Automatic recognition of domain-specific terms: an
experimental evaluation

(© Denis Fedorenko

Nikita Astrakhantsev

Denis Turdakov

Institute for System Programming of Russian Academy of Sciences
fedorenko @ispras.ru, astrakhantsev @ispras.ru, turdakov@ispras.ru

Abstract

This paper presents an experimental evaluation
of the state-of-the-art approaches for automatic
term recognition based on multiple features:
machine learning method and voting algorithm.
We show that in most cases machine learning
approach obtains the best results and needs little
data for training; we also find the best subsets of
all popular features.

1 Introduction

Automatic term recognition (ATR) is an actual problem
of text processing. The task is to recognize and extract
terminological units from different domain-specific text
collections. Resulting terms can be useful in more com-
plex tasks such as semantic search, question-answering,
ontology construction, word sense induction, etc.

There have been a lot of studies of ATR. Most of them
split the task into three common steps:

1. Extracting term candidates. At this step special
algorithm extracts words and word sequences ad-
missible to be terms. In most cases researches use
predefined or generated part-of-speech patterns to
filter out word sequences that do not match such the
patterns. The rest of word sequences becomes term
candidates.

2. Extracting features of term candidates. Feature
is a measurable characteristic of a candidate that is
used to recognize terms. There are a lot of statistical
and linguistic features that can be useful for term
recognition.

3. Extracting final terms from candidates. This step
varies depending upon the way in which researches
use features to recognize terms. In some studies au-
thors filter out non-terms by comparing feature val-
ues with thresholds: if feature values lies in specific
ranges, then candidate is considered to be a term.
Others try to rank candidates and expect the top-N
ones to be terms. At last, few studies apply super-
vised machine learning methods in order to com-
bine features effectively.

Proceedings of the Ninth Spring Researcher’s Colloquium
on Database and Information Systems, Kazan, Russia, 2013

There are several studies comparing different ap-
proaches for ATR. In [18] authors compare different sin-
gle statistical features by their effectiveness for term can-
didates ranking. In [24] the same comparison is ex-
tended by voting algorithm that combines multiple fea-
tures. Studies [17], [15] compare supervised machine
learning method with the approach based on single fea-
ture again.

In turn, the present study experimentally evaluates
the ranking methods combining multiple features: super-
vised machine learning approach and voting algorithm.
We pay most of the attention to the supervised method in
order to explore its applicability to ATR.

The purposes of the study are the following:

e To compare results of machine learning approach
and voting algorithm;

e To compare different machine learning algorithms
applied to ATR;

e To explore how much training data is needed to rank
terms;

e To find the most valuable features for the methods;

This study is organized as follows. At the beginning we
describe the approaches more detailed. Section 3 is de-
voted to the performed experiments: firstly, we describe
evaluation methodology, then report the obtained results,
and, finally, discuss them. In Section 4 we conclude the
study and consider the further research.

2 Related work

In this section we describe some of the approaches to
ATR. Most of them have the same extracting algorithm
but consider different feature sets, so the final results de-
pend only on the used features. We also briefly describe
features used in the task. For more detailed survey of
ATR see [10], [2].

2.1 Extracting term candidates overview

Strictly, all of the word sequences, or n-grams, occur-
ring in text collections can be term candidates. But in
most cases researchers consider only unigrams and bi-
grams [18]. Of course, only the little part of such the
candidates are terms, because the candidates’ list mainly
consists of sequences like ’a”, ’the”, ”some of’, ’so the”,
etc. Hence such the noise should be filtered out.

One of the first methods for such the filtering was de-
scribed in [12]. The algorithm extracts term candidates
by matching the text collection with predefined Part-of-
Speech (PoS) patterns, such as:

e Noun
e Adjective Noun
e Adjective Noun Noun

As was reported in [12], such the patterns cut off
much of the noise (word sequences that are not terms)
but retain real terms, because in most cases terms are
noun phrases [5]. Filtering of term candidates that do
not satisfy some of the morphological properties of word
sequences is known as lingustic step of ATR.

