Enhancing the Case Handling Paradigm
to Support Object-aware Processes

Carolina Ming Chiao, Vera Kunzle, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University , Germany
{carolina.chiao,vera.kuenzle,manfred.reichert}@uni-ulm.de

Abstract. Despite the widespread adoption of process management sys-
tems (PrMS) by industry, there exist numerous processes that cannot
be adequately supported by PrMS so far. A common characteristic of
these processes, which is usually neglected by traditional ativity-centric
PrMs, is the role of data as driver for process modeling and enact-
ment. To overcome the limitations caused by missing integrati on of data
and process, several data-centric process management approacheksave
emerged. A popular one is the Case Handling (CH) paradigm. However,
previous case studies pointed out that, although it targets so me of the
limitations from activity-centric PrMS, the integration of proce sses and
data supported by CH is still unsatisfactory. In this paper, we pre sent
the lessons learned from previous case studies and discuss therfiitations
of CH. We then present the PHILharmonicFlows framework, which en-
hances the power of data-centric approaches such as CH by enforeig
a well-de ned modeling methodology governing the object-centric spec-
i cation and execution of processes and based on a formal operatbnal
semantics.

Key words: Case Handling, Data-centric Processes, Object-aware Pro-
cess Management

1 Introduction

Business process management provides generic methods, tools aedhiniques for
designing, con guring, enacting, and monitoring business processefl]. Existing
process management systems (PrMS) are usuallgctivity-centric ; i.e., processes
are de ned as a set of \black-box" activities and control ow elements, express-
ing the order and constraints for executing these activities. Howeer, in these
PrMS, business data is typically treated as second-class citizef2, 3]. Most PrMS
only cover atomic data elements, which are needed for control ow routing and
as input parameters of process activities. In turn, business objés are usually
stored in external databases; i.e., they are outside the control of the divity-
centric PrMS. Traditional activity-centric PrMS have been prim arily designed for
highly structured, repetitive processesBYy contrast, knowledge-intensiveprocesses
are often unstructured or semi-structured [4]; i.e., these processes are driven by
user decisions and cannot bstraight-jacketed into activities [2]. Moreover, such

89

2 Carolina Ming Chiao, Vera Kunzle, Manfred Reichert

processes require integrated access to data; i.e., users shall bdeatp immedi-
ately access important information at arbitrary points in time during pr ocess
execution. Additionally, the execution of knowledge-intensive pocesses depends
on the availability of certain information, but not on the completion of a c ertain
activity (as in activity-centric PrMS). Consequently, they are data-driven; i.e.,
instead of depending on activity completion, the progress of processxecution
depends on changes of correspondent business objects. Besidesséhprocesses
normally depend on data from other process instances from the same or dif
ferent type. Therefore, a PrMS must provide a mechanism for coorihating the
interactions between such interdependent processes.

In several case studies in di erent domains [5, 6, 7, 8, 9], we learned thahe
described limitations can be traced back to the missing integration ofbusiness
data and processes. To overcome at least some of the more severe limitats,
there exist several approaches that support a tight integration of procss and
data [2, 3, 7, 10, 11, 12, 13]. One prominentlata-centric approach is provided
by the Case Handling paradigm(CH) [2, 14, 15]. In CH, the central concept is
the case(e.g., an insurance claim or a job o er), which comprises tasks (i.e., ac
tivities), data elements, and relations between the tasks making p the process.
Although CH overcomes some of the limitations known from activity-centric
PrMs, the paradigm is still not broadly used in practice. To better understand
the reasons for this, in several case studies [5, 6, 8] we applied the CHuadigm
to existing processes. Thereby, we have observed that CH is lited in respect
to object-awareness Although CH permits to associate di erent types of data
elements to a case, which may be considered in tight accordance witiin object,
it neither provides explicit support for complex objects nor the relations between
them. More precisely, CH supportsobject behavior, i.e., it allows specifying in
which order and by whom the data elements (i.e. object attributes) shall be writ-
ten at runtime. However, CH does not properly take into account theinteraction
among di erent cases or di erent instances of the same case type. In tis pa-
per, we present the lessons learned in these case studies and diss some of the
fundamental limitations of CH. We further discuss the challenges to ke tackled
to improve the paradigm in order to provide adequate support for objectaware
processes. We then give insights into the PHILharmonicFlows framewark, which
enhance the CH paradigm by giving adequate support to object-aware pragsses.

Section 2 provides more details on object-aware processes and themarac-
teristics. In Section 3, we present a job application process as exartg Along
with this example, we present a set of requirements to be met by @&rMS in
order to provide an adequate support. In Section 4, CH is introducedfollowed
by a discussion of how CH meets the requirements. Finally, we skeh how to
enhance the CH paradigm (and other data-centric approaches as well) by inb-
ducing the PHILharmonicFlows framework in Section 5. Section 6 closes ith a
summary and an outlook.

