
Enhancing the Case Handling Paradigm
to Support Object-aware Processes

Carolina Ming Chiao, Vera K•unzle, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University , Germany
{carolina.chiao,vera.kuenzle,manfred.reichert}@uni-ulm.de

Abstract. Despite the widespread adoption of process management sys-
tems (PrMS) by industry, there exist numerous processes that cannot
be adequately supported by PrMS so far. A common characteristic of
these processes, which is usually neglected by traditional activity-centric
PrMS, is the role of data as driver for process modeling and enact-
ment. To overcome the limitations caused by missing integrati on of data
and process, several data-centric process management approacheshave
emerged. A popular one is the Case Handling (CH) paradigm. However,
previous case studies pointed out that, although it targets so me of the
limitations from activity-centric PrMS, the integration of proce sses and
data supported by CH is still unsatisfactory. In this paper, we pre sent
the lessons learned from previous case studies and discuss the limitations
of CH. We then present the PHILharmonicFlows framework, which en-
hances the power of data-centric approaches such as CH by enforcing
a well-de�ned modeling methodology governing the object-centric spec-
i�cation and execution of processes and based on a formal operational
semantics.

Key words: Case Handling, Data-centric Processes, Object-aware Pro-
cess Management

1 Introduction

Business process management provides generic methods, tools and techniques for
designing, con�guring, enacting, and monitoring business processes[1]. Existing
process management systems (PrMS) are usuallyactivity-centric ; i.e., processes
are de�ned as a set of \black-box" activities and control ow elements, express-
ing the order and constraints for executing these activities. However, in these
PrMS, business data is typically treated as second-class citizen[2, 3]. Most PrMS
only cover atomic data elements, which are needed for control ow routing and
as input parameters of process activities. In turn, business objects are usually
stored in external databases; i.e., they are outside the control of the activity-
centric PrMS. Traditional activity-centric PrMS have been prim arily designed for
highly structured, repetitive processes. By contrast, knowledge-intensiveprocesses
are often unstructured or semi-structured [4]; i.e., these processes are driven by
user decisions and cannot bestraight-jacketed into activities [2]. Moreover, such

89



2 Carolina Ming Chiao, Vera K•unzle, Manfred Reichert

processes require integrated access to data; i.e., users shall be able to immedi-
ately access important information at arbitrary points in time during pr ocess
execution. Additionally, the execution of knowledge-intensive processes depends
on the availability of certain information, but not on the completion of a c ertain
activity (as in activity-centric PrMS). Consequently, they are data-driven; i.e.,
instead of depending on activity completion, the progress of process execution
depends on changes of correspondent business objects. Besides, these processes
normally depend on data from other process instances from the same or dif-
ferent type. Therefore, a PrMS must provide a mechanism for coordinating the
interactions between such interdependent processes.

In several case studies in di�erent domains [5, 6, 7, 8, 9], we learned thatthe
described limitations can be traced back to the missing integration ofbusiness
data and processes. To overcome at least some of the more severe limitations,
there exist several approaches that support a tight integration of process and
data [2, 3, 7, 10, 11, 12, 13]. One prominentdata-centric approach is provided
by the Case Handling paradigm(CH) [2, 14, 15]. In CH, the central concept is
the case(e.g., an insurance claim or a job o�er), which comprises tasks (i.e., ac-
tivities), data elements, and relations between the tasks making up the process.
Although CH overcomes some of the limitations known from activity-centric
PrMS, the paradigm is still not broadly used in practice. To better understand
the reasons for this, in several case studies [5, 6, 8] we applied the CH paradigm
to existing processes. Thereby, we have observed that CH is limited in respect
to object-awareness. Although CH permits to associate di�erent types of data
elements to a case, which may be considered in tight accordance withan object,
it neither provides explicit support for complex objects nor the relations between
them. More precisely, CH supportsobject behavior; i.e., it allows specifying in
which order and by whom the data elements (i.e.,object attributes) shall be writ-
ten at runtime. However, CH does not properly take into account theinteraction
among di�erent cases or di�erent instances of the same case type. In this pa-
per, we present the lessons learned in these case studies and discuss some of the
fundamental limitations of CH. We further discuss the challenges to be tackled
to improve the paradigm in order to provide adequate support for object-aware
processes. We then give insights into the PHILharmonicFlows framework, which
enhance the CH paradigm by giving adequate support to object-aware processes.

