
	
	
	
	
	
	
	
	
	
	

Proceedings	 of	 the	 ISWC	 2013	 Posters	 &	 Demos	 Track	
	
	

ISWC	 2013	 Posters	 &	 Demos	
	
	 	

October	 21-‐25,	 2013	
	
	
	
	
	
	
	
	
	
Editors:	
Eva	 Blomqvist	
Tudor	 Groza	

	 	

	 	

	
	

Preface
	

The ISWC 2013 Posters and Demonstrations Track complements the Research
and In-Use tracks of the conference and offers an opportunity for presenting
late-breaking research results, ongoing research projects, and speculative or
innovative work in progress. The informal setting of the Posters and
Demonstrations Track encourages presenters and participants to engage in
discussions about the presented work. Such discussions can be invaluable inputs
for the future work of the presenters, while offering participants an effective
way to broaden their knowledge of the emerging research trends and to network
with other researchers.

These proceedings represent the collection of abstracts corresponding to the
posters and demos presented at ISWC 2013. Technical posters report on work in
progress or completed Semantic Web software systems, while demonstrations
showcase innovative Semantic Web related implementations and technologies.
In total, there were 104 submissions, of which we accepted 45 demonstrations
and 27 posters. We thank the authors of all submissions for their contribution to
the program of ISWC 2013.

Furthermore, we would like to thank all the members of the program committee,
as well as the additional reviewers who have spent their valuable time within a
very tight schedule in prime holiday time to make this program reality. We are
grateful to all of these dedicated people for their valuable discussions and
feedback, and we wholeheartedly appreciate their voluntary and enthusiastic
cooperation. They supported us in creating a balanced mix of posters and demos
that address diverse Semantic Web aspects and which will result in an exciting
session at the conference. Lastly, we want to thank our fellow organizers of
ISWC, foremost the general chair, Chris Welty, and Kerry Taylor for the local
organization.

September 2013 Eva Blomqvist & Tudor Groza

	

	

Posters & Demos Track – Organization

Track chairs
Eva Blomqvist, Linköping University, Sweden
Tudor Groza, The University of Queensland, Australia

Program Committee

Alessandro Adamou
Sofia Angeletou
Marie-Aude Aufaure
Marut Buranarach
Vinay Chaudhri
Gong Cheng
Oscar Corcho
Mathieu D'Aquin
Yuzhang Feng
Miriam Fernandez
Anna Lisa Gentile
Gunnar Aastrand Grimnes
Gerd Gröner
Peter Haase
Armin Haller
Karl Hammar
Pascal Hitzler
Aidan Hogan
Jason J. Jung
Hanmin Jung
Haklae Kim
Hong-Gee Kim
Yuan-Fang Li

Yuan Ni
Andrea Giovanni Nuzzolese
Viktoria Pammer
Alexandre Passant
Valentina Presutti
Guilin Qi
Marta Sabou
Bernhard Schandl
Francois Scharffe
Giorgos Stoilos
Nenad Stojanovic
Mari Carmen Suárez-Figueroa
Jing Sun
Vojtěch Svátek
Hideaki Takeda
Raphaël Troncy
Tania Tudorache
Victoria Uren
Maria Esther Vidal
Boris Villazón-Terrazas
Haofen Wang
Kewen Wang
Yi Zhou

Additional Reviewers

Panos Alexopoulos
Jean-Paul Calbimonte
David Carral
Jae-Hong Eom
Aldo Gangemi
Jangwon Gim
Adila A. Krisnadhi

Harshit Kumar
Sungin Lee
Raghava Mutharaju
Hyun Namgoong
Jung Ho Um
Zhe Wang
Zhangquan Zhou

	
	

Table of Contents
	

Part I: Demonstrations

RelClus: Clustering-based Relationship Search ….………………………….. 1
Yanan Zhang, Gong Cheng and Yuzhong Qu

DiTTO: Diagrams Transformation inTo OWL ….………………….……….. 5

Aldo Gangemi and Silvio Peroni

CEDAR: a Fast Taxonomic Reasoner Based on Lattice Operations ….…….. 9

Samir Amir and Hassan Aït-Kaci

Demonstrating The Entity Registry System: Implementing 5-Star Linked Data
Without the Web ….…………………………………………………………. 13

