
DBCrowd 2013
First VLDB Workshop on Databases and Crowdsourcing

Reynold Cheng Anish Das Sarma Silviu Maniu
Pierre Senellart

Riva Del Garda, Trento, August 26, 2013

http://dbweb.enst.fr/events/dbcrowd2013/

http://dbweb.enst.fr/events/dbcrowd2013/

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Contents

Organization 3

I. Invited Keynotes 4

Multi-Platform, Reactive Crowdsourcing. Stefano Ceri 5

Mining the Crowd. Tova Milo 6

II. Research Papers 7

Wrapper Generation Supervised by a Noisy Crowd. Valter Crescenzi, Paolo Merialdo and
Disheng Qiu 8

Crowdsourcing to Mobile Users: A Study of the Role of Platforms and Tasks. Vincenzo
Della Mea, Eddy Maddalena and Stefano Mizzaro 14

Condition-Task-Store: A Declarative Abstraction for Microtask-based Complex Crowd-
sourcing. Kenji Gonnokami, Atsuyuki Morishima and Hiroyuki Kitagawa 20

The Palm-tree Index: Indexing with the crowd. Ahmed Mahmood, Walid Aref, Eduard
Dragut and Saleh Basalamah 26

Crowdsourcing Feedback for PayAsYouGo Data Integration. Fernando Osorno-Gutierrez,
Norman Paton and Alvaro A. A. Fernandes 32

III. Vision Papers 38

Crowds, not Drones: Modeling Human Factors in Interactive Crowdsourcing. Senjuti
Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuruganathan, Sihem Amer-Yahia
and Gautam Das 39

Cost and Quality Trade-Offs in Crowdsourcing. Anja Gruenheid and Donald Kossmann 43

Data In Context: Aiding News Consumers while Taming Dataspaces. Eugene Wu, Adam
Marcus and Sam Madden 47

2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Organization

Co-Chairs

Reynold Cheng The University of Hong Kong, Hong Kong
Anish Das Sarma Google, USA
Pierre Senellart Télécom ParisTech, France

Vice-Chair

Silviu Maniu The University of Hong Kong, Hong Kong

Program Committee Members

Sihem Amer-Yahia CNRS, France
T.-H. Hubert Chan The University of Hong Kong, Hong Kong
Michael Chau The University of Hong Kong, Hong Kong
Lei Chen Hong Kong University of Science and Technology, Hong Kong
Jiefeng Cheng Shenzhen Institutes of Advanced Technology, China
Susan Davidson University of Pennsylvania, USA
Michael J. Franklin U.C. Berkeley, USA
Ada Waichee Fu Chinese University of Hong Kong, Hong Kong
Donald Kossmann ETH Zürich, Switzerland
Tim Kraska Brown University, USA
Guoliang Li Tsinghua University, China
Eric Lo The Hong Kong Polytechnic University
Samuel Madden MIT, USA
Amélie Marian Rutgers University, USA
Atsuyuki Morishima University of Tsukuba, Japan
Zaiqing Nie Microsoft Research Asia, China
Jian Pei Simon Fraser University, Canada
Mauro Sozio Télécom Paristech, France
Martin Theobald University of Antwerp, Belgium

External Reviewers

Jia Wang Chinese University of Hong Kong, Hong Kong
Ben Ng The University of Hong Kong, Hong Kong

Logo Design

Siyu Ray Lei The University of Hong Kong, Hong Kong

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Part I.

Invited Keynotes

4

Multi-Platform, Reactive Crowdsourcing

Invited Keynote

Stefano Ceri
Politecnico di Milano

Milan, Italy

ABSTRACT
In recent years, we developed CrowdSearcher, which inte-
grates a conceptual framework, a specification procedure and
a reactive execution control environment for designing, de-
ploying, and monitoring crowd-based applications on top of
social systems, including social networks and crowdsourcing
platforms.

We show how social platforms, such as Facebook or Twitter,
can be used for crowdsourcing search-related tasks, side by
side with traditional crowdsourcing platforms; and we show
how controlling the quality of performers and of results can
lead to increased performance and interoperability.

The contribution of this talk is a broad vision that brings
together crowdsourcing, social networking, expertise find-
ing, reactive rules and multi-platform system integration,
at the purpose of increasing effectiveness of crowd-based
applications.

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

BIOGRAPHY
Stefano Ceri is professor of Database Systems at the Dipar-
timento di Elettronica, Informazione e Bioingegneria (DEIB)
of Politecnico di Milano. He was visiting professor at the
Computer Science Department of Stanford University (1983-
1990), and he is the director of Alta Scuola Politecnica, the
school of excellence for top-level master students selected
from Engineering, Architecture, and Design Faculties of Po-
litecnico di Milano and Politecnico di Torino. His research
work covers over three decades (1976–2013) and has been
generally concerned with extending database technologies
in order to incorporate new features: distribution, object-
orientation, rules, streaming data; with the advent of the
Web, his research has been targeted towards the engineer-
ing of Web-based applications and search systems. More
recently he turned to crowdsearching and to genomic com-
puting. He was awarded an advanced ERC Grant on Search
Computing (November 2008 – October 2013), described in
http://www.search-computing.it. He is national coordina-
tor of the PRIN Project GenData 2020, focused on building
query and data analysis systems for genomic data as pro-
duced by fast DNA sequencing technology (February 2013 –
January 2016). He is author of about 300 publications on
international journals and conferences (H index 57) and of
10 international books; the book Web Information Retrieval
is in print (Springer-Verlag). He is co-editor in chief (with
Mike Carey) of the book series “Data Centric Systems and
Applications” (Springer-Verlag). He is the recipient of the
ACM-SIGMOD “Edward T. Codd Innovation Award” (New
York, June 26, 2013).

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

5

Mining the Crowd

Invited Keynote

Tova Milo
Tel Aviv University

Tel Aviv, Israel

ABSTRACT
Harnessing a crowd of Web users for data collection has re-
cently become a wide-spread phenomenon. A key challenge
is that the human knowledge forms an open world and it is
thus difficult to know what kind of information we should
be looking for. Classic databases have addressed this prob-
lem by data mining techniques that identify interesting data
patterns. These techniques, however, are not suitable for
the crowd. This is mainly due to properties of the human
memory, such as the tendency to remember simple trends
and summaries rather than exact details. Following these
observations, we develop here a novel model for crowd min-
ing. We will consider in the talk the logical, algorithmic,
and methodological foundations needed for such a mining
process, as well as the applications that can benefit from the
knowledge mined from crowd.

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

BIOGRAPHY
Tova Milo received her Ph.D. degree in Computer Science
from the Hebrew University, Jerusalem, in 1992. After gradu-
ating she worked at the INRIA research institute in Paris and
at University of Toronto and returned to Israel in 1995, join-
ing the School of Computer Science at Tel Aviv University,
where she is now a full Professor and the Head of the De-
partment. Her research focuses on advanced database appli-
cations such as data integration, XML, and semi-structured
information, Data-centered Business Processes, and Crowd-
sourcing, studying both theoretical and practical aspects.
Tova served as the Program Chair of several international
conferences, including PODS, ICDT, VLDB, XSym, and
WebDB. She is a member of the VLDB Endowment and
the ICDT executive board and is an editor of TODS, the
VLDB Journal, and the Logical Methods in Computer Sci-
ence Journal. She has received grants from the Israel Science
Foundation, the US–Israel Binational Science Foundation,
the Israeli and French Ministry of Science, and the European
Union. She is an ACM Fellow and a recipient of the 2010
ACM PODS Alberto O. Mendelzon Test-of-Time Award and
of the prestigious EU ERC Advanced Investigators grant.

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

6

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Part II.

Research Papers

7

Wrapper Generation Supervised by a Noisy Crowd

Valter Crescenzi, Paolo Merialdo, Disheng Qiu

Dipartimento di Ingegneria
Università degli Studi Roma Tre

Via della Vasca Navale, 79 – Rome, Italy

{crescenz, merialdo, disheng}@dia.uniroma3.it

ABSTRACT
We present solutions based on crowdsourcing platforms to
support large-scale production of accurate wrappers around
data-intensive websites. Our approach is based on super-
vised wrapper induction algorithms which demand the bur-
den of generating the training data to the workers of a
crowdsourcing platform. Workers are paid for answering
simple membership queries chosen by the system. We present
two algorithms: a single worker algorithm (alfη) and a mul-
tiple workers algorithm (alfred). Both the algorithms deal
with the inherent uncertainty of the responses and use an ac-
tive learning approach to select the most informative queries.
alfred estimates the workers’ error rate to decide at run-
time how many workers are needed. The experiments that
we conducted on real and synthetic data are encouraging:
our approach is able to produce accurate wrappers at a low
cost, even in presence of workers with a significant error
rate.

1. INTRODUCTION
The abundance of data contained in web pages has mo-

tivated many research efforts towards the development of
effective methods and tools for generating web wrappers,
i.e., rules that allow the extraction of data from web pages.
Supervised approaches to infer web wrappers have limited
scalability, mainly because they require a set of training
data, typically provided as labeled values. Unsupervised ap-
proaches (e.g. [3, 6]) have been investigated as an attempt
to “scale-up” the wrapper generation process by overcoming
the need of training data. Unfortunately, they have limited
applicability because of the low precision of the produced
wrappers.

Crowdsourcing platforms represent an intriguing opportu-
nity to “scale-out” supervised wrapper inference approaches.
These platforms support the assignment of mini-tasks to
people recruited on the Web, and thus allow the engagement
of a large number of workers to produce massive amounts of
training data.

Copyright© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

However, generating wrappers with the support of crowd-
sourcing platforms introduces a number of challenges that
were not addressed in the literature: the mini-tasks submit-
ted to the platform should be extremely simple, since they
are performed by non-expert workers; their number should
be minimized to contain the costs.

We are developing a framework, alf [7], that addresses
the above issues to let the crowd effectively and efficiently su-
pervise the wrapper generation process.1 alf progressively
infers a wrapper by posing membership queries (MQ), which
are the simplest form of queries [1], since they admit only a
yes/no answer (e.g., “Is the string ‘John Wayne’ a value to
extract ? ”); alf implements an active learning algorithm to
select the queries that more quickly bring to the generation
of an accurate wrapper, thus reducing the costs [14]; and,
finally, here we extend alf to adopt a probabilistic model
that considers errors (wrong answers) introduced by inaccu-
rate workers [2, 15].

We have experimentally observed that with perfect work-
ers, i.e., workers that do not make any mistake in answering
the proposed membership queries, alf generates the correct
extraction rules reducing on average the number of queries
by 4× with respect to a random choice [7]. However, it
is well known that the workers recruited on crowd sourc-
ing platforms are far from being perfect. On an empirical
evaluation that we conducted on a popular crowdsourcing
platform, we experienced a significant number of incorrect
answers (around 10% on average) even for the simple mem-
bership queries posed by our system.

This paper extends our framework to manage workers that
may return incorrect answers. First, we introduce alfη,
which extends the underlying model of alf to deal with the
noisy answers of a single worker. The presence of errors
introduces the challenging issue of deciding when to stop
the learning process. Intuitively, when a worker is inaccu-
rate, the costs of acquiring her answers may become not
justified by the increment of quality in the inferred wrap-
per that these answers produce. alfη needs an estimation
of the worker’s error rate to reason on the optimal number
of queries that should be assigned to the worker. Unfor-
tunately, at most a rough estimation of the error rate is
available when the worker is engaged.

Then, to overcome this issue, we introduce alfred (alf
with redundancy), an algorithm that builds on alfη to find
the best solution according to the training data provided by
multiple workers. It adopts the conventional technique of
facing the presence of errors by engaging multiple workers

1A demo is available at http://alfred.dia.uniroma3.it.

1

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

8

for solving the same tasks. However, alfred decides the
number of workers during the learning process, at runtime,
and minimizes the costs engaging only the workers actu-
ally needed to achieve the desired quality. alfred exploits
the weighted consensus among multiple workers to estimate
their error rates so that better stopping conditions can be
crafted to take into account both the cost (quantified as
the number of queries) and the quality of the wrapper (as
estimated by a probabilistic model).

Contributions. Overall, the paper makes several contribu-
tions: (i) we extend our crowd based wrapper inference
framework [7] in order to manage noisy answers; (ii) we pro-
pose a principled approach to decide at runtime how many
workers should be engaged to deal with the presence of noisy
answers; (iii) we show how to estimate the workers’ error
rates during the learning; (iv) we set several termination
strategies aiming at a fair trade-off between output quality
and cost; (v) we report a set of preliminary experimental
results with both synthetic and real answers collected from
the crowd.

Paper outline. The paper is organized as follows: Section 2
formalizes our setting and presents the extension to our pre-
vious probabilistic model to deal with noisy answers; Sec-
tion 3 introduces alfη, the active learning algorithm for
a single noisy worker and Section 4 presents alfred, its
generalization to multiple workers. Section 5 reports the
experimental results. Section 6 discusses related work, and
Section 7 concludes the paper.

2. MODELING WRAPPER QUALITY AND
NOISY WORKERS

We focus on data-intensive websites whose pages are gen-
erated by scripts that embed data from an underlying data-
base into an HTML template. Let U = {p1, . . . , pn} be an
ordered set of pages generated by the same script. Given an
attribute of interest published in the pages, its values can
be extracted by means of an extraction rule (or simply rule).
The value extracted by a rule r from a page p, denoted by
r(p), is either a string occurrence from the HTML source
code of p, or a special nil value. A rule r over the pages in
U returns the ordered set of values r(p1), . . . , r(pn) and rep-
resents a concrete tool to build a vector of values, denoted
by r(U), indexed by the pages of U .

We propose a wrapper induction process that requires as
input the set U of pages to be wrapped, and only a sin-
gle initial annotation v0 (which is assumed correct) of the
attribute value to extract.2

The inference process starts by generating a space of hy-
pothesis, i.e., a set Rv0 of candidate rules that extract the
given initial annotations v0. We consider extraction rules
defined by means of expressions belonging to a simple frag-
ment of XPath; namely, we use absolute and relative XPath
expressions that specify paths to the leaf node containing
the value to be extracted. Absolute rules specify paths that
start either from the document root or from a node having
an ‘id’; relative rules start from a template node working as

2Such input annotation may be supplied either manually
or automatically by looking up in the page a golden value
from an available database. The approach can be easily
generalized to deal with multiple initial annotations.

pivot. Textual leaves that occur once in every input page
are considered template nodes [3].

The inference process evaluates the candidate rules inRv0
by posing questions to workers recruited from a crowdsourc-
ing platform: they are shown a page and asked whether a
given value v from that page corresponds to a value of the
target attribute. The goal is to select the rule working not
only on the annotated sample page from which it has been
generated, but also for all the other pages in the input col-
lection U . Each query is formed by picking up the value in
the set V Rv0 (U) of values extracted from pages in U by the
candidate rules Rv0 .

Figure 1 shows an example: suppose that we are inter-
ested to generate a wrapper that extracts the Title from the
fictional set of movie pages U = {p1, p2, p3} whose DOM
trees are sketched in Figure 1(left). Assume that the ini-
tial annotation v0 =‘City of God’ is supplied on the sample
page p1. Figure 1(right) shows the set Rv0 = {r1, r2, r3} of
candidate rules generated from this initial annotation. The
queries composed by the inference process use the values
V Rv0 (U) that appear as elements of the vectors extracted by
the rules in Rv0 from the pages in U .

The binary answer l, with l ∈ {−,+}, supplied by a
worker adorns the queried value v with either a positive
or a negative label, producing a labeled value denoted by
vl. An ordered set of k labeled values composes a train-
ing sequence (t.s.) denoted Lk−1, so that L0 = {v+0 } and
Lk+1 = Lk ∪ {vlk}.

Given a t.s. Lk, we introduce a probabilistic model for
estimating the probability P (r|Lk) of each candidate rule
r ∈ Rv0 of being correct for the whole set of input pages U ,
and the probability P (Rv0 |Lk) that the correct rule is not
present in Rv0 . These probabilities are updated after each
new labeled value vlk is observed, i.e., a worker labels with l
the value provided by a MQ on vk and the t.s. is expanded
to Lk+1 = Lk ∪ {vlk}.

Bayesian update rules compute the posterior probabili-
ties P (r|Lk+1) and P (Rv0 |Lk+1) starting from the proba-

bilities, P (r|Lk) and P (Rv0 |Lk) respectively, available be-

fore observing vlk. The process can be repeated treating each
posterior probability as the priors required by the next itera-
tion. The whole process is triggered using as a base case the
priors P(Rv0) of having generated the correct rule in Rv0 ,
and the probability P(r) that r is a correct rule. Assuming
that Rv0 is generated from a class of rules sufficiently ex-
pressive to include the target rule, we can fix P(Rv0) = 0,3

and uniformly set P(r) = 1
|Rv0 |

.

Bayesian update rules require the definition of the p.d.f.
P (vk|r, Lk). This is usually obtained by introducing a prob-
abilistic generative model to abstract the actual process
leading to the generation of t.s.. For the sake of simplicity,
we adopt the Classification Noise Process (CNP) model [2]
to describe inaccurate workers that may produce indepen-
dent and random mistakes with an expected error rate η, and
we assume that the next value to query is randomly chosen
according to a uniform p.d.f. over all values V Rv0 (U) \ Lk.

Let Pη(·) denote a p.d.f. over all possible t.s. in presence
of noise, it follows:

Pη(vlk|r, Lk) =P (vlk|r, Lk) · (1− η) + P (v−lk |r, Lk) · η (1)

3In [7], where we study the possibility of dynamically tun-
ing the expressiveness of the class, we have developed the
opposite assumption.

2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

9

XXXXXXXXrules
pages U

p1 p2 p3

Rv0
r1 City of God Inception Oblivion
r2 City of God Inception nil
r3 City of God nil Oblivion

r1 =/html/table/tr[1]/td
r2 =//td[contains(.,“Ratings:”)]/../../tr[1]/td
r3 =//td[contains(.,“Director:”)]/../../tr[1]/td

Figure 1: (Left) DOM of three sample pages; (Right) Extraction rules in Rv0 = {r1, r2, r3} with v0 =‘City of God’
and the set of values V Rv0 (U) they extract from pages in U = {p1, p2, p3}.

where (1−η) is the probability that a worker correctly labels
with l the provided value vk, and η is the probability that
she wrongly provides the opposite label, here denoted by −l.
P (vlk|r, Lk) is the corresponding noise-free p.d.f. and can be
expressed as in [7]:

P (vlk|r, Lk) =

{
1

|VR
v0

(U)|−|Lk| , iff vk ∈ V l(r) \ Lk

0 , otherwise

where V l(r) is the subset of values in V Rv0 (U) that should
be labeled l if r is the correct rule. In our generative model
the values composing the t.s. Lk cannot be queried again,
therefore V Rv0 (U) \ Lk is the set of values that can be used
to generate new queries.

As we discuss in the next section, these probabilities are
used to effectively choose the next question, and to establish
a termination condition for the learning process.

3. LEARNING EXTRACTION RULES
The probabilistic model developed in the previous sec-

tion aims at computing, observed a t.s. Lk, the probability
P (r|Lk) that a given extraction rule r within a set of candi-
date rules Rv0 is correct. In this section we present alfη, an
active learning algorithm that exploits these probabilities to
minimize the number of queries to the crowd workers.

Listing 1 alfη: Active Learning Algorithm for a Single
Noisy Worker

Input: a set of pages U
Input: the set of candidate rules Rv0
Input: a worker w and its associated error rate ηw

Output: a teaching sequence Lk

1: let k = 1; let L1 = {v+0 };
2: while (not haltalf(Lk)) do
3: vk ← chooseQuestion(Lk);
4: l← getAnswer(w, vk);
5: Lk+1 ← Lk ∪ {vlk};
6: compute P (r|Lk+1), ∀r ∈ Rv0 ;
7: k ← k + 1;
8: end while
9: return Lk;

Listing 1 contains the pseudo-code of the alfη algorithm:
it processes a t.s. Lk built by actively asking to a worker
(here modeled by means of the subprogram getAnswer())
the label of a value chosen by the subprogram choose-
Question(); alfη computes a p.d.f. describing the prob-
ability of correctness over the rules in Rv0 .

In every iteration (lines 2–8), the worker is asked to label
a new value vk (lines 3–4) and the t.s. is expanded (line 5).
Then the probability P (r|Lk+1) is updated (line 6).

chooseQuestion() selects the next value to be labeled
by the worker, i.e., the next membership query. The chosen
value is that on which rules most disagree, appropriately
weighted according to their probability. This is equivalent
to compute the vote entropy [14] for each v ∈ V Rv0 (U):

H(v) = −[P (v+|Lk) logP (v+|Lk)+P (v−|Lk) logP (v−|Lk)]

where: P (v+|Lk) =
∑
r∈Rv0 :r(pv)=v

P (r|Lk)

and P (v−|Lk) =
∑
r∈Rv0 :r(pv)6=v P (r|Lk)

are the probabilities that v is respectively either a value to
extract or an incorrect value (pv denotes the page contain-
ing v). Intuitively, the entropy measures the uncertainty
of a value and querying the value with the highest entropy
removes the most uncertain value:

chooseQuestion(Lk) { return argmaxv∈VR
v0

(U)H(v); }

Since different termination policies can be appropriate de-
pending on the budget constraints and on the quality tar-
gets, we propose several implementations of haltalf(Lk).

haltr: A simple policy is to stop when the probability of
the best rule overcomes a threshold λr:

haltr(L
k) { return (maxr∈Rv0 P (r|Lk) > λr); }

The main limitation of this strategy is that it does not take
into account the costs.

haltMQ: A simple policy to upper bound the costs is to
stop as soon as the algorithm runs out of a “budget” of
λMQ membership queries.

haltMQ(Lk) { return (|Lk| > λMQ); }

The main limitation of this strategy is that it does not con-
sider the quality of the output rules.

haltH : A trade-off between quality and cost can be set by
posing only queries that contribute enough to the quality of
the inferred rules, and stopping as soon as the costs are con-
sidered not correctly rewarded by the increment of quality in
the output rules. It turns out that this can be easily mod-
eled in term of the maximum entropy. haltH terminates
as soon as the maximum entropy of the values is below a
threshold λH , i.e., no value is uncertain enough to deserve
a query:

haltH(Lk) { return (maxv∈VR
v0

(U)H(v) < λH); }

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

10

Whichever is the termination policy adopted by alfη, its
efficacy in achieving an optimal trade-off between quality
and the costs for the learning tasks is strongly affected by a
correct estimation of the worker’s error rate, η. An incorrect
evaluation of η can lead to a waste of queries (when the
error rate is overestimated), or to a quality loss (when it
is underestimated), as confirmed by the experiments with
different termination policies (reported in Section 5.2).

In our experimental evaluation, we use as a termination
policy the following combination:

haltalfη (W,Lk) = haltH(Lk) or haltMQ(Lk).

This policy leverages the same trade-off between quality and
cost as in haltH , but focuses on the cost side by limiting
through haltMQ the budget allocated for each worker.

4. INFERENCE WITH A NOISY CROWD
We now introduce another algorithm, alfred, that fol-

lows the conventional approach based on redundancy [15]
to deal with inaccurate workers. alfred improves alfη
robustness by dynamically recruiting additional workers to
whom it dispatches redundant tasks. It combines the an-
swers provided by a set W of multiple workers on the same
task to estimate the workers’ error rate, as well as to find
the most likely rule, at the same time.

Our probabilistic model can easily deal with multiple work-
ers by appending the t.s. Lw of every worker w ∈ W into a
unique t.s., denoted by L =]w∈WLw, which is then used to
train alfη. However, this approach raises two issues: (i) it is
not clear how many workers should be involved in the learn-
ing process to achieve a good trade-off between output qual-
ity and cost; (ii) a correct estimation of the workers’ error
rates strongly affects alfη performances, and each worker
could have an error rate radically different from others.

To overcome these issues, alfred dynamically chooses the
amount of redundancy needed, and it exploits the cumula-
tive knowledge both to find the solution on which most of
the weighted workers consensus converges, and to estimate
the workers’ error rates.

Listing 2 illustrates alfred pseudo-code: the main loop
(lines 2–15) alternates two phases. First, the workers are
engaged (lines 3–8): each worker w trains an alfη instance,
thus producing a t.s. Lw. In this phase, the worker is as-
sociated with an initial error rate (line 5).4 The second
phase (lines 10–14) starts as soon as the first phase has ac-
cumulated enough workers (at least W0). The goal of this
phase is to leverage all the t.s. provided by the workers in
order to compute both the p.d.f. of the rules P (r|L) and the
individual error rate ηw of each worker w ∈W .

Our solution is inspired by the work on Truth Finding
Problems [10], and exploits the mutual dependency between
the probability of correctness of the rules and the error rates
of the workers answering the MQ. The error rate is defined
in term of probability as follows:

ηw =

∑
vl
k
∈Lw

{
1− P (v+k |L) , iff l = +
P (v+k |L) , iff l = −

|Lw|
4We use the average error rate empirically estimated in our
experiment with real workers; another option is to derive
this value from the workers ranks provided by the crowd-
sourcing platform.