Section 2 provides more details on object-aware processes and theircharac-
teristics. In Section 3, we present a job application process as example. Along
with this example, we present a set of requirements to be met by aPrMS in
order to provide an adequate support. In Section 4, CH is introducedfollowed
by a discussion of how CH meets the requirements. Finally, we sketch how to
enhance the CH paradigm (and other data-centric approaches as well) by intro-
ducing the PHILharmonicFlows framework in Section 5. Section 6 closes with a
summary and an outlook.

90



Enhancing the Case Handling Paradigm 3

2 Object-aware Processes

This section describes the fundamental characteristics ofobject-aware processes.
Several require a full integration of process and data. As we learned in case
studies in a variety of domains [5, 6, 7, 8, 9], object-aware processes present the
following major characteristics:

Object behavior. This characteristic deals with the processing of individual
object instances. More precisely, for each object type a separate process de�ni-
tion must be provided. At runtime, the latter is then used for coordinating the
processing of individual object instances among di�erent users. In addition, it
must be speci�ed in which order and by whom the attributes of a particular
object instance shall be (mandatorily) written, and what valid attribu te settings
(i.e., attribute values) are. Furthermore, when executing activities, the involved
object instances need to be in certainstates. Consequently, for each object type,
its behavior should be de�nable in terms of states and transitions. At runtime,
the creation of an object instance shall be directly coupled with the creation of
its correspondingprocess instance. In this context, it is important to ensure that
mandatory data is provided during process execution; i.e., during the processing
of object instances. For this reason, object behavior should be de�nedin terms
of data conditions rather than based on black-box activities.

Object interactions. The behavior of a particular object must be coordi-
nated with the one of other related objects. The related object instances may be
created or deleted at arbitrary point in time, resulting in a complex data struc-
ture. The latter dynamically evolves during runtime, depending on thetypes and
numbers of created object instances. Further, individual object instances of the
same type may be in di�erent processing states at a certain point intime. More
precisely, it must be possible to execute individual process instances (of which
each corresponds to the processing of a particular object instance) in a loosely
coupled manner; i.e., concurrently to each other and synchronizingtheir execu-
tion where needed by taking semantic object relations and cardinalityconstraints
into account.

Data-driven execution. To proceed with the processing of a particular ob-
ject instance, in a given state, certain attribute values are mandatorily required.
Hence, object attribute values reect the progress of the corresponding process
instance. More precisely, the setting of certain object attributevalues is enforced
in order to progress with the process through the use ofmandatory activities.
However, if required data is already available (e.g., it may be optionally provided
by authorized users before the respective mandatory activity becomes enabled),
these activities will be automatically skipped when being activated. Furthermore,
users shall be able tore-executea particular activity, even if all mandatory ob-
ject attributes have been already set. For this purpose, data-driven execution
must be combined with explicit user commitments. Finally, the execution of a
mandatory activity may depend on attribute values of related object instances.
Thus, the coordination of multiple process instances should be supported in a
data-driven way as well.

91



4 Carolina Ming Chiao, Vera K•unzle, Manfred Reichert

Flexible activity execution. For creating object instances and changing
object attribute values, form-based activitiescan be used. Respective user forms
should compriseinput �elds (e.g., text �elds or check-boxes) for writing selected
attributes and data �elds for reading attributes of object instances. However,
di�erent users might prefer di�erent work practices. Activitie s should therefore
be executable at di�erent levels of granularity; e.g., it should be possible that
an activity may relate to one or multiple object process instances.