90

Enhancing the Case Handling Paradigm 3

2 Object-aware Processes

This section describes the fundamental characteristics obbject-aware processes
Several require a full integration of process and data. As we learned inase
studies in a variety of domains [5, 6, 7, 8, 9], object-aware processes pesnt the
following major characteristics:

Object behavior. This characteristic deals with the processing of individual
object instances. More precisely, for each object type a separate ptess de ni-
tion must be provided. At runtime, the latter is then used for coordinating the
processing of individual object instances among di erent users.n addition, it
must be speci ed in which order and by whom the attributes of a particular
object instance shall be (mandatorily) written, and what valid attribu te settings
(i.e., attribute values) are. Furthermore, when executing activities, the involved
object instances need to be in certairstates Consequently, for each object type,
its behavior should be de nable in terms of states and transitions. Atruntime,
the creation of an object instance shall be directly coupled with the creation of
its correspondingprocess instance In this context, it is important to ensure that
mandatory data is provided during process execution; i.e., durig the processing
of object instances. For this reason, object behavior should be de neih terms
of data conditions rather than based on black-box activities.

Object interactions. The behavior of a particular object must be coordi-
nated with the one of other related objects. The related object instanes may be
created or deleted at arbitrary point in time, resulting in a complex data struc-
ture. The latter dynamically evolves during runtime, depending on thetypes and
numbers of created object instances. Further, individual object hstances of the
same type may be in di erent processing states at a certain point intime. More
precisely, it must be possible to execute individual processnstances (of which
each corresponds to the processing of a particular object instancehia loosely
coupled manner; i.e., concurrently to each other and synchronizingheir execu-
tion where needed by taking semantic object relations and cardinalityconstraints
into account.

Data-driven execution. To proceed with the processing of a particular ob-
ject instance, in a given state, certain attribute values are mandatorly required.
Hence, object attribute values re ect the progress of the correspondig process
instance. More precisely, the setting of certain object attribute values is enforced
in order to progress with the process through the use ofmandatory activities.
However, if required data is already available (e.g., it may be optiondly provided
by authorized users before the respective mandatory activity becongenabled),
these activities will be automatically skipped when being activatel. Furthermore,
users shall be able tore-executea particular activity, even if all mandatory ob-
ject attributes have been already set. For this purpose, data-drive execution
must be combined with explicit user commitments Finally, the execution of a
mandatory activity may depend on attribute values of related object instances.
Thus, the coordination of multiple process instances should be sygrted in a
data-driven way as well.

91

4 Carolina Ming Chiao, Vera Kunzle, Manfred Reichert

Flexible activity execution. For creating object instances and changing
object attribute values, form-based activities can be used. Respective user forms
should compriseinput elds (e.g., text elds or check-boxes) for writing selected
attributes and data elds for reading attributes of object instances. However,
di erent users might prefer di erent work practices. Activitie s should therefore
be executable at di erent levels of granularity; e.g., it should be posible that
an activity may relate to one or multiple object process instances.

Integrated access. Authorized users should be able to access and manage

process-related data objects at any point of time. More preciselypermissions for
creating and deleting object instances, as well as for reading and wiitg their

attributes need to be de ned. Attribute changes contradicting speci ed object
behavior must be prevented. Which attributes may be written or read by a par-
ticular (form-based) activity not only depends on the user invoking this activity,

but also on the progress of the corresponding process instance. Whitertain
users must execute an activity mandatorily in the context of a particular object
instance, others might be authorized to optionally execute this activty; i.e., a
distinction is made between mandatory and optional permissions. Furtlermore,
for object-aware processes, the selection of actors usually not only pends on
the activity to be performed, but also on the object instances procssed by this
activity. In this context, the relationships between users and obpct instances
must be taken into account.

3 lllustrating Example and Requirements

This section presents an example of ambject-aware processshowing the char-
acteristics sketched in Section 2. Following this, we discuss saemof the require-
ments to be met by a PrMS in order to give adequate support to this pra@ess.

3.1 lllustrating Scenario: Recruitment Process

As example we consider a (simpli ed) scenario for recruiting peo@ as known
from human resource management (cf. Fig. 1).

Example 1 (Recruitment Process). In the context of recruitment,
applicants may apply for job vacancies via an Internet online form. Before
an applicant may send herapplication to the respective company, specic in-
formation (e.g., name e-mail address , birthday , residence) must be provided.
Once theapplication has been submitted, the responsiblg@ersonnel officer in
the human resource department is noti ed. The overall process goal io decide
which applicant shall beinvited for the interview.

When the personnel o cer receives a job application , he may request in-
ternal reviews for each applicant . The concrete number ofreviews may di er
from application to application . Correspondingreview forms have to be lled
by employees from functional divisions . Employees make aproposal on how to

92

Enhancing the Case Handling Paradigm 5

human resource department

fiob
engineer announce
0110112010 job
Software
Uim il
iob
N
N
Q’ - pjextemal [application
Tnit [application decide
applicant. application Hans Manz application
Hax cun hm@web.de
_— init 211211970 decide
application Uim
pplicant
de Moor AN
ffunctional devision LN .
_ filin AN S %
- review T A < personnel
=l = officer
- g
review
employee
b
Q., - filin
T review
|Lola Fee)
—
users activities data structure activities users

Fig. 1. Example of a recruitment process from the human resource domain

proceed; i.e., they indicate whether the applicant shall benvited for an inter-
view or berejected . In the former case an additionalappraisal is needed. After
the employee has lled the review form, she submits it to the personnel officer
Based on the incomingreviews , he makes hisdecision on the application ;
i.e., if there are reviews indicating the applicant's interview , the personnel
officer shall invite the applicant for an interview. Otherwise, the application
is rejected .

