
Product Trees for Gaussian Process Covariance in Sublinear Time

David A. Moore
Computer Science Division

University of California, Berkeley
Berkeley, CA 94709

dmoore@cs.berkeley.edu

Stuart Russell
Computer Science Division

University of California, Berkeley
Berkeley, CA 94709

russell@cs.berkeley.edu

Abstract

Gaussian process (GP) regression is a pow-
erful technique for nonparametric regression;
unfortunately, calculating the predictive vari-
ance in a standard GP model requires time
O(n2) in the size of the training set. This
is cost prohibitive when GP likelihood cal-
culations must be done in the inner loop of
the inference procedure for a larger model
(e.g., MCMC). Previous work by Shen et al.
(2006) used a k-d tree structure to approxi-
mate the predictive mean in certain GP mod-
els. We extend this approach to achieve effi-
cient approximation of the predictive covari-
ance using a tree clustering on pairs of train-
ing points. We show empirically that this sig-
nificantly increases performance at minimal
cost in accuracy. Additionally, we apply our
method to “primal/dual” models having both
parametric and nonparametric components
and show that this enables efficient computa-
tions even while modeling longer-scale varia-
tion.

1 Introduction

Complex Bayesian models often tie together many
smaller components, each of which must provide its
output in terms of probabilities rather than discrete
predictions. As a natively probabilistic technique,
Gaussian process (GP) regression (Rasmussen and
Williams, 2006) is a natural fit for such systems, but
its applications in large-scale Bayesian models have
been limited by computational concerns: training a
GP model on n points requires O(n3) time, while com-
puting the predictive distribution at a test point re-
quires O(n) and O(n2) operations for the mean and
variance respectively.

This work focuses specifically on the fast evaluation of

GP likelihoods, motivated by the desire for efficient in-
ference in models that include a GP regression compo-
nent. In particular, we focus on the predictive covari-
ance, since this computation time generally dominates
that of the predictive mean. In our setting, training
time is a secondary concern: the model can always be
trained offline, but the likelihood evaluation occurs in
the inner loop of an ongoing inference procedure, and
must be efficient if inference is to be feasible.

One approach to speeding up GP regression, com-
mon especially to spatial applications, is the use of
covariance kernels with short lengthscales to induce
sparsity or near-sparsity in the kernel matrix. This
can be exploited directly using sparse linear algebra
packages (Vanhatalo and Vehtari, 2008) or by more
structured techniques such as space-partitioning trees
(Shen et al., 2006; Gray, 2004); the latter approaches
create a query-dependent clustering to avoid consid-
ering regions of the data not relevant to a particular
query. However, previous work has focused on effi-
cient calculation of the predictive mean, rather than
the variance, and the restriction to short lengthscales
also inhibits application to data that contain longer-
scale variations.

In this paper, we develop a tree-based method to
efficiently compute the predictive covariance in GP
models. Our work extends the weighted sum algo-
rithm of Shen et al. (2006), which computes the pre-
dictive mean. Instead of clustering points with sim-
ilar weights, we cluster pairs of points having simi-
lar weights, where the weights are given by a kernel-
dependent distance metric defined on the product space
consisting of all pairs of training points. We show how
to efficiently build and compute using a product tree
constructed in this space, yielding an adaptive covari-
ance computation that exploits the geometric struc-
ture of the training data to avoid the need to explicitly
consider each pair of training points. This enables us
to present what is to our knowledge the first account of
GP regression in which the major test-time operations



(predictive mean, covariance, and likelihood) run in
time sublinear in the training set size, given a suitably
sparse kernel matrix. As an extension, we show how
our approach can be applied to GP models that com-
bine both parametric and nonparametric components,
and argue that such models present a promising option
for modeling global-scale structure while maintaining
the efficiency of short-lengthscale GPs. Finally, we
present empirical results that demonstrate significant
speedups on synthetic data as well as a real-world seis-
mic dataset.

2 Background

2.1 GP Regression Model

We assume as training input a set of labeled points
{(xi, yi)|i = 1, . . . , n}, where we suppose that

yi = f(xi) + εi

for some unknown function f(·) and i.i.d. Gaussian ob-
servation noise εi ∼ N (0, σ2

n). Treating the estimation
of f(·) as a Bayesian inference problem, we consider
a Gaussian process prior distribution f(·) ∼ GP (0, k),
parameterized by a positive-definite covariance or ker-
nel function k(x, x′). Given a set X∗ containing m
test points, we derive a Gaussian posterior distribu-
tion f(X∗) ∼ N (µ∗,Σ∗), where

µ∗ = K∗TK−1y y (1)

Σ∗ = K∗∗ −K∗TK−1y K∗ (2)

and Ky = K(X,X) + σ2
nI is the covariance matrix of

training set observations, K∗ = k(X,X∗) denotes the
n×m matrix containing the kernel evaluated at each
pair of training and test points, and similarly K∗∗ =
k(X∗, X∗) gives the kernel evaluations at each pair
of test points. Details of the derivations, along with
general background on GP regression, can be found in
Rasmussen and Williams (2006).