Marat Charlaganov, Philippe Cudré-Mauroux, Christian Dinu, Christophe
Guéret, Martin Grund and Teodor Macicas

NoHR: Querying EL with Non-monotonic rules ……………………………. 17

Vadim Ivanov, Matthias Knorr and João Leite

A Search Interface for Researchers to Explore Affinities in a Linked Data
Knowledge Base ….…………………………………………………………. 21

Laurens De Vocht, Erik Mannens, Rik Van de Walle, Selver Softic and
Martin Ebner

Cite4Me: A Semantic Search and Retrieval Web Application for Scientific
Publications ….………………………………………………………………. 25

Bernardo Pereira Nunes, Besnik Fetahu, Stefan Dietze and Marco A.
Casanova

Best-effort Linked Data Query Processing with time constraints using ADERIS-
Hybrid ….……………………………………………………………………. 29

Steven Lynden, Isao Kojima, Akiyoshi Matono and Akihito Nakamura

Assisted Policy Management for SPARQL Endpoints Access Control …….. 33

Luca Costabello, Serena Villata, Iacopo Vagliano and Fabien Gandon

OU Social: Reaching Students in Social Media ….…………………………. 37

Miriam Fernandez, Harith Alani and Stuart Brown

Demonstration: Semantic Web Enabled Smart Farm with GSN ….………… 41

Raj Gaire, Laurent Lefort, Michael Compton, Gregory Falzon, David Lamb
and Kerry Taylor

Exploring Linked Open Data with Tag Clouds ….………………………….. 45

Xingjian Zhang, Dezhao Song, Sambhawa Priya and Jeff Heflin

Comparing ontologies with ecco ….………………………………………... 49
Rafael S. Gonçalves, Bijan Parsia and Uli Sattler

Linked Scientometrics: Designing Interactive Scientometrics with Linked Data
and Semantic Web Reasoning ….………………………………………….. 53

Grant McKenzie, Krzysztof Janowicz, Yingjie Hu, Kunal Sengupta and
Pascal Hitzler

The Benefits of Incremental Reasoning in OWL EL ….…………………… 57

Yevgeny Kazakov and Pavel Klinov

Curating Semantic Linked Open Datasets for Software Engineering ……… 61

Kavi Mahesh, Aparna Nagarajan, Apoorva Rao Balevalachilu and Karthik
Prasad

Optique 1.0: Semantic Access to Big Data: The Case of Norwegian Petroleum
Directorate's FactPages ….………………………………………………….. 65

Evgeny Kharlamov, Martin Giese, Ernesto Jiménez-Ruiz, Martin G.
Skjæveland, Ahmet Soylu, Dmitriy Zheleznyakov, Timea Bagosi, Marco
Console, Peter Haase, Ian Horrocks, Sarunas Marciuska, Christoph Pinkel,
Mariano Rodriguez-Muro, Marco Ruzzi, Valerio Santarelli, Domenico
Fabio Savo, Kunal Sengupta, Michael Schmidt, Evgenij Thorstensen,
Johannes Trame and Arild Waaler

Hunting for Inconsistencies in Multilingual DBpedia with QAKiS ….……... 69

Elena Cabrio, Julien Cojan, Serena Villata and Fabien Gandon

Demo: Swip, a Semantic Web Interface using Patterns ….…………………. 73

Camille Pradel, Ollivier Haemmerlé and Nathalie Hernandez

Using Ontologies to Identify Patients with Diabetes in Electronic Health
Records ….………………………………………………………………….. 77

Hairong Yu, Siaw-Teng Liaw, Jane Taggart and Alireza Rahimi Khorzoughi

Monitoring SPARQL Endpoint Status ….…………………………………... 81

Pierre-Yves Vandenbussche, Carlos Buil Aranda, Aidan Hogan and Jürgen
Umbrich

GetThere: A Rural Passenger Information System Utilising Linked Data &
Citizen Sensing ….………………………………………………………….. 85