Listing 2 alfred: Active Learning Algorithm with Multi-
ple Noisy Workers

Input: a set of pages U
Input: the set of candidate rules Rv0
Parameter: number of initial workers W0

Parameter: a threshold λη for error rates convergence

Output: the most probable extraction rule r ∈ Rv0
1: let W = ∅; // set of engaged workers
2: repeat

3: repeat
4: let w = engageWorker();
5: let ηw = getErrorRate(w);
6: let Lw = alfη(U,Rv0 , w);
7: W ←W ∪ {w};
8: until (|W | < W0); // wait for workers

9: let L =]w∈WLw; // append all t.s.
10: repeat
11: compute P (r|L) by using ηw, ∀r ∈ Rv0 ;
12: let ηprevw = ηw, ∀w ∈W ; // save previous η
13: compute ηw by using P (r|L), ∀w ∈W ;
14: until (

∑
w∈W (ηw − ηprevw)2 > λη · |W |);

15: until (haltalfred(W,L));

16: return argmaxr∈Rv0
P (r|L);

and it can be interpreted as the probability of the worker
of correctly answering a MQ, estimated by averaging over
all the MQ in the t.s. Lw that she has provided. Since also
the probability is defined in term of error rates, as shown
in Eq. 1, their computation is interleaved (lines 11 and 13)
until their values do not significantly change anymore.5

The termination condition of alfred can be set accord-
ing to different policies by specifying haltalfred. In our
implementation, in order to take into account both budget
constraints and quality targets, we used the following com-
bination:

haltalfred(W,L) = haltr(L) or haltMQ(L)

Observe that the recruitment of new workers negatively
influences the latency of the system. A strategy to contain
the latency of the system is to recruit bulk workers, but this
is beyond the scope of the present paper.

5. EXPERIMENTAL EVALUATION
We use a dataset composed of 5 collections of pages: ac-

tor and movie pages from www.imdb.com; band and album
pages from www.allmusic.com; stock quote pages from www.-
nasdaq.com. For each collection we selected about 10 at-
tributes, for a total of 40 attributes. Then we manually
crafted a golden XPath rule for each attribute. We ran-
domly selected a training sample set of 500 pages from each
collection of pages, and another (disjoint) test set of 2, 000
pages. Our algorithm was run on the training sample, and
the output extraction rules were evaluated on the test set.
We compared the (non-null) values extracted by the golden
rules against those extracted by the rules generated by our

5We have empirically observed the convergence of the algo-
rithm. A formal proof is left as future work.

4

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

11

 4

 6

 8

 10

 12

 14

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
Q

η
∗

HALTr
HALTH

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F

η
∗

HALTr
HALTH

HALTMQ

Figure 2: alfη (η = 0.09) sensitivity to worker error
rate η∗: Cost (left) and quality (right) of the output
wrapper.

algorithm. For every generated rule r, and given a test set
of pages U , we computed precision (P), recall (R), and
F-measure (F) at the value level w.r.t. the corresponding

golden rule rg, as follows: P =
|rg(U)∩r(U)|
|r(U)| ; R =

|rg(U)∩r(U)|
|rg(U)| ;

F = 2 P ·R
P+R

.
We report the results of two sets of experiments: the first

one was conducted to test alfη with a single worker, in the
second set of experiments we consider alfred in presence
of multiple workers. We evaluate our algorithms by using
synthetic workers following the CNP probabilistic model [2],
i.e., workers making random and independent errors with a
fixed error rate η∗.

In order to estimate the error rate distribution over a pop-
ulation of real workers, we also conducted a preliminary ex-
periment with workers engaged by means of CrowdFlower,
a meta platform that offers services to recruit workers on
AMT.

5.1 Experiments with AMT Workers
The main intent of this preliminary experiment was to

evaluate the error rate distribution of a population of real
workers recruited on a crowdsourcing platform. We submit-
ted 100 tasks to 100 distinct workers. Each task was paid 10¢
and consisted on a set of 20 MQ to generate the extraction
rules for several attributes of our dataset. The ground truth
was straightforwardly obtained by the results of our golden
extraction rules. We used alfη configured with haltr as
termination condition (λr = 0.8), and with η = 0.1.

The average error rate of an AMT worker was η̂ = 0.09,
with a standard deviation of σ̂η = 0.11. About 1/3 of the
workers responded correctly to all the queries, and the re-
sponse time for each MQ was around 7 seconds. On average
the number of MQ posed by the system to infer a rule was
4, and each task contained enough queries to learn 5 rules.

The information obtained from this experiment was then
used to set up realistic configurations of the synthetic work-
ers for the other experiments: the average error rate empir-
ically observed η̂ is used to set alfη’s parameter η = η̂ as
well as the initial worker error rate estimation of alfred,
ηw = η̂; also, the synthetic workers used to test alfred are
created using the same error rate distribution observed on
real workers.

5.2 Single Noisy Worker
The main goal of the experiment was to evaluate the ef-

fects of the workers’ mistakes on alfη, our algorithm in
absence of redundancy. In figure 2 we show the effects
of an inaccurate worker with different termination strate-
gies, by setting η = η̂ = 0.09. We simulated workers with

3

10

100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
Q

η

HALTr
HALTH

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F

η

HALTr
HALTH

HALTMQ

Figure 3: alfη sensitivity to the expected worker
error rate η with a noisy worker η∗ = 0.09: Cost
(left) and quality (right) of the output wrapper.

an error rate η∗ increasing from 0.05 to 0.4. The thresh-
olds of the three termination conditions considered, haltr,
haltMQ and haltH were set to λr = 0.8, λMQ = 5 and

λH = 0.2, respectively.
As the error rate η∗ of the worker increases, the results

degrade with every termination strategy, as expected. How-
ever, haltH detects the wider presence of uncertain values,
and tries to compensate with a greater number of queries;
conversely, since haltr focuses only on the most likely rule,
it poses a rather steady number of queries, and the output
quality is more seriously compromised.

We then empirically evaluated how an incorrect setting
of the parameter η, i.e., the expected worker error rate, in-
fluences alfη performances. We used a single worker with
η∗ = η̂ = 0.09, and repeated several inference processes,
configuring alfη with η ranging from η = 0 to 0.4 as re-
ported in Figure 3.

When the system overestimates the accuracy of worker
(η < η∗) we observe a reduction of the number of MQ, but
the quality of the wrapper drops. The system trusts the
workers and terminates quickly, thus posing less questions
than actually needed. When the system underestimates the
worker accuracy (η > η∗), some MQ are wasted since the
system does not trust the worker. With an η larger than η∗

by +0.3, haltr requires more than 40 MQ, i.e., 5× those
required when η = η∗. Observe that many MQ are wasted
since the F -measure gain is less than 5%.

average max
|W | F #MQ |W | #MQ σF

alfη 1 0.92 7.58 1 11 0.17

Table 1: alfη inference with synthetic workers

Table 1 reports alfη results when the termination policy
haltalfη has been instantiated by setting the parameters
λH = 0.2 and λMQ = 10. alfη requires just a few queries

(#MQ = 7.58) to learn rather accurate wrappers (F =
0.92). However, there is a significant standard deviation
(σF = 17%) in the output quality that makes the algorithm
not that robust to workers’ errors.

5.3 Multiple Noisy Workers
As discussed in Section 4, alfred builds on alfη, and

recruits additional workers to estimate their error rate and
to find the correct rule at the same time. We rely on the ter-
mination strategy of the outer algorithm (haltalfred) to
achieve the target quality, while for the inner alfη instance
we use the same termination policy (haltalfη) focused on

5

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

12

average max
|W | F #MQ |ηw − η∗| |W | #MQ σF

alfredno 2.33 1 18.6 — 9 83 0.01
alfred 2.07 1 16.1 0.8% 4 44 0.01
alfred∗ 2.05 1 16.07 0% 4 40 0.01

Table 2: alfred inference with synthetic workers

the costs as in the previous experiment. To evaluate alfred
performances, we organized as many tasks as the number of
attributes of our experiment (40). For each task we exe-
cuted alfred (with λη = 10−4) by recruiting workers from
a virtual population with the same error rate distribution
observed over the real workers (the results have been aver-
aged over 20 executions).

alfred’s results in Table 2 demonstrate the role played
by the workers’ error rate estimation. We compare the al-
gorithm against a baseline (alfredno) in which the error
rate estimation is disabled (we just set ηw = η̂), and against
a bound (alfred∗) in which an oracle sets ηw = η∗. The
workers’ error rate estimation is precise (|ηw − η∗| = 0.8%
when the learning terminates), and it allows the system to
save queries (16.1 vs 18.6 on average). The average num-
ber of MQ posed by alfred to learn the correct rule is
only a negligible amount larger than the lower bound set by
alfred∗. The costs are more than twice those paid running
alfη with a single worker (16.1 vs. 7.58). However, notice
that alfred always concluded the tasks with a perfect re-
sult, and that it is robust to workers’ error rates (σF = 1%).

alfred terminates in most of the cases (94%) engaging
only 2 workers, and seldom recruited 3 and 4 workers (5%
and 1%, respectively). Overall, alfred was able to recruit
more workers, thus paying their answers, only when needed
to achieve the target quality of the output wrapper.

6. RELATED WORK
Wrapper induction for extracting data from web pages has

been subject of many researches [5]. A wrapper inference
approach tolerant to noise in the training data has been
proposed in [8], however it applies only for domains where
it is possible to automatically obtain a set of annotations.

Active learning approaches [14] have recently gained inter-
est as they can produce exponential improvements over the
number of samples wrt traditional supervised approaches [4].
The advent of crowdsourcing platforms has led to new chal-
lenges. The main issue is to learn from noisy observations
generated by non expert users.

Wrapper induction techniques that rely on active learn-
ing approaches have been proposed in [11, 13]. These studies
rely on a more complicated user interaction than ours, since
the user has to choose the correct wrapper within a set of
ranked solutions. Also, they do not consider the presence
of noise in the training data. Many works have studied the
problem of learning with noisy data coming from crowd-
sourcing platform workers, e.g., [9, 12, 15]. [15] shows that
when labeling is not perfect, selective acquisition of multiple
good labels is crucial and that repeated-labeling can improve
label quality and model quality. [12] proposes a crowdsourc-
ing assisted system, CDAS, for data analytics tasks; the sys-
tem faces the presence of noisy answers by submitting re-
dundant tasks and adopts a voting strategy to estimate the
correct solution. Compared to our approach, the number of

workers as well as their accuracies are statically determined,
based on the workers’ historical performances.

In our previous work [7], we studied wrapper inference
with a single and perfect worker.

7. CONCLUSIONS
We presented wrapper inference algorithms specifically

tailored for working with the support of crowdsourcing plat-
forms. Our approach allows the wrappers to be generated
by posing simple questions, membership queries, to work-
ers engaged on a crowdsourcing platform. We proposed two
algorithms that consider the possibility of noisy answers:
alfη recruits a single worker, alfred can dynamically en-
gage multiple workers to improve the quality of the solution.
We showed that alfred can produce high quality wrappers
at reasonable costs, and that the quality of the output wrap-
per is highly predictable.

8. REFERENCES
[1] D. Angluin. Queries revisited. Theor. Comput. Sci.,

313(2):175–194, 2004.

[2] D. Angluin and P. Laird. Learning from noisy
examples. Mach. Learn., 2(4):343–370, Apr. 1988.

[3] A. Arasu and H. Garcia-Molina. Extracting structured
data from web pages. In SIGMOD 2003.

[4] M.-F. Balcan, S. Hanneke, and J. W. Vaughan. The
true sample complexity of active learning. Machine
Learning, 80(2-3):111–139, 2010.

[5] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F.
Shaalan. A survey of web information extraction
systems. IEEE Trans. Knowl. Data Eng.,
18(10):1411–1428, 2006.

[6] V. Crescenzi and P. Merialdo. Wrapper inference for
ambiguous web pages. JAAI, 22(1&2):21–52, 2008.

[7] V. Crescenzi, P. Merialdo, and D. Qiu. A framework
for learning web wrappers from the crowd. In WWW
2013.

[8] N. N. Dalvi, R. Kumar, and M. A. Soliman.
Automatic wrappers for large scale web extraction.
PVLDB, 4(4):219–230, 2011.

[9] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the world-wide web.
Commun. ACM, 54(4):86–96, Apr. 2011.

[10] X. Dong, L. Berti-Equille, Y. Hu, and D. Srivastava.
Solomon: Seeking the truth via copying detection.
PVLDB, 3(2):1617–1620, 2010.

[11] U. Irmak and T. Suel. Interactive wrapper generation
with minimal user effort. In WWW 2006.

[12] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and
M. Zhang. Cdas: a crowdsourcing data analytics
system. In VLDB 2012.

[13] I. Muslea, S. Minton, and C. A. Knoblock. B. Settles.
Active learning with multiple views. JAIR 2006.

[14] Active learning literature survey. CS Tech. Rep. 1648,
University of Wisconsin–Madison, 2009.

[15] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? Improving data quality and data
mining using multiple, noisy labelers. In KDD 2008.

6

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

13

Crowdsourcing to Mobile Users: A Study of the Role of
Platforms and Tasks

Vincenzo Della Mea Eddy Maddalena Stefano Mizzaro
Department of Mathematics and Computer Science

University of Udine
Udine, Italy

vincenzo.dellamea@uniud.it, eddy.maddalena@uniud.it, mizzaro@uniud.it

ABSTRACT
We study whether the task currently proposed on crowd-
sourcing platforms are adequate to mobile devices. We aim
at understanding both (i) which crowdsourcing platforms,
among the existing ones, are more adequate to mobile de-
vices, and (ii) which kinds of tasks are more adequate to mo-
bile devices. Results of a user study hint that: some crowd-
sourcing platforms seem more adequate to mobile devices
than others; some inadequacy issues seem rather superficial
and can be resolved by a better task design; some kinds of
tasks are more adequate than others; and there might be
some unexpected opportunities with mobile devices.

Categories and Subject Descriptors
H.4.m [Information systems applications]: Miscellaneous

General Terms
Experimentation, Measurement.

Keywords
Crowdsourcing, mobile devices.

1. INTRODUCTION AND AIMS
Among the phenomena that are acquiring increasing im-

portance in the information technology landscape, two are
the subjects of this paper: (i) crowdsourcing, and (ii) mobile
devices and applications.

Crowdsourcing, i.e., the outsourcing of tasks typically per-
formed by a few experts to a large crowd as an open call,
has been shown to be reasonably effective in many cases,
like Wikipedia, the Chess match of Kasparov against the
world in 1999, and several others (see, e.g., [4] or even
http://en.wikipedia.org/wiki/Crowdsourcing). Several
crowdsourcing platforms (Amazon Mechanical Turk being
probably the most known) have also appeared on the Web:

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

they allow requesters to post the tasks they want to crowd-
source and workers to perform those tasks for a small reward
(usually a few cents).

Meanwhile, mobile devices (phones, smartphones, tablets,
and in the near future glasses, watches, and so on) have
become ubiquitous and are used to access the Web. Ac-
cording to several statistics, in the next few years there will
be more Web accesses by mobile devices than by classical
desktop/laptop computers (see, e.g., [6]).

In this paper we study the intersection of mobile and
crowdsourcing. We aim at understanding whether the task
currently proposed on crowdsourcing platforms are adequate
to mobile devices. By “adequate” we mean that they can
be performed effectively by using a mobile device in place of
a desktop/laptop computer. We specifically seek to answer
two research questions:

Q1 Which crowdsourcing platforms, among the existing ones,
are more adequate to mobile devices?

Q2 Which kinds of tasks are more adequate to mobile de-
vices?

Besides the above mentioned statistics on increasing mo-
bile usage, this research is also justified by the fact that to-
day quite often people access theWeb on their mobile phones
for short periods of time, for example while commuting to
work on train or underground, while waiting for a bus or for
a friend, while in a car (and not driving), while standing in
a queue, etc. In other terms, there is plenty of human work-
force available for a few minutes (or seconds) bursts, and
this kind of workforce seems perfect for the crowdsourcing
scenario, where the tasks are usually short and the reward
is usually low. Moreover, some crowdsourcing tasks could
be more adequate to a mobile scenario than to a classical
desktop one. For example, taking pictures of some point of
interest (like a monument, a paint, or a billboard), describ-
ing a real life scene, or even recording movements, destina-
tions, and trajectories in an urban traffic setting. However,
to fruitfully exploit this workforce, it is necessary that the
platforms are adequate and tasks are feasible. This consid-
eration also underlies our choice of focussing on the worker
side and neglecting the requester part.

The paper is structured as follows. In Section 2 we briefly
survey the related work on mobile and crowdsourcing, trying
to focus on the research involving both aspects. In Sections 3
and 4 we describe two experiments aiming at answering the
two research questions above. In Section 5 we draw conclu-
sions and sketch future developments.

1

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

14

2. RELATED WORK
Although crowdsourcing commercial platforms seem de-

signed with a desktop/laptop user in mind, there has al-
ready been some work on the idea of having workers using
mobile devices. We briefly survey it in this section.

Musthag and Ganesan[7] focus on mobile micro-task mar-
ket and present some statistics on mobile workers behavior.

The mCrowd platform [11] is an iPhone based mobile
crowdsourcing platform that enables mobile users to act
as both requester and workers, and focuses on tasks like
geolocation-aware image collection, road traffic monitoring,
etc., that exploit the rich array of sensors available on iPhones.

Eagle [2] describes txteagle, a mobile crowdsourcing mar-
ketplace used in Kenya and Rwanda for tasks like transla-
tions, polls, and transcriptions.

Location-based distribution of tasks to mobile workers is
proposed in [1]. Some design criteria for mobile crowdsourc-
ing platforms are also presented and discussed. A similar
approach, focused on the specific domain of news reporting
is presented in [9]: SMS messages are used for location based
assignment for crowdsourcing news.

Narula and colleagues [8] focus on low-end mobile devices
and present MobileWorks, a platform for OCR tasks specifi-
cally aimed at users from the developing world. Experimen-
tal results demonstrate a high rate of task completion (120
per hour) and a high accuracy (99%). A similar approach
is presented in [3], where the mClerk system is described.
Some experimental results again witness the feasibility of
the approach. Some discussion of the viral diffusion of the
system among workers is also discussed.

As a different approach, the CrowdSearch system, an im-
age search service for mobile phones that relies on Amazon
Mechanical Turk, is presented in [10]. It is interesting be-
cause, although it does not exploit a mobile crowd, it is an
example of exploiting a crowd in (almost) real time.

3. EXPERIMENT 1

3.1 Aims
The first experiment aims to verify the suitability of ex-

isting crowdsourcing platforms to mobile devices (see ques-
tion Q1 in Section 1). We asked the participants to estimate
the difficulty of performing a task on both a mobile device
and a desktop/laptop computer.

3.2 Participants
Sixteen participants were involved in the experiment. All

of them were italian students, aged between 16 and 30. We
required a good knowledge of English and familiarity with
computers and smartphones. Participants were randomly
subdivided into 4 groups (U1,U2,U3,U4), each one containing
four participants.

3.3 Data
We selected four among the most popular crowdsourcing

platforms (see Table 1). We downloaded some randomly se-
lected tasks from these platform, for a total of 2717 tasks
(the exact number for each platform is shown in the third
column in Table 1). The download has been performed in
October and November 2012. The downloaded tasks are
among those that can be performed by any requester, i.e.,
without any qualification. These are not huge samples: for
example, on mTurk one can count hundreds of thousands of

id Platform name URL # of

tasks

mTurk Amazon mturk.com 1154

Mechanical Turk

micW Micro Workers microworkers.com 1302

minW Minute Workers minuteworkers.com 86

shortT Short Task shorttask.com 175

Table 1: Platforms

tasks available per month [5]. Though, the samples are nei-
ther negligible, since they count around 1%− 5%. For each
task we extracted: identifier, title, required proof, remunera-
tion, time needed, requester identifier, and description. The
task collection is available upon request. Three examples of
tasks in our collection are (errors included):

• Task example 1:

1. Go to http://goo.gl/Dlzk

2. Click the link to go to the download

3. Complete a survey/offer on Sharecash and down-
load the file

4. Send proof

• Task example 2:

1. Go to http://OneDollarRiches.com/5737

2. Click on Join Now button

3. Invest 1 dollar by logging in into your Alertpay
account

4. After that enter you personal details and login.

5. Join and finish signing up

While Sign up use same e-mail of your Alertpay ac-
count. because when u make ur refferaf there 1$ sing
up go direct into ur alterpay account.

• Task example 3: Find the details for this Restaurant

– For this restaurant below, enter the details below

– You must confirm that the restaurant is still open

– Include the full address, e.g. http://www.thechee
secakefactory.com

– Do not include URLs to city guides and listings
like Citysearch

Restaurant : Akasha Organics 160 North Main St.
Ketchum
Fill in the text fields with this information: Still open,
Restaurant name,Website Address,Phone number,Street
Address,City,State,Zip code.

3.4 Methods
We randomly extracted 48 tasks, 12 from each platform,

and divided them into 4 groups (T1, T2, T3, T4). Each group
contains 12 tasks (3 tasks from each of the 4 platforms).
Task group Ti was assigned to user group Ui (e.g., task group
T1 was assigned user group U1). We developed a web ap-
plication to show to each participant the group of 12 tasks
assigned to his/her user group (see Figure 1). By using this

2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

15

Figure 1: The interface used in the first experiment (translated into English)

application, each participant recorded two estimates of dif-
ficulty for each task, one for a desktop and one for a mobile
device (see the bottom part of the figure). Tasks were pre-
sented in random order and participants did not know from
which platform the tasks were extracted.

Difficulty was provided on a seven points scale ranging
from trivial to impossible. For each task we therefore ob-
tained 4 estimates (from the participants in the same group).
We then converted the labels into the [0..6] range and cal-
culated the average of difficulty estimates.

3.5 Results
Figure 2 shows the averaged estimated difficulty, on desk-

top and mobile, for each platform. Tasks from mTurk are
estimated slightly more difficult than MicroWorkers, Min-
uteWorkers, and ShortTask. The difference of difficulty es-
timates between desktop and mobile is also shown in Fig-
ure 3: difficulty estimation is consistently higher on mobile
devices, both in absolute terms and as a percentage of the
desktop difficulty.

By manually analyzing the task collection we realized that
some of them are inadequate to mobile devices for some
typical reasons:

• too long description;

• technical obstacles like scrolling problems, unsupported
audio formats and/or plugins, pages with Adobe Flash,
etc.;

mTurk micW minW shortT

D
if
fi
c
u
lt
y

0
1

2
3

4
5

Desktop
Mobile

Figure 2: Estimated difficulty

• use of frame attribute in html pages;

• bad layout in a small resolution display;

• need of a high power CPU.

Some of these task issues seem due to the task content, while
some other depend on how the Web interface is realized.
Many of them seem rather superficial and can be overcome
by a better task design and/or better user interfaces.

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

16

mTurk micW minW shortT

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0
1

.2
5

1
.5

0

D
if
fe

re
n

c
e

0
2

0
4

0
6

0
8

0
1

0
0

P
e

rc
e

n
ta

g
e

(%
)

Difference
%

Figure 3: Mobile-desktop difference of estimated
difficulty, as absolute time (bars on the left) and
as a fraction (right)

4. EXPERIMENT 2

4.1 Aims
The aim of the second experiment is to identify which task

kinds are more adequate for mobile devices (see question Q2
in Section 1). We therefore now focus on task features, and
not on platforms. Also, in place of asking estimates to par-
ticipants, we required them to actually perform the tasks
on both desktop and mobile devices and we measured the
time spent on each task. Participants used two prototype
platforms that we built ad hoc for the experiment: one for
desktop devices using Google Web Toolkit, and the other
specifically made for mobile devices, by means of an Android
application. Figure 4 shows the resulting user interfaces.

4.2 Participants and Data
The 16 participants (the same as in the previous experi-

ment) were subdivided into 4 groups labeled U1, U2, U3, U4.
To identify the kinds of task in a somehow objective way,

we relied on the task categories usually requested in crowd-
sourcing marketplaces. More in detail, we started from
the 11 categories suggested by Amazon Mechanical Turk
when creating a new task (see https://requester.mturk.

com/create/projects/new): Categorization, Data Collec-
tion, Moderation of an Image, Sentiment, Survey, Survey
Link, Tagging of an Image, Transcription from A/V, Tran-
scription from an Image, Writing, and Other. To obtain an
amenable number of categories in our experiment, we ex-
cluded 5 Mechanical Turk categories: Data collection, Sur-
vey and Survey link (considered somehow similar to Sen-
timent), Transcription from A/V (to avoid technical issues
on mobile devices), and Other. We therefore selected 6 task
categories, those shown in Table 2. Then we created 4 new
tasks for each category, for a total of 24 tasks, and grouped
them in four task groups (labeled Ta, Tb, Tc, Td), each group
containing six tasks, one from each category.

Using artificial tasks (i.e., tasks created by ourselves) al-
lowed to remove any platform bias and those issues discussed
at the end of Section 3.5, that might have affected the re-

sults. Also, their classification was easier (sometimes it is
not clear how to classify real tasks). Finally, this allowed us
to create task descriptions written in Italian, thus remov-
ing any language issue from the experiment (all participants
were Italian native speakers). The created tasks are in all
respects similar to real tasks.