Integrated access. Authorized users should be able to access and manage
process-related data objects at any point of time. More precisely,permissions for
creating and deleting object instances, as well as for reading and writing their
attributes need to be de�ned. Attribute changes contradicting speci�ed object
behavior must be prevented. Which attributes may be written or read by a par-
ticular (form-based) activity not only depends on the user invoking this activity,
but also on the progress of the corresponding process instance. Whilecertain
users must execute an activity mandatorily in the context of a particular object
instance, others might be authorized to optionally execute this activity; i.e., a
distinction is made between mandatory and optional permissions. Furthermore,
for object-aware processes, the selection of actors usually not only depends on
the activity to be performed, but also on the object instances processed by this
activity. In this context, the relationships between users and object instances
must be taken into account.

3 Illustrating Example and Requirements

This section presents an example of anobject-aware processshowing the char-
acteristics sketched in Section 2. Following this, we discuss some of the require-
ments to be met by a PrMS in order to give adequate support to this process.

3.1 Illustrating Scenario: Recruitment Process

As example we consider a (simpli�ed) scenario for recruiting people as known
from human resource management (cf. Fig. 1).

Example 1 (Recruitment Process). In the context of recruitment,
applicants may apply for job vacancies via an Internet online form. Before
an applicant may send herapplication to the respective company, speci�c in-
formation (e.g., name, e-mail address , birthday , residence ) must be provided.
Once theapplication has been submitted, the responsiblepersonnel officer in
the human resource department is noti�ed. The overall process goal isto decide
which applicant shall be invited for the interview.

When the personnel o�cer receives a job application , he may request in-
ternal reviews for each applicant . The concrete number of reviews may di�er
from application to application . Corresponding review forms have to be �lled
by employees from functional divisions . Employeesmake aproposal on how to

92



Enhancing the Case Handling Paradigm 5

Fig. 1. Example of a recruitment process from the human resource domain

proceed; i.e., they indicate whether the applicant shall beinvited for an inter-
view or be rejected . In the former case an additionalappraisal is needed. After
the employee has �lled the review form, she submits it to the personnel officer .
Based on the incoming reviews , he makes hisdecision on the application ;
i.e., if there are reviews indicating the applicant's interview , the personnel
officer shall invite the applicant for an interview. Otherwise, the application
is rejected .

3.2 Scenario Requirements

To adequately support such a scenario, any PrMS must meet a set of require-
ments, which we describe in the following. This will later be followed by a dis-
cussion, where we point out which of these requirements are met by CH and
which are not.

R1 (Data integration): According to our scenario, the data should be
managed in terms of object types comprising object attributes and relations to
other object types.

Example R1 (Data integration): For each job , a set of applications may
be created. In turn, for each application , several reviews may exist. Thereby,
a review comprises attributes like application , employee, remark, proposal and
appraisal .

R2 (Flexible access to data): Authorized data access should be enabled
at any point in time during process execution; i.e., not only duringthe execution
of a particular activity.

Example R2 (Flexible access to data): The personnel officer should
be allowed to access anapplication even if no activity is currently contained

93



6 Carolina Ming Chiao, Vera K•unzle, Manfred Reichert

Instance-specific Activity Context-sensitive Activity Batch Activitya b c

job

interviewreview

application

job

interviewreview

application

job

interviewreview

application

Fig. 2. Types of form-based activities

in his worklist. Furthermore, he should be allowed to update selected attributes
from an application whenever needed.

R3 (Support of form-based activities and control ow within user
forms): A form-based activity comprises a set ofatomic actions. Each of them
corresponds to either aninput �eld for writing or a data �eld for reading the value
of an object attribute. Which attributes may be written or read in a par ticular
form-based activity may depend on the user invoking this activity and the state
of the object instance. In addition, since the writing of particular at tributes are
mandatory, these forms must signalize which are the corresponding mandatory
input �elds. However, whether a certain object attribute is mandat ory in an
activity might depend on the value of other related attributes; i.e., when �lling
a form, certain attributes might become mandatory on the y.

Example R3a (Form-based activities): An employee requires a form-
based activity to write a review for an application . To complete this activity,
she must assign values to attributesremark, proposal , and appraisal . In addition,
she might access the attributes values of the correspondingapplication .

Example R3b (Control ow within user forms): If an employee chooses
to reject a job application , she must provide areason for this; i.e., attribute
rejection reason becomes mandatory and a value must be set for it.