In this work, we make the additional assumption that
the input points xi and test points x∗p lie in some met-
ric space (M, d), and that the kernel is a monotoni-
cally decreasing function of the distance metric. Many
common kernels fit into this framework, including the
exponential, squared-exponential, rational quadratic,
and Matérn kernel families; anisotropic kernels can be
represented through choice of an appropriate metric.

2.2 k-d and Metric Trees

Tree structures such as k-d trees (Friedman et al.,
1977) form a hierarchical, multiresolution partition-
ing of a dataset, and are commonly used in machine
learning for efficient nearest-neighbor queries. They

Figure 1: Cover tree decomposition of seismic event
locations recorded at Fitzroy Crossing, Australia (with
X marking the station location).

have also been adapted to speed up nonparametric re-
gression (Moore et al., 1997; Shen et al., 2006); the
general approach is to view the regression computa-
tion of interest as a sum over some quantity associ-
ated with each training point, weighted by the kernel
evaluation against a test point. If there are sets of
training points having similar weight – for example,
if the kernel is very wide, if the points are very close
to each other, or if the points are all far enough from
the query to have effectively zero weight – then the
weighted sum over the set of points can be approxi-
mated by an unweighted sum (which does not depend
on the query and may be precomputed) times an es-
timate of the typical weight for the group, saving the
effort of examining each point individually. This is
implemented as a recursion over a tree structure aug-
mented at each node with the unweighted sum over all
descendants, so that recursion can be cut off with an
approximation whenever the weight function is shown
to be suitably uniform over the current region.

Major drawbacks of k-d trees include poor perfor-
mance in high dimensions and a limitation to Eu-
clidean spaces. By contrast, we are interested in non-
Euclidean metrics both as a matter of practical appli-
cation (e.g., in a geophysical setting we might consider
points on the surface of the earth) and because some
choices of kernel function require our algorithm to op-
erate under a non-Euclidean metric even if the under-
lying space is Euclidean (see section 3.2). We therefore
consider instead the class of trees having the following
properties: (a) each node n is associated with some
point xn ∈M, such that all descendants of n are con-
tained within a ball of radius rn centered at xn, and
(b) for each leaf L we have xL ∈ X, with exactly one
leaf node for each training point xi ∈ X. We call any
tree satisfying these properties a metric tree.



function WeightedMetricSum(node n, query points (x∗
i , x∗

j ),

. accumulated sum Ŝ, tolerances εrel, εabs)
δn ← δ((x∗

i ,x
∗
j ), (n1,n2))

if n is a leaf then

Ŝ ← Ŝ + (K−1
y )n ·

(
k(d(x∗

i ,n1)) · k(d(x∗
j ,n2))

)
else

wmin ← kprod
lower (δn + rn)

wmax ← kprod
upper (max(δn − rn, 0))

if wmax · SAbs
n ≤

(
εrel

∣∣∣Ŝ + wmin · SUW
n

∣∣∣+ εabs

)
then

Ŝ ← Ŝ + 1
2 (wmax + wmin) · SUW

n
else

for each child c of n
sorted by ascending δ((x∗

i ,x
∗
j ), (c1, c2)) do

Ŝ ← Ŝ + WeightedMetricSum(c, (x∗
i ,x

∗
j ), Ŝ, εrel, εabs)

end for
end if

end if
return Ŝ

end function

Figure 2: Recursive algorithm to computing GP co-
variance entries using a product tree. Abusing nota-
tion, we use n to represent both a tree node and the
pair of points n = (n1,n2) associated with that node.

Examples of metric trees include many structures de-
signed specifically for nearest-neighbor queries, such as
ball trees (Uhlmann, 1991) and cover trees (Beygelz-
imer et al., 2006), but in principle any hierarchical
clustering of the dataset, e.g., an agglomerative clus-
tering, might be augmented with radius information to
create a metric tree. Although our algorithms can op-
erate on any metric tree structure, we use cover trees
in our implementation and experiments. A cover tree
on n points can be constructed in O(n log n) time, and
the construction and query times scale only with the
intrinsic dimensionality of the data, allowing for ef-
ficient nearest-neighbor queries in higher-dimensional
spaces (Beygelzimer et al., 2006). Figure 1 shows a
cover-tree decomposition of one of our test datasets.

3 Efficient Covariance using Product
Trees

We consider efficient calculation of the GP covari-
ance (2). The primary challenge is the multiplication
K∗TK−1y K∗. For simplicity of exposition, we will fo-
cus on computing the (i, j)th entry of the resulting
matrix, i.e., on the multiplication k∗i

TK−1y k∗j where
k∗i denotes the vector of kernel evaluations between
the training set and the ith test point, or equivalently
the ith column of K∗. Note that a näıve implementa-
tion of this multiplication requires O(n2) time.