4.3 Methods
We took the usual special care to avoid any order and

learning bias. Each participant performed 6 tasks (one for
each of the categories in Table 2) on the desktop platform
and 6 other tasks (again, one for each category) on the mo-
bile one. His/her tasks were selected from two task groups,
depending on the user group the participant was assigned
to. To further avoid bias, participants in each group alter-
natively started from desktop or from mobile. Therefore,
each participant performed a total of 12 different tasks, half
on desktop and half on mobile. Each task was performed by
8 participants in two user groups, half of which performed
it on mobile and half on desktop.

Statistics have been calculated as follows. At first, the
average time needed for task completion has been calculated
for each task separately for mobile and desktop performance
(i.e., averaged on 4 subjects each). Then category averages
have been calculated from task averages, again separately
for mobile and desktop devices.

4.4 Results
Figure 5 shows the average time to complete for a task,

for each category and on both mobile and desktop devices.
Figure 6 shows the differences in average time to complete.
Some tasks are quicker: Cat, Mod, Sen required less than
one minute on average, on both desktop and mobile. ImT
and Tra are a bit longer, between one and two minutes on
average, and Wri is even longer. As expected, all tasks are
faster on desktop, with the only exception of Wri: in it,
the participants autonomously decided to use the voice-to-
text functionality when on mobile, and this turned out to
be quicker than writing with a keyboard (although we did
not investigate the quality of transcription). As highlighted
in Figure 6, ImT and Tra show a higher mobile-desktop dif-
ference, both on absolute time and percentage, probably
because they require multiple texts in more fields, a cum-
bersome activity if carried out by mobile.
Looking at the percentage differences in Figure 6, one can

notice that Cat small difference in absolute terms is actually
quite high in percentage: this means that even if the differ-
ence in time is rather small, since Cat tasks are quite short
(as can be seen in Figure 5), this small value is important in
percentage terms. Conversely, looking at the two rightmost
bars, the percentage difference in Wri looks smaller than the
absolute time difference; this is again due to the average
length of the Wri task, which is quite high (see Figure 5).
Though, the improvement on mobile is still important, being
around 20%.

5. CONCLUSIONS AND FUTURE WORK
The work described in this paper is a first exploration of

the opportunities and challenges of outsourcing tasks to a
mobile crowd. Results provide preliminary evidence on the
inadequacy of current crowdsourcing platforms for mobile
devices, even if task complexity would be adequate for being

4

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

17

Figure 4: The interface used in the second experiment: desktop (left) and mobile (right)

Id Category Description
Cat Content categorization Some images are proposed to the worker, which is required to assign each of them

to the correct category.
Mod Moderation of an image The worker is required to flag adult contente pictures that are inappropriate for

children.
Sen Sentiment Some sentences are proposed to the worker, which is required to record his agree-

ment by means of a Likert scale.
ImT Image tagging Some images are proposed to worker, which is required to tag each of them with

keywords.
Tra Transcription from an image The worker is required to extract and write the textual content from a picture.
Wri Writing The worker is required to write a short text about a specific topic.

Table 2: Task categories

carried out on mobile scenarios. More in detail, results are
fourfold:

• Experiment 1 results show that, according to user per-
ception of difficulty, some crowdsourcing platforms might
be slightly more adequate to mobile devices than oth-
ers.

• Some inadequacy issues seem rather superficial and
can be resolved by a better task or interface design.

• Experiment 2 shows that tasks of different kinds, as
defined by mTurk categories, might present different
difficulties when carried out on desktop or on mobile
devices. This might hint a first specialization of task
assignment, although examining features of easy and
difficult tasks might provide a better ad-hoc special-
ization, perhaps even independent of the kind of task.

• Experiment 2 also confirms that mobile devices might
offer some unexpected opportunities, like the voice-to-
text unexpected (by us) solution, autonomously adopted
by participants.

We carried out two separate experiments, although shar-
ing subjects, in order to study two different aspects of mo-
bile crowdsourcing: crowdsourcing platform effects, and task
category effects. The experiments are preliminary and re-
sults are not final, but this is consistent with our aims, that
were to begin to study the general issue of mobile crowd-
sourcing. This exploratory attitude is also a motivation for
having two experiments performed with different method-
ologies (asking to the participants an estimate of difficulty
and having participants performing the actual tasks). Of
course, these experiments, or similar ones, could have been
run by means of some crowdsourcing platform themselves.
We preferred a more traditional approach and started with

5

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

18

Cat Mod Sen ImT Tra Wri

T
im

e
(s

)

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Desktop
Mobile

Figure 5: Average time to complete for each task
category on both mobile and desktop devices

classical user studies, but we do plan to do that in the future.
To further develop this work, other experiments can be

imagined. For example, the same experiments described
here could be repeated in real-world scenarios (on the train,
road, school rooms, or crowded places) to have more re-
alistic results. It is also feasible to imagine an extended
crowdsourcing platform that on the basis of the context of a
worker (time, date, geolocation, habits and preferences, mo-
bile device sensors, etc.), automatically filters and selects
tasks tailored for a specific context.

6. REFERENCES
[1] F. Alt, A. S. Shirazi, A. Schmidt, U. Kramer, and

Z. Nawaz. Location-based crowdsourcing: extending
crowdsourcing to the real world. In Proceedings of the
6th Nordic Conference on Human-Computer
Interaction: Extending Boundaries, NordiCHI ’10,
pages 13–22, New York, NY, USA, 2010. ACM.

[2] N. Eagle. txteagle: Mobile crowdsourcing. In
Proceedings of the 3rd International Conference on
Internationalization, Design and Global Development:
Held as Part of HCI International 2009, IDGD ’09,
pages 447–456, Berlin, Heidelberg, 2009.
Springer-Verlag.

[3] A. Gupta, W. Thies, E. Cutrell, and R. Balakrishnan.
mClerk: enabling mobile crowdsourcing in developing
regions. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’12, pages
1843–1852, New York, NY, USA, 2012. ACM.

[4] J. Howe. Crowdsourcing: Why the Power of the Crowd
Is Driving the Future of Business. Random House Inc,
2008.

[5] P. G. Ipeirotis. Analyzing the amazon mechanical turk
marketplace. XRDS, 17(2):16–21, Dec. 2010.

[6] M. Meeker and L. Wu. Internet Trends D11
Conference — The annual Internet Trends Report,
2013. http://www.slideshare.net/kleinerperkins/
kpcb-internet-trends-2013.

Cat Mod Sen ImT Tra Wri

−
6

0
−

4
0

−
2

0
0

2
0

4
0

6
0

T
im

e
(s

)

−
6

0
−

4
0

−
2

0
0

2
0

4
0

6
0

P
e

rc
e

n
ta

g
e

(%
)

Time
%

Figure 6: Mobile-desktop differences in average time
to complete for each task category, as absolute time
(bars on the left) and as a fraction (right)

[7] M. Musthag and D. Ganesan. Labor dynamics in a
mobile micro-task market. In W. E. Mackay, S. A.
Brewster, and S. Bødker, editors, CHI, pages 641–650.
ACM, 2013.

[8] P. Narula, P. Gutheim, D. Rolnitzky, A. Kulkarni, and
B. Hartmann. MobileWorks: A mobile crowdsourcing
platform for workers at the bottom of the pyramid.
Proc. HCOMP11, 2011.

[9] H. Väätäjä, T. Vainio, E. Sirkkunen, and K. Salo.
Crowdsourced news reporting: supporting news
content creation with mobile phones. In Proceedings of
the 13th International Conference on Human
Computer Interaction with Mobile Devices and
Services, MobileHCI ’11, pages 435–444, New York,
NY, USA, 2011. ACM.

[10] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch:
exploiting crowds for accurate real-time image search
on mobile phones. In MobiSys ’10: Proceedings of the
8th international conference on Mobile systems,
applications and services, pages 77–90. ACM Press,
2010.

[11] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and
M. Corner. mCrowd: a platform for mobile
crowdsourcing. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’09, pages 347–348, New York, NY, USA,
2009. ACM.

6

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

19

Condition-Task-Store: A Declarative Abstraction for
Microtask-based Complex Crowdsourcing

Kenji Gonnokami
University of Tsukuba

s1320687@u.tsukuba.ac.jp

Atsuyuki Morishima
University of Tsukuba

mori@slis.tsukuba.ac.jp

Hiroyuki Kitagawa
University of Tsukuba

kitagawa@cs.tsukuba.ac.jp

ABSTRACT
Microtasks have been widely adopted by many crowdsourc-
ing platforms as a unit for human computation. Recently,
tools to support programmers to implement complex crowd-
sourcing applications with microtasks have been proposed.
One approach is to provide a library of functions that can
be called by programs written in imperative programming
languages. Another approach is to allow SQL queries to
invoke microtasks. The former approach provides large ex-
pressive power, while the latter allows declarative descrip-
tions with limited expressive power. This paper proposes
the Condition-Task-Store (CTS) abstraction, which is an al-
ternative declarative approach to implement complex data-
centric crowdsourcing with microtasks. The CTS abstrac-
tion is unique in that it has all the following features: (1)
it naturally extends the task template adopted by many
crowdsourcing platforms to define microtasks, (2) it allows
declarative descriptions of crowdsourcing systems, and (3)
it has large expressive power.

1. INTRODUCTION
As computer network technologies evolved, crowdsourc-

ing became popular in many application domains. Software
systems that take the crowdsourcing approach are called
crowdsourcing systems [2].

Crowdsourcing systems are often constructed on crowd-
sourcing platforms, which provide fundamental functions
for implementing crowdsourcing systems. For example, the
Amazon Mechanical Turk (MTurk) [3] is a crowdsourcing
platform that provides a market in which workers perform
microtasks (called HITs in MTurk) with a small payment
amount per task. Crowdsourcing platforms often provide
APIs for requesters to register microtasks in the platforms.

Because there are frequent patterns appearing in pro-
grams for crowdsourcing systems, software tools have been
developed to support the implementation of complex crowd-
sourcing systems. For example, Turkit [4] provides a library
of functions to define and call tasks from general-purpose
programming languages and introduces the crash-and-rerun

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

programming model for minimizing the cost of re-running
programs. Recently, the declarative approach to the develop-
ment of crowdsourcing systems has emerged because declar-
ative abstractions have an affinity toward crowdsourcing ap-
plications. Declarative descriptions do not impose unneces-
sary timing constraints, and we can adopt many well-known
optimization techniques. For example, there are proposals
that use SQL-like languages to describe data-centric crowd-
sourcing systems [7] [8] [13]. However, they provide limited
expressive power (see Section 4).

In this paper, we offer the following two key contributions:
(1) Alternative approach to declarative crowdsourc-
ing. We first introduce the Condition-Task-Store (CTS)
abstraction, which is an alternative declarative approach for
implementing complex data-centric crowdsourcing with mi-
crotasks. The CTS abstraction describes a crowdsourcing
system as a set of CTS rules, each of which is a natural
extension of task template adopted by many crowdsourc-
ing platforms to define microtasks. Therefore, programmers
who are familiar with task templates can easily write simple
programs with the CTS abstraction.

The CTS abstraction is unique in that it has all the follow-
ing features: (1) it naturally extends the task template, (2)
it allows declarative descriptions of crowdsourcing systems,
and (3) it has large expressive power.
(2) Novel criterion for the expressive power of lan-
guages. Next, we discuss the expressive power of the CTS
abstraction. We introduce a novel criterion to measure the
expressive power of programming languages for crowdsourc-
ing; the criterion focuses on the class of interactions with
humans we can implement with the language. The crite-
rion is important for the following two reasons. First, com-
plex crowdsourcing often requires various types of interac-
tions with humans. For example, one of such interactions
of crowdsourcing is the iterative collaboration [11], which is
not necessarily supported by every existing framework. Sec-
ond, the class of interactions is closely related to the class of
games in game theory: because human behavior is affected
by the incentives and rules defined by the game structure,
the class represents the size of mechanism design space, i.e.,
the set of possible mechanisms we can implement to ex-
ploit the wisdom of the crowd. In fact, the change of game
structure affects the quality of the data produced by crowd-
sourcing systems [5]. Our examples in Sections 3 and 4 also
suggest how game structure is important in crowdsourcing.
Then, we theoretically show that our CTS abstraction is not
only Turing complete, but can also support a wide range of
game structures.

1

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

20

The remainder of the paper is organized as follows. Sec-
tion 2 explains related work. Section 3 introduces the CTS
abstraction. Section 4 discusses its expressive power. Sec-
tion 5 explains a prototype to support the software develop-
ment using the CTS abstraction. Section 6 is the summary.

2. RELATED WORK
Many approaches to support the development of complex

crowdsourcing systems have been proposed. They differ
from one another in the abstraction they use to describe
crowdsourcing systems.
(1) Imperative programming languages. TurKit [4]
provides a function library for implementing crowdsourcing,
which can be used via codes written in imperative program-
ming languages. It supports the crash-and-rerun model to
avoid re-performing costly operations.
(2) MapReduce-like abstraction. CrowdForge [14] is
a MapReduce-like framework for describing complex tasks
on MTurk. It models a crowdsourcing system as a set of
tasks to implement partition, map, and reduce functions.
As we discuss in Section 4.3, the expressive power of the
CTS abstraction is larger than that of CrowdForge.
(3) Control/data flows. CrowdLang [11] is a language
for describing crowdsourcing systems in terms of basic op-
erators, data items, and control flow constructs. Currently,
it seems that CrowdLang is used as a language for writing
crowdsourcing systems at a high-abstraction level and that
it does not provide the means to describe the details required
to directly execute the code.
(4) Rule-based abstraction. The CTS abstraction is not
the first rule-based abstraction. CyLog [9] is a Datalog-like,
rule-based language for describing crowdsourcing systems.
A weakness of CyLog is that it requires programmers to be
familiar with programming by Horn clauses even for simple
crowdsourcing. In contrast, the core component of the CTS
abstraction is a task template. Therefore, although the CTS
abstraction borrows concepts from logic-based languages,
programmers can start with a set of simple task templates
and then naturally proceed to more complex crowdsourcing.
(5) SQL-like abstraction. CrowdDB [8], Qurk [7], and
Deco [13] use SQL to describe crowdsourcing systems. They
propose novel query processing and optimization schemes
and we believe that some of the proposed techniques can be
applied to the CTS abstraction. As shown in Section 4.3,
the expressive power of the CTS abstraction is larger.

To our knowledge, this paper is the first to investigate the
CTS abstraction. The abstraction models crowdsourcing
systems as a set of CTS rules, each of which is similar to a
task template. Technically, a CTS rule can be implemented
by combining two ECA rules [12]: one generates microtasks
and the other stores results in the database (and can be
implemented by using imperative languages). The CTS ab-
straction provides a higher-level, user-friendly abstraction
designed for describing crowdsourcing systems, which has a
well-defined semantics and proven large expressive power.

Our discussion on the expressive power is related to game
theory. Recently, the literature on algorithmic game the-
ory has addressed various aspects involving both algorithms
and games, such as complexities of computing equilibrium
of games [15]. To our knowledge, our paper is the first to
discuss classes of games that can be implemented by ab-
stractions for crowdsourcing.

3. THE CTS ABSTRACTION

<QuestionForm xmlns="http://mechanicalturk.
amazonaws.com/AWSMechanicalTurkDataSchemas/
2005-10-01/QuestionForm.xsd">
<Question>

<QuestionIdentifier>1</QuestionIdentifier>
<QuestionContent>

<Text>How many movies have you seen this month?</Text>
</QuestionContent>
<AnswerSpecification>

<FreeTextAnswer/>
</AnswerSpecification>

</Question>
</QuestionForm>

Figure 1: Example of a task template

In this section, we first explain task templates. Then, we
show examples to give an intuitive explanation of the CTS
abstraction. Finally, we explain formal definitions.

3.1 Task Templates
The task template is a popular form for defining and reg-

istering microtasks into crowdsourcing platforms. Figure 1
shows an example of a task template in XML format for
microtasks (HITs) of MTurk, which asks a worker to enter
how many movies he or she watched in a month. The es-
sential components of a task template are the question to
be shown (QuestionContent) and the type of the values to
be received by workers (AnswerSpecification). Task tem-
plates can contain variables (called placeholders) with which
we can define many microtasks that are based on the same
template but differ in the values bound to the variables.

Requesters first write task templates to define and insert
microtasks into the task pool. Then, workers perform the
tasks that exist in the task pool.

3.2 Overview of the CTS Abstraction
In the CTS abstraction, a crowdsourcing system is de-

scribed by a set of CTS rules. We assume that there exists
a relational database. CTS rules read and write data to and
from the database.

A CTS rule is the fundamental building block of the CTS
abstraction. We first give a simple example and next show
another example that requires more than one CTS rule.

Example 1. A Simple Crowdsourcing System
We use the task shown in Figure 2 to ask workers to tag

books. The details are as follows:

• The database has the Book(bid, title, author) rela-
tion to store book information.

• For each book stored in the Book relation, tags are given
by three workers.

• The result is stored in the Tag(bid, tag) relation.

• Workers are paid 10 (cents or any currency) per task, if
any other workers entered the same tag.

The crowdsourcing system can be described only by the
CTS rule in Figure 3. A CTS rule consists of three parts:
condition, task, and store. We explain each part below.
The condition part: We write the condition to generate
and insert a task into the task pool. The condition specifies
what tuples need to exist in the database for generating a
task. For example, the condition in Figure 3 states that a
task is generated for each tuple existing in the Book relation.
The task part: We write a task template that contains a
question to be posed to workers. The question can contain

2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

21

Figure 2: Example of a microtask

Condition Book(bid, title, author)

Task Question Please tag the book "$title"
written by "$author"

Generator Entry(desc:"Tag", var:tag,
type:text)

Count 3
Payoff PayIf(count(Tag(bid, tag))>=2, 10)

Store Tag(bid, tag)

Figure 3: Example of a CTS rule

variables (such as $author and $title) bound to values in
the condition (i.e., the variables are replaced with values
each time the task is generated). The task part also spec-
ifies additional information, including the variables and its
associated types, to store entered values.

Because there are frequently occurring patterns that ap-
pear in task template specifications, we provide template
generators that allow users to describe task templates with-
out specifying implementation details such as HTML tags.
The task part in Figure 3 states that we use the Entry tem-
plate generator with the following parameters: (1) the in-
put field is labeled as “Tag,” (2) the entered value is to
be stored in the tag variable, and (3) the type of tag is
text. Count is the number of tasks to be generated for the
same value. Payoff describes how much is paid to workers
per task. For example, PayIf(count(Tag(bid, tag)) >=

2, 10) states that 10 cents will be paid if there are other
workers that entered the same tag to the same book.
The store part: We specify the relations and attributes
in which the entered values will be stored. The store part
in Figure 3 states that we use the Tag relation to store bid

and the entered tag. 2

As the example above suggests, a CTS rule is a natural
extension of the widely-used task template. Because we can
omit the condition and task parts, a CTS rule can be used
to describe the following four types of processing.

1. Generate a task when the condition is satisfied, and
store the result into the database.

2. If the condition part is omitted, generate a task with
no condition, and store the result into the database.

3. If the task part is omitted, compute and store values
into the database when the condition is satisfied.

4. If both of the condition and task parts are omitted,
store values into the database with no condition.

Example 2. More Complex Crowdsourcing.
We consider a crowdsourcing system to rate restaurants,

in which workers perform the following two types of tasks:

Task 1: Enter names of restaurants (Figure 4). A 10 cent
payment is paid if the average rating by others is higher
than 3.

Task 2: Enter an evaluation rating (1 to 5) for the given
restaurant (Figure 5). Three workers perform this task
for each restaurant, and they receive 10 cents per task.

We assume that the results of Task 1 are stored in
Restaurant(rname), and that those of Task 2 are stored
in Rating(rname, value). Then, Figure 6 shows CTS rules
for Tasks 1 and 2.

Figure 4: Example of a microtask: Task 1

Figure 5: Example of a microtask: Task 2

Task1:
Condition

Task Question Please enter the name of a good
restaurant

Generator Entry(desc:"Restaurant Name", var:
rname, type: text)

Count
Payoff PayIf(avg(Rating(rname, value))>3, 10)

Store Restaurant(rname)

Task2:
Condition Restaurant(rname)

Task Question Please rate the restaurant
‘‘$rname’’ on a 5-point scale.

Generator Choice(var: value, type: int,
items: [1, 2, 3, 4, 5])

Count 3
Payoff Pay(10)

Store Rating(rname, value)

Figure 6: CTS rules for Example 2.

The CTS rule for Task 1 has no condition: thus, the task is
unconditionally generated. Unless the count number is spec-
ified, the number of generated tasks is determined as follows:
(1) if the key of the predicate (rname of Restaurant(rname))
is bound to values by the condition, the task is generated
only once for each case in which the condition is satisfied; (2)
otherwise the same task is repeatedly generated everytime
the task is performed and removed from the task pool.

The condition of the CTS rule for Task 2 states that it
generates a task for each tuple stored in Restaurant relation.
Thus, the task is generated for each restaurant entered in
Task 1. Workers receive 10 cents for performing a task. 2

Discussion. As the examples above suggest, the descrip-
tion is declarative, and each rule is invoked when its condi-
tion is satisfied. Compared to the code written in imperative
programming languages, CTS rules naturally describe the
parallel and asynchronous processing of computation involv-
ing human workers. On the other hand, the CTS abstraction
is more expressive than the declarative query languages that
do not support the transitive closure, because it essentially
supports a loop with a dynamic condition check [1].

An important point is that the incentive structure plays
a critical role to appropriately exploit the wisdom of crowd
and (at least theoretically) ensure data quality. Because the
incentive structure and rules involving multiple humans can
be modeled as games, we can use game theory to discuss
their behaviors. For example, with a simple game-theoretic
analysis, the incentive structure of Example 1 guarantees
that rational workers enter tags that others can easily come
up with. Similarly, the incentive structure of Example 2
guarantees that rational workers for Task 1 enter the names
of restaurants that are likely to receive high ratings.

3.3 Formal Definition

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

22

This section first defines the CTS rules and then explains
the syntactic sugar for the concise description of rules.

3.3.1 Definition of CTS Rules
Definition 1. A program of the CTS abstraction is a
set of CTS rules, each of which is modeled as a triple
Ri = (Ci, Ti, Si), running over a relational database schema.
Here, Ti is a task template, Ci is the condition to generate
a task using Ti, and Si is the description of how to store
the result in the database. The database contains a pre-
defined relation with the schema Worker(pid, payoff) to
store information on workers and the accumulated values of
the payoffs they received so far.

• Ci is a sequence P1(x11, . . . , x1n1), . . . , Pm(xm1, . . . , xmnm)
of zero or more atoms. Some of the atoms can be arith-
metic atoms, such as x11 = 3.

• Ti is either a triple (q, x̄, ȳ) or null. Here, q is a question
for workers, x̄ is a sequence of variables bound by Ci,
and ȳ is a sequence of variables to store the results of
performing the task.

• Si is a sequenceQ1(y11, . . . , y1n1), . . . , Qm(ym1, . . . , ymnm)
of one or more atoms, where each yjk is any of a vari-
able bound by Ci, a variable that appears in ȳ, or a
constant. Each atom can be followed by either /update
or /delete. 2

3.3.2 Syntactic Sugar
We introduce the following variety of syntactic sugars to

make the rule description concise.
(1) Attributes of atoms. The notation of atoms, which
appear in the condition and store part of CTS rules, are
essentially the same as those of Prolog and Datalog. A
key difference is that they explicitly specify attribute names
for their parameters. Each parameter is specified in the
form attribute:variable or attribute:constant. For example,
Restaurant(name:x, zip:305) is an atom.

There are cases in which parameters and attributes can
be omitted in each atom, as described below.

• We can omit a parameter if the rule does not con-
sume the value of the bounded variable. For example,
Restaurant(name:x) is an atom that omits zip.

• We can omit an attribute name if the attribute name
is the same as the variable name. For example,
Restaurant(name:name, zip:y) can be represented
as Restaurant(name, zip:y) because the attribute
and the variable have the same name.

(2) Task part. Because we have frequently occuring pat-
terns in the description, we introduce task-template gener-
ators and the following three fields for the task part.

•Generator is the name of a task-template generator, as-
sociated with its parameters. For example, Entry and
Choice in Figure 6 are task-template generators. They
generate actual task templates based on the given pa-
rameters and the sentence written in the Question
field. These allow users to define task templates with-
out specifying implementation details (such as HTML
tags). The Crapid system (Section 5) implements var-
ious task-template generators.

•Count specifies the number of generated tasks. Let N
be the number specified in the field. For every case in

which the condition holds, the same task is generated
N times and N tuples are inserted into the relation.
This is implemented by adding the count attribute
to the schema of the relation in the store part, and
copying the CTS rule N times in the program.

•Payoff specifies a function to compute payoff values
given to workers. If a function is specified, rules to
update Worker(pid, payoff) are automatically gen-
erated and added to the set of rules. The Crapid sys-
tem provides pre-defined payoff functions.

3.4 Evaluation Model and Semantics
Given a description d of the CTS abstraction, the evalu-

ation of d on instance ins of the database is performed by
evaluating each CTS rule in a bottom-up way on ins. More
precisely,

• For each CTS rule (Ci, Ti, Si) ∈ d, check if Ci is satis-
fied with ins in the following way: for each atom ak in
Ci (from left to right), check if there exists any tuple
to bind variables in ak to the values that are consis-
tent with the values bound to the variables appeared
in a0 . . . ak−1.