R4 (Support of variable activity granularity): Due to the tight inte-
gration with data, the behavior of the form-based activities might be related
to more than one object instance; i.e., some activities might read/write data in
more than one object instance. Accordingly, they may be classi�ed as instance-
speci�c, context-speci�c, and batch activities. Instance-speci�c activities corre-
spond to exactly one object instance (cf. Fig. 2a). When executing it,attributes
of that object instance may be read, written or updated using a form. In turn,
a context-sensitive activity additionally includes form �elds corresponding to
higher- or lower-level object instances (cf. Fig. 2b). Finally,batch activities al-
low users to change a collection of object instances in one go; i.e., attribute values
are assigned to all selected object instances using one single form (cf. Fig. 2c).

94



Enhancing the Case Handling Paradigm 7

Example R4 (Support of variable activity granularity): An employee
may choose acontext-sensitive activity to edit a review ; i.e., to write at-
tributes proposal and appraisal and to read attributes referring to the respective
application . In turn, personnel officer may choose abatch activity to mark all
the other applications as \rejected" when an applicant is hired for the job .

R5 (Support of mandatory as well as optional activities): In order
to reach process objectives, certain activities must be mandatorily executed for
progressing with the control-ow. At the same time, users should beallowed to
optionally execute additional activities; e.g., to write certain attr ibutes even if
they are not required at the moment.

Example R5a (Mandatory activity): When performing a review of a
job application , the employee must provide a recommendation on whether to
invite the job applicant for an interview or reject the job application ; i.e., a
form-based activity needs to be mandatorily executed.

Example R5b (Optional activity): After a review has been requested
and performed by anemployee, the personnel officer might want to update the
review request; e.g., attribute remark may be optionally updated even if it has
been already set.

R6 (Alignment of process execution with object behavior): It should
be possible to determine in which order and by whom object attributes must be
(mandatorily) written and what valid attribute value settings are. Cons equently,
for each object type, its behavior should be de�nable in terms of states and
transitions. In particular, it should be possible to drive processexecution based
on data and to dynamically react on attribute value changes. Hence, it is crucial
to map states to attribute values.

Example R6 (Object behavior): The object review can be de�ned by
di�erent states: initiated (when the personnel officer is setting which job
application is going to be reviewed and whichemployee shall perform the
review ), under review (when the employee decides whetherreject or invite the
job applicant ), rejected (if the job application is rejected ), and invited (if
the employee decides toinvite the job applicant for an interview). An employee
may only provide a review for a particular job application if the process is cur-
rently at state under review . The latter is automatically activated as soon as
values for attributes employee and application have been assigned. If herejects
the job application (i.e., attribute proposal is set as rejected ), then the at-
tribute remark shall instantly become mandatory.

R7 (Support of exible process execution): The value setting of cer-
tain object attributes are mandatory for process execution; i.e., themandatory
activities enforce the value setting of these object attributes as required for pro-
gressing with the process. In principle, respective attributes might be written

95



8 Carolina Ming Chiao, Vera K•unzle, Manfred Reichert

by executing optional activities as well. If an optional activity is executed be-
fore activating a mandatory activity, the latter may be automatically ski pped
(if other attribute mandatorily set by it have been written before as well).

Example R7 (Flexible process execution): An employee might reject
a job application , through an optional activity, while the personnel officer
is still setting values for other attributes regarding the review ; i.e., the review
activity is skipped and will not be shown in the employee's worklist.

R8 (Support of activity re-execution): Users should be allowed to re-
execute a particular activity (i.e., to update the referring attr ibutes), even if all
mandatory attributes have been already set. To reect this behavior, users must
explicitly commit the completion of the respective activity.

Example R8 (Activity re-execution): An employee may change his
proposal (i.e., invite or reject the job applicant ) in the context of a review
arbitrarily often, as long as he has not explicitly con�rmed his decision.

R9 (Enable proper data authorization): To enable access to data at any
point in time, permissions for creating and deleting object instances as well as
for reading/writing their attributes must be de�ned. However, attr ibute changes
contradicting to object behavior must be prevented. To achieve this, the progress
of the process must be taken into account when granting permissions to change
object attributes.