David Corsar, Peter Edwards, Chris Baillie, Milan Markovic, Konstantinos
Papangelis and John Nelson

DRETa: Extracting RDF from Wikitables ….………………………………. 89

Emir Muñoz, Aidan Hogan and Alessandra Mileo

Enriching Concept Search across Semantic Web Ontologies ….………….... 93

Chetana Gavankar, Vishwajeet Kumar, Yuan-Fang Li and Ganesh
Ramakrishnan

Semantic tools for improving software development in open source
communities ….…………………………………………………………….... 97

Gregor Leban

Editing R2RML Mappings Made Easy ….………………………………… 101

Kunal Sengupta, Peter Haase, Michael Schmidt and Pascal Hitzler

TRT - A Tripleset Recommendation Tool ….……………………………… 105

Alexander Arturo Mera Caraballo, Bernardo Pereira Nunes, Giseli Rabello
Lopes, Luiz André P. Paes Leme, Marco A. Casanova and Stefan Dietze

KbQAS: A Knowledge-based QA System ….……………………………... 109

Dat Quoc Nguyen, Dai Quoc Nguyen and Son Bao Pham

Generating structured Profiles of Linked Data Graphs ….………………… 113

Besnik Fetahu, Stefan Dietze, Bernardo Pereira Nunes, Davide Taibi and
Marco Antonio Casanova

ActiveRaUL: A Web form-based User Interface to create and maintain RDF
data ….……………………………………………………………………… 117

Anila Sahar Butt, Armin Haller, Shepherd Liu and Lexing Xie

XLore: A Large-scale English-Chinese Bilingual Knowledge Graph ….…... 121

Zhigang Wang, Juanzi Li, Zhichun Wang, Shuangjie Li, Mingyang Li,
Dongsheng Zhang, Yao Shi, Yongbin Liu, Peng Zhang and Jie Tang

Git2PROV: Exposing Version Control System Content as W3C PROV …... 125

Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam Coppens, Paul
Groth, Erik Mannens and Rik Van de Walle

Publishing Data from the Smithsonian American Art Museum as Linked Open
Data ….……………………….……………………….……………………. 129

Craig Knoblock, Pedro Szekely, Shubham Gupta, Animesh Manglik, Ruben
Verborgh, Fengyu Yang and Rik Van de Walle

GRAPHIUM: Visualizing Performance of Graph and RDF Engines on Linked
Data ….………………………….……………………….…………………. 133

Alejandro Flores, Guillermo Palma, Maria-Esther Vidal, Domingo De
Abreu, Valeria Pestana, José Piñero, Jonathan Queipo and José Sánchez

SILURIAN: a Sparql vIsuaLizer for UndeRstanding querIes And federatioNs
….……………………….……………………….…………………………. 137

Simón Castillo, Guillermo Palma and Maria-Esther Vidal

Modeling and Reasoning Upon Facebook Privacy Settings ….……………. 141

Mathieu d'Aquin and Keerthi Thomas

Do it your own (DIY) Jeopardy Question Answering System ….………….. 145

André Freitas and Edward Curry

A Machine Reader for the Semantic Web ….………………………………. 149

Aldo Gangemi, Francesco Draicchio, Valentina Presutti, Andrea Giovanni
Nuzzolese and Diego Reforgiato

ONTOMS2: an Efficient and Scalable ONTOlogy Management System with an
Incremental Reasoning ….………………………………………………….. 153

Min-Joong Lee, Jong-Ryul Lee, Sangyeon Kim, Myung-Jae Park and Chin-
Wan Chung

SPACE: SPARQL Index for Efficient Autocompletion ….……………….. 157

Kasjen Kramer, Renata Dividino and Gerd Gröner

SemantEco Annotator ….…………………………………………………... 161

Patrice Seyed, Katherine Chastain, Brendan Ashby, Yue Liu, Timothy Lebo,
Evan Patton and Deborah McGuinness

A user interface to build interactive visualizations for the semantic web ….. 165