We might be tempted to apply the vector multiplica-
tion primitive of Shen et al. (2006) separately for each
row of K−1y to compute K−1y k∗j , and then once more
to multiply the resulting vector by k∗i . Unfortunately,
this requires n vector multiplications and thus scales
(at least) linearly in the size of the training set. In-

stead, we note that we can rewrite k∗i
TK−1y k∗j as a

weighted sum of the entries of K−1y , where the weight
of the (p, q)th entry is given by k(x∗i ,xp)k(x∗j ,xq):

k∗i
TK−1y k∗j =

n∑
p=1

n∑
q=1

(K−1y )pqk(x∗i ,xp)k(x∗j ,xq). (3)

Our goal is to compute this weighted sum efficiently
using a tree structure, similar to Shen et al. (2006),
except that instead of clustering points with similar
weights, we now want to cluster pairs of points having
similar weights.

To do this, we consider the product spaceM×M con-
sisting of all pairs of points fromM, and define a prod-
uct metric δ on this space. The details of the product
metric will depend on the choice of kernel function, as
discussed in section 3.2 below. For the moment, we will
assume a SE kernel, of the form kSE(d) = exp(−d2),
for which a natural choice is the 2-product metric:

δ((xa,xb), (xc,xd)) =
√
d(xa,xc)2 + d(xb,xd)2.

Note that this metric, taken together with the SE ker-
nel, has the fortunate property

kSE(d(xa,xb))kSE(d(xc,xd)) = kSE(δ((xa,xb), (xc,xd))),

i.e., the property that evaluating the kernel in the
product space (rhs) gives us the correct weight for our
weighted sum (3) (lhs).

Now we can run any metric tree construction algo-
rithm (e.g., a cover tree) using the product metric to
build a product tree on all pairs of training points. In
principle, this tree contains n2 leaves, one for each pair
of training points. In practice it can often be made
much smaller; see section 3.1 for details. At each leaf
node L, representing a pair of training points, we store
the element (K−1y )L corresponding to those two train-
ing points, and at each higher-level node n we cache
the unweighted sum SUWn of these entries over all of
its descendant leaf nodes, as well as the sum of abso-
lute values SAbsn (these cached sums will be used to
determine when to cut off recursive calculations):

SUW
n =

∑
L∈leaves(n)

(K−1y )L (4)

SAbs
n =

∑
L∈leaves(n)

∣∣(K−1y )L
∣∣ . (5)

Given a product tree augmented in this way, the
weighted-sum calculation (3) is performed by the
WeightedMetricSum algorithm of Figure 2. This
algorithm is similar to the WeightedSum and
WeightedXtXBelow algorithms of Shen et al.
(2006) and Moore et al. (1997) respectively, but



adapted to the non-Euclidean and non-binary tree set-
ting, and further adapted to make use of bounds on the
product kernel (see section 3.2). It proceeds by a recur-
sive descent down the tree, where at each non-leaf node
it computes upper and lower bounds on the weight of
any descendant, and applies a cutoff rule to determine
whether to continue the descent. Many cutoff rules are
possible; for predictive mean calculation, Moore et al.
(1997) and Shen et al. (2006) maintain an accumulated
lower bound on the total overall weight, and cut off
whenever the difference between the upper and lower
weight bounds at the current node is a small fraction
of the lower bound on the overall weight. However, our
setting differs from theirs: since we are computing a
weighted sum over entries of K−1y , which we expect to
be approximately sparse, we expect that some entries
will contribute much more than others. Thus we want
our cutoff rule to account for the weights of the sum
and the entries of K−1y that are being summed over.
We do this by defining a rule in terms of the current
running weighted sum,

wmax · SAbs
n ≤

(
εrel

∣∣∣Ŝ + wmin · SUW
n

∣∣∣+ εabs

)
, (6)

which we have found to significantly improve per-
formance in covariance calculations compared to the
weight-based rule of Moore et al. (1997) and Shen
et al. (2006). Here Ŝ is the weighted sum accumu-
lated thus far, and εabs and εrel are tunable approxi-
mation parameters. We interpret the left-hand side of
(6) as computing an upper bound on the contribution
of node n’s descendents to the final sum, while the ab-
solute value on the right-hand side gives an estimated
lower bound on the magnitude of the final sum (note
that this is not a true bound, since the sum may con-
tain both positive and negative terms, but it appears
effective in practice). If the leaves below the current
node n appear to contribute a negligible fraction of
the total sum, we approximate the contribution from
n by 1

2 (wmax +wmin) ·SUW
n , i.e., by the average weight

times the unweighted sum. Otherwise, the computa-
tion continues recursively over n’s children. Following
Shen et al. (2006), we recurse to child nodes in order of
increasing distance from the query point, so as to ac-
cumulate large sums early on and increase the chance
of cutting off later recursions.