Example R9 (Proper data authorization): An employee must not see
the review proposal of other employees. At the same time, she must not update
her own proposal after submitting it to the personnel officer .

4 The Case Handling Paradigm

Case Handling (CH) [2, 14, 15] is a paradigm for supporting exible and
knowledge-intensive processes by strongly integrating them with data. This sec-
tion �rst summarizes basic CH concepts. This is followed by a discussion on
whether or not CH meets the requirements introduced in Section 3.2.

4.1 Basic Case Handling Concepts

The core concept of the CH approach is thecase type. The latter comprises tasks
(i.e., activities), atomic data elements, and a set of precedence relations between
the tasks making up a process. Opposed to traditional activity-centric PrMS,
the primary driver for progressing with a case (i.e., a process instance) is not
the event related to task completion, but the availability of values for the data
elements of the case. While an activity-centric process model clearly separates
the process from its associated data, CH integrates both in a tighter manner,

96



Enhancing the Case Handling Paradigm 9

Example of Job Application case typec

Form Job 
Application

Cases related to 
illustrating example

a
Interaction among 

case instances
b

Job Offer

Job 
Application 1

Job 
Application 2

Review 1 Interaction not possible
Interaction possible

Job Application

Job Offer

Review

Name

Birthdate

E-Mail Address

Skills

Remarks

Fill in Job 
Application 

Form
Inform Skills

task-form binding

Name Birthdate
E-Mail 

Address Skills Remarks

task

form

input field
data 

element

restricted 
binding

mandatory binding free data element

Execute role: JobApplicant
Redo role: nobody
Skip role: nobody

{ assigned roles

Fig. 3. CH paradigm applied to our example

using produced data not only for routing decisions, but also for determining
which parts of the process have already been accomplished. With CH, each
task may be associated with three sets ofdata elements, each serving a distinct
purpose: the �rst association is between a task and alldata elementsthat must
be accessible while performing this task. Further, all data elements mandatory
for a task must be set (i.e., bound to a value) before the task itself is considered
to be completed by the CH system. Finally, a data object may have a random
number of tasks to which it is restricted, meaning that it can only be updated
while performing one of these tasks. Interactive tasks are connectedto forms,
each providing access to a selection of data objects. Note that a particular form
may be associated with multiple tasks. Finally, it is possible to associate a form
to the case itself; i.e., the case and its data elements may be accessed at any
point in time using this form.

If a user closes a form after �lling out only parts of the mandatory data
�elds of a task, despite the task not considered as �nished, data already entered
will still be available to the person who continues working on that task. Such a
closely intertwined relation between data and process, however,abandons their
often unnatural separation as pursued in traditional PrMS. With the stat us of
data elements being the primary determinant of the case status, this concept
overcomes some of the limitations of traditional PrMS:

{ Work can now be organized by those performing it with a far higher degree
of freedom. Activities may either be performed only partially, with out losing
intermediary results, or multiple related activities may be handled in one go,
surpassing the weakened border between tasks.

{ Routing is no longer solely determined by the pre-speci�ed process model.
Case types may be designed in such a manner that multiple activities are
enabled concurrently, providing di�erent ways of achieving the same goal.

97



10 Carolina Ming Chiao, Vera K•unzle, Manfred Reichert

In addition to the execute role, specifying the subset of resources allowed
to handle a speci�c task, CH introduces two other roles being crucial for any
operational support: the skip and redo roles. Theskip role allows users to bypass
a selected task. To skip a task, however, all preceding tasks, which have not
been completed yet must be skipped (or completed) beforehand. This becomes
necessary to ensure an unambiguous state of the process. In turn, theredo role
enables the user to deliberately roll back the state's case by undoing tasks. In the
latter context, the values provided for data objects during the execution of tasks,
which are now undone, are not discarded, but merely marked asuncon�rmed .
Hence, they may serve as a default value when re-executing the respective tasks
later on. Before a task may be redone, all subsequent tasks that have already
been completed must be rolled back as well.