Miguel Ceriani, Paolo Bottoni and Simona Valentini

Coordinating Social Care and Healthcare using Semantic Web Technologies
….………………………………………………………………………….... 169

Spyros Kotoulas, Vanessa Lopez, Martin Stephenson, Pierpaolo Tommasi,
Wei Jia Shen, Gang Hu, Marco Luca Sbodio, Veli Bicer, Anastasios
Kementsietsidis, M. Mustafa Rafique, Jason Ellis, Thomas Erickson, Kavitha
Srinivas, Kevin McAuliffe, Guo Tong Xie and Pol Mac Aonghusa

A Distributed Reasoning Platform to Preserve Energy in Wireless Sensor
Networks ….………………………………………………………………… 173

Femke Ongenae, Stijn Verstichel, Maarten Wijnants and Filip De Turck

SexTant: Visualizing Time-Evolving Linked Geospatial Data ….……….... 177

Konstantina Bereta, Charalampos Nikolaou, Manos Karpathiotakis, Kostis
Kyzirakos and Manolis Koubarakis

Part II: Posters

Query Suggestion by Concept Instantiation ….……………………………. 181
Jack Sun, Franky, Kenny Q. Zhu and Haixun Wang

A Protein Annotation Framework Empowered with Semantic Reasoning … 185

Jemma X. Wu, Edmond J. Breen, Xiaomin Song, Brett Cooke and Mark P.
Molloy

Denoting Data in the Grounded Annotation Framework ….……………….. 189

Marieke Van Erp, Antske Fokkens, Piek Vossen, Sara Tonelli, Willem Robert
Van Hage, Luciano Serafini, Rachele Sprugnoli and Jesper Hoeksema

On the Semantics of R2RML and its Relationship with the Direct Mapping
……..……………..……………..……………..……………..……………... 193

Juan F. Sequeda

An FCA Framework for Knowledge Discovery in SPARQL Query Answers
……..……………..……………..……………..……………..…………….. 197

Melisachew Wudage Chekol and Amedeo Napoli

A Study on the Correspondence between FCA and ELI Ontologies ….…… 201

Melisachew Wudage Chekol and Amedeo Napoli

Towards Disambiguating Web Tables ….………………………………….. 205

Stefan Zwicklbauer, Christoph Einsiedler, Michael Granitzer and Christin
Seifert

A Restful Interface for RDF Stream Processors ….………………………... 209

Marco Balduini and Emanuele Della Valle

TripleRush ….……………………………………………………………… 213

Philip Stutz, Mihaela Verman, Lorenz Fischer and Abraham Bernstein

Adding Time to Linked Data: A Generic Memento proxy through PROV
……..……………..……………..……………..……………..…………….. 217

Miel Vander Sande, Sam Coppens, Ruben Verborgh, Erik Mannens and Rik
Van de Walle

Distributed SPARQL Throughput Increase: On the effectiveness of Workload-
driven RDF partitioning ….………………………………………………… 221

Cosmin Basca and Abraham Bernstein

Pay as you go Matching of Relational Schemata to OWL Ontologies with
IncMap ….………………………………………………………………….. 225

Christoph Pinkel, Carsten Binnig, Evgeny Kharlamov and Peter Haase

Interlinking Multilingual LOD Resources: A Study on Connecting Chinese,
Japanese, and Korean Resources Using the Unihan Database ….…………. 229

Saemi Jang, Satria Hutomo, Soon Gill Hong and Mun Yong Yi

Finite Models in RDF(S), with datatypes ….………………………………. 233

Peter F. Patel-Schneider and Pat Hayes

Extending R2RML to a source-independent mapping language for RDF … 237

Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Erik Mannens and
Rik Van de Walle

PigSPARQL: A SPARQL Query Processing Baseline for Big Data ….…... 241

Alexander Schätzle, Martin Przyjaciel-Zablocki, Thomas Hornung and
Georg Lausen

Discoverability of SPARQL Endpoints in Linked Open Data ….…………. 245

Heiko Paulheim and Sven Hertling

RDFChain: Chain Centric Storage for Scalable Join Processing of RDF Graphs
using MapReduce and HBase ….…………………………………………… 249