In work [17] the authors do not use predefined pat-
terns appealing to the fact that PoS tagger can be not pre-
cise enough on some texts; they instead generate patterns
for each text collection. In study [7] no linguistic step is
used: the algorithm considers all n-grams from text col-
lection.

2.2 Features overview

Having a lot of term candidates, it is necessary to recog-
nize domain specific ones among them. It can be done
by using the statistical features computed on the basis of
the text collection or some another resource, for example
general corpus [12], domain ontology [23] or Web [6].
This part of ATR algorithm is known as statistical step.

Term Frequency is a number of occurrences of the
word sequence in the text collection. This feature is
based on the assumption that if the word sequence is
specific for some domain, then it often occurs in such
domain texts. In some studies frequency is also used as
an initial filter of term candidates [3]: if a candidate has
a very low frequency, then it is filtered out. It helps to
reduce much of the noise and improves precision of the
results.

TF*IDF has high values for terms that often occur
only in few documents: TF is a term frequency and IDF
is an inversed number of documents, where the term oc-
curs:

| Docs|
[{Doc : t € Doc}|

To find domain-specific terms that are distributed on
the whole text collection, in [12] IDF is considered as
an inversed number of documents in reference corpus,
where the term occurs. Reference corpus is a some gen-
eral, i.e. not specific, text collection.

The described features shows how the word sequence
is related to the text collection, or termhood of a candi-
date. There is another class of features that show inner
strength of words cohesion, or unithood [10]. One of the
first features of this class is T-test.

T-test [12] is a statistical test that was initialy designed
for bigrams and checks the hypothesis of independence
of words constituting a term:

TF « IDF(t) = TF(t) - log (1)

T-stat(t) = —N—ro= Q)

where p - hypothesis of independence, N - a number
of bigrams in the corpus.

The assumption of this feature is that the text is a
Bernoulli process, where meeting of bigram ¢ is a suc-
cess”, while meeting of other bigrams is a “failure”.

Hypothesis of independence is usually expressed as
follows: p = P(wiws) = P(wy) - P(ws), where P(w;)
- a probability to encounter the first word of the bigram,
P(wy) - a probability to encounter the second one. This
expression can be assessed by replacing the probabilities
of words to their normalized frequencies within a text:
p = % . %, where N - an overall number of
words in the text.

If words are independently distributed in text collec-
tion, then they do not form persistent collocation. It is
assumed that any domain-specific term is a collocation,
while not any collocation is a specific term. So consid-
ering features like T-test, we can increase the confidence
in that candidate is a collocation, but not necessarily spe-
cific term.

There are much more features that are used in ATR.

C-Value [8] has higher values for candidates that are
not parts of other word sequences:

C-Value(t) = log, |t| - TF(t) —

1
~TGeeg T € aedl} t;q TF(seq) 3)

Domain Consensus [14] recognizes terms that are uni-
formly distributed on the whole dataset:

5 J;Fd(ﬂl TE)

be() = - 7O %5 TR

deDocs

Domain Relevance [20] compares frequencies of the
term in two datasets - target and general:

_ TFtarget (t)
TFturget (t) + TFrefe'r'ence (t)

DR(1) 5)

Lexical Cohesion [16] is the unithood feature that

compares frequency of term and frequency of words
from which it consists:

|t| - TF(t) -logyg TF(t)
LC(t) = (©)
Zwet TF (IU)
Loglikelihood [12] is the analogue of T-test but with-
out assumption about how words in a text are distributed:

5(012; Clvp)b(c2 —ci2; N — Cl,p)
b(ciz;¢1,p1)b(ea — c12; N — ¢1,p2)

LL(t) = log (7

where c15 - a frequency of bigram ¢, ¢; - a frequency
of the bigram’s the first word, co - a frequency of the

second one, p = %, p1 = S, pp = G722, B(5-,°) -
binomial distribution.