Fig. 3a illustrates an example of how cases and sub-cases can be related. In
this example, the case of typejob offer is related to a varying number of sub-
cases of typejob application . In turn, this sub-case may be related to di�erent
reviews . Details of a case type are shown in Fig. 3c. Thereby, data elements
are associated with forms representing corresponding input �elds. In turn, forms
are associated with tasks. In our example, the depicted form is associated to
both tasks of the case. More precisely, data elementsname, birthdate and e-mail
address are mandatory for completing taskFill in job application form , while
data element skills is mandatory for task Inform skills . In particular, data
element namemay be only �lled in the context of task Fill in job application
form . Data element remarks, in turn, is a so-called free data element; i.e., it may
be accessed at any point in time during case executiong by any involveduser
role.

4.2 How Does Case Handling Meet the Requirements of
Object-aware Processes

We now analyze and discuss whether CH meets the requirements of object-aware
processes presented in Section 3.2. This analysis is based on previous case studies
[5, 6, 8] as well as on hands-on experience with the CH tool BPMone1. The latter
is a commercial tool that implements the concepts of the CH paradigm.

R1 (Data integration): In CH, a case may be considered in tight accor-
dance with an object; i.e., the data elements related to a case may logically be
considered as data attributes of an object. Further, a case may be hierarchically
related with sub-cases, representing object relationships. However, only direct
relations (i.e., case and correspondent sub-cases) are supported. Neither interac-
tions between two instances of the same case nor access to a case's data elements
by a corresponding sub-case are allowed (cf. Fig. 3b).

R2 (Flexible access to data): One of the main characteristics of the CH
paradigm is its focus on theentire case; i.e., all users get full reading access
to the whole case when they are executing any activity. In particular, context

1 http://www.perceptivesoftware.com/products/perceptive-pro cess/business-
process-management

98



Enhancing the Case Handling Paradigm 11

tunneling (i.e., limitation of the user's view to single work items) is avoided,
which increases process exibility. The users involved in one case instance may
read all related data elements of the case at any point in time. Additionally,
values of free data elementsmay be edited by all users at any point in time
during case execution.

R3 (Support of form-based activities and control ow within user
forms): Like activity-based modeling approaches, in CH, process steps corre-
spond to activities. Such activities can be implemented in termsof forms. Each
form is linked with a collection of atomic data elements, which are either manda-
tory or restricted. An activity will be considered as completed if all mandatory
data elements have an assigned value. However, CH does not allow a �eld(and
the corresponding data element) to become mandatory dynamically; i.e., there
are no mechanisms that allow de�ning the internal ow logic within a f orm.
Hence, this requirement is not completely met.

R4 (Support of variable activity granularity): Similar to activity-
centric approaches, in the CH paradigm, each task instance is related toexactly
one process instance (i.e., instance-speci�c activities). However, using sub-cases
as workaround, context-sensitive activities are partially; i.e., if a case has sub-
cases, its tasks may access data elements from its sub-cases. SinceCH does
not support interactions among di�erent instances of the same case type, batch
activities are not directly supported.

R5 (Support of mandatory as well as optional activities): In CH,
a task may have associated data elements that must be set before completing
the case. Setting thesemandatory data elements is considered as a mandatory
activity. In turn, the de�nition of optional activities in CH is enabl ed by the use
of free data elements. Since the latter are not relevant for process control, they
may be set at any point in time during case execution by any user involved in
the case.

R6 (Alignment of process execution with object behavior): In par-
ticular, the data elements of a case may be associated with tasks (i.e., activities)
and be declared asmandatory or restricted. Free data elements, in turn, may be
changed at any point in time by any user involved in the case. Thereby, CH al-
lows capturing of the object behavior. In other words, by associating mandatory
data elements with tasks from a case, it becomes possible to specifyin which
order and by whom these data elements (or object attributes) shall be written.
Additionally, input �elds and transitions may be associated with constraints on
attribute values. Finally, it is possible to initialize and termin ate a case instance
at any point in time.

R7 (Support of exible process execution): Enabling of a task is driven
by data; i.e., tasks are enabled when data becomes available. When all mandatory
data elements, related to a particular activity, are set, the subsequent activity
becomes enabled. Additionally, tasks may be automatically skipped at runtime
if their mandatory data elements have been provided by other tasks before.