Pilsik Choi, Jooik Jung and Kyong-Ho Lee

Context Aware Sensor Configuration Model for Internet of Things ….…… 253

Charith Perera, Arkady Zaslavsky, Michael Compton, Peter Christen and
Dimitrios Georgakopoulos

Explaining Clusters with Inductive Logic Programming and Linked Data … 257

Ilaria Tiddi, Mathieu d'Aquin and Enrico Motta

D-SPARQ: Distributed, Scalable and Efficient RDF Query Engine ….…… 261
Raghava Mutharaju, Sherif Sakr, Alessandra Sala and Pascal Hitzler

Efficient Computation of Relationship-Centrality in Large Entity-Relationship
Graphs ….………………………………………………………………….. 265

Stephan Seufert, Srikanta J. Bedathur, Johannes Hoffart, Andrey Gubichev
and Klaus Berberich

A Hybrid Natural Language Approach to Manage Semantic Interoperability for
Public Health Analytics ….………………………………………………… 269

Maxime Lavigne, Arash Shaban-Nejad, Anya Okhmatovskaia, Luke Mondor
and David L. Buckeridge

Towards the Natural Ontology of Wikipedia ….…………………………... 273

Andrea Giovanni Nuzzolese, Aldo Gangemi, Valentina Presutti and Paolo
Ciancarini

The Empirical Robustness of Description Logic Classification ….………... 277

Rafael S. Gonçalves, Nicolas Matentzoglu, Bijan Parsia and Uli Sattler

Network-Aware Workload Scheduling for Scalable Linked Data Stream
Processing ….………………………………………………………………. 281

Lorenz Fischer, Thomas Scharrenbach and Abraham Bernstein

Semantic Enrichment of Mobile Phone Data Records Using Linked Open Data
……..……………..……………..……………..……………..…………….. 285

Zolzaya Dashdorj and Luciano Serafini

	
	
	
	
	
	
	
	
	
	

	
	
	

	
	

Part	 I:	 Demonstrations	
	 	

	
	
	
	
	
	
	
	
	

	
	 	

	

RelClus: Clustering-based Relationship Search

Yanan Zhang, Gong Cheng, and Yuzhong Qu

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, P.R. China

ynzhang@smail.nju.edu.cn, {gcheng, yzqu}@nju.edu.cn

Abstract. Searching and browsing relationships between entities is an
important task in many domains. To support users in interactively ex-
ploring a large set of relationships, we present a novel relationship search
engine called RelClus, which automatically groups search results into a
dynamically generated hierarchy with meaningful labels. This hierarchi-
cal clustering of relationships exploits their schematic patterns and a
similarity measure based on information theory.

Keywords: Association discovery, exploratory browsing, hierarchical clus-
tering, path finding, relationship search.

1 Introduction

Many information needs in various domains can be met by using an information
system that supports searching and browsing relationships (a.k.a. associations)
between entities, which are represented as paths in RDF graph. Whereas path
finding has been efficiently implemented (e.g. [4]), a major challenge that re-
mains is how to organize the results, which could be a large set of relationships
and cause information overload. To address this issue, efforts (e.g. [1]) have been
made to rank the results according to various criteria. Another line of work such
as [3], inspired by recent advances in exploratory search [2], provides faceted cat-
egories to organize search results into groups and serve as filters, each of which
characterizes a common feature of the underlying relationships such as their
length, or a type of a node (i.e. a class) or edge (i.e. a property) involved. Differ-
ently, in this demo we will present a relationship search engine called RelClus1

that practices another implementation of exploratory search, namely clustering.
RelClus measures the similarity between relationships based on their schematic
patterns by using information theory, and returns a dynamically generated hi-
erarchical clustering with meaningful labels, to effectively guide the exploration
of search results. Figure 1 shows a screenshot of the system.

2 Design and Implementation

RelClus is based on the DBpedia data set (dbpedia.org), and consists of four
components: keyword mapping, path finding, relationship clustering, and result
presentation, which will be detailed in the following.

