FL: CRC Press. 

Leighton, J. P., & Gierl, M. J. (2007). Defining and 
evaluating models of cognition used in educational 
measurement to make inferences about examinees’ 
thinking processes. Educational Measurement: Issues and 
Practice, 26(2), 3-16. 

McNeil, N. M., & Alibali, M. W. (2005). Why won’t you 
change your mind? Knowledge of operational patterns 
hinders learning and performance on equations. Child 
Development, 76(4). 883-899. 

Merceron, A., & Yacef, K. (2004). Mining student data 
captured from a web-based tutoring tool: Initial 
exploration and results. Journal of Interactive Learning 
Research, 15, 319-346.  

Mislevy, R. J., Almond, R. G., & Lukas, J. F. (2004). A 
brief introduction to evidence centered design (CSE 
Report 632). Los Angeles, CA: University of California, 
National Center for Research on Evaluation, Standards, 
and Student Testing. 

Mostow, J., Beck, J. E., Cuneao, A., Gouvea, E., Heiner, 
C., & Juarez, O. (2011). Lessons from Project LISTEN’s 
session browser. In C. Romero, S. Ventura, M. 
Pechenizkiy, & R. S.J.d. Baker (Eds.), Handbook of 
educational data mining (pp. 389-416). Boca Raton, FL: 
CRC Press. 

Muehlenbrock, M. (2005) Automatic action analysis in an 
interactive learning environment. In Choquet, C., Luengo, 
V. and Yacef, K. (Eds.), Proceedings of the workshop on 
Usage Analysis in Learning Systems at AIED-2005. 

National Council of Teachers of Mathematics. (2000). 
Principles and standards for school mathematics. Reston, 
VA. 

National Research Council. (2011). Learning science 
through computer games and simulations. Washington, 
DC: The National Academies Press. 

National Science and Technology Council (2011). The 
federal science, technology, engineering, and 
mathematics (STEM) education portfolio. Washington, 
DC: Executive Office of the President. 

Quellmalz, E. S., & Pellegrino, J. W. (2009). Technology 
and testing. Science, 323, 75-79. 

Rahkila, M., & Karjalainen, M. (1999). Evaluation of 
learning in computer based education using log systems. 
In Proceedings of 29th ASEE/IEEE Frontiers in 
Education Conference (FIE ’99) (pp. 16-22). 

Romero, C., Gonzalez, P., Ventura, S., del Jesus, M. J., & 
Herrera, F. (2009). Evolutionary algorithms for subgroup 
discovery in e-learning: A practical application using 
Moodle data. Expert Systems with Applications, 39, 1632-
1644. 

Romero, C., & Ventura, S. (2007). Educational data 
mining: A survey from 1995 to 2005. Expert Systems with 
Applications, 35, 135-146. 

Rupp, A. A., Gushta, M., Mislevy, R. J., & Shaffer, D. W. 
(2010). Evidence centered design of epistemic games: 
Measurement principles for complex learning 
environments. The Journal of Technology, Learning, and 
Assessment, 8(4). 

Scheuer, O., Muhlenbrock, M., & Melis, A. (2007). 
Results from action analysis in an interactive learning 
environment. Journal of Interactive Learning Research, 
18(2), 185-205. 

Siebert, & Gaskin (2006). Creating, naming, and just-
ifying fractions. Teaching Children Mathematics, 12(8), 
394-400. 

U.S. Department of Education (2008). Foundations for 
success: The final report of the National Mathematics 
Advisory Panel. Washington, DC. 

Ueno, M. & Nagaoka, K. (2002). Learning log database 
and data mining system for e-learning: On line statistical 
outlier detection of irregular learning processes. In 
Proceedings of the International Conference on Advanced 
Learning Technologies (pp. 436-438). 

Vee, M. N., Meyer, B., & Mannock, M. L. (2006). 
Understanding novice errors and error paths in Object-
oriented programming through log analysis. In 
Proceedings of the Workshop on Educational Data 
Mining (pp. 13-20). 

Vendlinski, T. P., Delacruz, G. C., Buschang, R. E., 
Chung, G. K. W. K., & Baker, E. L. (2010). Developing 
high-quality assessments that align with instructional 
video games (CRESST Report 774). Los Angeles, CA, 
University of California, National Center for Research on 
Evaluation, Standards, and Student Testing. 