R8 (Support of activity re-execution): For each task in CH, separate
roles can be de�ned. More precisely, it is possible to de�ne who shall work on

99



12 Carolina Ming Chiao, Vera K•unzle, Manfred Reichert

an activity and who may redo or skip it. The redo role allows actors to execute
activities several times. However, the user may re-execute thetask only until
the completion of the respective case. If the execution of the case iscompleted,
the user must not re-execute the task anymore. Hence,user commitments are
not considered; i.e., the user cannot indicate to the system that heagrees with
the values, set for the data elements, so that the task is then �nished in a user-
controlled way.

R9 (Enable proper data authorization): In CH, data elements are as-
sociated with the tasks in order to de�ne the order in which they shall be set.
The user role assigned asexecute role to a particular activity is the one al-
lowed to write the related data elements. However, the direct association of roles
with tasks does not allow declaring such tasks asoptional for other user roles.
Moreover, to avoid context-tunneling, any user involved in the case may read
information of the entire case at any point in time; i.e., data privacy becomes a
severe issue.

5 Enhancing the Case Handling Paradigm

The CH paradigm overcomes many of the limitations caused by the missing
integration of data and processes. However, as discussed, there still exist re-
quirements not fully met by CH; e.g., concerning exible activity granularity
and data privacy issues. Although CH focus on data as driver for processexecu-
tion, it does not take object states and transitions between them into account;
i.e., CH does not enable mappings between attribute values and objects states
and therefore is unable to ensure compliance between them. To deal with these
drawbacks of the CH paradigm and other existing data-centric approaches,we
have developed the PHILharmonicFlows framework. Fig. 4 summarizes its main
components. Basically, PHILharmonicFlows comprises bothmodeling and run-
time environment enabling full lifecycle support for object-aware processes. As a
fundamental prerequisite, adata model describing the respective domain needs
to be de�ned; i.e., object type and relations are de�ned (cf. Fig. 5a).

The modeling environment of PHILharmonicFlows enforces a well-de�ned
modeling methodology governing the de�nition of processes at two di�erent levels
of granularity: micro and macro processes. A micro process captures thebehavior
of an object (cf. Fig. 6), while the macro process realizes theobjects interactions.
In particular, PHILharmonicFlows supports the interaction and coordin ation
of object instances asynchronously as long this does not violate any semantic
dependencies to be considered.

Process and data authorizationis based onuser roles. Data may be accessed
optionally and at any point in time. In turn, process execution is based on
permissions for creating and deleting object instances as well as for reading or
writing their attributes. Furthermore, to enable access at the object attribute
level, PHILharmonicFlows maintains a comprehensiveauthorization table. Fi-
nally, based on these authorization settings, PHILharmonicFlows automatically
generates user forms. Besides the form-based activities, the framework support

100



Enhancing the Case Handling Paradigm 13

Fig. 4. PHILharmonicFlows

job offer

review

job application

Data structurea

b

job offer

review

job application

Process structureb

object 
instances

relations

attributes
object 

behavior

asynchronous

0..n

1..5

Fig. 5. Data structure and corresponding process structure

Review

application

employee

proposal

appraisal

remark

Object Type

submitted

States

initiated

under review

invited

application is not 
null and employee 

is not null

(proposal=‘reject‘ 
or 

proposal=‘invite‘) 
and appraisal is not 

null

submitted=true

Object Behaviora b c

initiated under review

invited
rejected

remark is not null

rejected

personnel officer

employee

employee

employee

Fig. 6. Object behavior de�ned based on states and transitions by PHIL harmonicFlows

black-box activities as well (i.e., activities that invoke external applications or
functions that implement more complex computations).

The runtime environment provides data- and process-orientedviews to end-
users; i.e., authorized users may invoke activities for accessingdata at any point
in time as well as activities needed to proceed with the ow of the processes.
Moreover, PHILharmonicFlows is based on a well-de�ned formal semantics,
which allows for the automatic generation of end-user components corresponding
to the runtime environment (e.g., user worklists and form-based activities).



Due to the lack of space, we do not describe the components of the framework.
A more detailed description of the framework as well as its components canbe
found in [7, 16].