3.1 Implementation

A näıve product tree on n points will have n2

leaves, but we can reduce this and achieve substan-
tial speedups by exploiting the structure of K−1y and
of the product space M×M:

Sparsity. IfKy is sparse, or can be well-approximated
by a sparse matrix, then K−1y is often also sparse (or

well-approximated as sparse) in practice. This oc-
curs in the case of compactly supported kernel func-
tions (Gneiting, 2002; Rasmussen and Williams, 2006),
but also even when using standard kernels with short
lengthscales. Note that although there is no guaran-
tee that the inverse of a sparse matrix must itself be
sparse (with the exception of specific structures, e.g.,
block diagonal matrices), it is often the case that when
Ky is sparse many entries of K−1y will be very near
to zero, since points with negligible covariance gener-
ally also have negligibly small correlations in the pre-
cision matrix, so K−1y can often be well-approximated
as sparse. When this is the case, our product tree need
include only those pairs (xp,xq) for which (K−1y )pq is
non-negligible. This is often a substantial advantage.

Symmetry. Since K−1y is a symmetric matrix, it is re-
dundant to include leaves for both (xp,xq) and (xq,xp)
in our tree. We can decompose K−1y = U + D + UT ,
where D = diag(K−1y ) is a diagonal matrix and U =
triu(K−1y ) is a strictly upper triangular (zero diagonal)
matrix. This allows us to rewrite

k∗i
TK−1y k∗j = k∗i

TUk∗j + k∗i
TDk∗j + k∗i

TUTk∗j ,

in which the first and third terms can be implemented
as calls to WeightedMetricSum on a product tree
built from U ; note that this tree will be half the size
of a tree built for K−1y since we omit zero entries. The
second (diagonal) term can be computed using a sep-
arate (very small) product tree built from the nonzero
entries of D. The accumulated sum Ŝ can be car-
ried over between these three computations, so we can
speed up the later computations by accumulating large
weights in the earlier computations.

Factorization of product distances. In general,
computing the product distance δ will usually involve
two calls to the underlying distance metric d; these
can often be reused. For example, when calculating
both δ((xa,xb), (xc,xd)) and δ((xa,xe), (xc,xd)), we
can reuse the value of d(xa,xc) for both computations.
This reduces the total number of calls to the distance
function during tree construction from a worst-case n4

(for all pairs of pairs of training points) to a maximum
of n2, and in general much fewer if other optimiza-
tions such as sparsity are implemented as well. This
can dramatically speed up tree construction when the
distance metric is slow to evaluate. It can also speed
up test-time evaluation, if distances to the same point
must be computed at multiple levels of the tree.

3.2 Other Kernel Functions

As noted above, the SE kernel has the lucky property
that, if we choose product metric δ =

√
d21 + d22, then

the product of two SE kernels is equal to the kernel of



Kernel k(d) k(d1)k(d2) δ(d1, d2) kprodlower(δ) kprodupper(δ)

SE exp
(
−d2

)
exp

(
−d21−d

2
2

) √
d21+d22 exp

(
−(δ)2

)
exp

(
−(δ)2

)
γ-exponential exp (−dγ) exp

(
−dγ1−d

γ
2

) (
d
γ
1 +d

γ
2

)1/γ exp (−(δ)γ) exp (−(δ)γ)

Rational Quadratic

(
1+ d2

2α

)−α (
1+

d21+d22
2α

+
d21d

2
2

4α2

)−α √
d21+d22

(
1+

(δ)2

2α
+

(δ)4

16α2

)−α (
1+

(δ)2

2α

)−α

Matérn (ν = 3/2)
(
1+
√

3d
)

· exp
(
−
√

3d]
)

(
1+
√

3 (d1+d2) +3d1d2

)
· exp

(
−
√

3(d1+d2)
) d1+d2

(
1+
√

3δ
)

· exp
(
−
√

3δ
)

(
1+
√

3δ+3(δ/2)2
)

· exp(−
√

3δ)

Piecewise polynomial
(compact support),
q = 1, dimension D,

j =
⌊
D
2

⌋
+2

(1−d)j+1
+

· ((j+1)d+1)

(
(1−d1)+(1−d2)+

)j+1

·
(
(j+1)2d1d2

+ (j+1)(d1+d2)+1)

d1+d2 (1−δ)j+1
+

· ((j+1)δ+1)

(
1−δ+ (δ)2

4

)j+1

+

·
(

(j+1)2
(
δ
2

)2
+(j+1)δ+1

)

Table 1: Bounds for products of common kernel functions. All kernel functions are from Rasmussen and Williams
(2006).

the product metric δ:

kSE(d1)kSE(d2) = exp
(
−d21 − d22

)
= kSE(δ).