• For every combination V of values that satisfies all the
atoms in Ci, perform one of the following:

– If Ti 6= null, replace variables in Ti with values in
V and insert the task into the task pool.

– If Ti = null, create new tuples using values in V
for the atoms that appear in Si. Then, perform
one of the following: insert the tuples into ins,
update ins with the tuples (when the atom is fol-
lowed by /update), or delete the tuples from ins
(when followed by /delete).

• If a worker completes the generated task, (1) create
new tuples for the atoms that appear in Si, using val-
ues in V and the entered values for the task, then (2)
apply the insertion, delete, or update operation to ins
with the new tuples.

• If ins is updated, check if there exist rules for which Ci

is satisfied with the new ins. If such rules exist, process
them. Terminate the process if we cannot find such a
rule. If there are multiple rules that can be executed
at the same time, the rule that appears earlier in the
code is evaluated first.

For example, assume that we have the CTS rule shown in
Figure 7. We first check if there exists a tuple that matches
Image(i, size, type:"photo") in the database. Assume
that the Image relation has tuple t = (img98, 100, photo).
Then, i and size are bound to img98 and 100, respectively.
Next, check if there exists a tuple that matches Large(size)
with size=100. If exists, we replace $i in the task template
with img98 and insert the task into the task pool to ask
workers to choose the category for the image img98. If the
task is performed, the result of performing the task is stored
into LargePhoto, and the payoff attribute of the Worker re-
lation is incremented by 1.

Given a set d of CTS rules, the semantics of d is defined
as a set of rational consequences of d, in a similar way as
the semantics of CyLog codes [9]. A rational consequence
of d is a set of facts that are derived from the rules and
the equilibrium [16] of the games, i.e., the states reached by
rational workers.

4

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

23

Condition Image(i, size, type:"photo"), Large(size)

Task Question Please choose a category of $i.
Generator Choice(var: category,

type:string, items:[landscape,
portrait, animal, food, others])

Count 1
Payoff pay(1)

Store LargePhoto(i, category)

Figure 7: Two atoms in the condition part

Rule 1
Condition
Task
Store TuringMachine(id:1, st:s, head:0)

Rule 2

Condition

TuringMachine(id, st, head),
Tape(pos:head, sym),
Rule(st, sym, new st, new sym, dir),
new pos = pos + dir

Task

Store
TuringMachine(id, st:new st, head:new pos)/update,
Tape(pos, sym:new sym)/update

Rule 3
Condition TuringMachine(id, head)

Task
Store Tape(pos:head)/update

Figure 8: CTS rules implementing a Turing machine

4. EXPRESSIVE POWER
This section discusses the expressive power of the CTS ab-

straction. First, we show that the CTS abstraction is Turing
complete. Then, we introduce a criterion to measure the ex-
pressive power of programming languages, which focuses on
the class of games the language can implement. Finally, we
compare the expressive power of the CTS abstraction with
those of other frameworks.

4.1 Turing Completeness
Theorem 1. The CTS abstraction is Turing complete.

Proof Outline. Figure 8 is a set of CTS rules that im-
plements any Turing machine. Formally, a Turing machine
consists of a quintuple (K,Σ, δ, s,H) where K is a finite set
of states, Σ is an alphabet, s ∈ K is the initial state, H ∈ K
is the set of halting states, and δ is the transition function
[6]. Intuitively, we need the following three components to
implement a turing machine.

Element 1. Memory of the machine’s inner state

Element 2. Head reading and writing information stored in
the tape

Element 3. The long tape in infinitum.

In Figure 8, TuringMachine(id, st, head) implements
Elements 1 and 2. Here, st records the current state whose
domain is K, and head stores the position of the head.
Tape(pos, sym) implements Element 3, in which each tuple
(p, s) states that symbol s (whose domain is Σ) is written at
position p of the tape. Rule(st, sym, new st, new sym,

dir) stores the rules δ to read and write symbols on the
tape and move the head.

Rule 1 initializes a Turing machine (the initial state is s).
Rule 2 states how the head moves and writes symbols onto
the tape according to the rules stored in Rule(st, sym,

new st, new sym, dir). It states that if the inner state is
st and the symbol at the current position of the head is
sym, write new sym at the position, update the inner state

by new st, and move the head to pos+dir. Rule 3 extends
the tape when the head reaches a position that the head
never visited before. We need Rule 3 because Rule 2 always
requires that Tape(pos, sym) exists. We also need a rule
to stop the machine if it reaches the halting states H ⊆ K.
The rule is obvious and omitted due to the space limitation.

Defining the CTS rules to implement a Turing machine
proves that the CTS abstraction is Turing complete. 2

4.2 Expressive Power in Terms of Games
This section proposes to use the game concept as a mea-

sure of the expressive power of programming languages for
crowdsourcing, because the class of games that the language
can implement affects the way in which the implemented sys-
tem can exploit the power of the wisdom of crowd. First, we
enumerate several classes of games and show the relationship
among the classes.

Definition 2. G1 is a class of games that satisfy the follow-
ing conditions:

1. Every input from a human is not affected by the inputs
from others, and

2. The payoffs are computed by a primitive recursive
function of the input values. 2

An example of a game in G1 is one that asks humans to
enter tags for a given image without telling them what tags
are entered by other humans. Payoffs are defined for each
combination of worker inputs. For example, workers receive
payoffs when they enter the same tag. Games in G1 are
called simultaneous games in game theory.

Definition 3. GN is a class of programs in which (1) N(> 0)
is known in advance; (2) each game has at most N -phases of
interactions, each of which asks a worker to enter data; (3) at
each i-th phase workers are shown some information based
on what was entered in the first to the i− 1-th phases; and
(4) payoffs are computed by a primitive recursive function
of the entered values. 2

Each game in GN has at most N phases, each of which
asks a human to enter data considering some information
computed from data in the previous phases. For example,
assume that we want to divide a set of cakes into two groups
whose total prices are equivallent to each other. Then, a
program that (1) asks one worker to divide the cakes into
two groups at the first phase, then (2) asks another worker
to choose one group, and finally (3) gives to each worker the
total price of cakes in his group, belongs to GN (with N=2).
Note that the game guarantees that the prices of the two
groups become the same if workers are rational; it exploits
the power of human intelligence to compute how they can
make two groups whose prices are equivalent to each other.
From the definition, every game in G1 belongs to GN .

Definition 4. G∗ is a class of programs in which each pro-
gram (1) executes a sequence of interactions with workers,
with the sequence being generated by a primitive recursive
function, (2) shows workers at each interaction the informa-
tion computed by a function whose parameters are taken
from the results of past interactions, and (3) payoffs are
computed by a primitive recursive function of the entered
values. 2

An example of a game in G∗ is to ask workers to write a
paragraph that explains a given keyword. Workers update

5

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

24

Table 1: Expressive power
Abstraction /Framework Turing complete Class of games

MTurk alone N ⊆ G1
CrowdForge N ⊆ GN
CrowdDB/Deco/Qurk N ⊆ GN
CTS Abstraction Y G∗
Imperative programming lan-
guages with the MTurk API

Y G∗

the paragraph until the paragraph is satisfied by the major-
ity of the crowd. When the paragraph is completed, every
writer (worker) who contributed to the paragraph receives a
payoff, which is computed by dividing a fixed total payment
by the number of the contributors.

Theorem 2. GN is a proper subset of G∗.

Proof. For every g, g ∈ GN ⇒ g ∈ G∗ and for any given i,
there exists g ∈ G∗ s.t. g has i+1 input phases and therefore
g 6∈ GN . 2

Theorem 3. Assume that we allow Turing machines to
interact with humans at any step of its execution. Let M be
the set of all such machines. M can implement any g ∈ G∗.

Proof. The sequence of interactions with workers that can
be generated by a primitive recursive function can be imple-
mented by some m ∈ M . The information shown and the
payoffs can be computed if m is a Turing machine. 2

Note that being Turing complete is not a sufficient con-
dition to be able to implement G∗, because the power of
interactions with humans does not matter for a language to
be Turing complete. G∗ contains indefinite-length sequential
games (in game theory) that can be expressed with Turing
machines that are able to interact with humans at any step
of its execution.

From the definition of the CTS rules, the following holds.

Theorem 4. The CTS abstraction can implement any
games in G∗. 2

4.3 Comparison of Expressive Powers
Table 1 compares the expressive powers of different ab-

stractions and frameworks. Games implemented by manu-
ally registering HITs to MTurk are contained in G1, whereas
code written in programming languages that uses MTurk
APIs can implement games in G∗. CrowdForge can imple-
ment a part of the games in GN , while its expressive power
is not larger than GN , because it is not Turing complete.
In particular, games implemented by a combination of par-
tition, map, and reduce are contained in GN with N = 3.
Similarly, the class of games that CrowdDB, Qurk, and Deco
can implement is not larger than GN .

5. PROTOTYPE SYSTEM
We implemented the Crapid system, a prototype system

to develop crowdsourcing systems using the CTS abstrac-
tion. Crapid takes as input a set of CTS rules and outputs
executable code. Crapid supports various task-template
generators (i.e., Entry, Choice, Decision, and Comparisons
as of May 2013) and payoff functions to help users easily
define microtasks in CTS rules. Crapid provides a form-
based user interface. When a user chooses a task-template
generator, Crapid provides an appropriate set of selection
boxes and drop-down menus to specify CTS rules. The out-
put code is executable on Crowd4U [10], a crowdsourcing
platform deployed at universities.

6. SUMMARY
This paper introduced the CTS abstraction, a declarative

approach for implementing complex crowdsourcing with mi-
crotasks. The paper also introduced a novel criterion to
measure the expressive power of programming languages for
crowdsourcing by focusing on the class of games we can im-
plement with the language. The class represents the size of
mechanism design space, i.e., the set of possible mechanisms
we can implement to exploit the wisdom of the crowd. The
CTS abstraction is unique in that it has all the following
features: (1) it naturally extends the task template adopted
by many crowdsourcing platforms, (2) it allows declarative
description, and (3) it has large expressive power.

Future work includes the development of various rewriting
techniques for the CTS abstraction. For example, we plan
to adapt various optimization techniques for crowdsourcing
systems [7] [8] [13] into our context.
Acknowledgements. The authors are grateful to Prof.
Shigeo Matsubara of Kyoto university for his helpful com-
ments, and to the contributors of Crowd4U, whose names
are partially listed at http://crowd4u.org. This research was
partially supported by PRESTO from the Japan Science and
Technology Agency, and by the Grant-in-Aid for Scientific
Research (#25240012) from MEXT, Japan.

7. REFERENCES
[1] S. Abiteboul, R. Hull, V. Vianu: Foundations of

Databases. Addison-Wesley 1995.
[2] A. Doan, R. Ramakrishnan, A. Y. Halevy. “Crowdsourcing

systems on the World-Wide Web. Commun.ACM. 2011,
vol. 54, no. 4, p. 86-96.

[3] Amazon Mechanical Turk, https://www.mturk.com/.
[4] G. Little, L. B. Chilton, M. Goldman, R. C. Miller.

“Turkit: human computation algorithms on mechanical
turk”. Proc. UIST (2010), ACM, New York, 57-66.

[5] S. Jain, D. C. Parkes. “A game-theoretic analysis of the
ESP game”. ACM Trans. Economics and Comput. 1(1): 3
(2013)

[6] H. R. Lewis, C. H. Papadimitriou. “Elements of the theory
of computation.” Prentice-Hall, Englewood Cliffs, New
Jersey, 1981

[7] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller.
“Human-powered sorts and joins”. In VLDB, 2012.

[8] M. J. Franklin., D. Kossmann, T. Kraska, S. Ramesh, R.
Xin. “CrowdDB: answering queries with crowdsourcing”.
SIGMOD Conference. 2011, p. 61-72.

[9] A. Morishima, N. Shinagawa, S. Mochizuki. “The Power of
Integrated Abstraction for Data-centric Human/Machine
Computations”. VLDS2011, pp. 5-9.

[10] A. Morishima, N. Shinagawa, T. Mitsuishi, H. Aoki, S.
Fukusumi. “CyLog/Crowd4U: A Declarative Platform for
Complex Data-centric Crowdsourcing”. PVLDB 5(12):
1918-1921 (2012).

[11] P. Minder, A. Bernstein. “CrowdLang: A Programming
Language for the Systematic Exploration of Human
Computation Systems”. SocInfo 2012: 124-137

[12] N. W. Paton, O. Di’az. “Active Database Systems”. ACM
Comput. Surv. 31(1): 63-103 (1999)

[13] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina,
N. Polyzotis, J. Widom. “An overview of the deco system:
data model and query language; query processing and
optimization”. SIGMOD Record 41(4): 22-27 (2012)

[14] A. Kittur, B. Smus, S. Khamkar, R. E. Kraut.
“CrowdForge: crowdsourcing complex work”. UIST 2011:
43-52

[15] T. Roughgarden. “Algorithmic game theory”. Commun.
ACM 53(7): 78-86 (2010)

[16] F. Vega-Redondo. Economics and Theory of Games,
Cambridge University Press, 2003.

6

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

25

The Palm-tree Index: Indexing with the crowd∗

Ahmed R. Mahmood
Purdue University

amahmoo@purdue.edu

Walid G. Aref
Purdue University

aref@cs.purdue.edu

Eduard Dragut
Purdue University

edragut@purdue.edu
Saleh Basalamah

Umm Al-Qura University

smbasalamah@uqu.edu.sa

ABSTRACT
Crowdsourcing services allow employing human intelligence in
tasks that are difficult to accomplish with computers such as image
tagging and data collection. At a relatively low monetary cost and
through web interfaces such as Amazon’s Mechanical Turk (AMT),
humans can act as a computational operator in large systems. Re-
cent work has been conducted to build database management sys-
tems that can harness the crowd power in database operators, such
as sort, join, count, etc. The fundamental problem of indexing
within crowdsourced databases has not been studied. In this paper,
we study the problem of tree-based indexing within crowd-enabled
databases. We investigate the effect of various tree and crowdsourc-
ing parameters on the quality of index operations. We propose new
algorithms for index search, insert, and update.

1. INTRODUCTION
Crowdsourcing is the practice of solving large problems by di-

viding them into smaller tasks, each of which is then solved by
humans from an online community. The tasks are usually difficult
to be performed automatically by a computer as they require hu-
man intelligence. Typical crowdsourcing tasks involve labelling,
ranking, data cleaning, data filtering, data collection, and entity
matching (e.g., see [11, 6, 2, 15, 5, 14]). Websites, e.g., Amazon’s
Mechanical Turk (MTurk) [1] provide an infrastructure for orga-
nizations to submit numerous micro-tasks and collect their results
after they are fulfilled by human workers recruited at those web-
sites. In a typical crowdsourced application, tasks are replicated
and are answered by multiple people to avoid single user errors.
Each person answering a task incurs a (monetary) cost. Thus, a
challenging problem for crowdsourcing is that of optimizing the
number of tasks while maintaining the accuracy of the results.

Consider the following scenario where a crowdsourcing tree-
based index can be useful. Assume that a car repair shop wants
to provide an online service that allows users to submit pictures of
their damaged cars to get an estimate of repair cost of their car. The

∗This work was partially supported by the National Science Foun-
dation under Grants III-1117766 and IIS-0964639.

Copyright © 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

repair shop maintains images of cars previously repaired associated
their actual repair cost. A good repair estimate would be the actual
repair cost of previously repaired car of similar condition. Building
a tree index on images of previously repaired cars sorted based on
their repair cost allows performing crowdsourcing-based similarity
queries on the index. These queries help users to find cars with
similar conditions and hence anticipate the same repair cost to their
own damaged car. The key to the success of this scenario is that
the cost of repair is directly proportional to the condition of the car.
The same idea can be applied when estimating the selling price of a
used car, the cleaning cost of rental rooms, the placement of a new
soccer player in player rankings or the ranking of new scientific
publications, etc.

In this paper, we introduce the palm-tree index; a crowdsourc-
ing tree-based index. We call our proposed crowdsourcing tree-
based index palm-tree index as real palm trees also need humans
in order to move the pollen from one male tree to the other female
trees to produce fruits (dates). The palm-tree index aims at index-
ing keys based on properties that need human intelligence, e.g., to
compare images against each other in order to descend and nav-
igate the index. Crowdsourcing-based tree indexing is useful for
(1) the ordering of a set of keys based on a subjective property,
(2) performing index nested-loops joins, and (3) answering range
queries, among other typical uses of an index. The problem of
crowdsourcing-based indexing is challenging because of the fol-
lowing issues. First, crowd-based comparisons are subjective and
are prone to error. Hence, we need to find strategies that give the
most accurate and consistent results. Second, comparison tasks per-
formed by the crowd incur a (monetary) cost. Hence, optimizing
the number of tasks while preserving accuracy is very important.

The contributions of this paper are summarized as follows:

• We introduce the problem of crowdsourcing tree-based in-
dexing as a technique for ordering a set of items with “sub-
jective” keys.

• We present a taxonomy for crowdsourcing tree-based in-
dexes.

• We introduce the palm-tree index, a crowdsourced index,
along with several accompanying index traversal algorithms.

• We study the quality of the results retrieved using the palm-
tree index.

The rest of this paper is organized as follows. Section 2 intro-
duces the taxonomy for crowdsourcing tree-based indexes. Sec-
tion 3 presents notations used throughout the paper. Section 4
presents the palm-tree index and its search algorithms. Section 5
analyzes the proposed algorithms. Preliminary experimental results

1

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

26

are given in Section 6. Related work is presented in Section 7. Sec-
tion 8 contains concluding remarks.

2. PROBLEM TAXONOMY
In this section, we introduce a taxonomy for crowdsourcing tree-

based indexes. This taxonomy can be seen as extension to the
one presented in [8], which addresses only worker motivation, task
replication and task assignment. Our taxonomy adds concepts re-
lated to tree indexing (e.g., tree height) and to crowdsourcing in
general (e.g., worker experience). Figure 1 depicts the taxonomy.

Crowdsourcing

tree-based

indexingTree

height

Task

assignment

Task

submission

Worker

experience

Worker

motivation

x� Balanced

x� Unbalanced

x� User select

x� Sever Assign

x� Batch

x� Sequential

x� Hybrid

x� Equal

x� Variable

x� Malicious

x� Volunteer

x� Rewarded

Cost

bounds

x� Unlimited

x� limited

Task

replication

x� Single

x� Replicated

Number of

Dimensions

x� One

x� Multi

Figure 1: A taxonomy of crowdsourcing tree-based indexing. The
concepts utilized in this paper are shown in boldface.

Tree height It specifies whether the tree is balanced or not. The
proposed palm-tree index is a balanced B+-tree-like struc-
ture to obtain predictive query cost. More detail about query
cost is given in Section 3.

Number of dimensions An index can be either one-dimensional
or multi-dimensional. In this paper we consider one-
dimensional indexing.

Worker motivation In some situations, workers may be willing
to perform tasks for free, e.g., see [8], However, in most in-
stances workers seek rewards for their services. This raises
several issues, e.g., budget estimation and the presence of
low quality work due to workers solving tasks quickly to ob-
tain more money. In this paper we consider rewarded work-
ers.

Worker experience A simple model to describe workers is to as-
sume that all workers have equal experience, e.g., as in [11].
An alternative and viable model is to differentiate workers
based on their level of expertise, e.g., as in [3]. In the palm-
tree index, workers are assumed to have indistinguishable,
i.e., equal, expertise. We plan to extend our analysis to the
general case when workers have variable experience. One
special type of workers is a malicious worker. A malicious
worker aims at degrading output quality by providing inten-
tionally faulty and misleading answers. Coping with mali-
cious workers is not addressed in this paper.

Task assginment There are two cases to consider: (1) The worker
chooses the tasks to work on, or (2) the tasks are automati-
cally assigned to the worker without the workers interference
in the selection. This dimension is particularly important
when workers are of variable expertise. For example, it is
important to avoid assigning difficult tasks to inexperienced
workers. In this paper, we assume Case 2, above.

Task replication In a single task no-replication model, workers
are trusted to deliver high quality answers. In many other
situations, workers’ responses incur error. The Replicated
task model allows aggregating multiple workers’ opinions to
increase the quality of the results. In this paper, we assume
the replicated model.

Task submission model A task submission model describes how
replications of the same task are submitted to workers. One
alternative is to submit all task replicas in a single batch. This
technique can reduce the response time to get the final results
as task replicas are solved by multiple workers concurrently.
Nonetheless, one may end up submitting more tasks than
needed. In order to reduce the cost needed for simple tasks,
the replicas of same task can be submitted sequentially. In
the sequential model, a replica of a task is submitted only
when the outcome of the previous replicas does not produce
results that are of acceptable quality. The sequential tech-
nique increases the task response time as replicas wait for
each other. A hybrid submission model is a middle-ground
between both alternatives. In the hybrid model, small-sized
batches of the same task are submitted sequentially. In this
paper, we only consider the batch task submission model,
i.e., that replica tasks are submitted in parallel to the desig-
nated workers at the same time.

Cost bounds Having unlimited cost per worker is a rare occur-
rence. It may occur when the quality of the result is of major
importance. Typically, cost for tasks are limited and opti-
mizing the overall task error within cost bounds is of major
importance. In this paper, we consider the limited cost case.

3. PRELIMINARIES AND INDEX MODEL

3.1 Problem definition
Let S be a set of N items and q be a query item. The keys of

these items are subjective or imprecise (e.g., the item is the photo
of a damaged car and the key is the cost of repair for this car). We
need to address the following issues:

• Order the items in S according to their keys.

• Construct (build) an index on S.

• Submit query q on S to the crowd.

• Aggregate crowds responses to query q to produce a final
result .

3.2 Index model
The structure of the palm-tree index is composed of two compo-

nents: the index manager and a B+-tree. Figure 2 gives the main
components of the palm-tree index. We distinguish between two
main concepts in the palm-tree; jobs and tasks. A job is the unit
of work submitted by a palm-tree user to perform either a query or
an insertion on the indexed data. A task or HIT (Human Intelligent
Task) is the smallest unit of work assigned to a worker. Typically,
a job involves generating multiple tasks.

3.2.1 The B+-tree Component
The palm-tree index is built on top of a B+-tree index. Each

node in the B+-tree has n ordered keys and represents one task.
[11] observes that human beings are capable of performing n-ary
operations with ease. Therefore, we give to a worker a sorted list
A of n items, e.g., images or videos, along with the query item q,

2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

27

��������	
����
������

������	�������
����������

�������

���

����

�����

Figure 2: palm-tree index model.

e.g., a query image or video, and ask the worker to place q in A
based on how q compares to the items in A. For instance, A can be
a list of 5 pictures of cars sorted according to the extent to which
the car is damaged, while q can be the picture of a new damaged
car. The fanout f of the B+-tree (the maximum allowed children
of a node other than the root) naturally captures the maximum n-
ary operations that a human can accomplish with ease. Clearly, a
human being can handle a lot easier a list A with 5 pictures than one
with 20. Determining the optimal f for a given problem requires
an initial phase of training. We discuss this issue in more detail in
Section 5.

Construction (building) of the palm-tree depends on the type of
indexed keys. We have two types of keys: quantitative and quali-
tative keys.

DEFINITION 3.1. A quantitative key is a key to be indexed
that has two proportional properties, namely, a subjective property
and an assessed value. For quantitative keys, the palm-tree index
can be constructed by sorting keys based on the assessed values
then bulkload the index.

DEFINITION 3.2. A qualitative key is a key to be indexed
based on a subjective property only. It does not have any asso-
ciated assessed value. For qualitative keys, a palm-tree index can
be constructed only using successive insertions and human-based
comparisons.

One example of a quantitative key is images of damaged cars as-
sociated with actual repair costs. The degree of car damage is the
subjective property of the key while the repair cost is the quantita-
tive key. An example of a qualitative key is images of butterflies
with an ordering based on beauty as a subjective property. Reg-
ular B+-tree splitting/merging algorithms are used during inser-
tion/deletion into/from the B+-tree. For both types of keys, queries
use human intelligence to make comparisons needed to search the
B+-tree. All comparisons are based on the subjective property only.

3.2.2 Index manager
The palm-tree index manager is responsible for tree construc-

tion and query processing within the palm-tree. It initiates jobs for
users’ requests, generates tasks for every job, assigns tasks to work-
ers, and aggregates workers’ responses. We use majority voting to
aggregate responses of workers.

In the palm-tree index, a task consists of items (e.g., pictures) in
a node in the B+-tree. A worker is asked to choose the best location
for a query item among these items. Figure 3 gives an example task

Table 1: Palm-tree index operations

Operation Quantitative keys Qualitative keys
Query Crowd-search Crowd-search

Insert B+-tree insert Crowd-search then
B+-tree insert

Build Bulk loading or
Successive inserts

Successive inserts

Delete Query then
B+-tree delete

Query then
B+-tree delete

Update Delete then insert Delete then insert

for estimating the repair cost of a car. The image on top represents
the query image, while the images below are the items in a node
in the tree. The worker assess where the query key fits among the
current nodes keys.

k1 k2

Query

item

k3

Less

Expensive

More

Expensive

N
o

d
e

C
o

n
te

n
t

Q
u

e
ry

C
o

n
te

n
t

Figure 3: Sample task for choosing the best branch to estimate the
car repair cost.