Relevance [19] is the more sophisticated analogue of
Domain Relevance:

1
TFiarget(t)-DFiarget(t)) ®)
TFre.ference (t)

R(t)=1-
log,(2 +

Weirdness [1] also compares frequencies in different
collections but also takes into account sizes of such the
collections:

_ TFtarget (t) . |Corpu5reference|
TFreference(t) . ‘COTPUStargeﬂ

W(t) 9

The described feature list includes termhood, unit-
hood and hybrid features. The termhood features are
Domain Consensus, Domain Relevance, Relevance, and
Weirdness. The unithood features are Lexical Cohesion
and Loglikelihood. The hybrid feature, or feature that
shows both termhood and unithood, is C-Value.

A lot of works still concentrate on feature engineer-
ing, trying to find more informative features. Neverthe-
less, recent trend is to combine all these features effec-
tively.

2.3 Recognizing terms overview

Having feature values, final results can be produced. The
studies [8], [12], [1] use ranking algorithm to provide the
most probable terms, but this algorithm considers only
one feature. The studies [20], [16] describe the simplest
way of how multiple features can be considered: all val-
ues are simply reduced in a one weighted average value
that then is used during ranking.

In work [21] authors introduce special rules based on
thresholds for feature values. An example of such a rule
is the following:

Rule;(t) = Fi(t) > aand F;(t) <b (10)

where F; is a i-th feature; a, b are thresholds for fea-
ture values.

Note that the thresholds are selected manually or com-
puted from the marked-up corpora, so this method can
not be considered as purely automatic and unsupervised.

Effective way of combining multiple features was in-
troduced in [24]. It combines the features in a voting
manner using the following formula:

n
1
v = Z rank(F;(t)) (n
where n is a number of considered features,
rank(F;(t)) is arank of the term ¢ among values of other
terms considering feature Fj.

In addition, study [24] shows that the described voting
method in general outperforms most of the methods that
consider only one feature or reduce them in a weighted
average value. Another important advantage of the vot-
ing algorithm is that it does not require normalization of
feature values.

There are several studies that apply supervised meth-
ods for term recognition. In [17] authors apply Ada
Boost meta-classifier, while in [7] Ripper system is used.
The study [22] describes hybrid approach including both
unsupervised and supervised methods.

Dataset | Algorithm AvP
GENIA | Random Forest 0.54
GENIA | Logistic Regression | 0.55
GENIA | Voting 0.53
Biol Random Forest 0.35
Biol Logistic Regression | 0.40
Biol Voting 0.23

Table 1: Results of cross-validation without frequency
filter

Dataset | Algorithm AvP
GENIA | Random Forest 0.66
GENIA | Logistic Regression | 0.70
GENIA | Voting 0.65
Biol Random Forest 0.52
Biol Logistic Regression | 0.58
Biol Voting 0.31

Table 2: Results of cross-validation with frequency filter

3 Evaluation

For our experiments we implemented two approaches for
ATR. We used voting algorithm as the first one, while in
supervised case we trained two classifiers: Random For-
est and Logistic Regression from WEKA library . These
classifiers were chosen because of their effectiveness and
good generalization ability of the resulting model. Fur-
thermore, these classifiers are able to produce classifica-
tion confidence - a numeric score that can be used to rank
an example in overall test set. It is an important property
of the selected algorithms that allows to compare their
results with results produced by other ranking methods.

3.1 Evaluation methology

The quality of the algorithms is usually assessed by two
common metrics: precision and recall [11]. Precision is
the fraction of retrieved instances that are relevant:

|correct returned results|

12
|all returned results| (12)

Recall is the fraction of relevant instances that are re-
trieved:

|correct returned results|

= 13)

|all correct results|

In addition to precision and recall scores, Average

Precision (AvP) [12] is commonly used [24] to assess
ranked results. It defines as:

N

> P(i)AR() (14)

i=1

where P(i) is the precision of top-i results, AR(7)
change in recall from top-(i-1) to top-i results.

Obviously, this score tends to be higher for algorithms
that print out correct terms on top positions of the result.

In our experiments we considered only the AvP score,
while precision and recall are omitted. For voting algo-
rithm it is no simple way to compute recall, because it is

1 Official website of the
http://www.cs.waikato.ac.nz/ml/weka/

project:

not obvious what number of top results should be consid-
ered as correct terms. Also in a general case the overall
number of terms in dataset is unknown.