In general, however, we are not so lucky: it is not
the case that every kernel we might wish to use has
a corresponding product metric such that a product
of kernels can be expressed in terms of the product
metric. In such cases, we may resort to upper and
lower bounds in place of computing the exact kernel
value. Note that such bounds are all we require to
evaluate the cutoff rule (6), and that when we reach a
leaf node representing a specific pair of points we can
always evaluate the exact product of kernels directly
at that node. As an example, consider the Matérn
kernel

kM(d) = (1 +
√

3d) exp(−
√

3d)

(where we have taken ν = 3/2); this kernel is popu-
lar in geophysics because its sample paths are once-
differentiable, as opposed to infinitely smooth as with
the SE kernel. Considering the product of two Matérn
kernels,

kM(d1)kM(d2) =

(1+
√

3(d1+d2)+3d1d2) exp(−
√

3(d1+d2))

we notice that this is almost equivalent to kM(δ) for the
choice of δ = d1 + d2, but with an additional pairwise
term of 3d1d2. We bound this term by noting that
it is maximized when d1 = d2 = δ/2 and minimized
whenever either d1 = 0 or d2 = 0, so we have 3(δ/2)2 ≥
3d1d2 ≥ 0. This yields the bounds kprodlower and kprodupper as
shown in Table 1. Bounds for other common kernels
are obtained analogously in Table 1.

4 Primal / Dual and Mixed GP
Representations

In this section, we extend the product tree approach
to models combining a long-scale parametric compo-
nent with a short-scale nonparametric component. We

introduce these models, which we refer to as mixed pri-
mal/dual GPs, and demonstrate how they can mediate
between the desire to model long-scale structure and
the need to maintain a short lengthscale for efficiency.
(Although this class of models is well known, we have
not seen this particular use case described in the litera-
ture). We then show that the necessary computations
in these models can be done efficiently using the tech-
niques described above.

4.1 Mixed Primal/Dual GP Models

Although GP regression is commonly thought of as
nonparametric, it is possible to implement paramet-
ric models within the GP framework. For example, a
Bayesian linear regression model with Gaussian prior,

y = xTβ + ε, β ∼ N (0, I), ε ∼ N (0, σ2
n),

is equivalent to GP regression with a linear kernel
k(x,x′) = 〈x,x′〉, in the sense that both models yield
the same (Gaussian) predictive distributions (Ras-
mussen and Williams, 2006). However, the two rep-
resentations have very different computational prop-
erties: the primal (parametric) representation allows
computation of the predictive mean and variance in
O(D) and O(D2) time respectively, where D is the
input dimensionality, while the dual (nonparametric)
representation requires time O(n) and O(n2) respec-
tively for the same calculations. When learning simple
models on large, low-dimensional (e.g., spatial) data
sets, the primal representation is obviously more at-
tractive, since we can store and compute with model
parameters directly, in constant time relative to n.

Of course, simple parametric models by themselves
cannot capture the complex local structure that often
appears in real-world datasets. Fortunately it is pos-
sible to combine a parametric model with a nonpara-
metric GP model in a way that retains the advantages
of both approaches. To define a combined model, we
replace the standard zero-mean GP assumption with a



(a) MAD= 1.11
polynomial(5)

(b) MAD= 1.77
GP w/ ` = 0.02

(c) MAD= 0.73
Mixed:
polynomial(5) +
GP w/ ` = 0.02

(d) MAD= 0.65
True GP w/
`1 = 0.5
`2 = 0.02

Figure 3: A primal/dual mixture approximating a longer-scale GP.

parametric mean function h(x)Tβ, yielding the model

y = f(x) + h(x)Tβ + ε

where h(x) is a vector of feature values
[h1(x), . . . , hD(x)]. The GP model is then learned
jointly along with a posterior distribution on the co-
efficients β. Assuming a Gaussian prior β ∼ N (b, B)
on the coefficients, the predictive distribution
g(X∗) ∼ N (µ′∗,Σ

′
∗) can be derived (Rasmussen and

Williams, 2006) as

µ′∗ = H∗T β̄ +K∗TK−1y (y −H∗T β̄) (7)

Σ′∗ = K∗∗ −K∗TK−1y K∗

+RT (B−1 +HK−1y HT )R
(8)

where we define Hij = hj(xi) for each training point
xi, similarly H∗ for the test points, and we have β̄ =
(B−1+HK−1y HT )−1(HK−1y y+B−1b) and R = H∗−
HK−1y K∗. Section 2.7 of Rasmussen and Williams
(2006) gives further details.

Note that linear regression in this framework corre-
sponds to a choice of basis functions h1(x) = 1 and
h2(x) = x; it is straightforward to extend this to
polynomial regression and other models that are lin-
ear in their parameters. In general, any kernel which
maps to a finite-dimensional feature space can be rep-
resented parametrically in that feature space, so this
framework can efficiently handle kernels of the form
k(x,x′) =

∑
i ki(x,x

′)+kS(x,x′), where kS is a short-
lengthscale or compactly supported kernel, monoton-
ically decreasing w.r.t. some distance metric as as-
sumed above, and each ki either has an exact finite-
dimensional feature map or can be approximated using
finite-dimensional features Rahimi and Recht (2007);
Vedaldi and Zisserman (2010).