4. ALGORITHMS
Table 1 describes how the build, insert, update, delete, and query

operations are performed in the palm-tree index. Regular B+-tree
algorithms (i.e, insert-split) are performed directly and do not in-
volve the crowd. We focus on the crowd-search operation (i.e.,
querying the palm-tree index using the crowd) because the other
operations depend on it.

The original search algorithm for the B+-tree index is not di-
rectly applicable for the crowdsourced palm-tree index. The palm-
tree search algorithm is dependent on the way the palm-tree is
traversed and the way the workers answers are aggregated. We
identify three search strategies for the palm-tree search algorithm.
All three search strategies share the following two steps. The first
step is root task generation that generates tasks at the root level
and is common for all three strategies. The second step is the re-
sponse handler that generates tasks at the lower levels of the tree
and varies according to the three strategies. Algorithm 1 describes
the root task generation step.

Algorithm 1: generate root tasks(Tree tree,Key q)
k← get replications(tree,h)
solved← 0 // zero solved so far
for i = 1 to k do

w← choose worker()
h← tree.height // tasks at the root level
t← create task(tree,h,q,w)
submit task(t,response handler)

end

4.1 Leaf-Only Aggregation Strategy

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

28

In this technique, a job is replicated to K workers. A worker
performs the index search by descending the tree from the root to
the leaf based solely on this workers own decisions or assessments
to find the best match to the query item. All workers responses and
final results are aggregated only at the leaf level. Algorithm 2 gives
an outline of the leaf-only aggregation strategy.

Algorithm 2: handle leaf only aggregation(Task t)

if t.level 6= 0 then // task at non-leaf level
tree← get subtree(t.response,t.tree)
t← create task(tree,t.level-1,t.q,t.w)
submit task(t,handle leaf only aggregation)

else
solved++
if solved == k then // all workers finished

result =← aggregate all results
return result

end
end

4.2 All-levels Aggregation Strategy
An alternative search strategy is to move down the tree level by

level. The path from the root to the final search position is collec-
tively determined by the crowd as follows. The search is started at
the root where K0 tasks are generated at this level. After all work-
ers complete their tasks at the root level, their answers are aggre-
gated, say by majority voting, and the child node that corresponds
to the item with the highest vote is selected. Let this node be v. We
generate K1 new tasks for v. We aggregate the answers from the
K1 workers and decide which of the children of v to go to next. We
repeat the process until we reach the leaves.

There are two variations of this search technique: uninformed
and informed workers. In the former, a worker is not aware of
the other workers’ decisions. In the latter, a worker is allowed to
view a summary of the other workers’ responses to the current task.
Algorithm 3 provides an outline of this search procedure.

Algorithm 3: handle all levels aggregation(Task t)
solved++
if solved == k then // all workers finished at
this level

result =← aggregate all results
if t.level 6= 0 then // task at non leaf level

k← get replications(tree,t.level-1)
tree← get subtree(result,t.tree)
for i = 1 to k do

w← choose worker()
t← create task(tree,t.level-1,t.q,w)
submit task(t,handle all levels aggregation)

end
else

return result
end

end

4.3 All-levels Aggregation Strategy with
Backtracking

The two search procedures above, namely the leaf-only and all-
levels aggregation strategies, cannot compensate for an error. Back-
tracking is one way to correct potentially wrong decisions of the

workers. A priority queue of pointers to the unexplored nodes in
the index. Unexplored nodes are ordered in the priority queue ac-
cording to their height (or level) in the tree. Nodes at the same
level in the B+-tree index are ordered by the percentage of votes
given to these nodes. To detect bad decisions, workers are shown
progressively the leaf node bounds of the current sub-tree at hand.
If the workers indicate that the position of the query key falls out-
side the range of the keys in leaf nodes, then the current sub-tree is
abandoned and another node is picked from the top of the priority
queue to resume the search.

Figure 4 gives an example of the backtracking search strategy. In
Figure 4(a), a palm-tree of fanout 2 is used to index keys 1 through
8. Figure 4(b) illustrates the steps of traversing the tree. The search
starts at the root node A. Node B is at the top of the priority queue
withas 60% of the workers indicate this node. The priority queue
keeps track of other alternatives besides B. In next step we show the
range (i.e., the min and max) of the keys in the sub-tree rooted at B,
that is from 1 to 4. Assume that the workers indicate that the query
key is larger than 4; then we have an error. Hence, we backtrack
to node C. We insert in the queue node D. Algorithm 4 outlines the
search steps.

Algorithm 4: handle backtrack all levels aggregation(Task
t)
solved++
if solved == k then // all workers finished at
this level

result =← aggregate all results
if result outside range of current subtree then

tree← pop queue()
else

tree← get subtree(result,t.tree)
end
push queue(other voting alternatives)
if t.level 6= 0 then // task at non-leaf level

k← get replications(tree,t.level-1)
for i = 1 to k do

w← choose worker()
t← create task(tree,t.level-1,t.q,w)
submit task(t,handle backtrack all levels aggregation)

end
else

return result
end

end

5. ANALYSIS
In this section, we study how to set the parameters of the palm-

tree index: tree order and cost distribution. We also introduce
the main performance metrics of the palm-tree index, mainly, error
and cost.

5.1 Performance metrics
The location of a key is the rank of the key in the ordered list

of keys at the leaf level of the tree. Let q be a query key with a
ground truth location, say loctruth, at the leaf level, and locret be
the retrieved location using one of the search strategies.

DEFINITION 5.1. Error E is the distance between ground
truth location and retrieved location of the query key
E= | loctruth − locret |

4

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

29

P5

P7P3

P2 P4 P6 P8

1 432 5 876

A

B C P5step 1

60% 40%

P3step 2 P1 P4

30% 70%

P7step 3 P5 P8

Priority queue

D

{}

{<C,60%>}

{<D,30%>}

(a) (b)

Figure 4: Backtracking all-levels aggregation strategy.

DEFINITION 5.2. Cost C is the total number of tasks to com-
plete a job.

5.2 Tree order and height
The order (fanout) of a regular B+-tree index is usually con-

strained by the size of the disk page. In contrast, in the palm-tree
index, the order of the B+-tree depends on the ability of workers
to process at once (in a single task) a specific number of keys (see
Section 3).

Notice that increasing the order of the tree increases a worker’s
probability of making a wrong decision at a given node. However,
from a different point of view, in order to get a correct final result,
correct decisions must be made at all levels of the tree. Increasing
the tree order reduces number of levels required to be correct and
hence reduces the final probability of error.

5.3 Cost selection
We adopt majority voting to aggregate workers decisions. There-

fore, increasing the number of replicated tasks increases the quality
of the aggregated decisions. However, there is almost a satura-
tion point beyond which, increasing the number of replicated tasks
would be of little, if any, benefit.

5.4 Cost distribution
Assume that there is a cost bound, say C, to search the index. An

important issue is how this cost is distributed among tasks in terms
of the number of replicas per tree level as tasks are assigned to
workers. In the leaf-only aggregation strategy, every worker has to
perform exactly h tasks from the root level to the leaf level. Hence,
we can only have k = ⌊C

h
⌋ workers at most.

In the all-levels aggregation strategy, we propose two techniques
to distribute tasks among level, namely even and probabilistic dis-
tribution. In the even distribution technique, every level in the
palm-tree index is assigned ⌊C

h
⌋ tasks. Even cost distribution as-

sumes equal importance of all the levels of the palm-tree index.
However, tree levels are of different importance e.g., when a wrong
decision is made at the higher levels (closer to the root level) of
the palm-tree index, it would result in a higher final error. This is
not the case when wrong decisions are made at the lower levels of
the palm-tree index. On the other hand, wrong decisions are more
likely to occur at the lower levels than at the higher levels. The
reason is that spacing in-between the keys within a node decreases
as we descend the tree.

To accommodate for the effect of nodes level on error severity
is to replicate tasks in a way that is proportional to the expected
distance error per level.

DEFINITION 5.3. Probability of distance d error at level l
(Pdl) is the probability of deviating d branches from the ground
truth branch at level l.

We estimate the final error that would result from a distance d
error at level l to be d × f l−1. For example, a distance 1 error at
level 1 (i.e., the leaf level) deviates the final result from the correct
one by distance 1. A distance 1 error at level h (i.e., the root level)
deviates final result about the number of leaf keys in a child subtree
of the root node, that is fh−1. We calculate the expected distance
error at level l (EEl) to be

∑

d

d× Pdl × f l−1.

Techniques for cost distribution for level-by-level voting with
backtracking is left for future investigation.

6. EXPERIMENTAL EVALUATION
In order to test the palm-tree index and its search strategies, we

implement a web site to submit tasks to workers. This helps in fur-
ther studying the problem under controlled settings. Two datasets
are used in the experiments; the first dataset is a set of 200 square
images of different sizes. The second dataset is a set of 1300 used
cars images with desired selling prices. A custom-built web crawler
is used to collect the dataset of cars from a website of used car ads.

��

��

��

��

��

��

��

�	

� � �

�
�

��
��
�
�

����������

������������
������������
����������
����������

(a) Squares dataset

��

����

����

����

����

����

� � �

�
	

�
��

�

�		��
����

����	�	����

����	�	����
�	
��������
�	
��������

(b) Cars dataset

Figure 5: Mean error while changing tree fanout.

Figures 5 and 6 give the experimental results of the mean er-
ror rate and mean cost for the uninformed all-levels aggregation
and leaf-only aggregation search strategies. The parameters of the
palm-tree index are set as follows. The fanout ranges from 2 to 4
and task replication is set to 3 and 5.

Figure 5 gives the mean error rates for the two search algorithms
when applied to the cars and squares datasets. The error rate for
either algorithm is much higher on the cars dataset than on the

5

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

30

��

���

���

���

���

���

���

�	�

�
�

� � �

�
�

�
��
�
��
��
�
�
�
�
�
��
�
��
�

��
��

����������

����� ���!�
����� ���!�
�������"!�
�������"!�

(a) Squares dataset

��

���

���

���

���

����

����

����

����

� � �

	

�
�
�
�
��
��
�
�
�
�

��
�
��
�
�
��
��

��

�������

�����
�
����
�����
�
���
�
������!��
�
������!�

(b) Cars dataset

Figure 6: Mean cost while changing tree fanout.

squares dataset. The reason is that it is easier for ordinary users
to compare images of squares based on their sizes than it is to com-
pare cars based on their prices. It is also clear that all-levels aggre-
gation outperforms leaf-only aggregation in both datasets. The rea-
son is that in the leaf-only aggregation strategy, if a worker makes a
wrong decision at a higher level of the tree, this error affects more
significantly his/her answer in the lower levels of the tree.

In the all-levels aggregation, if a worker makes a wrong deci-
sion, then other workers can usually compensate for it (We use the
majority principle). It is also evident from Figure 5 that increasing
the number of workers reduces the error rate.

Figure 6 gives the mean cost needed to perform a query on the
palm-tree. The cost for search algorithms is higher on the cars
dataset than on the squares dataset. The reason is that the size (and
accordingly tree height) of the cars dataset is larger than the that of
the squares dataset. It is evident that increasing the number of repli-
cations increases the cost needed. It is also evident that increasing
the tree fanout generally reduces the cost as the height of the tree
decreases. One technique used to reduce the cost is to allow work-
ers to stop at not leaf levels if they agree that a key at a non-leaf
node matches the search key.

We are in the process of implementing more extensive exper-
iments that will include larger crowds and other search strate-
gies (i.e., informed all-levels aggregation and all-levels aggregation
with backtracking). We plan to study the effect of cost distribution
alternatives (even and expected distance errors). We also plan to
study the quality of sorts and joins using the palm-tree index.

7. RELATED WORK
Lately, there has been an increasing interest in crowdsourcing.

Several crowd-powered database systems, e.g., [6, 15, 12, 11] have
been proposed to use human intelegance to perform database oper-
ations. These operations mainly focus on sorts and joins, e.g., [11],
counting, e.g., [10], and max-finding, e.g., [7, 16]. Other works
focus on algorithms to answer top-K, e.g., [4], skyline queries,
e.g., [9], and spatial queries, e.g., [8].

The problem of optimizing the number of questions needed to
find a set of target nodes within a general directed acyclic graph
(DAG) using yes/no questions is studied in [13]. However, the B+

tree within the palm-tree index posseses more specific properties
than a general DAG (i.e., balanced height, and multiple ordered
keys within nodes) that requires more specific strategies for tree
search and task aggregation methods (Section 4) than in the case
when yes/no questions are used.To our knowledge, this is the first
work to address the problem of indexing with the crowd.

8. CONCLUSION
In this paper, we study the problem of crowdsourcing-based in-

dexing. We motivate the problem with several application sce-
narios. We propose a taxonomy of the problem and highlight its
main challenges. We propose techniques for index construction
and querying. We intend to complete this study with an extensive
analysis and experimental evaluation.

Our current work focuses on one-dimensional indexing. We plan
to study other variations of crowdsourced indexing, such as mul-
tidimensional indexing, spatial and spatio-temporal indexing and
fuzzy indexing.

9. REFERENCES
[1] The Amazon Mturk website.

https://www.mturk.com, 2013.
[2] A. Bozzon, M. Brambilla, and S. Ceri. Answering search

queries with CrowdSearcher. In WWW, pages 1009–1018,
2012.

[3] A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and G. Vesci.
Choosing the right crowd: expert finding in social networks.
In EDBT, pages 637–648, 2013.

[4] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the
crowd for top-k and group-by queries. In ICDT.

[5] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux.
ZenCrowd: leveraging probabilistic reasoning and
crowdsourcing techniques for large-scale entity linking. In
WWW, pages 469–478, 2012.

[6] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: answering queries with crowdsourcing. In
SIGMOD, pages 61–72, 2011.

[7] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who
won?: dynamic max discovery with the crowd. In SIGMOD,
pages 385–396, 2012.

[8] L. Kazemi and C. Shahabi. Geocrowd: enabling query
answering with spatial crowdsourcing. In Proceedings of the
20th International Conference on Advances in Geographic
Information Systems, pages 189–198. ACM, 2012.

[9] C. Lofi, K. El Maarry, and W.-T. Balke. Skyline queries in
crowd-enabled databases. In EDBT, pages 465–476, 2013.

[10] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh.
Counting with the crowd. In PVLDB, pages 109–120, 2013.

[11] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller.
Human-powered sorts and joins. VLDB Endow., 5:13–24,
2011.

[12] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C.
Miller. Crowdsourced databases: Query processing with
people. CIDR, 2011.

[13] A. Parameswaran, A. D. Sarma, H. Garcia-Molina,
N. Polyzotis, and J. Widom. Human-assisted graph search:
it’s okay to ask questions. VLDB Endow., 4:267–278, 2011.

[14] A. G. Parameswaran, H. Garcia-Molina, H. Park,
N. Polyzotis, A. Ramesh, and J. Widom. Crowdscreen:
algorithms for filtering data with humans. In SIGMOD,
pages 361–372, 2012.

[15] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina,
N. Polyzotis, and J. Widom. Deco: A system for declarative
crowdsourcing. PVLDB, 5, 2012.

[16] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis.
Max algorithms in crowdsourcing environments. In
Proceedings of the 21st international conference on World
Wide Web, WWW ’12, pages 989–998, 2012.

6

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

31

Crowdsourcing Feedback for Pay-As-You-Go Data
Integration

Fernando
Osorno-Gutierrez

School of Computer Science
University of Manchester
Oxford Road, Manchester

M13 9PL, UK
osornogf@cs.man.ac.uk

Norman W. Paton
School of Computer Science

University of Manchester
Oxford Road, Manchester

M13 9PL, UK
norm@cs.man.ac.uk

Alvaro A. A. Fernandes
School of Computer Science

University of Manchester
Oxford Road, Manchester

M13 9PL, UK
alvaro@cs.man.ac.uk

ABSTRACT
Providing an integrated representation of data from hetero-
geneous data sources involves the specification of mappings
that transform the data into a consistent logical schema.
With a view to supporting large-scale data integration, the
specification of such mappings can be carried out automat-
ically using algorithms and heuristics. However, automat-
ically generated mappings typically provide partial and/or
incorrect results. Users can help to improve such mappings;
expert users can act on the mappings directly using data
integration tools, and end users or crowds can provide feed-
back in a pay-as-you-go fashion on results from the map-
pings. Such feedback can be used to inform the selection
and refinement of mappings, thus improving the quality of
the integration and reducing the need for expensive and po-
tentially scarce expert staff. In this paper, we investigate the
use of crowdsourcing to obtain feedback on mapping results
that inform mapping selection and refinement. The investi-
gation involves an experiment in Amazon Mechanical Turk
that obtains feedback from the crowd on the correctness
of mapping results. The paper describes this experiment,
considers generic issues such as reliability, and reports the
results for different mappings and reliability strategies.

1. INTRODUCTION
Large scale data integration, for example over web sources,

is challenging due to the heterogeneities that inevitably re-
sult from multiple autonomous data publishers. Classical
data integration is labour-intensive, and tends to be applied
to produce high-quality but high-cost integrations in rea-
sonably stable environments. As a result, there has been
a growing interest in pay-as-you-go data integration, where
an initial integration is generated automatically, the quality
of which is improved incrementally over time [6]. The in-
cremental improvement can take many forms, but is often
informed by feedback on the current integration [8].

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

Crowdsourcing [4] has recently emerged as a way of tap-
ping into human expertise through the web, and systems
such as Amazon Mechanical Turk1 (AMT) and CrowdFlower2

provide systematic mechanisms for recruiting and paying
workers for carrying out specific tasks. This paper explores
the hypothesis that crowdsourcing can provide cost-effective
feedback of a form that can support data integration. The
paper contributes an experiment design that tests the hy-
pothesis, and an analysis of the results of the experiment.
Specifically, given automatically generated mappings, we use
the crowd to provide feedback on the correctness of the re-
sults produced by those mappings. Such feedback has been
shown to be useful by several authors. For example, Belha-
jjame et al. [1] showed how such feedback could be used to
select between and inform the generation of new mappings;
and Talukdar et al. [15] used such feedback to identify ef-
fective ways of answering keyword queries over structured
sources.

The remainder of this paper is structured as follows. Sec-
tion 2 describes related work on data integration and crowd-
sourcing. Section 3 describes the data integration context
for the experiment. Section 4 presents the design of the
experiment including the role of redundancy in validating
results. Section 5 presents and analyses the results of the
experiment. Section 6 draws some conclusions.

2. RELATED WORK
This section describes work related to that described in

this paper, focusing on results in data integration and crowd-
sourcing for data management.

In terms of data integration, our research builds on the
work of Belhajjame et al. [1], who use feedback on mapping
results to annotate mappings with estimates of their preci-
sion and recall. More specifically, feedback takes the form
of true positive, false positive and false negative annotations
on tuples returned by mappings, and such feedback allows
estimates for precision and recall to be obtained; the more
feedback, the more accurate the estimates are likely to be.
The estimates of precision and recall are then used to sup-
port the selection of mappings for answering a query that
meet specific user requirements (e.g. by selecting mappings
in a way that maximises recall for a precision above some

1http://mturk.amazon.com/
2http://crowdflower.com/

1

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

32

threshold), and the generation of new mappings whose preci-
sion and recall can be estimated in the light of the feedback.
Belhajjame et al. evaluate the techniques using syntheti-
cally generated feedback; this paper explores the collection
of such feedback using crowdsourcing.

Our work is one of a growing collection of contributions
in crowdsourcing, for which a survey has been carried out
by Doan et al.[4]. In this survey, a classification of crowd-
sourcing systems is presented. The application developed
in our work would have been classified as a standalone ap-
plication with explicit collaboration of users. In terms of
crowd sourcing for data management, there are a range of
other approaches that share this classification. Several pro-
posals have been made in which crowdsourcing plays a role
in query answering, including CrowdDB [7] and CrSS [14];
such systems extend standard query evaluation over static
data sources with techniques for consulting the crowd for in-
formation that is not available through other means. In re-
lation to data integration, McCann et al. [13] propose using
online communities to support the matching of attributes
from different sources; such work complements our results,
as matches are often used as a foundation for the construc-
tion of mappings. At a later stage in the data integration
pipeline, CrowdER [16] carries out entity resolution with a
technique that combines machine and human work; as in
this paper, data is first processed by automatic techniques,
the results of which are then verified using the crowd. Our
results complement these recent contributions by evaluating
the use of the crowd to obtain an additional type of feedback,
and by including comparative evaluations of different tech-
niques for ascertaining the reliability of the feedback from
the crowd.

3. DATA INTEGRATION CONTEXT
This paper tests the hypothesis that feedback from the

crowd can inform the annotation of mappings with informa-
tion about their quality, where the feedback takes the form
of true positive or false positive feedback on tuples produced
by the mappings. This section describes the data integra-
tion context for the experiment, including the data that is
to be integrated, mapping generation, and the sampling of
data on which feedback is to be obtained.

3.1 Experimental data
As music is a well known domain, we use as data sources

two music databases (Musicbrainz3 and Discogs4). The schemas
of Musicbrainz and Discogs contain a range of information
about artists and their recordings. In our experiment we fo-
cus on the entity artist of each database and the attributes
name, real name, gender, country, type and begin date year,
that essentially provide simplified views of the artist infor-
mation from the sources. Given this focus, the tables mu-
sicbrainz artist(name, gender, country, type, begin date year)
and discogs artist(name, realname) were created to form the
source schema in the experiment.

3.2 Generation of schema mappings
We used Spicy [2] to automatically generate mappings for

which feedback is obtained. Spicy is a schema mapping tool
that generates candidate schema mappings as SQL views

3Musicbrainz - http://www.musicbrainz.org/
4Discogs - http://www.discogs.com/

Figure 1: Simplified Spicy architecture.

Mapping Source schema attribute Global
schema
attribute

Mapping 1
(M1)

discogs artist.name name
musicbrainz artist.country country
musicbrainz artist.type type

Mapping 2
(M2)

discogs artist.name name
musicbrainz artist.name country
musicbrainz artist.type type

Mapping 3
(M3)

musicbrainz artist.country name
musicbrainz artist.name country
musicbrainz artist.type type

Table 1: Selected mappings.

that can be used to map data from a source schema into a
global schema. Spicy requires as input one source schema
and one global schema. In the source schema, a foreign key
was inserted between the attributes artist discogs.name and
artist musicbrainz.name. The global schema consists of a
table artist that contains the union of the attributes from
the tables artist musicbrainz and artist discogs. Figure 1
presents the architecture of Spicy [2].

Spicy requires sample instance values in the source schemas
to generate candidate schema mappings. With a large num-
ber of tuples (more than 250), Spicy generates only one map-
ping. This is insufficient for our experiment, for obvious
reasons. Since the reason behind this outcome is that am-
ple information about the sources enables Spicy to generate
fewer alternative mappings, we provided the tool with fewer
(viz., 200) source tuples. Indeed this caused Spicy to gen-
erate several alternative mappings on which we were then
able to obtain feedback and proceed with our experimental
goals. Also, the data was constrained to artists that started
to play in 1980 or later and that are from the United States5.
This process generated ten candidate mappings. After this
process, we selected the attributes name, type and country
on which to obtain feedback. These attributes are common
to most of the artists, whereas some attributes are relevant
only for certain artists. For example, the attribute gender
is relevant only to person artists and not to group artists.
The three mappings that met the criteria to be used in the
experiment are presented in Table 1.

The mappings produced by Spicy are SQL statements in-
ferred from the source schemas and a sample of source tu-
ples. When the Spicy-inferred mappings were run against
the complete tuple-content of the Musicbrainz and Discogs
databases, we obtained the results that populate the global
schema characterized by those mappings. Each mapping,

5This action was in response to a study of the demographics
of the workers that participate in Amazon Mechanical Turk.
Most workers are from the US and in an age bracket that
suggests that their knowledge will be sharper for post-1980
artists and groups.

2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

33

as a SQL query against the global schema, then produced
4203 rows. However, in our experiment we require more
than three mappings to evaluate and we want to have some
mappings that are likely to obtain a precision between 0 and
1 (the mappings of Table 1 have precision of either 0 or 1);
for this reason, we have guided the generation of additional
mappings. M1 was used as the starting point for the gener-
ation of additional mappings. The process to generate ad-
ditional mappings is the following. First, we made a copy of
the results from M1, which has a precision of 1. After that,
we changed a percentage of tuples in the results to a differ-
ent value for the country attribute from the set {Canada,
Australia, New Zealand, France, United Kingdom}. By this
means, four more mappings were created with different per-
centages of tuples modified in each mapping. We modified
20% for Mapping 4 (M4), 40% for Mapping 5 (M5), 60%
for Mapping 6 (M6) and 80% for Mapping 7 (M7). In total,
then, we have seven mappings: three generated directly us-
ing Spicy, and four mappings that are variants of one of the
Spicy mappings.