3.2 Features

For our experiments we implemented the following fea-
tures: C-Value, Domain Consensus, Domain Relevance,
Frequency, Lexical Cohesion, Loglikelihood, Relevance,
TF*IDF, Weirdness and Words Count. Words Count is
the simple feature that shows a number of words in a
word sequence. This feature may be useful for the clas-
sifier since values of other features may have different
meanings for single- and multi-word terms [2].

Most of these features are capable to recognize both
single- and multi-word terms, except T-test and Log-
likelihood that are designed to recognize only two-word
terms (bigrams). We generalize them to the case of n-
grams according to the study [4].

Some of the features consider information from the
collection of general-domain texts (reference corpus),
in our case these features are Domain Relevance, Rele-
vance, Weirdness. For this purpose we use statistics from
Corpus of Contemporary American English 2.

For extracting term candidates we implemented sim-
ple approach based on predefined part-of-speech pat-
terns. For simplicity, we extracted only unigrams, bi-
grams and trigrams by using patterns such as:

1. Noun
. Noun Noun
. Adjective Noun

2
3
4. Noun Noun Noun
5. Adjective Noun Noun
6

. Noun Adjective Noun

3.3 Datasets

Evaluation of the approaches was performed on two
datasets of medical and biological domains consisting of
short English texts with marked-up specific terms:

Corpus | Documents | Words | Terms
GENIA | 2000 400000 | 35000
Biol 100 20000 1200

The last one (Biol) has common texts with the first
(GENIA), so we filtered out the texts that occur in both
the corpora. We left GENIA without any modifications,
while 20 texts were removed from Biol as common texts
of the corpora.

3.4 Experimental results

3.4.1 Machine learning method versus Voting algo-
rithm

We considered two test scenarios in order to compare
quality of the implemented algorithms. For each scenario
we performed two kinds of tests: with and without filter-
ing of rare term candidates.

2Statistics available at www.ngrams.info

Trainset | Testset | Algorithm AvP
GENIA | Biol Random Forest 0.30
GENIA | Biol Logistic Regression | 0.35
- Biol Voting 0.25
Biol GENIA | Random Forest 0.44
Biol GENIA | Logistic Regression | 0.42
- GENIA | Voting 0.55

Table 3: Results of evaluation on separated train and test
sets without frequency filter

Trainset | Testset | Algorithm AvP
GENIA | Biol Random Forest 0.34
GENIA | Biol Logistic Regression | 0.48
- Biol Voting 0.31
Biol GENIA | Random Forest 0.60
Biol GENIA | Logistic Regression | 0.62
- GENIA | Voting 0.65

Table 4: Results of evaluation on separated train and test
sets with frequency filter

In the following tests the whole feature set was con-
sidered and the overall ranked result was assessed.

Cross-validation

We performed 4-fold cross-validation of the algorithms
on both the corpora. We extracted term candidates from
the whole dataset and divided them on train and test sets.
In other words, we considered the case when having
some marked-up examples (train set) we should recog-
nize terms in the rest of data (test set) extracted from the
same corpus. So in case of voting algorithm the training
set was simply omitted.

The results of cross-validation are shown in the Ta-
bles 1, 2. The Table 2 presents results of cross-validation
on term candidates that appears at least two times in the
corpus.

As we can see, in both the cases machine learning ap-
proach outperformed voting algorithm. Moreover, in the
case without rare terms a difference of scores is higher.
It can be explained by the following: feature values of
rare terms (especially Frequency, Domain Consensus)
are useless for the classification and add a noise to the
model. When such the terms are omitted, the model be-
comes more clear.

Also in most cases Logistic Regression algorithm out-
performed Random Forest, so in most of further tests we
used only the best one.

Separate train and test datasets

Having two datasets of the same field, the idea is to check
how the model trained on the one can predict the data
from the other. For this purpose we used GENIA as a
training set and Biol as a test one, then visa versa.