As an example, Figure 3 compares several approaches
for inferring a function from a GP with long and short-

lengthscale components. We drew training data from
a GP with a mixture of two SE kernels at lengthscales
`1 = 0.5 and `2 = 0.02, sampled at 1000 random
points in the unit square. Figure 3 displays the poste-
rior means of four models on a 100 by 100 point grid,
reporting the mean absolute deviation (MAD) of the
model predictions relative to the “true” values (drawn
from the same GP) at 500 random test points. Note
that although the short-scale GP (3b) cannot by itself
represent the variation from the longer-scale kernel,
when combined with a parametric polynomial com-
ponent (3a) the resulting mixed model (3c) achieves
accuracy approaching that of the true model (3d).

4.2 Efficient Operations in Primal/Dual
Models

Likelihood calculation in primal/dual models is a
straightforward extension of the standard case. The
predictive mean (7) can be accommodated within the
framework of Shen et al. (2006) using a tree repre-
sentation of the vector K−1y

(
y −H∗T β̄

)
, then adding

in the easily evaluated parametric component H∗T β̄.
In the covariance (8) we can use a product tree to
approximate K∗TK−1y K∗ as described above; of the

remaining terms, β̄ and B−1 +HK−1y HT can be pre-
computed at training time, and H∗ and K∗∗ don’t
depend on the training set. This leaves HK−1y K∗ as
the one remaining challenge; we note that this quan-
tity can be computed efficiently using mD applications
of the vector multiplication primitive from Shen et al.
(2006), re-using the same tree structure to multiply
each column of K∗ by each row of HK−1y . Thus, all of
the the operations required for likelihood computation
can be implemented efficiently with no explicit depen-
dence on n (i.e., with no direct access to the training
set except through space-partitioning tree structures).



Figure 4: Mean runtimes for dense, sparse, hybrid,
and product tree calculation of GP variance on a 2D
synthetic dataset.

5 Evaluation

We compare calculation of the predictive variance us-
ing a product tree to several other approaches: a näıve
implementation using dense matrices, a direct calcu-
lation using a sparse representation of K−1y and dense
representation of k∗i , and a hybrid tree implementation
that attempts to also construct a sparse k∗i by query-
ing a cover tree for all training points within distance
r of the query point x∗i , where r is chosen such that
k(r′) is negligible for r′ > r, and then filling in only
those entries of k∗i determined to be non-negligible.

Our product tree implementation is a Python exten-
sion written in C++, based on the cover tree imple-
mentation of Beygelzimer et al. (2006) and implement-
ing the optimizations from section 3.1. The approxi-
mation parameters εrel and εabs were set appropriately
for each experiment so as to ensure that the mean ap-
proximation error is less than 0.1% of the exact vari-
ance. All sparse matrix multiplications are in CSR for-
mat using SciPy’s sparse routines; we impose a spar-
sity threshold of 10−8 such that any entry less than
the threshold is set to zero.

Figure 4 compares performance of these approaches on
a simple two-dimensional synthetic data set, consist-
ing of points sampled uniformly at random from the
unit square. We train a GP on n such points and then
measure the average time per point to compute the

predictive variance at 1000 random test points. The
GP uses an SE kernel with observation noise σ2

n = 0.1
and lengthscale ` =

√
vπ/n, where v is a parame-

ter indicating the average number of training points
within a one-lengthscale ball of a random query point
(thus, on average there will be 4v points within two
lengthscales, 9v within three lengthscales, etc.).

The results of Figure 4 show a significant advantage
for the tree-based approaches, which are able to take
advantage of the geometric sparsity structure in the
training data. The dense implementation is relatively
fast on small data sets but quickly blows up, while the
sparse calculation holds on longer (except in the rel-
atively dense v = 5.0 setting) but soon succumbs to
linear growth, since it must evaluate the kernel be-
tween the test point and each training point. The
hybrid approach has higher overhead but scales very
efficiently until about n = 48000, where the sparse
matrix multiplication’s Ω(n) runtime (Bank and Dou-
glas, 1993) begins to dominate. Conversely, the prod-
uct tree remains efficient even for very large, sparse
datasets, with v = 0.25 runtimes growing from 0.08ms
at n = 1000 to just 0.13ms at n = 200000. Due to
memory limitations we were unable to evaluate v = 1.0
and v = 5.0 for values of n greater than 32000.

Our second experiment uses amplitude data from 3105
seismic events (earthquakes) detected by a station in
Fitzroy Crossing, Australia; the event locations are
shown in Figure 1. The amplitudes are normalized
for event magnitude, and the task is to predict the
recorded amplitude of a new event given that event’s
latitude, longitude, and depth. Here our distance met-
ric is the great-circle distance, and we expect our data
to contain both global trends and local structure, since
events further away from the detecting station will
generally have lower amplitudes, but this may vary
locally as signals from a given source region generally
travel along the same paths through the earth and are
dampened or amplified in the same ways as they travel
to the detecting station.