3.3 Sampling mapping results
Having defined the mappings, it was necessary to decide

on how many tuples should feedback be obtained given that
it would be too expensive to obtain feedback from the crowd
on all the tuples produced by the mappings. For this pur-
pose, we used a statistical method, simple random sampling
[3], to determine the sample size for populations with vari-
ables that can take only two values (i.e. Correct or Incor-
rect). The method to determine the sample size considers a
confidence level and a standard error, which are commonly
used in social sciences. For our study we computed the
sample size for a confidence of 95% that the mean (i.e. the
percentage of values that are annotated as Correct or In-
correct) would be within 5% of the correct mean. For these
requirements, the resulting sample size of a population of
4203 is 352 tuples.

4. HUMAN INTELLIGENCE TASK GEN-
ERATION

Having identified the tuples on which feedback is to be ob-
tained, the information is now in place to enable the design
of the tasks to be completed by the crowd. For the exper-
iment, we used the AMT crowdsourcing platform, within
which user activities are referred to as Human Intelligence
Tasks (HITs). This section describes how tuples are allo-
cated to HITs, including redundancy and screen design.

4.1 Distribution of result tuples
The seven samples of tuples of size 352 obtained for each

mapping are distributed into groups of 25 unique tuples that
will feature in questionnaires, such that each questionnaire
is a HIT, and each result tuple is the subject of one question.
The distribution of tuples considers that one HIT should not
have more than one tuple with information about the same
artist, and that the number of tuples in a HIT produced from
the same mapping is controlled. The number of resulting
HITs is presented in Table 2.

4.2 Reliability
In our experiment we obtain feedback from humans, who,

of course, may fail to provide reliable answers (e.g. answers

Category Size
Mappings 7
Tuples per mapping 352
Total tuples 2464
Tuples per HIT 25
HITs generated after distribution 99

Table 2: Distribution of tuples into HITs.

that contradict those of other users, or even self-contradictory
ones). The goal for the investigation is to minimise the risk
that unreliable data is obtained, or to manage the unrelia-
bility when it is encountered.

A method to estimate the reliability of a single observer is
called Intra Observer Reliability (IaOR) [10]. With a view
to estimating IaOR, some of the questions are asked more
than once. To estimate IaOR, each respondent (a worker in
AMT) answered two HITs at least two hours apart to reduce
the risk that the worker remembered their first answers and
answered based on memory. This is called the practice effect
in social sciences [10].

Only a subset of questions in each HIT is redundant. The
HITs are organised in pairs such that each HIT contains
three random questions from the other HIT in his pair. In
Figure 2(a), each arrow represents three questions. There-
fore, in each pair there are 6 redundant questions used to
assess IaOR. After introducing redundancy for IaOR, each
HIT contains 28 questions. In Figure 2(a), HIT1 and HIT4
form one pair, which is answered by Worker 1. Then, the
reliability is estimated by the percentage of agreement of
the 6 redundant questions. The IaOR associated with dif-
ferent numbers of consistent questions is as follows. The
worker obtains 16.60% of IaOR for answering consistently 1
question, 33.30% for 2 questions, and so on.

However, there exists the possibility that the answers of a
worker are not correct; it is possible to provide (consistently)
wrong answers, which would give rise to a high estimate for
IaOR. To avoid this situation, we can compare answers be-
tween workers, by way of Inter Observer Reliability (IrOR).
We assume that respondents are reliable if they provide the
same answers [10, 5]. To introduce redundancy for IrOR,
first we group the HITs in groups of three. Then, inside
each group, we choose at random two questions from each
HIT to occur in another HIT too, thereby introducing the
redundancy required to obtain evidence of IrOR. The se-
lected questions are different from the questions selected for
IaOR. Figure 2(b) shows how redundancy was introduced in
order to estimate IrOR; each arrow represents 2 questions.
In each group there are 6 redundant questions for IrOR.

After introducing redundancy for IaOR and IrOR, each
HIT contains 32 questions (25 unique + 3 for IaOR + 4 for
IrOR).

In each group of three HITs for IrOR, we estimate the
percentage of agreement of each pair in the group. There-
fore, we obtain three evaluations, and each worker receives
two IrOR evaluations in the group. Then, when reporting
results that take into account IrOR in the experiments, we
apply an IrOR threshold, and discard the HITs from workers
that obtained IrOR evaluations below the threshold.

As an example, consider the group of HITs: HIT1, HIT2
and HIT3, answered by Worker1, Worker2 and Worker3,

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

34

Figure 2: Redundancy for reliability.

respectively. Then, Worker1 and Worker2 agree on 4 ques-
tions and obtain 66.6%; Worker1 and Worker3 agree on 4
questions and obtain 66.6%; finally Worker2 and Worker3
agree on 6 questions and obtain 100%. If we set an in-
ter observer reliability threshold of 100%, in this example
we would ignore the answers in this group of HITs from
Worker1, who has two reliability evaluations were below the
threshold. However, Worker2 and Worker3 are considered
reliable because each has only one evaluation of reliability
below the threshold, which is not enough to determine that
they are unreliable (we assume that it was Worker 1 who
provided incorrect answers).

Note that every worker answered two HITs in the experi-
ment. Therefore, they are evaluated twice for inter observer
reliability but in different groups. For example, Worker1
answered the HIT1 and HIT4, which are in different groups
for IrOR, as illustrated in Figure 2(b).

4.3 HIT Design
An example HIT is presented in Figure 3. The possible

answers to a question are Correct or Incorrect. All the ques-
tions in the survey have the same structure. To set the ques-
tionnaire length, we carried out pilot tests. We estimated
that 32 questions would take users less than 20 minutes to
answer. We paid $1.00 (one US dollar) per HIT, which is a
higher than average payment per completed task, with the
goal of making the HIT attractive to workers [12, 9]. The
workers could find the HITs by browsing the AMT tasks list
or by searching the keywords music, survey or artists. The
HITs in the experiment were available to workers located in
the US. We accepted workers that have responded success-
fully to 1000 HITs before and that have finished successfully
95% of all the HITs that they have ever responded to before
(approval rate). Thus we have been quite selective in terms
of the experience and ratings of participants.

4.4 Experiment Setup on AMT
A crowdsourcing application was developed to control the

publishing of HITs in AMT. The application consists of:
a controller that configures and posts HITs in the AMT
platform; a database that stores the result tuples that are
assigned to the HITs, the AMT IDs of the workers, and data
used to control which HITs are assigned to which workers;
and a Tomcat Apache web server that contains Java Server
Pages (JSP) forms for the HITs. The JSP forms use the
AMT ID of the worker requesting to view a HIT to retrieve
the tuples that are chosen to be part of the HIT assigned to
that worker.

Figure 3: HIT example.

The crowdsourcing application went live, and 90 HITs
were completed in 40 days. This is a substantial elapsed time
compared with that reported by other AMT users (e.g. [9]).
We expect that this can be explained by the complex and
somewhat unconventional pairing of HITs to enable IaOR,
the results of which are discussed further below. On aver-
age, the HITs took 12:40 minutes to answer. New HITs were
made available every week or when previous HITs were fin-
ished in order to appear in the first pages of the AMT task
lists. This is a common practice followed by other AMT
requesters [9].

5. EXPERIMENTAL RESULTS

5.1 Precision and Error in Precision
The candidate mappings used in our experiment are anno-

tated to indicate if they meet the requirements of users. For
this purpose, we annotate the mappings with values of pre-
cision and the error in precision as in Belhajjame et al. [1].
Precision is the fraction of retrieved tuples that are indi-
cated to be correct by the user [11]. We can estimate the
precision of a mapping j after i feedback instances with the
formula below.

Precisionij =
true positivesij

true positivesij + false positivesij
(1)

where, for mapping j, true positivesij (false positivesij) is the
number of correct (incorrect) tuples retrieved after i feed-
back instances. The calculation of precision is incrementally
updated as the user provides feedback; in the experiment,
i changes from 0 to 352, which is the number of tuples of
the mapping evaluated by the workers. We are interested in
measuring how user feedback can contribute in the evalua-
tion of the mappings. For this reason, we compare the esti-
mated precision for a mapping j with i feedback instances
to a known precision value, which is a gold standard preci-
sion (GSP) for the mapping j. The error in precision can
be used for this purpose.

Error in Precisionij = |GSPj − Precisionij | (2)

4

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

35

Figure 4: Error in precision of each of the mappings
as feedback is collected.

where GSPj is the gold standard precision of the mapping
j. As in Belhajjame et al. [1], we use the average error in
precision (AEP) to measure the quality of an annotation,
i.e., the difference between the estimated precision and the
GSP.

Average Error in Precisioni =

K∑
j=1

Error in Precisionij

K
(3)

where K is the total number of mappings. The AEP is, like-
wise, incrementally updated as feedback from users arrives.

5.2 Annotation Quality
Using the definitions from Section 5.1, the precision of

the mappings was estimated based on the feedback obtained
from the crowd. To understand how effective the feedback
from the crowd has been at estimating the precision, Fig-
ure 4 shows the error in the estimated precision of each of
the mappings as the amount of feedback obtained increases.
The following can be observed: (i) The error in precision
drops rapidly as feedback is collected, such that most map-
pings have an error of less than 0.1 from around 50 feedback
instances. (ii) The errors obtained for mappings M1, M2
and M3, where the ground truth precision is 0 or 1, are in
the same range as those obtained for M4, M5, M6 and M7,
where the ground truth precision is between 0 and 1. We
had expected larger errors in precision for M4 to M7 because
these mappings seem to have less obvious errors than those
in M2 and M3. In M2 and M3, the error in the mapping
is that values are presented in the wrong columns, whereas
in M4 to M7 incorrect but plausible values are provided
for an attribute. Nevertheless, the users were able to iden-
tify errors in nationality with similar reliability to column
transposition. (iii) The error in precision for some mappings
increases towards the end of feedback collection; this is most
likely explained by the effectively random order in which dif-
ferent users provide feedback, with several fairly unreliable
users participating late in the experiment.

Abstracting over the plots for the different mappings, Fig-
ure 5 shows the AEP from Formula 3 as feedback is col-
lected. We observe that when fewer than 70 feedback in-
stances per mapping have been obtained, the plot is quite
unstable, but that thereafter, errors are both quite small

Figure 5: Average Error in Precision (AEP).

Figure 6: Distribution of reliable workers.

Figure 7: AEP with different reliability filters.

and quite stable. This suggests that reasonably reliable es-
timates of mapping quality can be obtained with quite small
amounts of feedback, and thus at a modest financial cost.

5.3 Feedback Reliability
Applying the reliability techniques from Section 4.2 to the

data from Section 5.2, using a reliability threshold of 100%:
44 out of 51 workers are reliable for intra observer reliability;
28 out of 51 workers are reliable for intra and inter observer
reliability; and 35 out of 51 workers are reliable for inter
observer reliability.

Some users were found to be reliable only for IaOR, some
users were found to be reliable only for IrOR, and some
users were found to be reliable for both IaOR and IrOR.
Figure 6 shows the distribution of the workers that were
found reliable against each of the reliability methods.

We estimate the AEP with the feedback obtained filtered
to remove the users who are considered to be unreliable by
the different techniques. After filtering the feedback, we re-
port the AEP for the results filtered with IaOR, the results
filtered with IrOR, and the results filtered with IaOR and
IrOR in Figure 7. The results reflect the order in which

5

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

36

Figure 8: AEP with different reliability filters and
randomised order of collection.

the workers provided the feedback. Note that the Feedback
Amount in the horizontal axis is the total amount of feed-
back obtained, and that the different reliability schemes all
discard some of that feedback. The following can be ob-
served: (i) there is significant variation in the error during
the early parts of feedback collection, but this stabilises quite
rapidly to a low error as the feedback is increased; and (ii)
the different reliability schemes provide better results for
different amounts of feedback, reflecting the impact on the
conclusions that can be drawn of the order in which users
provide feedback. To remove this effect, we have repeatedly
randomly changed the order in which the feedback has been
obtained from the users, until such time as the additional
of further random orderings made no difference to the plot.
The resulting plot is provided in Figure 8. This plot shows
that while the combined filtering eventually yields the great-
est reduction in error, inter observer reliability is almost as
effective, and is more effective than intra observer reliability.
This is an important observation, because inter observer re-
liability is much easier to implement, as it does not involve
users carrying out repeated tasks at different times.

6. CONCLUSIONS
This paper has studied the use of crowdsourcing to collect

feedback on the correctness of query/mapping results; such
feedback has been shown to be useful for different data inte-
gration tasks, including keyword query evaluation and map-
ping refinement [1, 15]. The following contributions have
been made:

• An experiment has been designed that collects true
positive and false positive annotations for query results
using the crowd, including techniques for estimating
sample sizes and for integrating reliability tests.

• The results of the experiment show that precision es-
timates derived from crowd feedback improve rapidly
as feedback is accumulated, suggesting that the crowd
can be used as a cost-effective way of selecting between
collections of automatically generated mappings. This
confirms the experimental result obtained with syn-
thetic feedback reported by Belhajjame et al. [1].

• The experiment design included both inter- and intra-
observer reliability. Although simpler for both experi-
menters and users, inter-observer reliability turned out
to be more effective than intra-observer reliability.

Acknowledgment. Fernando Osorno-Gutierrez is supported
by a grant from the Mexican National Council for Science
and Technology (CONACYT).

7. REFERENCES
[1] K. Belhajjame, N. W. Paton, S. M. Embury, A. A. A.

Fernandes, and C. Hedeler. Feedback-based
annotation, selection and refinement of schema
mappings for dataspaces. In EDBT, pages 573–584,
2010.

[2] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich,
and G. Summa. The spicy system: towards a notion of
mapping quality. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, SIGMOD ’08, pages 1289–1294, New York, NY,
USA, 2008. ACM.

[3] D. de Vaus. Surveys In Social Research (Social
Research Today). Routledge, 2002.

[4] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the world-wide web.
Commun. ACM, 54(4):86–96, 2011.

[5] A. Fink. The Survey Handbook. The Survey Kit.
SAGE Publications, 2002.

[6] M. Franklin, A. Halevy, and D. Maier. From databases
to dataspaces: a new abstraction for information
management. SIGMOD Rec., 34(4):27–33, Dec. 2005.

[7] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh,
and R. Xin. Crowddb: answering queries with
crowdsourcing. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
data, SIGMOD ’11, pages 61–72, New York, NY,
USA, 2011. ACM.

[8] C. Hedeler, K. Belhajjame, A. A. A. Fernandes, S. M.
Embury, and N. W. Paton. Dimensions of dataspaces.
In BNCOD, pages 55–66. Springer, 2009.

[9] P. G. Ipeirotis. Analyzing the amazon mechanical turk
marketplace. XRDS, 17(2):16–21, Dec. 2010.

[10] M. Litwin. How to Measure Survey Reliability and
Validity. The Survey Kit. SAGE Publications, 1995.

[11] C. D. Manning, P. Raghavan, and H. Schtze.
Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[12] W. Mason and D. J. Watts. Financial incentives and
the “performance of crowds”. SIGKDD Explor.
Newsl., 11(2):100–108, May 2010.

[13] R. McCann, W. Shen, and A. Doan. Matching
schemas in online communities: A web 2.0 approach.
In ICDE 2008, pages 110 –119, april 2008.

[14] A. Parameswaran and N. Polyzotis. Answering queries
using humans, algorithms and databases. In CIDR
2011. Stanford InfoLab, January 2011.

[15] P. P. Talukdar, M. Jacob, M. S. Mehmood,
K. Crammer, Z. G. Ives, F. Pereira, and S. Guha.
Learning to create data-integrating queries. Proc.
VLDB Endow., 1(1):785–796, Aug. 2008.

[16] J. Wang, T. Kraska, M. J. Franklin, and J. Feng.
Crowder: crowdsourcing entity resolution. Proc.
VLDB Endow., 5(11):1483–1494, July 2012.

6

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

37

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Part III.

Vision Papers

38

Crowds, not Drones: Modeling Human Factors in
Interactive Crowdsourcing

Senjuti Basu Roy†, Ioanna Lykourentzou††, Saravanan Thirumuruganathan‡,4
Sihem Amer-Yahia�, Gautam Das‡,4.

†UW Tacoma, ††CRP Henri Tudor/INRIA Nancy Grand-Est, ‡UT Arlington, 4QCRI, � CNRS, LIG

senjutib@uw.edu, ioanna.lykourentzou@{tudor.lu,inria.fr},
saravanan.thirumuruganathan@mavs.uta.edu, sihem.amer-yahia@imag.fr,

gdas@uta.edu

ABSTRACT
In this vision paper, we propose SmartCrowd, an intelligent
and adaptive crowdsourcing framework. Contrary to exist-
ing crowdsourcing systems, where the process of hiring work-
ers (crowd), learning their skills, and evaluating the accu-
racy of tasks they perform are fragmented, siloed, and often
ad-hoc, SmartCrowd foresees a paradigm shift in that pro-
cess, considering unpredictability of human nature, namely
human factors. SmartCrowd offers opportunities in making
crowdsourcing intelligent through iterative interaction with
the workers, and adaptively learning and improving the un-
derlying processes. Both existing (majority of which do not
require longer engagement from volatile and mostly non-
recurrent workers) and next generation crowdsourcing appli-
cations (which require longer engagement from the crowd)
stand to benefit from SmartCrowd. We outline the opportu-
nities in SmartCrowd, and discuss the challenges and direc-
tions, that can potentially revolutionize the existing crowd-
sourcing landscape.

1. INTRODUCTION
Crowdsourcing systems have gained popularity in a vari-

ety of domains. Common crowdsourcing scenarios include
data gathering (asking volunteers to tag a picture or a video),
document editing (as in Wikipedia), opinion solicitation (ask-
ing foodies to provide a summary of their experience at a
restaurant), collaborative intelligence (asking residents to
match old city maps), etc. The action of each worker in-
volved in crowdsourcing can be viewed as an approximation
of ground truths. In the examples we describe, truth could
be a complete set of tags describing a picture, a Wikipedia
article, an exhaustive opinion on a restaurant, etc. Truth
can be objective (single ground truth) or subjective, where
there may be different truths for different users (e.g., young-
sters tend to like fast-food restaurants while young profes-
sionals may not, photography professionals tend to prefer

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

tags reflecting photo quality as opposed to photo content).
In this paper, we are interested in the question of harnessing
the crowd to approximate truth(s) effectively and efficiently
while taking into account the innate uncertainty of human
behavior, named human factors.

Crowdsourcing Today: Existing systems are built on
top of private or public platforms, such as Mechanical Turk,
Turkit, Mob4hire, uTest, Freelancer, eLance, oDesk, Guru,
Topcoder, Trada, 99design, Innocentive, CloudCrowd, and
CloudFlower [3]. Tasks are typically small, independent, ho-
mogeneous, have minor incentives, and do not require longer
engagement from workers. Similarly, the crowd is typically
volatile, arrival and departure is asynchronous, with differ-
ent levels of attention and accuracy.

Limitations of current approaches: There are two
primary limitations related to current crowdsourcing ap-
proaches. The first refers to the separation and non-optimization
of the underlying processes in a dynamic environment. The
second limitation is related to the omission of human fac-
tors when designing an optimized crowdsourcing solution.
In fact, while recent research investigates some of the opti-
mization aspects, those aspects are not studied in conjunc-
tion with human factors.

Three major processes involved in the task of ground-
truth approximations are - worker skill estimation, worker-
to-task assignment, and task accuracy evaluation. Most cur-
rent commercial crowdsourcing systems (a survey of which
can be found in [3]) either do not offer algorithmic optimiza-
tion, or do that partially and in isolation. Pre-qualification
tests, the usage of golden standard data, or hiring of work-
ers based on worker past performance are the norm. Task
assignment is completely open and allows self-appointment
by the workers, thus undermining quality (workers prefer
to increase their individual profit over accomplishing qual-
itative tasks). Worker wage is often pre-determined and
fixed per task, oblivious to the quality of the actual pool of
workers who undertake the task in reality. Recent research
undertakes some of the challenges unsolved by commercial
platforms, and proposes active learning strategies for task
evaluation [10, 1, 7], task assignment process [5], adjust-
ing worker wages accordingly to skills [11]. However these
works: i) focus on a specific crowdsourcing application type
(mostly real-time crowdsourcing with highly volatile crowds)
thus losing genericity, and ii) focus on the algorithmic opti-
mization of some but not all of the involved processes (e.g.
skill learning, or wage determination, or task assignment).

1

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

39

A more critical limitation refers to the omission or inad-
equate incorporation of the uncertainty stemming from hu-
man factors into the design of the crowdsourcing optimiza-
tion algorithm. Algorithmic solutions rely on simple, ideal-
ized models (e.g. known worker skills or steady worker per-
formance). A recent work [8] proposes probabilistic worker
skill estimation models, based on the workers past perfor-
mance, considering potential deviations in worker perfor-
mance. Another recent work studies the egoistic profit-
oriented objectives of individual workers to incentivize them
(e.g. by properly adjusting wages) in order to calibrate al-
gorithms that approximate the ground truth related to the
crowdsourcing task [2]. Benefit of explicit feedback and in-
formation exchange between workers is studied [4, 6] to im-
prove worker self-coordination, but no existing research in-
corporates these aspects in a dynamic and interactive envi-
ronment, nor are there optimized solutions for ground truth
discovery, considering human factors.

Opportunities: Future crowdsourcing systems therefore
need to, first treat the crowdsourcing problem not in op-
timization silos, but as an adaptive optimization problem,
seamlessly handling the three main crowdsourcing processes
(worker skill estimation, task assignment, task evaluation).
Secondly and equally important, the uncertainty stemming
from human factors needs to be quantified and incorporated
into the design of any future algorithm that seeks to opti-
mize the above adaptive crowdsourcing problem. For ex-
ample, the estimation of every worker parameter that can
be influenced by uncertainty needs to be incorporated into
the design of the crowdsourcing optimization process. Also,
the planning horizon and the optimization boundaries of
any algorithm applied to facilitate crowdsourcing need con-
sequently to be determined with this uncertainty in mind.
New challenges rise from the above two opportunities, of
adopting a seamless crowdsourcing process and of incorpo-
rating uncertainty into it.

In summary, crowdsourcing has transitioned from being
used as research tool into a research topic on its own. Sooner
or later, database researchers have to confront the issues re-
sulting from hybrid processing involving humans and com-
puters. The uncertainties arising due to human factors in
crowdsourcing are very different from traditional uncertainty,
such as in probabilistic databases [9]. SmartCrowd envisions
crowdsouring as an adaptive process where human factors
are given the significance they deserve. Further, we also
introduce a mechanism of crowd-indexing by which work-
ers are organized into groups. Such indices are triggered
by human factors, dynamically maintained and provide an
efficient way to search for workers.

2. OUR VISION
We propose to rethink crowdsourcing as an adaptive pro-

cess that relies on an interactive dialogue between the work-
ers and the system in order to build and refine worker skills,
while tasks are being completed. In parallel, as workers
complete more tasks, the system ‘learns” their skills more
accurately, and this adaptive learning is used to dynami-
cally assign tasks to workers in the next iteration, by under-
standing the intrinsic uncertainty of human behavior. Note
that, key to the success of these steps is the knowledge on
ground truth, which the system is oblivious of (and wishes
to discover) in the first place. The primary paradigm shift
in SmartCrowd is in envisioning the process of ground-truth

discovery to be dynamic, adaptive, and iterative in discov-
ering skills required for tasks, evaluating the accuracy of
completed tasks, learning skills of involved workers, assign-
ing tasks to workers, determining the number of workers and
offered incentives, considering human factors. Interestingly,
these intermediate objectives are often inter-dependent, and
improving one improves others. The overall objective of
this adaptive process is to maximize accuracy and efficiency
while reducing cost and effort.

2.1 High Level Architecture
The primary distinction of our framework is the deliber-

ate acknowledgement of the importance of human factors in
crowdsourcing and how it guides each of our objectives in a
dynamic environment. Further, we envision our framework
to have an interactive dialogue with the workers to enable
adaptive learning, while the workers participate in crowd-
sourcing tasks. The first two dimensions we tackle are:

• “who knows what”, i.e. to evaluate the contribu-
tions of workers and based on that to estimate their
skills with the least possible error (skill learning pro-
cess).

• “who will be asked to contribute to what”, i.e.,
by learning required skills for tasks and estimating
workers’ skills, assign tasks to workers (task assign-
ment process).

SmartCrowd functions as follows: workers enter the crowd-
sourcing platform and complete tasks. Many crowdsourced
tasks typically require multiple skills. In the beginning,
SmartCrowd holds no knowledge over the skills of newcom-
ers. Furthermore, some required skills may be latent, and
unknown to SmartCrowd in the beginning. As the workers
undertake and complete more tasks, SmartCrowd discovers
latent skills, evaluates workers contribution to the tasks and
learns their skills, and therefore assign appropriate tasks to
the workers, which in turn achieves higher accuracy and im-
proved efficiency in the process. Moreover, this process is
adaptive and iterative, worker skills are “learnt more accu-
rately” and “used more appropriately” over time, ensuring
gradual improvement.