1 http://ws.nju.edu.cn/relclus/.

1

Fig. 1. A screenshot of RelClus.

2.1 Keyword Mapping

User interaction starts with two keyword phrases, e.g. Sydney and Melbourne
in Fig. 1, describing two entities between which the relationships are request-
ed. Featured by the autocomplete functionality implemented based on Apache
Lucene (lucene.apache.org), RelClus can help the user conveniently determine
the mapping from keyword phrases to entities. In addition, when necessary, the
user can change the default length limit on the relationships to be returned, by
choosing an appropriate value from the drop-down list next to the search button.

2.2 Path Finding

Once the search button is clicked, RelClus will start to find all the paths (subject
to a length limit) between the two entities specified by the user. In particular,
edges in a relationship are not required to go the same direction because the
inverse of a property also has meaning for human readers. Figure 2 illustrates
an RDF graph containing five relationships, R1–R5, from Sydney to Melbourne,
as our running example.

Paths are found by using bidirectional breadth-first search (bi-BFS), which
runs two simultaneous searches from the two entities given and finds paths when
the two meet in the middle. According to our experimental results, bi-BFS is
generally faster than a single BFS or DFS, though requiring more memory than
DFS. To further reduce the time needed, our bi-BFS runs concurrently in multi-
ple threads. Besides, a cache is used to avoid repeated path finding for repeated
queries in the future.

2.3 Relationship Clustering

As a key step of RelClus, all the relationships found by bi-BFS will be clustered
into a hierarchy. For simplicity, the relationships are firstly grouped by length,

2

Sydney

Melbourne
Leslie Cody

Victoria (Australia)

William Bowrey

birthPlace

birthPlace

deathPlace

residence

capital

John Gorton Australia
deathPlace

country

birthPlace

Thomas Keneally

Lleyton Hewitt

birthPlace

residence country

nationality
(R
1
)

(R
2
)

(R
3
)

(R
4
)

(R
5
)

Fig. 2. An RDF graph containing five relationships from Sydney to Melbourne.

and then each group is processed individually. We will illustrate our clustering
algorithm by using R1–R5 in Fig. 2, all of which are of length three.

Our clustering algorithm follows an agglomerative manner; that is, each re-
lationship starts in its own cluster, and a hierarchy of clusters is built by pro-
gressively merging the most similar pair of clusters.

Before describing the similarity measure, we need to introduce how we assign
a meaningful and representative label to each cluster. The label of a cluster is a
relationship pattern, which is a high-level abstraction of relationships where the
nodes can be either entities or classes, and the directions of edges are omitted;
the label of a singleton cluster is just the unique relationship it contains. For
instance, in Fig. 3, R4 labels the singleton cluster {R4}; P1 is a relationship
pattern that labels the cluster {R4, R5}, where ⊤P denotes the top property
that is a superproperty of all the properties.

We call P1 a superpattern of R4 and R5 in the sense that for each entity, class,
and property in R4 and R5, the element in the corresponding position in P1

is either the same or its type, superclass, and superproperty, respectively; in
particular, it is the least common element among the possibilities. For instance,
Leslie Cody in R4 and William Bowrey in R5 are instances of both Person and
Athlete, and we choose Athlete in P1 because it is the least common type given
Athlete being a subclass of Person, and thus contains the most information
content as discussed in [5].

We define the similarity between two clusters as the information content
associated with the relationship pattern that labels their union, which indicates
how many commonalities the two clusters share. The information content as-
sociated with a relationship pattern is the sum of the information contents of
its elements. So, at the beginning of the clustering process in our running ex-
ample, {R4} and {R5} are merged before {R1} and {R2} because the label of
{R4, R5}, which would be P1, contains more information content than P2 which
would label {R1, R2}, mainly because P2 contains one more top property, the
information content of which is trivially zero.