Table 2 considers several models for this data. A sim-
ple parametric model, the fifth-order polynomial in
event-to-station distance shown in Figure 5, is not very
accurate but does allow for very fast variance evalua-
tions. The GP models are more accurate, but the most
accurate GP model uses a relatively long lengthscale of
50km, with correspondingly slow variance calculations.
Depending on application requirements, the most ap-
pealing tradeoff might be given by the mixed model
combining a fifth-degree polynomial with a 10km SE
GP: this model achieves accuracy close to that of the
50km models, but with significantly faster variance
calculations due to the shorter lengthscale, especially
when using a product tree.



Figure 5: Normalized amplitude as a func-
tion of event-station distance, with a fifth-
degree polynomial fit shading ±2std.

Model Error Sparse (ms) Tree (ms)

Polynomial in distance (deg 5) 0.78 0.050 n/a

GP, SE, ` = 10km 0.67 0.722 ± 0.032 0.216 ± 0.224

poly/GP, deg 5,SE, 10km 0.62 0.795 ± 0.033 0.413 ± 0.307

GP, Matérn, ` = 10km 0.65 1.256 ± 0.592 0.337 ± 0.365

poly/GP, deg 5, Matérn, 10km 0.62 1.327 ± 0.602 0.654 ± 0.499

GP, SE, ` = 50km 0.61 1.399 ± 0.661 1.168 ± 1.242

poly/GP, deg 5, SE, 50km 0.60 1.490 ± .677 1.551 ± 1.409

Table 2: Models for Fitzroy Crossing amplitude data, with
mean absolute prediction error from five-fold cross validation
and (mean ± std) time to compute the predictive variance via
a direct sparse calculation versus a product tree.

6 Related Work

Previous approximations for GP mean prediction
(Moore et al., 1997; Shen et al., 2006; Gray, 2004),
which inspired this work, use tree structures to imple-
ment an efficient matrix-vector multiplication (MVM);
the Improved Fast Gauss Transform (Morariu et al.,
2008) also implements fast MVM for the special case of
the SE kernel. It is possible to accelerate GP training
by combining MVM methods with a conjugate gra-
dient solver, but models thus trained do not allow
for the computation of predictive variances. One ar-
gument against MVM techniques (and, by extension,
our product tree approach) is that their efficiency re-
quires shorter lengthscales than are common in ma-
chine learning applications (Murray, 2009); however,
we have found them quite effective on datasets which
do have genuinely sparse covariance structure (e.g.,
geospatial data), or in which the longer-scale variation
can be represented by a parametric component.

Another set of approaches to speeding up GP regres-
sion, sparse approximations (Csató and Opper, 2002;
Seeger et al., 2003; Snelson and Ghahramani, 2006;
Quiñonero-Candela and Rasmussen, 2005), attempt
to represent n training points using a smaller set of
m points, allowing training in O(nm2) time and pre-
dictive covariance (thus likelihood) computation in
O(m2) time. This is philosophically a different ap-
proach from that of this paper, where we generally
want to retain all of our training points in order to
represent local structure. However, there is no for-
mal incompatibility: many sparse approaches, includ-
ing all of those discussed by Quiñonero-Candela and
Rasmussen (2005), yield predictive covariances of the
form k∗i

TQk∗j for some matrix Q (or a sum of terms
of this form), where this product could be computed
straightforwardly using a product tree. Several non-

sparse approximations, e.g., the Nyström approxima-
tion (Williams and Seeger, 2001), also yield predictive
covariances of this form.

More closely related to our setting are local approxi-
mations, in which different GPs are trained in different
regions of the input space. There is some evidence that
these can provide accurate predictions which are very
fast to evaluate (Chalupka et al., 2013); however, they
face boundary discontinuities and inaccurate uncer-
tainty estimates if the data do not naturally form inde-
pendent clusters. Since training multiple local GPs is
equivalent to training a single global GP with a block
diagonal covariance matrix, it should be possible to
enhance local GPs with global parametric components
as in section 4, similarly to the combined local/global
approximation of Snelson and Ghahramani (2007).

7 Conclusion and Future Work

We introduce the product tree structure for efficient
adaptive calculation of GP covariances using a mul-
tiresolution clustering of pairs of training points. Spe-
cific contributions of this paper include product met-
rics and bounds for common kernels, the adaptation
to metric trees, a novel cutoff rule incorporating both
the weights and the quantity being summed over, and
covariance-specific performance optimizations. Addi-
tionally, we describe efficient calculation in GP models
incorporating both primal and dual components, and
show how such models can model global-scale variation
while maintaining the efficiency of short-lengthscale
GPs.