The results are shown in the Tables 3, 4. In the case
when Biol was used as a training set, voting algorithm
outperformed trained classifier. It could happen due to
the fact that the training data from Biol does not fully
reflect properties of terms in GENIA.

10+

08 -
Algorithm
%GB' ® Logistic Ragrassion
=8
A
07 - Vating algarithm
06 =

T T T
5000 10000 15000
Top.count

o4

Figure 1: Dependency of AvP from top results given by
cross-validation

06 =
Algorithm
% ® Logistic Regression
ENLT
'y Vating algarthm
04—

T T T
500 1000 1500
Top.caunt

Figure 2: Dependency of AvP from top results on sepa-
rated train and test sets

3.4.2 Dependency of average precision from num-
ber of top results

In previous tests we considered overall results produced
by the algorithms. Descending from the top to the bottom
of the ranked list, AvP score can significantly change,
so one algorithm can outperform another one on top-100
results but lose on top-1000. In order to explore this de-
pendency, we measured AvP for different slices of the
top results.

The Figure 1 shows the dependency of AvP from
number of top results given by 4-fold cross-validation.

We also considered a scenario when GENIA was used
for training and Biol for testing. The results are pre-
sented on the Figure 2.

3.4.3 Dependency of classifier performance from
training set size

In order to explore dependency between the amount of
data used for training and average precision, we consid-
ered three test scenarios.

At first, we trained the classifiers on GENIA dataset
and tested it on Biol. At each step the amount of training
data was being decreased, while the test data remained
without any modifications. The results of the test are pre-
sented on the Figure 3.

Next, we started with 10-fold cross-validation on
GENIA and at each step decreased the number of folds
used for training of Logistic Regression and did not
change the number of folds used for testing. The results
are shown on the Figures 4-8.

The last test is the same as the previous one, except

03-
Algorithm

% ® Logistic Hagrassian
o

0z- A |Random Forest

0.1+

T T T
a3z 512 a1a2
Train.size

Figure 3: Dependency of AvP from train set size on sep-
arated train and test sets

that the number of test folds was being increased at each
step. So we started with nine folds used for training and
one fold used for the test. At the next step we moved
one fold from training set to the test set and evaluated
again. The results are presented on the Figures 9-13.
The interesting observation is that higher values of AvP
correspond to the bigger sizes of the test set. It could hap-
pen because with increasing of the test set the number of
high-confident terms is also growing: such the terms take
most of the top positions of the list and improve AvP.
In case of GENIA and Biol the top of the list mainly
consists from the highly domain-specific terms that take
high values for the features like Domain Relevance, Rel-
evance, Weirdness: such the terms occur in the corpora
frequently enough.

As we can see, in all of the cases the gain of AvP
stopped quickly. So, in case of GENIA, it is enough to
train on 10% of candidates to rank the rest 90% with the
same performance. It could happen because of the rela-
tively small number of features are used and their speci-
ficity: most of them designed to have high magnitude for
terms and low for non-terms. So, the data can be easily
separated by the classifier having few training examples.

3.5 Feature selection

Feature selection (FS) is the process of finding the most
relevant features for the task. Having a lot of different
features, the goal is to exclude redundant and irrelevant
ones from the feature set. Redundant features provide no
useful information as compared with the current feature
set, while irrelevant features do not provide information
in any context.

There are different algorithms of FS. Some of them
rank separate features by relevance to the task, while oth-
ers search subsets of features that get the best model for
the predictor [9]. Also the algorithms differ by their com-
plexity. Because of big amount of features used in some
tasks, it is not possible to do exhaustive search, so fea-
tures are selected by greedy algorithms [13].

In our task we concentrated on searching the subsets
of features that get the best results for the task. For such
purpose we ran quality tests for all possible feature sub-
sets, or, in other words, performed the exhaustive search.
Having 10 features, we check 20 — 1 different combina-
tions of them. In case of the machine learning method,
we used 9 folds for test and one fold for train. The reason
of such the configuration is that the classifier needs little

Top count | All features | The best features
100 0.9256 0.9915
1000 0.8138 0.8761
5000 0.7128 0.7885
10000 0.667 0.7380
20000 0.6174 0.6804

Table 5: Results of FS for voting algorithm

data for training to rank terms with the same performance
(see the previous section). For voting algorithm, we sim-
ply ranked candidates and then assessed overall list. All
of the tests were performed on GENIA corpus and only
the Logistic Regression was used as the machine learning
algorithm.