In addition, after successively forming {R4, R5} labeled with P1 and {R1, R2}
labeled with P2, we will immediately merge {R1, R2} and {R3} into {R1, R2, R3},
still labeled with P2, because R3 also matches this pattern. Finally, the two

3

Sydney MelbourneLeslie Cody Victoria (Australia)

William Bowrey

birthPlace

birthPlace

deathPlace

residence

capital

Sydney Victoria (Australia) Melbourne
capital

AthleteSydney Victoria (Australia) Melbourne
capitalbirthPlace

country
MelbourneAustraliaPersonSydney

MelbournePopulatedPlacePersonSydney

countrybirthPlace
MelbourneAustraliaJohn GortonSydney

deathPlace

countrycountry
MelbourneAustraliaLleyton HewittSydney

residence

countrynationality
MelbourneAustraliaThomas KeneallySydney

birthPlaceR1

R2

R3

R4

R5

P2

P1

P3

P P

P P P

P

Fig. 3. A hierarchical clustering of five relationships from Sydney to Melbourne.

clusters labeled with P1 and P2 are merged into the root cluster labeled with P3,
and a hierarchy is formed.

2.4 Result Presentation

A hierarchical clustering is visualized as a collapsible/expandable tree, as illus-
trated in Fig. 1. Each entity is prefixed by a thumbnail if available; each class
is prefixed by some; the top property is omitted; and the top class is shown as
something. Each non-singleton cluster is suffixed by its size in parentheses, and
sibling clusters are sorted by their sizes decreasingly.

Acknowledgments. This work was supported in part by the NSFC under
Grant 61100040 and 61223003, and in part by the JSNSF under Grant BK2012723.

References

1. Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I.B., Ramakrishnan, C., Sheth,
A.P.: Ranking Complex Relationships on the Semantic Web. IEEE Internet Com-
put. 9(3), 37–44 (2005)

2. Hearst, M.A.: Clustering versus Faceted Categories for Information Exploration.
Comm. ACM 49(4), 59–61 (2006)

3. Heim, P., Lohmann. S., Stegemann, T.: Interactive Relationship Discovery via the
Semantic Web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stucken-
schmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088,
pp. 303–317. Springer, Heidelberg (2010)

4. Janik, M., Kochut, K.: BRAHMS: A WorkBench RDF Store and High Perfor-
mance Memory System for Semantic Association Discovery. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 431–445.
Springer, Heidelberg (2005)

5. Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Tax-
onomy. In: 14th International Joint Conference on Artificial Intelligence, Volume
1, pp. 448–453. Morgan Kaufmann, San Francisco (1995)

4

DiTTO: Diagrams Transformation inTo OWL

Aldo Gangemi1,2 and Silvio Peroni1,3

1 STLab-ISTC, Consiglio Nazionale delle Ricerche (Italy)
2 LIPN, Universit Paris 13 (France)

3 Department of Computer Science and Engineering, University of Bologna (Italy)
aldo.gangemi@cnr.it, essepuntato@cs.unibo.it

Abstract. In this paper we introduce DiTTO, an online service that
allows one to convert an E/R diagram created through the yEd diagram
editor into a proper OWL ontology according to three different conver-
sion strategies.

1 Introduction

Ontology design is an activity that involves the use of many different languages,
resources, and technologies. When dealing with formal or semi-formal languages
used by different people such as domain experts, knowledge engineers or final
users, a correct transformation strategy can be crucial to guarantee an effec-
tive design. For instance, it seems preferable to adopt intuitive languages when
the ontology should be introduced to and/or discussed with an heterogeneous
audience, which may not be expert of formal languages and knowledge represen-
tation. In these cases, graphical languages seem to support well both ontology
understanding and the discussion between knowledge engineers and final users.

The recent project ran by the Italian National Research Council (CNR)4

and SOGEI5, the Information and Communication Technology company owned
by the Italian Ministry of Economy and Finance, presents the aforementioned
scenario. The aim of the CNR-SOGEI project is twofold. One goal is the re-
engineering of the E/R (Entity-Relationship) models SOGEI use to describe
fiscal entities (such as taxpayers, laws, deposits, etc.) into standard Semantic
Web languages, such as OWL 2. Another goal is to propose tools that facilitate
future interactions (changes, re-use in different application contexts, etc.) with
these semantic models.