6 Summary & Outlook

In this paper, we discussed the limitations of the CH paradigm regarding the sup-
port of object-aware processes. We based this discussion on several case studies,
including hands-on experience we gathered when working with the CH system
BPMone.

R1 (Data integration)

R2 (Flexible access to data)

R3 (Support of form-based activities and 
control flow within user forms)

R4 (Support of variable activity 
granularity)

R5 (Support of mandatory as well as 
optional activities)

R6 (Alignment of process execution with 
object behavior)

R7 (Support of flexible process 
execution)

R8 (Support of activity re-execution)

R9 (Enable proper data authorization)

Case Handling 
Paradigm

PHILharmonicFlows 
Framework

o +

+ +

o +

o +

+ +

+ +

+ +

o +

- +

+
o
-

supported
partially supported
not supported

Fig. 7. Comparing the CH paradigm and PHILharmonicFlows

In particular, CH does not enable mappings between attribute values and ob-
jects states and therefore is unable to ensure compliance between them. Hence,
problems like the limited interaction among case instances and lack of data pri-
vacy make the CH paradigm unsuitable for object-aware processes. We further
presented the PHILharmonicFlows framework. Its objective is to enhance the
power of CH paradigm and other data-centric approaches to enable proper sup-
port of such processes. This approach has been applied in several case studies
comprising di�erent domains (e.g., human resources management, healthcare,
and automotive industry). As proof-of-concept, a prototype has been developed,
enabling the modeling and enactment of object-aware processes. Finally, Fig. 7
shows a compilation of the requirements of object-aware processes and how well
both approaches (i.e., CH and PHILharmonicFlows) meet them.

Acknowledgements

The authors would like to acknowledge the �nancial support provided by the
Ernst Wilken Foundation.

102



References

[1] Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information
Systems: Challenges, Methods, Technologies. Springer (2012)

[2] van der Aalst, W.M.P., Weske, M., Gr•unbauer, D.: Case handling: A new
paradigm for business process support. Data & Knowledge Engineering
53(2) (2005) 129{162

[3] Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling
business operation and processes. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering32(3) (2009) 3{9

[4] Silver, B.: Case management: Addressing unique bpm requirements. Tech-
nical report, BPMS Watch (2009)

[5] K•unzle, V., Reichert, M.: Towards object-aware process management sys-
tems: Issues, challenges, bene�ts. In: Proc. BPMDS'09. (2009) 197{210

[6] K•unzle, V., Reichert, M.: Integrating users in object-aware process manage-
ment systems: Issues and challenges. In: Proc. BPM'09 Workshops. (2009)
29{41

[7] K•unzle, V., Reichert, M.: Philharmonicows: Towards a framew ork for
object-aware process management. Journal of Software Mainteinance and
Evolution: Research and Practice23(4) (2011) 205{244

[8] K•unzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fun-
damental requirements and their support in existing approaches. Int'l Jour-
nal of Information System Modeling and Design2(2) (2011) 19{46

[9] Chiao, C.M., K•unzle, V., Reichert, M.: Towards object-aware process sup-
port in healthcare information systems. In: Proc. eTELEMED 2012. (2012)
227{236

[10] Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for
business processes. In: Handbook of Research on Business Process Manage-
ment. (2009) 503{531

[11] Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and
behavior using business artifacts. In: Proc. CAiSE'07. (2007) 324{339

[12] M•uller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination
of large process structure. In: Proc. CoopIS'07. (2007) 131{149

[13] Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product-based
workow support: Dynamic workow execution. In: Proc. CAiSE'08. (2008)
571{574

[14] Guenther, C., Reichert, M., van der Aalst, W.M.P.: Supporting exible
processes with adaptive workow and case handling. In: Proc. ProGility'08.
(2008) 229{234

[15] Mutschler, B., Weber, B., Reichert, M.: Workow management versus case
handling: results from a controlled software experiment. In: Proc.SAC'08.
(2008) 82{89

[16] K•unzle, V.: Object-aware Process Management. PhD thesis, Ulm Univer-
sity, Germany (2013)

103