The AvP score was computed for different slices of
the top terms: 100, 1000, 5000, 10000, and 20000. The
same slices are used in [24]. The best results for the al-
gorithms are presented in the Tables 5, 6. These tables
shows that voting algorithm has better scores then ma-
chine learning method, but such the results are not fully
comparable: FS for voting algorithm was performed on
the whole dataset, while Logistic Regression was trained
on 10% of term candidates. The average performance
gain for voting algorithm is about 7%, while for machine
learning it is only about 3%.

The best features for voting algorithm:

1. Top-100: Relevance, TF*IDF

2. Top-1000: Relevance, Weirdness, TF*IDF
3. Top-5000: Weirdness

4. Top-10000: Weirdness

5. Top-20000: CValue, Frequency, Domain Rele-
vance, Weirdness

The best features for the machine learning approach:

1. Top-100: Words Count, Domain Consensus, Nor-
malized Frequency, Domain Relevance, TF*IDF

2. Top-1000: Words Count,
Weirdness, TF*IDF

Domain Relevance,

3. Top-5000: Words Count, Frequency, Lexical Cohe-
sion, Relevance, Weirdness

4. Top-10000: Words Count, CValue, Domain Con-
sensus, Frequency, Weirdness, TF*IDF

5. Top-20000: Words Count, CValue, Domain Rele-
vance, Weirdness, TF*IDF

As we can see, most of the subsets contain features
based on a general domain. The reason can be that the
target corpus has high specificity, so the most of terms do
not occur in a general corpus.

The next observation is that in case of the machine
learning algorithm, Words Count feature occurs in all of
the subsets. This observation confirms an assumption
that this feature is useful for algorithms that recognize
both the single- and multi-word terms.

Top count | All features | The best features
100 0.8997 0.9856
1000 0.8414 0.8757
5000 0.7694 0.7875
10000 0.7309 0.7329
20000 0.6623 0.6714

Table 6: Results of FS for Logistic Regression

3.6 Discussion

Despite the fact that filtering of the candidates occurring
only once in the corpus improves average precision of
the methods, it is not always a good idea to exclude such
the candidates. The reason is that a lot of specific terms
can occur only once in a dataset: for example, in GENIA
there are 50% of considered terms that occur only once.
Of course, omitting such the terms extremely affects re-
call of the result. Thus such the cases should be consid-
ered for the ATR task.

One of the interesting observations is that the amount
of training data is needed to rank terms without sufficient
performance drop is extremely low. It leads to the idea
of applying the bootstrapping approach for ATR:

1. Having few marked-up examples, train the classifier
2. Use the classifier to extract new terms

3. Use the most confident terms as initial data at step 1.
4. Iterate until all of confident terms will be extracted

This is a semi-supervised method, because only lit-
tle marked-up data is needed to run the algorithm. Also
the method can be transformed into fully unsupervised,
if initial data will be extracted by some unsupervised ap-
proach (for example, by voting algorithm). The similar
idea is implemented in study [22].

4 Conclusion and Future work

In this paper we have compared the performance of two
approaches for ATR: machine learning method and vot-
ing algorithm. For this purpose we implemented the set
of features that include linguistic, statistical, termhood
and unithood feature types. All of the algorithms pro-
duced ranked list of terms that then was assessed by av-
erage precision score.