Figure 1 shows two primary functionalities that are im-
proved adaptively in SmartCrowd: one depicting learning
worker skills, and the other depicting completion time of the
(ground truth discovery) tasks. More precisely, the steeper
the skill estimation error curve gets, the faster we arrive to
accurate approximation of workers’ skills, i.e., the faster we
can profile workers with low error. Also, there is a moment
in time when the approximation error in skill estimation
is acceptable. This is marked in the figure with a dashed
vertical line. Before that, the system is in “cold start”
phase, and does not know “much” about workers. Tradi-
tionally, this problem is tackled with uniform-prior assump-
tions, spammer-hammer model, multi-dimensional wisdom
of crowd to bootstrap user skills [3]. After that, the frame-
work continues to improve its knowledge on workers’ skills
and adaptively assigns tasks to workers in iteration, until
the system determines that a stopping condition has been
reached. Interestingly, faster minimization of skill estima-
tion error leads to earlier termination of cold start period
(i.e., the dashed vertical line to the left), which gives rise to
better opportunities in designing the task assignment pro-
cess (task assignment improvement area).

2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

40

Task%assignment%%
improvement%%
area%

Task%comple2on%
accuracy%curve%

2me%

Op2mal%task%assignment%%

Skill%
es2ma2on%
improvement%%
area%

End%of%cold%start%problem%
in%skill%es2ma2on%

Skill%es2ma2on%
error%curve%

Figure 1: Tradeoff between Skill Estimation Accu-
racy and Task Completion Efficiency

As skill estimation improves, task completion efficiency
is also expected to improve, since the system can assign
tasks more intelligently to workers. However, worker skill
estimation is critically related to accurate task evaluation
process, i.e., to evaluate the accuracy of the completed tasks
by the workers. In the absence of explicit ground truth,
SmartCrowd resorts to uncovering the ground truth using
workers themselves. While this interactive process does not
necessarily require longer engagement from the workers in
the system, it offers opportunities for improved learning.
Therefore, the third and final dimension we tackle is:

• “engaging workers explicitly to improve learn-
ing”, i.e., how to further exploit the learned expertise
of workers by engaging them explicitly in evaluating
the skill of other workers or by completing more tasks.

Most importantly, these dimensions in SmartCrowd are stud-
ied in conjunction with two key aspects that are exclusive
to crowdsourcing - human factor and scale. The unpre-
dictability and inconsistency in human behavior are deliber-
ate in the design of SmartCrowd. Additionally, SmartCrowd
envisions the designed solutions to be scalable, i.e., toler-
ant to the size of the crowd, and its volatility. To the best
of our knowledge, SmartCrowd is the first ever framework
that considers these factors explicitly in crowdsourcing. Fi-
nally, SmartCrowd could be adapted inside existing systems,
since it is designed assuming current crowdsourcing infras-
tructure.

In summary, to design accurate and efficient crowdsourc-
ing, SmartCrowd relies on a formal modeling of the task
evaluation, worker skill estimation, and task assign-
ment processes, considering human factor and scale.

3. CHALLENGES AND DIRECTIONS
While the opportunities foreseen in SmartCrowd are novel,

the challenges in achieving them are exceptionally ardu-
ous. These challenges get further magnified, because of,
(1) Human factor - which necessitates the key challenges
to be modeled and solved considering unpredictability and
inconsistency in worker behavior, their volatility, and asyn-
chronous arrival and departure; (2) Scale - which necessi-
tates the solutions to be incremental and tolerant to the
volatility of the crowd and its size. SmartCrowd proposes
novel indexing opportunities and reasons that human fac-
tor induced crowd-indexing provides a transparent way of
achieving the objectives of SmartCrowd in conjunction with
human factors and scale.

3.1 Human Factors
Human factors, a key distinction of SmartCrowd, relates

to the uncertainty and non-deterministic nature of the be-
havior of human workers. For example, there is uncertainty
regarding worker availability: workers can enter the crowd-
sourcing platform when they want, remain connected for as
long as they like and they may or may not accept to make a
contribution. In the same sense, there is uncertainty regard-
ing the wage that workers may request: worker wage may
vary from person to person, even among persons with the
same profile for the system, but also wage may vary for the
same person in different times, for example due to the per-
son’s workload, available time but also due to unseen factors.
Finally, uncertainty also goes for skills: the efficiency with
which a person completes a task cannot be considered fixed
and it is rather uncertain, for example it may decline with
the previous workload of the person, or it may depend on
the offered wage or on the worker’s motivation and personal
engagement in the task.

The uncertainty stemming from the human factors does
not preclude from designing a crowdsourcing solution with a
global optimization target. What it does mean, however, is
that, instead of fixed parameter values, SmartCrowd needs to
study the aforementioned dimensions considering probabil-
ities and confidence boundaries (e.g. we cannot determine
the ”exact wage” of a person but an approximation, with
certain deviation of a central wage value), and be able to
update the probabilities, as workers complete more tasks.

3.2 Who Evaluates What and How?
Tasks submitted by workers need to be evaluated for ac-

curacy. Interestingly, the process of evaluating completed
tasks is tightly coupled with acquiring each worker’s contri-
bution, which in turn helps learning worker skills. A ques-
tion however is, who evaluates what and how?

A worker’s contribution to a task can be evaluated through
a fully-automated and implicit way by comparing submitted
results against each other. In lieu of a known ground truth,
a worker’s contribution could be measured by computing the
divergence of submitted contributions thus far using simple
or weighted averages, majority voting, etc. More sophisti-
cated models such as multivariate data analysis could also be
used to approximate ground truth. In all cases, implicit eval-
uation becomes effective when the acquired aggregated data
approximates the unknown ground truth. A faster, more re-
liable but costlier alternative is to explicitly designate some
of the current workers as the evaluators of submitted tasks.

We envision a hybrid method instead; task evaluation is
performed by combining system’s acquired intelligence aug-
mented with explicit human expertise. This requires com-
plex modeling - 1) how to combine implicit and explicit
evaluations together, 2) when and how to hire explicit eval-
uators, 3) how many explicit evaluators are required. In
addition, human factors also contributes multiple new pa-
rameters such as 4) what should be the offered incentives,
5) how to model inconsistent attention and arbitrary de-
parture of explicit evaluators, and 6) how to compute this
incrementally, as workers enter and exit asynchronously.

3.3 How to Estimate Worker Skills?
Skill estimation pertains to learning worker skills accu-

rately and effectively. In SmartCrowd, the output of task
evaluation (i.e., a worker’s contribution to each completed

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

41

task) is used to estimate worker skills. Therefore, the first
challenge is, how to identify and quantify a skill set?

For many complex tasks, some skills may be latent. For
example, in image moderation, skills might vary for differ-
ent images. In SmartCrowd, we envision learning such latent
skills as the tasks are being executed by workers. Discover-
ing a set of latent skills could be formulated as a structure
learning problem in machine learning with the objective of
uncovering a multi-layer probabilistic model. On the con-
trary, the problem could also be formulated as a fixed prob-
abilistic model with the objective of learning inference from
it. Unlike traditional machine learning problems where the
end objective is accurate prediction, one unique requirement
for SmartCrowd is to make these discovered skills contextual
and interpretable by the applications.

Irrespective of the specific algorithm used to quantify worker
skills, additional challenges in the model involve - 1) deter-
mining the minimal number of tasks that workers (or certain
groups of workers) need to complete, until their skills can
be estimated with high accuracy, considering they may not
behave consistently, 2) identifying the “stopping condition”
to decide whether a worker’s skills have been estimated with
adequate certainty or not, and 3) enabling fast and incre-
mental computation (using worker clustering or view main-
tenance) of skills, as new workers arrive. In addition, human
factors causes additional challenges such as identifying dec-
lination of skills (possibly due to boredom) or model how
worker skill changes over time.

3.4 How to Assign Tasks to Workers?
In SmartCrowd, we envision that workers are assigned to

tasks based on learned workers’ skills and the remaining
unfinished tasks. Interestingly, unlike traditional task as-
signment problems in project management, in SmartCrowd

, workers’ skills are unknown in the beginning, and learned
skills evolve as workers engage in more tasks and subject to
inconsistency and unpredictability due to human factors.

In SmartCrowd, we model assigning tasks to workers as
a probabilistic optimization problem, with the objective of
maximizing accuracy, or minimizing time, or optimizing both
at the same time probabilistically. Furthermore, additional
factors such as cost (money) could be considered.

Several related questions (or constraints) are required to
be factored into this formulation as well - (1) what if a
worker declines an assigned task, 2) can multiple tasks be
allocated to the same worker, 3) in the case of multiple task
allocation, does SmartCrowd suggest an ordering tasks to the
worker, 4) during task assignment, does SmartCrowd need to
assign tasks such that there are no idle workers, 5) is there
an upper limit on the number of tasks that a single worker
can be assigned to in one iteration? 6) how important is
the system’s benefit vs worker’s benefit? Should the sys-
tem optimize across tasks (i.e., exploit), or give newcomers
opportunities (i.e, explore) to prove their skills?

3.5 Crowd-Indexing
Crowdsourcing is an adaptive process - where workers/tasks

arrive asynchronously, and the system learns more about
workers as they complete assigned tasks. Satisfying the key
objectives of worker skill estimation, worker-to-task assign-
ment, and task accuracy evaluation while accounting for hu-
man factors at scale, necessitates the development of efficient
searching techniques. SmartCrowd proposes crowd-indexing

to that end, where workers are organized and indexed into
groups, and the indexes are dynamically maintained.

Interestingly, SmartCrowd demands new forms of indexing
triggered by human factors, such as predictive skill estima-
tion and task acceptance rate. These factors are dynamic
and vary over time, as workers undertake and complete more
tasks. Efficient determination of the right group of workers
for collaborative tasks is a key question when optimizing
cost (time and money). Similarly, selecting explicit evalu-
ator(s) efficiently for task evaluation could benefit tremen-
dously from index design. However, in SmartCrowd, we en-
vision incremental indexing strategies, that are adaptive to
this dynamic environment.

In contrast to traditional database indexing, crowd-indexing
is (a) on-demand indexing where the notion of query work-
load is akin to tasks arriving at different rates (b) con-
strained indexing with different objectives such as latency,
budget, worker skill diversity (c) alternate indexing as it re-
quires to have a fall-back option (due to the uncertainty of
workers accepting a task).

4. CONCLUSION
In this paper, we developed a vision for intelligent crowd-

sourcing and presented our framework, SmartCrowd. In con-
trast to existing systems, SmartCrowd promotes an iterative
interaction with workers and an involvement of those work-
ers beyond task completion (they are involved in evaluat-
ing each others’ contributions), in order to adaptively learn
and improve the processes of learning workers’ skills and as-
signing tasks. Both existing (which do not require longer
engagement from a volatile and mostly non-recurrent work-
ers) and next generation crowdsourcing applications (which
require longer engagement from the crowd) could benefit
from our vision. As discussed in this paper, increasing intel-
ligence in SmartCrowd comes with several hard challenges.
SmartCrowd aims to be principled yet efficient in proposing
the solution to those challenges.

References
[1] R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Poly-

zotis, and W. C. Tan. Asking the right questions in crowd
data sourcing. In ICDE, pages 1261–1264, 2012.

[2] R. Cavallo and S. Jain. Efficient crowdsourcing contests. In
AAMAS, pages 677–686, Richland, SC, 2012.

[3] A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourc-
ing systems on the World-Wide Web. Communications of
The ACM, pages 385–396, 2011.

[4] S. Dow, A. Kulkarni, S. Klemmer, and B. Hartmann. Shep-
herding the crowd yields better work. In CSCW, 2012.

[5] C.-J. Ho and J. W. Vaughan. Online task assignment in
crowdsourcing markets. In AAAI, 2012.

[6] S.-W. Huang and W.-T. Fu. Don’t hide in the crowd!: in-
creasing social transparency between peer workers improves
crowdsourcing outcomes. In CHI, 2013.

[7] D. R. Karger, S. Oh, and D. Shah. Budget-optimal
task allocation for reliable crowdsourcing systems. CoRR,
abs/1110.3564, 2011.

[8] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang.
Cdas: a crowdsourcing data analytics system. Proc. VLDB
Endow., 5(10):1040–1051, June 2012.

[9] A. Parameswaran and N. Polyzotis. Answering queries using
humans, algorithms and databases. In CIDR 2011.

[10] A. Ramesh, A. Parameswaran, H. Garcia-Molina, and
N. Polyzotis. Identifying reliable workers swiftly. Techni-
cal report, Stanford University.

[11] Y. Singer and M. Mittal. Pricing mechanisms for crowd-
sourcing markets. WWW ’13, pages 1157–1166, 2013.

4

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

42

Cost and Quality Trade-Offs in Crowdsourcing

Anja Gruenheid
Systems Group

ETH Zurich
anja.gruenheid@inf.ethz.ch

Donald Kossmann
Systems Group

ETH Zurich
donaldk@inf.ethz.ch

ABSTRACT
Algorithms for crowdsourced tasks such as entity resolution, sort-

ing, etc. have been subject to a variety of research work. So far, all
of this work has focused on one specific problem respectively. In
this paper, we want to focus on the bigger picture. More specifically,
we want to show how it is possible to estimate the budget or the
quality of an algorithm in a crowdsourcing environment where noise
is introduced through incorrect answers by crowd workers. Such
estimates are complex as noise in the information set changes the
behavior of established algorithms. Using two sorting algorithms,
QuickSort and BubbleSort as examples, we will illustrate how al-
gorithms handle noise, which measures can be taken to make them
more robust, and how these changes to the algorithms modify the
budget and quality estimates of the respective algorithm. Finally,
we will present an initial idea of how such an estimation framework
may look like.

1. INTRODUCTION
Quality and its influence on the output result of any algorithm

using crowdsourcing has been subject to a range of research work.
Research focused on topics such as increasing the worker’s motiva-
tion, quality control mechanisms, or accepting that workers make
mistakes and constructing fault-tolerant variations of the original
algorithms [4, 15]. This work will focus on none of these quality as-
surance methods specifically but on assessing the inter-relationships
of the crowdsourcing budget, the crowd worker error rate, and
the result quality. Our goal is to define an intuition on how these
parameters are interleaved, meaning a) how for example adding
votes changes the result quality or b) if a certain result quality is
required, how many votes are required to meet these quality con-
straints. These two scenarios are visualized in Figure 1. Obviously,
functions fQ and fB are closely related for the sake of conformity,
where fQ(Bi, perr) = Qi and fB(Qi, perr) = Bi holds for a spe-
cific input budget Bi and input quality Qi. In other words, fQ is
the reverse calculation of fB . Note that the crowd worker error rate
is a given parameter in both scenarios that obviously influences the
result quality and budget requirements.

It is not the objective of this work to define how this error rate can

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

Function fQ

B perralgorithm

Q

(a) Quality based on Budget

Function fB

B

perralgorithm Q

(b) Budget based on Quality

Figure 1: Estimation Functions

Q

B

perr=0

perr=.1

perr=.2

Figure 2: Cost-Quality Trade-Off

be determined but we assume that it is a known parameter which
can be estimated through worker quality tests or more advanced
quality techniques [5, 9]. In addition to the crowd worker error rate
and the monetary budget (resp. the required quality), the estimation
function takes as input an algorithm which interprets the feedback
of the crowd. Depending on this algorithm and its efficiency in a
noisy environment, the estimated budget or quality may vary. For
the purpose of this paper, we will assume that the algorithm that we
want to estimate is a sorting algorithm but the quality and budget
estimation techniques that we will present here can also be used
for other algorithms in which the crowd is employed, such as entity
resolution.

Independent of the algorithm, we assume that the quality of the
result decreases if the noise in the crowd answers increases which is
depicted in Figure 2. We will observe this behavior when examining
two example sorting algorithms, QuickSort and BubbleSort [11].
For these algorithms, we will discuss quality and budget trade-offs,
showing how fault-tolerance mechanisms and specific adaptations to
the noisy environment can improve result quality effectively. Addi-
tionally, we will show that the result quality and budget requirements
also highly depend on the applied algorithm and we present exam-
ples where algorithms that were thought to be better alternatives
will produce results with lower quality.

More specifically, we will first describe, using QuickSort and

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

43

BubbleSort as example algorithms, how different algorithms handle
noise with and without additional fault-tolerance mechanisms and
how they compare in terms of the amount of the budget that they
use and the quality of their results. From this specific example, we
will then draft the challenges of any estimation framework in this
kind of environment.

2. RELATED WORK
Crowdsourcing in context of database systems has been subject

to a variety of research recently. One research area focuses on
integrating crowdsourcing functionality efficiently into database
management systems while another research focus are algorithms
suitable for this kind of environment. Systems such as CrowdDB [1],
Qurk [7], and Deco [10] connect traditional data storage systems
with crowdsourcing platforms such as Amazon Mechanical Turk
to gain additional information on queries [12]. To enable users to
have similar functionality in those systems as in any comparable re-
lational database management system, research has further focused
on optimizing crowd accesses (i.e. reducing the budget spent on the
crowd) when implementing algorithms such as ranking and entity
resolution. For these algorithms, research has pursued two different
directions: The first class of algorithms focused on reducing the
budget while assuming that the crowd answers perfectly [13, 14],
observing the quality of the answers by the crowd workers as an
orthogonal problem. The second class of algorithms introduces the
notion of fault-tolerance to be able to handle noisy answers from
the crowd [2, 3, 8, 6].

The novelty of our work is that we abstract from the actual im-
plementation of the algorithms in that we want to describe a more
general framework for the interdependencies between quality and
budget in a crowdsourcing environment independent of the applied
algorithm. Hence, we observe rather than construct the behavior of
a set of algorithms and show through examples which behavior fits
better for noisy environments.

3. IMPACT OF NOISE
Traditionally, sorting algorithms such as QuickSort and Bubble-

Sort have been evaluated with respect to time and space require-
ments. The crowdsourcing context now adds another dimension,
namely result quality, as a noisy environment influences the quality
and correctness of the output of these algorithms negatively. More-
over, temporal constraints become neglible as crowdsourcing itself
does not necessarily need immediate response algorithms by de-
sign while space requirements can be seen as budget constraints
(i.e. the number of comparisons that are required to find a solution).
We will show in the following that the choice of algorithm for a
certain problem heavily influences the result quality especially in
noisy environments. To that purpose, we will first evaluate Quick-
Sort in a crowdsourcing environment after which we will focus on
BubbleSort as example algorithms.

3.1 QuickSort
The prerogative of QuickSort is that it can efficiently sort an input

set, using O(n log(n)) comparisons on average. Thus, it is a prime
candidate for sorting in a crowdsourcing environment as it allows
to reduce the budget spent on the task. On the other hand, noise in
the crowdsourcing answers directly propagates if QuickSort is used.
An example for this observation is shown in Figure 3. Imagine a
crowdsourcing task which requires the workers to order a few words
according to their positivity. In the first example answer set, none
of the edges (i.e. the votes of crowd workers) is wrong which leads
to low budget result with perfect quality. In contrast, in the second

neutral painful

bad

good

excellent

1st pivot: good

2nd pivot: bad

(a) QuickSort Without Noise

neutralpainful

bad

good

excellent

1st pivot: good

2nd pivot:
bad, excellent

(b) QuickSort With Noise

Figure 3: QuickSort Behavior Variations

example set the edge between ‘painful’ and ‘good’ distorts the result
in that painful is now ranked higher than three other words due to
the transitive propagation of this specific wrong comparison.

How noise affects the output of the QuickSort algorithm is dom-
inated by the distribution of the noisy answers and whether the
implementation of QuickSort used in this context is fault-tolerant.
Many of the current crowdsourcing solutions do not provide fault-
tolerant algorithms but assume the crowd to answer perfectly [13,
14]. In contrast, we believe that given the application of these algo-
rithms where information is collected in crowdsourcing platforms
such as Amazon Mechanical Turk, accepting that the crowd does
create a certain amount of noise is only natural. Mechanisms that
can make QuickSort fault-tolerant may include strategies such as
using the majority of the crowd votes in order to determine an edge
or to request that one answer exceeds the alternative by quorum
votes. Depending on the strategy, the estimates of functions fQ and
fB vary. For example imagine that perr=.2, meaning here that 20%
of the actual comparisons are wrong on average. If the majority
strategy is applied and all false votes are countered by more true
votes, the quality of the result can still be impeccable. On the other
hand, if no fault-tolerant mechanism is used, the result quality will
suffer because wrong comparisons will be propagated directly into
the result. Obviously, this is the best case scenario for the majority
strategy and in practice even with fault-tolerance comparisons will
be propagated wrongly into the decision structure. But given the
integrated quality assurance mechanism of the majority strategy, a
smaller number of comparisons will be wrong which means higher
result quality in the end. Thus, our first observation is that depending
on the interpretation strategy used (for example the direct propa-
gation of votes or the majority strategy explained in the previous
example), the budget and the quality output changes.

Figure 4 depicts a simulated budget-quality trade-off for the two
discussed strategies, the direct propagation of votes and the majority
interpretation strategy. It shows that fault-tolerance increases the
budget requirements for QuickSort but it also improves the result
quality, i.e. the number of pair-to-pair comparisons that are con-
firmed by the ground truth. To better understand this observation
take again the running example: If the crowd worker error rate is

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

44

quality

cost

.5

1

31500

perr=0
perr=.1, direct
perr=.2, direct
perr=.1, majority
perr=.2, majority

Figure 4: Fault-Tolerance Strategy Trade-Offs for QuickSort

perr=.2, at least one edge is faulty out of the six that we need for
our QuickSort solution in Figure 3. The result quality of our ex-
ample is improved if the majority interpretation strategy is applied
because on average, the erroneous votes are better distributed than
in the direct scenario thus resulting in less erroneous comparisons
as exemplified above. The figure also visualizes that applying the
majority strategy leads to a higher budget as a comparison is made
multiple times, thus the overall information gain is slower per unit
of budget.

During the simulations a decrease in cost can be observed when
the error rate increases, i.e. the cost for QuickSort with the direct
strategy and without noise is approximately 11,000 while the cost
decreases for perr = .1 to 9,700. The explanation for this behavior
is that in cases where the pivot element is not a central element in
the final sorting, wrong answers may benefit the overall number of
comparisons as the wrongly judged item is transfered into a smaller
bucket and thus used less often overall for comparisons.

Overall, the main observation for QuickSort here is that if the
error increases, fault-tolerance measurements can help to improve
the quality of the result set even if they also mean an increase in
budget in order to reach the break-even point. On the other hand, it
is essential to observe that even with fault-tolerant techniques, there
is no guarantee that QuickSort will provide a correct result to the
problem of sorting an input dataset. Thus, if the problem statement
is to find a complete ranking of the input set, QuickSort fails as a
sorting algorithm in this example setting.

3.2 BubbleSort
In contrast to QuickSort, BubbleSort is considered to be subopti-

mal in terms of the number of comparisons it needs to find a solution
as it does local comparisons rather than global comparisons and its
average comparison complexity is O(n2). In a noisy environment
predicates shift and the number of pure item comparisons is not the
decisive factor anymore as we will show in the following. Bubble-
Sort specifically has one characteristic that makes this algorithm
suitable for noisy environments: It benefits from the input order of
the records. Thus, if the input is already sorted, the algorithm will
run in O(n). This characteristic can be leveraged by running Bub-
bleSort multiple times over the same input dataset. Due to the input
sensitivity of BubbleSort, subsequent runs will have a decreased
number of comparisons. BubbleSort in a noisy environment will fur-
ther benefit from a very intuitive modification to the algorithm that
is made due to the cost sensitivity of the environment: Every com-
parison that is requested is stored. As a result, comparing the same
item twice will not result in additional cost but if a crowd worker
returns the wrong answer this answer will be propagated through the
dataset. Even though this kind of propagation reduces the quality
of the output, the cost of iteratively improving the sorting solution
is less than running BubbleSort without storage mechanisms as

.5

runs

quality

1

cost
(in M)

4.5

2.25
BubbleSort, quality
BubbleSort, cost
QuickSort, quality
QuickSort, cost

Figure 5: QuickSort vs BubbleSort, perr = .2

verified through simulations.
These modifications are minor and do not change the character

of the algorithm which proceeds by doing local comparisons and
‘bubbling’ items to their correct spot in the ordering.

3.3 QuickSort vs. BubbleSort
When comparing QuickSort and BubbleSort and observing their

behavior in a noisy setting, we can see that traditional algorithmic
assumptions shift. Consider Figure 5 which shows an example
sketch for this shift: Here, we draw the behavior of the direct
QuickSort approach and the BubbleSort variation described above
in terms of cost and quality simulated in a noisy environment with
perr = .2 and 1000 items to be sorted. As we want to obtain
the optimal result quality eventually, we execute both algorithms
multiple times, the number of runs in this simulation is 500. There
are two main observations that can be drawn from these simulations.

First, they show that BubbleSort can improve its output result
over time due to its input sensitivity while the output quality of
QuickSort remains constant. Additionally, the average number of
crowd comparisons requested in BubbleSort decreases over time (in
our simulations up to 50%). Thus, the output quality of BubbleSort
increases because if the algorithm asks for fewer input from the
crowd, fewer noise is introduced into the sorting. In contrast, the
level of noise that the QuickSort algorithm has to handle remains the
same over multiple runs. The second observation that can be drawn
from these simulations is that even if cost reduction techniques are
used, BubbleSort is in this setup 26 times more expensive than
QuickSort when achieving the same quality (i.e. at the quality break-
even point). Thus, even though the increase in cost is lower, the
necessity of repeating the algorithm multiple times increases the
overall cost for BubbleSort in the end.

The example above shows that some algorithms like Bubble-
Sort have a natural robustness that makes them more suitable in
noisy environments. Thus, we think that established algorithms that
outperform others according to traditional complexity theory need
to be looked upon from a new angle in noisy environments as an
alternative or as a component in hybrid setups.