3.2 Scenario Requirements

To adequately support such a scenario, any PrMS must meet a set of redpe-
ments, which we describe in the following. This will later be folbwed by a dis-
cussion, where we point out which of these requirements are met by K and
which are not.

R1 (Data integration): According to our scenario, the data should be
managed in terms of object types comprising object attributes and relaions to
other object types.

Example R1 (Data integration): For eachjob , a set of applications may
be created. In turn, for each application , severalreviews may exist. Thereby,
a review comprises attributes like application , employee, remark, proposal and
appraisal .

R2 (Flexible access to data): Authorized data access should be enabled
at any point in time during process execution; i.e., not only duringthe execution
of a particular activity.

Example R2 (Flexible access to data): The personnel officer should
be allowed to access arapplication even if no activity is currently contained

93

6 Carolina Ming Chiao, Vera Kunzle, Manfred Reichert

e Instance-specific Activity 0 Context-sensitive Activity e Batch Activity

T [I = [I = I
= we || | R H Wu = ﬂ

Fig. 2. Types of form-based activities

in his worklist. Furthermore, he should be allowed to update seleted attributes
from an application whenever needed.

R3 (Support of form-based activities and control ow within user

forms): A form-based activity comprises a set ofatomic actions. Each of them
corresponds to either annput eld for writing or a data eld for reading the value
of an object attribute. Which attributes may be written or read in a par ticular
form-based activity may depend on the user invoking this activity and the state
of the object instance. In addition, since the writing of particular attributes are
mandatory, these forms must signalize which are the corresponding mardory
input elds. However, whether a certain object attribute is mandatory in an
activity might depend on the value of other related attributes; i.e., when lling

a form, certain attributes might become mandatory on the vy.

Example R3a (Form-based activities): An employee requires a form-
based activity to write a review for an application . To complete this activity,
she must assign values to attributesemark, proposal , and appraisal . In addition,
she might access the attributes values of the correspondingpplication

Example R3b (Control ow within user forms): If an employee chooses
to reject a job application , she must provide areason for this; i.e., attribute
rejection reason becomes mandatory and a value must be set for it.

R4 (Support of variable activity granularity): Due to the tight inte-
gration with data, the behavior of the form-based activities might be related
to more than one object instance; i.e., some activities might read/wrie data in
more than one object instance. Accordingly, they may be classi ed as irtance-
speci ¢, context-speci ¢, and batch activities. Instance-speci ¢ activities corre-
spond to exactly one object instance (cf. Fig. 2a). When executing itattributes
of that object instance may be read, written or updated using a form. Inturn,
a context-sensitive activity additionally includes form elds corresponding to
higher- or lower-level object instances (cf. Fig. 2b). Finally,batch activities al-
low users to change a collection of object instances in one go; i.e., atite values
are assigned to all selected object instances using one single form.(Eig. 2c).

94

Example R4 (Support of variable activity granularity): An employee
may choose acontext-sensitive activity to edit a review; i.e., to write at-
tributes proposal and appraisal and to read attributes referring to the respective
application . In turn, personnel officer may choose aatch activity to mark all
the other applications as \rejected" when an applicant is hired for the job .

Example R5a (Mandatory activity): When performing a review of a
job application , the employee must provide a recommendation on whether to
invite the job applicant for an interview or reject the job application ;i.e., a
form-based activity needs to be mandatorily executed.

Example R5b (Optional activity): After a review has been requested
and performed by anemployee, the personnel officer might want to update the
review request; e.g., attribute remark may be optionally updated even if it has
been already set.

Example R6 (Object behavior): The object review can be de ned by
di erent states: initiated (when the personnel officer is setting which job
application is going to be reviewed and whichemployee shall perform the
review), under review (when the employee decides whetherreject or invite the
job applicant), rejected (if the job application is rejected), and invited (if
the employee decides toinvite the job applicant for an interview). An employee
may only provide areview for a particular job application if the process is cur-
rently at state under review . The latter is automatically activated as soon as
values for attributes employee and application have been assigned. If hegjects
the job application (i.e., attribute proposal is set asrejected), then the at-
tribute remark shall instantly become mandatory.

Example R7 (Flexible process execution): An employee might reject
a job application , through an optional activity, while the personnel officer
is still setting values for other attributes regarding the review ; i.e., the review
activity is skipped and will not be shown in the employee's worklist.

Example R8 (Activity re-execution): An employee may change his
proposal (i.e., invite or reject the job applicant) in the context of a review
arbitrarily often, as long as he has not explicitly con rmed his decision.

Example R9 (Proper data authorization): An employee must not see
the review proposal of other employees. At the same time, she must not update
her own proposal after submitting it to the personnel officer

N
&)

=

E

c
©