In most tests machine learning method outperforms
voting algorithm. Moreover it was explored that for the
supervised method it is enough to have few marked-up
examples, about 10% in case of GENIA dataset, to rank
terms with good performance. It leads to the idea of ap-
plying bootstrapping to ATR. Furthermore, initial data
for bootstrapping can be obtained by voting algorithm
because its top results are precise enough (see the Fig-
ure 1)

The best feature subsets for the task were also ex-
plored. Most of these features are based on a compar-
ison between domain-specific documents collection and
a reference general corpus. In case of the supervised ap-
proach, the feature Words Count occurs in all of the sub-
sets, so this feature is useful for the classifier, because

values of other features may have different meanings for
single- and multi-word terms.

In cases when one dataset is used for training and an-
other to test, we could not get stable performance gain
using machine learning. Even the datasets are of the
same field, a distribution of terms can be different. So it
is still unclear if it is possible to recognize terms from un-
seen data of the same field having the once-trained clas-
sifier.

For our experiments we implemented the simple
method of term candidates extraction: we filter out n-
grams that do not match predefined part-of-speech pat-
terns. This step of ATR can be performed in other ways,
for example by shallow parsing, or chunking 3, gener-
ating patterns from the dataset [17] or recognizing term
variants.

Another direction of further research is related to the
evaluation of the algorithms on more datasets of different
languages and researching the ability of cross-domain
term recognition, i.e. using a dataset of one domain to
recognize terms from others.

Also of particular interest is the implementation and
evaluation of semi- and unsupervised methods that in-
volve machine learning techniques.

References

[1] K. Ahmad, L. Gillam, L. Tostevin, et al. University
of surrey participation in trec8: Weirdness index-
ing for logical document extrapolation and retrieval
(wilder). In The Eighth Text REtrieval Conference
(TREC-8), 1999.

[2] Lars Ahrenberg. Term extraction: A review draft
version 091221. 2009.

[3] K.W. Church and P. Hanks. Word associa-
tion norms, mutual information, and lexicography.
Computational linguistics, 16(1):22-29, 1990.

[4] B. Daille. Study and implementation of combined
techniques for automatic extraction of terminology.
The balancing act: Combining symbolic and statis-
tical approaches to language, 1:49-66, 1996.

[5] B. Daille, B. Habert, C. Jacquemin, and J. Royauté.
Empirical observation of term variations and prin-
ciples for their description. Terminology, 3(2):197-
257, 1996.

[6] B. Dobrov and N. Loukachevitch. Multiple evi-
dence for term extraction in broad domains. In
Proceedings of the 8th Recent Advances in Natural
Language Processing Conference (RANLP 2011).
Hissar, Bulgaria, pages 710-715, 2011.

[7] J. Foo. Term extraction using machine learning.
20009.

3Free chunker can be found in
http://opennlp.apache.org

OpenNLP project:

[8] K.T. Frantzi and S. Ananiadou. Extracting nested
collocations. In Proceedings of the 16th confer-
ence on Computational linguistics-Volume 1, pages
41-46. Association for Computational Linguistics,
1996.

[9] L. Guyon and A. Elisseeff. An introduction to vari-
able and feature selection. The Journal of Machine
Learning Research, 3:1157-1182, 2003.

[10] K. Kageura and B. Umino. Methods of auto-
matic term recognition: A review. Terminology,
3(2):259-289, 1996.

[11] C.D. Manning and P. Raghavan. Introduction to
information retrieval, volume 1.

[12] C.D. Manning and H. Schiitze. Foundations of sta-
tistical natural language processing. MIT press,

1999.

[13] L.C. Molina, L. Belanche, and A. Nebot. Feature
selection algorithms: A survey and experimental
evaluation. In Data Mining, 2002. ICDM 2003.
Proceedings. 2002 IEEE International Conference
on, pages 306-313. IEEE, 2002.

[14] R. Navigli and P. Velardi. Semantic interpretation
of terminological strings. In Proc. 6th Intl Conf.
Terminology and Knowledge Eng, pages 95-100,
2002.

[15] M.A. Nokel, E.I. Bolshakova, and N.V.
Loukachevitch. Combining multiple features
for single- word term extraction. 2012.

[16] Y. Park, RJ. Byrd, and B.K. Boguraev. Automatic
glossary extraction: beyond terminology identifi-
cation. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1-7. Association for Computational Linguis-
tics, 2002.