4. QUALITY & BUDGET ESTIMATES
In order to realize an estimation framework, we propose as first

step to establish a modified complexity theory that is noise-aware.
That is, in traditional complexity theory the number of comparisons
per algorithm determines the usefulness of that specific algorithm.
As we have shown previously, traditional assumptions may not hold
in the crowdsourcing environment due to noise in the information
set. Thus, algorithms need to be evaluated taking into consideration
their behavior in noisy environments. This evaluation can then be
used to determine which algorithm is most suitable to solve a certain
problem. As a result, we propose to define a new model for the

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

45

complexity of an algorithm that is dependent on a) the number of
records in the input set (analogous to traditional complexity theory)
b) and the amount of noise that this algorithm will encounter.

If the complexity of an algorithm is known, we can then use it
to form estimates of the required budget given certain quality con-
straints or estimates that approximate the result quality given certain
budget constraints for an algorithm as shown initially in Figure 1.
Note that this notion of complexity is not restricted to sorting algo-
rithms but it can be used for evaluating a variety of algorithms such
as entity resolution, finding the maximum etc. To be able to take
input parameters such as a required quality or available budget, tra-
ditional algorithms need to be adjusted. Modifying these algorithms
is necessary because current algorithms take an input dataset after
which they are executed to return a result with a certain quality for
a certain budget independent of the crowd worker error rate. How
budget and quality are distributed is subject to the specific execution
run and resemble points on a curve similar to those depicted in
Figure 5 where the curve varies according to the level of noise in
the information set and the chosen algorithm.

In our opinion, algorithms need to be conscious of input con-
straints to be able to compare two algorithms in a noisy environment.
Going back to our comparison of QuickSort and BubbleSort, we
can determine that according to the characteristics of the algorithms,
QuickSort with fault-tolerance can result in good quality results in
low noise environments while BubbleSort can be more adequate in
environments where the crowd answers wrongly more often. But in
order to be able to define the actual trade-off, we need to compare
how the algorithms react in scenarios with fixed error rate and bud-
get or quality. Thus, we want to be able to define the cost-quality
function curves instead of points on the curve that can be derived
from current algorithm variations that are not constraint-aware as
mentioned previously.

If these curves are known, we can use them for our estimation
framework in that they define the complexity of an algorithm depen-
dent on the crowd worker error rate where we can vary budget and
quality constraints in order to find a suitable estimated output. A
simple two-step estimation process may then look as follows:

1. Initial Estimate - Given the properties of the chosen algo-
rithm, i.e. its complexity in this kind of noisy environment,
decide upon an initial estimate.

2. Adjust Estimate - Using the knowledge of the input qual-
ity respectively budget parameter, adjust the estimate as to
meet/exhaust the parameter. An example measure is to allo-
cate more budget for multiple runs of the same algorithm or
for fault-tolerant mechanisms.

Obviously, this process is only a rough sketch of the functionality
of such an estimation framework. More specific implementation
and design details of these two steps are subject to future work as
is the specification of the complexity theory that enables us to give
accurate estimates in noisy environments.

5. CONCLUSION
In this work, we have presented several observations made for

quality and cost trade-offs in the still novel crowdsourcing environ-
ment. Using QuickSort and BubbleSort as example algorithms, we
have shown that any estimation function that wants to determine the
expected output of that algorithm has to take into consideration that
different algorithms behave differently when confronted with noise.
Their behavior not only changes in terms of budget requirements but
they also vary in their robustness in noisy environments. We have
presented techniques such as fault-tolerant interpretation strategies

and increasing the number of executions of the algorithms that influ-
ence the result estimation and choice of algorithm when taken into
consideration. Last, we have shown that traditional beliefs such that
QuickSort is better than BubbleSort due to its lower number of com-
parisons are questioned in a noisy environment because even though
QuickSort is requires a smaller budget, BubbleSort may provide
better quality results due to its ingrained second chance mechanism
and its ability to leverage information over multiple runs.

In the future, we plan to specify our sketched estimation frame-
work and to define exactly how noise can be evaluated in such an
environment. Additionally, we want to determine whether it is pos-
sible to formally analyze the trade-off between cost and quality for
algorithms that are traditionally integrated into relational database
management systems. Knowing the complexity of these algorithms
will help us to determine which of them are viable options for a
database system that incorporates crowdsourcing as a way to obtain
information.

6. REFERENCES
[1] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and

R. Xin. Crowddb: answering queries with crowdsourcing. In
SIGMOD Conference, pages 61–72, 2011.

[2] A. Gruenheid, D. Kossmann, S. Ramesh, and F. Widmer.
Crowdsourcing entity resolution: When is a=b? Technical
report, ETH Zurich, 2012.

[3] S. Guo, A. Parameswaran, and H. Garcia-Molina. So Who
Won? Dynamic Max Discovery with the Crowd. In
Proceedings SIGMOD, 2012. to appear.

[4] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw,
J. Zimmerman, M. Lease, and J. Horton. The future of crowd
work. In Proceedings of the 2013 conference on Computer
supported cooperative work, CSCW ’13, pages 1301–1318,
New York, NY, USA, 2013. ACM.

[5] M. Lease. On quality control and machine learning in
crowdsourcing. In Human Computation, 2011.

[6] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh.
Counting with the crowd. In Proceedings of the 39th
international conference on Very Large Data Bases,
PVLDB’13, pages 109–120. VLDB Endowment, 2013.

[7] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Demonstration of qurk: a query processor for humanoperators.
In SIGMOD Conference, pages 1315–1318, 2011.

[8] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Human-powered sorts and joins. PVLDB, 5(1):13–24, 2011.

[9] D. Oleson, A. Sorokin, G. P. Laughlin, V. Hester, J. Le, and
L. Biewald. Programmatic gold: Targeted and scalable quality
assurance in crowdsourcing. In Human Computation, 2011.

[10] A. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis,
and J. Widom. Deco: Declarative crowdsourcing. Infolab
Technical Report, Stanford University, November 2011.

[11] R. Sedgewick and K. Wayne. Algorithms, 4th Edition.
Addison-Wesley, 2011.

[12] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar.
Crowdsourced enumeration queries. In ICDE, 2013.

[13] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 5(11):1483–1494,
2012.

[14] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question
selection for crowd entity resolution. Technical report,
Stanford University.

[15] X. Wu, W. Fan, and Y. Yu. Sembler: Ensembling crowd
sequential labeling for improved quality. In AAAI, 2012.

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

46

Data In Context: Aiding News Consumers
while Taming Dataspaces

Adam Marcus
∗

, Eugene Wu, Sam Madden
MIT CSAIL

{marcua, sirrice, madden}@csail.mit.edu

...were it left to me to decide whether we should have a gov-
ernment without newspapers, or newspapers without a gov-
ernment, I should not hesitate a moment to prefer the latter.
— Thomas Jefferson

ABSTRACT
We present MuckRaker, a tool that provides news consumers
with datasets and visualizations that contextualize facts and
figures in the articles they read. MuckRaker takes advantage
of data integration techniques to identify matching datasets,
and makes use of data and schema extraction algorithms to
identify data points of interest in articles. It presents the
output of these algorithms to users requesting additional
context, and allows users to further refine these outputs.
In doing so, MuckRaker creates a synergistic relationship
between news consumers and the database research commu-
nity, providing training data to improve existing algorithms,
and a grand challenge for the next generation of dataspace
management research.

1. INTRODUCTION
One of the basic mechanisms through which end-users

consume and interact with data is by reading a news source.
Many articles are based on one or a few data points, be it
the earnings of a company, new unemployments numbers
for a country, or the number of people at a political rally.
Infographics compactly present a larger set of points, typi-
cally through aggregate statistics grouped temporally or by
category. Investigative efforts often uncover and join sev-
eral datasets to deliver a story. In business reporting, the
data is even more apparent: companies like Reuters and
Bloomberg are successful in part because they generate and
serve enormous amounts of data. In each of these examples,
the end product—an article or a graphic—is conceptually
a view over a dataset. For example, when reporting the
earnings of a specific company, the article presents a view
of a dataset of all company earnings in the same quarter, or
earnings of the company during previous quarters.

In this light, an article’s background includes tuples out-
side of the existing view; access to extra information would
allow the reader to better understand the article’s context.
However, articles may miss key contextual cues for many

∗Eugene and Adam contributed to this paper equally.

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

reasons: 1) A lack of space or time, as is common in minute-
by-minute reporting 2) The article is a segment in a multi-
part series, 3) The reader doesn’t have the assumed back-
ground knowledge, 4) A newsroom is resources-limited and
can not do additional analysis in-house, 5) The writer’s
agenda is better served through the lack of context, or 6)
The context is not materialized in a convenient place (e.g.,
there is no readily accessible table of historical earnings).
In some cases, the missing data is often accessible (e.g, on
Wikipedia), and with enough effort, an enterprising reader
can usually analyze or visualize it themselves. Ideally, all
news consumers would have tools to simplify this task.

Many database research results could aid readers, par-
ticularly those related to dataspace management. Matching
records from articles with those in a relation is an entity res-
olution problem; aggregating contextual information from
multiple sources is a schema matching and data integration
problem; searching for the missing data is a deep web prob-
lem; extracting relations from web-pages and text is solved
by projects like TextRunner [9] and Webtables [3]. While
these efforts have pushed the limits of automated solutions,
recent human-assisted approaches present new opportuni-
ties. Existing automated algorithms can be semi-automated
by asking humans to vet algorithmic results and iteratively
improve the algorithms over time. We believe news is an
ideal match for this problem.

We believe that, given the promise of contextualized arti-
cles, readers would be willing to answer a small number of
simple questions. For example, we might ask a user to high-
light the data in question, identify related datasets, ensure
the data in an article properly maps to a dataset, or to select
a visualization. Fortuitously, each small task generates in-
puts for semi-automated dataspace management algorithms.
Readers can also benefit from previous users’ answers and
view previously generated context without additional effort.

We view data in context as a grand challenge in dataspace
management. If we design algorithms that are good enough
to be guided by an average reader and provide the context
they lack, then both society and the database community
benefit. In addition, journalists can use the same tools to
proactively identify relevant datasets or visualizations.

We envision a proof-of-concept user interface for an arti-
cle contextualization service called MuckRaker. It serves as
a front-end to the numerous database problems mentioned
above. We have developed it as a bookmarklet for web
browsers that allows users to select a data point on a web-
page, answer a few questions about its context and origin,
and see a visualization of a dataset that contextualizes their

1

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

47

reading experience. In this paper we outline:
1. A user interface for interacting with data items on the

web that contextualizes them,
2. A study of the difficult dataspace management prob-

lems average news consumers can help solve, and
3. A collection of the challenges posed by data embedded

in articles that span the web.

2. TALE OF TWO COMMUNITIES
The problem of contextualizing data lies at the intersec-

tion of two communities—news consumers and the database
community—and can benefit both. As a social endeavor, we
believe it encourages the general population to interact with
data. MuckRaker not only helps curious readers better un-
derstand the news, but can help users spot biased attempts
to generalize a single outlier data value as the norm. It serves
the data management systems by helping clean, normalize,
and aggregate data that consumers care about.

The unfettered MuckRaker vision encompasses several open
problems facing the database community. We believe vari-
ants of the problem are tractable and can be solved with
careful application of existing approaches. In the rest of
this section, we illustrate how a constrained instance of this
problem can be solved for an example article that centers on
a car bombing in Iraq1. We first describe MuckRaker from a
user’s perspective, then explore a viable system implementa-
tion, and finally explore extensions to increase MuckRaker’s
utility and introduce interesting research problems.

2.1 A Tool for News Consumers
Suppose a user reads an article about a car bomb in Iraq

and wants to know the scale of similar attacks. She clicks
the MuckRaker bookmarklet (Figure 1a), which asks her to
select the region of text that she would like contextualized.
The user highlights the sentence “Twin car bombs exploded
in central Baghdad on Tuesday, killing at least 19 people.”
MuckRaker extracts key entities and values around the high-
lighted region, and presents the data to the user (Figure 1b).
MuckRaker could not identify attribute names for the first
and last column, and prompts the user to fill them in. The
attribute name in the third column is not precise enough,
so the user can click it to edit the name. When the user is
satisfied, she clicks “Find Context.”

MuckRaker receives a request containing the highlights
and extracted data. MuckRaker finds contextual informa-
tion about the article using article type classification, fact,
entity and numerical extraction, and other natural language
processing techniques. This information, weighted by its
distance to the selected text, is fed to algorithms described
in Section 2.2. The information and the tables ranked most
relevant by the algorithms are presented to the user (Figure
1c). The user can select the desired table, or update this
information and re-execute the matching algorithms.

In this example, the first table is a list of mass bombings2

and the second is of civilian casualties during the first two
weeks of the Iraq war3. If a matching row exists, MuckRaker
will attempt to populate empty fields with new data values.

1http://www.nytimes.com/2012/08/01/world/
middleeast/twin-car-bombs-hit-central-baghdad.html
2http://cursor.org/stories/iraq.html
3http://en.wikipedia.org/wiki/List_of_mass_car_
bombings

(a) MuckRaker bookmarklet.

(b) User selects data in text.

(c) Tables and article context.

(d) Visualizations.

Figure 1: The MuckRaker user interface.2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

48

In this case, neither table contains the user-selected data
point, so MuckRaker inserts the data into both tables, and
fills as many of the matched fields as possible. The row
is highlighted for the user so that she can optionally fill
in missing fields. She is interested in mass bombings, so
selects the first table, corrects the date field, and fills in
the type column with “car bomb,” which is autocompleted.
When she clicks “Use this table,“ the updated row is sent
to MuckRaker, and she is shown condidate visualizations.

MuckRaker selects an initial visualization using the se-
lected dataset. Previous users commonly created timeseries
and maps, and Figure 1d shows these top plots: deaths by
date and deaths by location. It highlights the new data
point to identify contextual data (the red points). The user
can specify that she is interested in different columns and
construct her own chart through a chart builder, where she
can specify chart types, axes, filters, and facets. MuckRaker
stores the visualization configuration that the user picked,
and uses it to bootstrap future requests.

2.2 Database Community
We believe that data in context can be implemented at a

basic but useful level using existing technology. We hope the
database community can use the core system as a starting
point for numerous research problems. In the rest of this
section, we sketch a basic implementation, and then describe
how user interactions can both improve existing algorithms
with training data, and introduce new challenges that must
be addressed by future data contextualizing systems.

2.2.1 Core Implementation
The MuckRaker interface is implemented as a browser

bookmarklet (Javascript that operates on the current web
page). We assume that we start with a reasonable collection
of tables that are clean, deduplicated, and complete. In ad-
dition, table metadata includes the surrounding text (e.g.,
Wikipedia article text). This data can be bootstrapped from
sites like Wikipedia and groups such as the world bank, or
through techniques like those in work by Cafarella et al [3].

User-selected text is sent to a backend server, which ex-
tracts numbers and their units (e.g., $, miles), dates, and
known entities. Entity extraction algorithms such as Know-
ItAll [6] can identify the key nouns and topics. We can ask
the user to clean and highlight the extracted values.

The set of possible tables is filtered by clustering the arti-
cle text with table metadata. For example, an article related
to the Iraq war will match tables extracted from Wikipedia
articles about Iraq. We can further reduce and rank tables
by canonicallizing user-specified attribute names using tech-
niques similar to those used by Das Sarma et al [5] to per-
form schema ranking. A final ranking comes from comparing
the table values with those in the user-extracted record.

2.2.2 Research Problems
The user interaction provides a number of strong signals

that make for interesting research problems. We describe
some problems in the context of interactions in the extrac-
tion, selection, and visualization phases of the user workflow.
Data Extraction and Integration. The user-selected
text explicitly defines record boundaries. The collection of
all user highlights can be used to train classifiers to detect
strings that contain records, and focus the analysis that data
record extractors like TextRunner [9] need to perform.

The user can facilitate record extraction, but values may
be named, formatted, or scaled inconsistently with existing
tables. With a tighter human-in-the-loop training cycle, we
have more hope for improving such extraction anomalies.

Another classification challenge lies in identifying the type
of context that the user interested in. She may want to see
an IBM earnings report in the context of historical earnings
instead of similar technology companies (select the appropri-
ate attributes). Alternatively, a European reader may prefer
to see European companies rather than American companies
(select the best records). Subdividing context automatically
according to user preferences is a key challenge.
Structured Search. Das Sarma et al. recently studied
related table search [5], where a user specifies a table and
the search engine identifies others that either extend the ta-
ble horizontally or vertically. MuckRaker requires a similar
search, but uses partial examples extracted from article text.

In addition, identifying the table is not enough. To be use-
ful, tables must be transformed (e.g., currency conversion),
projected, filtered (e.g., identify small number of representa-
tive rows), and aggregated (e.g., aggregate county statistics
to report state granularity statistics). Learning these steps
is another research challenge.
Visualization. Automated Visualization selection is diffi-
cult because it is both a dimensionality reduction problem
and a design problem. Historical earnings are best plotted
as a time series, while the comparative earnings of similar
companies is better represented with a bar chart. A human
in the loop would better assist and train these decisions.

MuckRaker can gather large volumes of training data of
user-perferred columns based on the final visualizations that
the user selects. One project that has facilitated user-driven
visualization construction is the ManyEyes project [8], and
we can use its findings as a basis for our design.
Data Management. The projects that have most closely
integrated these individual research problems into a larger
data integration and search system are TextRunner [9] and
WebTables [3]. To the extent that these projects have been
evaluated by how much deep web data can be added to web
search indices, we think that the grand challenge raised by
contextualizing data serves as a higher bar. While indexing
websites by the data they store is useful, being able to re-
trieve datasets that are relevant to a user’s current context
would be even more powerful. The WebTables authors re-
alize this as well: Fusion Tables [7] surfaces the data found
in web tables and other datasets directly in search results,
suggesting that search-based structured data retrieval is a
meaningful measure of the effectiveness of these techniques.

3. GENERALIZING MUCKRAKER
In the interface described above, all user actions succeeded:

the user found the correct dataset, the new record was rea-
sonably extracted, there were no duplicate records in the
table, and roughly one relevant record was extracted from
the article. We now consider more challenging cases, and
how the user interface can be augmented to handle them.
No matching datasets. Consider a situation where the
user highlights some text and clicks “Search,” no useful
datasets are returned. In these situations, the user can uti-
lize the search bar in Figure 1c to enter her own keywords,
and potentially find the dataset. Failing that, she can click
on “I can’t find a dataset,” and be prompted to either: 1)

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

49

Point at a webpage containing the dataset, or 2) Specify col-
umn headings (the schema) and row that can be extracted
from this document in a spreadsheet interface. In scenario
1, an automated extractor can present the user with the
newly extracted dataset, and in scenario 2, MuckRaker can
search again for a matching dataset with the given schema
and data point. Should this final search fail, the user will
be invited to add more entries to the spreadsheet.
Incorrect extraction. In situations where a dataset is
correctly identified but records are extracted incorrectly, the
user can edit the row in the familiar spreadsheet interface of
Figure 1c. It is possible that a user will incorrectly add field
values, but MuckRaker aggregates multiple user corrections
before trusting any one user’s input.
Duplicate data. Duplicate rows within a table can arise
if multiple users submit different articles about the same
event. We can handle these by calculating a similarity mea-
sure between rows. For any newly added row that is above
some threshold similarity to an existing row, we can ask a
user to verify that the user indeed means to add a new data
point. Data duplicated across tables requires more care. We
wish to know when a table should be merged with another
table, which might happen when enough rows between two
tables are similar. In this situation, we can ask a user during
dataset search (Figure 1c) whether the table they selected is
the same as another one. If the user indicates that it is, they
are then presented with the columns of both tables aligned
by a schema mapping algorithm, and invited to re-arrange
the mapping as they see fit. The system can merge two
tables if enough users mark them as merge candidates.
Article-embedded datasets. So far, our user has high-
lighted a sentence that roughly translates to a single record
in a table. It is often the case that an article discusses more
than one data point. For example, an article that describes
a trend essentially embeds multiple points from a timeseries
into a dataset. Alternatively, an article summarizing a study
that compares multiple groups of people would embed data
about each group. Summarizing all of the extracted points
in a table might be cumbersome for the user. It might be
simpler to summarize the extacted data in a visualization,
allowing the user to drag the points of a timeseries to match
a trend, or move the bars in a bar graph to represent the
relative differences between groups.
Uncertain facts. It is often the case that the news cov-
ers facts that contradict one-other (e.g., “Prior link between
cancer and fruit juice challenged in latest research”). Other
facts might simply expire over time. For example, records
that refer to “The President, aged 51” refer to a different
president or an incorrect age depending on the date of the
article. A user overseeing the data extraction that knew
good schema design practices (e.g., storing The President’s
date of birth rather than an age) could have avoided some
of these issues, but MuckRaker does not leave schema de-
sign to expert database designers. To handle these types of
expiration and uncertainty, attaching a source and date to
extracted data may help, as would periodically asking users
whether certain records are still valid in a table.

4. CONCLUSION
The core contribution of MuckRaker is to utilize a mixed-

initiative interface to improve dataspace management oper-
ations as a byproduct of contextualizing the news. It would
be interesting to see where else the insertion of a lightweight

user interface can act as a boon to database research while
benefitting another community.

There have been other calls to arms in the database com-
munity to assist the journalism process. Most prominently,
Cohen et al. outlined many ways in which computational
journalism can be aided by database research in areas such
as fact checking and hypothesis finding [4]. The PANDA
project [1] aims to provide centralized dataset storage and
search functionality within newsrooms. DataPress makes it
easier to embed structured data and visualizations into blog
posts [2]. MuckRaker approaches the journalism-data inter-
face from a different perspective: it seeks to aid news con-
sumers in situations where the Journalism process has left
them with an incomplete picture of the world. It can also
help journalists and editors preempt this problem by helping
them find contextualizing datasets and visualizations.

A key question in designing the MuckRaker experience is
whether the interface we are designing is lightweight enough,
or whether we are asking for too much from any one user.
In exchange for context behind an article, we believe users
are willing to answer a few small questions, mostly through
point-and-click interfaces. If it turns out that we are asking
too much from each user, however, we can design interfaces
that load-balance the data integration, extraction, and vi-
sualization tasks across users, especially in scenarios where
multiple users are reading the same article.

In presenting MuckRaker, we hope to bridge the gap be-
tween end-users and deep data exploration. We hope that
the database community is excited to improve on its algo-
rithms with help from the average news consumer.

5. REFERENCES
[1] The PANDA project, August 2012.

http://pandaproject.net/.

[2] E. Benson, A. Marcus, F. Howahl, and D. Karger.
Talking about data: Sharing richly structured
information through blogs and wikis. In ISWC. 2010.

[3] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. WebTables: exploring the power of tables on
the web. Proc. VLDB Endow., 2008.

[4] S. Cohen, C. Li, J. Yang, and C. Yu. Computational
journalism: A call to arms to database researchers. In
CIDR, 2011.

[5] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee,
F. Wu, R. Xin, and C. Yu. Finding related tables. In
SIGMOD, 2012.

[6] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Unsupervised named-entity extraction from the web:
an experimental study. Artif. Intell., 165(1):91–134,
June 2005.

[7] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen,
J. Madhavan, R. Shapley, W. Shen, and
J. Goldberg-Kidon. Google fusion tables: web-centered
data management and collaboration. In SIGMOD,
2010.

[8] F. B. Viégas, M. Wattenberg, F. van Ham, J. Kriss, and
M. M. McKeon. ManyEyes: a site for visualization at
internet scale. IEEE Trans. Vis. Comput. Graph., 2007.

[9] A. Yates, M. Cafarella, M. Banko, O. Etzioni,
M. Broadhead, and S. Soderland. TextRunner: open
information extraction on the web. In ACL, 2007.

4

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

50

	Organization
	Invited Keynotes
	Multi-Platform, Reactive Crowdsourcing. Stefano Ceri
	Mining the Crowd. Tova Milo

	Research Papers
	Wrapper Generation Supervised by a Noisy Crowd. Valter Crescenzi, Paolo Merialdo and Disheng Qiu
	Crowdsourcing to Mobile Users: A Study of the Role of Platforms and Tasks. Vincenzo Della Mea, Eddy Maddalena and Stefano Mizzaro
	Condition-Task-Store: A Declarative Abstraction for Microtask-based Complex Crowdsourcing. Kenji Gonnokami, Atsuyuki Morishima and Hiroyuki Kitagawa
	The Palm-tree Index: Indexing with the crowd. Ahmed Mahmood, Walid Aref, Eduard Dragut and Saleh Basalamah
	Crowdsourcing Feedback for PayAsYouGo Data Integration. Fernando Osorno-Gutierrez, Norman Paton and Alvaro A. A. Fernandes

	Vision Papers
	Crowds, not Drones: Modeling Human Factors in Interactive Crowdsourcing. Senjuti Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuruganathan, Sihem Amer-Yahia and Gautam Das
	Cost and Quality Trade-Offs in Crowdsourcing. Anja Gruenheid and Donald Kossmann
	Data In Context: Aiding News Consumers while Taming Dataspaces. Eugene Wu, Adam Marcus and Sam Madden