A limitation of our approach is the need to explicitly
invert the kernel matrix during training; this can be
quite difficult for large problems. One avenue for fu-
ture work could be an iterative factorization of Ky



analogous to the CG training performed by MVM
methods (Shen et al., 2006; Gray, 2004; Morariu et al.,
2008). Another topic would be a better understanding
of cutoff rules for the weighted sum recursion, e.g., an
empirical investigation of different rules or a theoreti-
cal analysis bounding the error and/or runtime of the
overall computation.

Finally, although our work has been focused primar-
ily on low-dimensional applications, the use of cover
trees instead of k-d trees ought to enable an exten-
sion to higher dimensions. We are not aware of pre-
vious work applying tree-based regression algorithms
to high-dimensional data, but as high-dimensional co-
variance matrices are often sparse, this may be a nat-
ural fit. For high-dimensional data that do not lie
on a low-dimensional manifold, other nearest-neighbor
techniques such as locality-sensitive hashing (Andoni
and Indyk, 2008) may have superior properties to tree
structures; the adaptation of such techniques to GP
regression is an interesting open problem.

References

Andoni, A. and Indyk, P. (2008). Near-optimal hash-
ing algorithms for approximate nearest neighbor in
high dimensions. Communications of the ACM,
51(1):117–122.

Bank, R. E. and Douglas, C. C. (1993). Sparse ma-
trix multiplication package (SMMP). Advances in
Computational Mathematics, 1(1):127–137.

Beygelzimer, A., Kakade, S., and Langford, J. (2006).
Cover trees for nearest neighbor. In Proceedings
of the 23rd International Conference on Machine
Learning (ICML), pages 97–104.

Chalupka, K., Williams, C. K., and Murray, I. (2013).
A framework for evaluating approximation methods
for Gaussian process regression. Journal of Machine
Learning Research, 14:333–350.

Csató, L. and Opper, M. (2002). Sparse online Gaus-
sian processes. Neural Computation, 14(3):641–668.

Friedman, J. H., Bentley, J. L., and Finkel, R. A.
(1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS), 3(3):209–226.

Gneiting, T. (2002). Compactly supported correla-
tion functions. Journal of Multivariate Analysis,
83(2):493–508.

Gray, A. (2004). Fast kernel matrix-vector multiplica-
tion with application to Gaussian process learning.
Technical Report CMU-CS-04-110, School of Com-
puter Science, Carnegie Mellon University.

Moore, A. W., Schneider, J., and Deng, K. (1997). Ef-
ficient locally weighted polynomial regression pre-

dictions. In Proceedings of the 14th International
Conference on Machine Learning (ICML).

Morariu, V., Srinivasan, B. V., Raykar, V. C., Du-
raiswami, R., and Davis, L. (2008). Automatic on-
line tuning for fast Gaussian summation. Advances
in Neural Information Processing Systems (NIPS),
21:1113–1120.

Murray, I. (2009). Gaussian processes and fast matrix-
vector multiplies. In Numerical Mathematics in Ma-
chine Learning workshop at the 26th International
Conference on Machine Learning (ICML 2009).

Quiñonero-Candela, J. and Rasmussen, C. E. (2005).
A unifying view of sparse approximate Gaussian
process regression. The Journal of Machine Learn-
ing Research, 6:1939–1959.

Rahimi, A. and Recht, B. (2007). Random features
for large-scale kernel machines. Advances in Neural
Information Processing Systems (NIPS), 20:1177–
1184.

Rasmussen, C. and Williams, C. (2006). Gaussian Pro-
cesses for Machine Learning. MIT Press.

Seeger, M., Williams, C. K., and Lawrence, N. D.
(2003). Fast forward selection to speed up sparse
Gaussian process regression. In Artificial Intelli-
gence and Statistics (AISTATS), volume 9.

Shen, Y., Ng, A., and Seeger, M. (2006). Fast Gaus-
sian process regression using kd-trees. In Advances
in Neural Information Processing Systems (NIPS),
volume 18, page 1225.

Snelson, E. and Ghahramani, Z. (2006). Sparse Gaus-
sian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems (NIPS).

Snelson, E. and Ghahramani, Z. (2007). Local and
global sparse Gaussian process approximations. In
Artificial Intelligence and Statistics (AISTATS),
volume 11.

Uhlmann, J. K. (1991). Satisfying general proximity
/ similarity queries with metric trees. Information
Processing Letters, 40(4):175 – 179.

Vanhatalo, J. and Vehtari, A. (2008). Modelling local
and global phenomena with sparse Gaussian pro-
cesses. In Proceedings of Uncertainty in Artificial
Intelligence (UAI).

Vedaldi, A. and Zisserman, A. (2010). Efficient ad-
ditive kernels via explicit feature maps. In Com-
puter Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 3539–3546. IEEE.

Williams, C. and Seeger, M. (2001). Using the
Nyström method to speed up kernel machines. In
Advances in Neural Information Processing Systems
(NIPS). Citeseer.