[17] A. Patry and P. Langlais. Corpus-based ter-
minology extraction. In Terminology and Con-
tent Development—Proceedings of 7th International
Conference On Terminology and Knowledge Engi-
neering, Litera, Copenhagen, 2005.

[18] M. Pazienza, M. Pennacchiotti, and F. Zanzotto.
Terminology extraction: an analysis of linguis-
tic and statistical approaches. Knowledge Mining,
pages 255-279, 2005.

[19] A. Peiias, F. Verdejo, J. Gonzalo, et al. Corpus-
based terminology extraction applied to informa-
tion access. In Proceedings of Corpus Linguistics,
volume 2001. Citeseer, 2001.

[20] F. Sclano and P. Velardi. Termextractor: a web ap-
plication to learn the shared terminology of emer-
gent web communities. Enterprise Interoperability
11, pages 287-290, 2007.

[21] P. Velardi, M. Missikoff, and R. Basili. Identifica-
tion of relevant terms to support the construction of
domain ontologies. In Proceedings of the workshop

[22]

[23]

[24]

on Human Language Technology and Knowledge
Management-Volume 2001, page 5. Association for
Computational Linguistics, 2001.

Y. Yang, H. Yu, Y. Meng, Y. Lu, and Y. Xia. Fault-
tolerant learning for term extraction. 2011.

W. Zhang, T. Yoshida, and X. Tang. Using ontol-
ogy to improve precision of terminology extraction

from documents. Expert Systems with Applications,
36(5):9333-9339, 2009.

Ziqi Zhang, Christopher Brewster, and Fabio
Ciravegna. A comparative evaluation of term
recognition algorithms. In Proceedings of the Sixth
International Conference on Language Resources
and Evaluation (LRECO0S), Marrakech, Morocco,
2008.

0854 -

0850 -

=)

AVP
o
==
B
Nﬁ
md

@

4
Skip folds count

Figure 4: Dependency of AvP from number
of excluded folds with fixed testset size: 10-
fold cross-validation with 1 test fold and 9
to 1 train folds: Top-100 terms

0737 -
[+ N

0736 -

0735

=)

AV
=
@
N§
|

@

4
Skip folds count

Figure 5: Dependency of AvP from num-
ber of excluded folds with fixed testset size:
Top-1000 terms

0572 =

0570 -

0568 -

=]

VP

@
@

4
Skip folds count

Figure 6: Dependency of AvP from num-
ber of excluded folds with fixed testset size:
Top-5000 terms

0564 -

%0562
=<

=)

o
in
3
Nk

4
Skip folds court

Figure 7: Dependency of AvP from num-
ber of excluded folds with fixed testset size:
Top-10000 terms

055975

055950+
% 055925
=<

055300+

055875+

4
Skip folds count

¢

o
-

Figure 8: Dependency of AvP from num-
ber of excluded folds with fixed testset size:
Top-20000 terms

[+ N
= 0.88 4
=<

086

T T T
&

&a
@

e
in
=
1

ra \

4
Skip folds count

Figure 9: Dependency of AvP from num-
ber of excluded folds with changing testset
size: 10-fold cross-validation with 1 to 9
test folds and 9 to 1 train folds: Top-100
terms

0825

0.800 =

0775 =

0750 =

i

(=]
|

2 4 [
Skip folds count

Figure 10: Dependency of AvP from num-
ber of excluded folds with changing testset
size: Top-1000 terms

=

AVP

a a a a

o & o I

S = o b5

\ 1 \ h
N\

@

4 &
Skip folds count

Figure 11: Dependency of AvP from num-
ber of excluded folds with changing testset
size: Top-5000 terms

0650 -

0525 -
o

0600 =

0575

T T T
&

-
@

i

4
Skip folds count

Figure 12: Dependency of AvP from num-
ber of excluded folds with changing testset
size: Top-10000 terms

0604

0584

=)

VP
o
]
N\
ad

@

4
Skip folds count

Figure 13: Dependency of AvP from num-
ber of excluded folds with changing testset
size: Top-20000 terms