In this paper we present one of the aforementioned tools called DiTTO,
which stands for Diagrams Transformations inTo OWL. As its name suggest,
DiTTO is able to translate E/R diagrams expressed in crow’s foot notation and
created with yEd6, an open source application to quickly and effectively generate
high-quality diagrams, into OWL ontologies.

4 CNR homepage: http://www.cnr.it.
5 SOGEI homepage: http://www.sogei.it.
6 yEd homepage: http://www.yworks.com/en/products yed about.html.

5

In Section 2 we present some relevant diagram models originally developed
for particular purposes (e.g. software engineering, databases, AI), and progres-
sively adapted to also model OWL ontologies. In Section 3 we introduce DiTTO,
describing its implementation and showing how to use it for diagram transfor-
mation. We also discuss a set of transformation rules to convert E/R diagrams
into OWL. Finally, in Section 4, we present our plans for future developments
of the tool, in terms of both new transforming features and diagrams support.

2 Related work

One of the most common graphical notations for logical languages is a semantic
network, which can be defined as a “graphic notation for representing knowledge
in patterns of interconnected nodes and arcs” [5]. Ontology classes and individ-
uals are defined as nodes of a graph; at the same time, direct and labelled arcs
can interlink nodes in order to represent predicates between them.

Gasevic et al. [3] and Brockmans et al. [2] propose another UML profile that
enables one to define OWL entities using an extended set of UML-based graphic
notations. The industry consortium responsible of UML, the Object Manage-
ment Group, released an official UML profile [4] for defining OWL ontologies,
called Ontology Definition Metamodel (ODM). TopBraid Composer7 is a com-
mercial tool featuring a diagramming component that adopts a proprietary UML
profile to represent a substantial part (focusing on subclasses and associations,
including restrictions and class constructions) of OWL semantics.

3 From E/R to OWL

DiTTO has been implemented as a Web service8, as shown in Fig. 1.

Fig. 1. The home page of DiTTO.

The core of DiTTO is a set of XSLT 2.0 documents included in a Java Web
Application Archive (i.e. a WAR file) served as a Tomcat application. These
XSLT documents apply several rewriting templates to the source file of the E/R
diagram created by means of yEd, which is stored in GraphML format9.

7 http://www.topbraidcomposer.com
8 http://www.essepuntato.it/ditto
9 GraphML specification: http://graphml.graphdrawing.org/specification.html.

6

Using the service is quite simple. One needs to specify a URL referring to a
yEd diagram, or, alternatively, to choose such a diagram from the file system.
Then, after choosing among the available options and after specifying the prefix
for naming ontological entities and the full URI of the ontology itself, the “Gen-
erate OWL” button can be used to produce an RDF/XML file containing the
OWL ontology result of the conversion.

The transformation rules DiTTO implements are as follows. E/R entities,
attributes and relations are converted into OWL classes, data properties and
object properties respectively. All the subtype relations between E/R entities
are converted into rdfs:subClassOf axioms. In addition, DiTTO adds appropriate
restrictions to classes according to the edges that link E/R entities. In particular:

– a link between an E/R entity and an attribute results in restricting the
related OWL class with a qualified cardinality;

– a symbol (i.e. zero-to-many) of a relation results in restricting the domain
class with a universal quantifier. This restriction is also added if any of the
symbols in the following point is specified;

– the symbols (i.e. one-to-many), (i.e. one-to-one) and (i.e. zero-to-
one) result in restricting the domain class with an existential quantifier, a
qualified cardinality and a qualified maximum cardinality respectively.

In addition to these rules, DiTTO allows one to chochooose what E/R se-
mantics to apply for the transformation. We have identified three alternative
conversion strategies, which depends on the application of two assumptions:

– global semantics (GS) is a characteristic of OWL ontologies (but not typically
of E/R), and has the effect of unifying the formal interpretation of domain
and range axioms, property characteristics, and all the restrictions that act
at a global level. When GS does not hold, one is not allowed to assume such
unification, even when the axioms regard two constants with the same name;

– unique name assumption (UNA), which is a characteristic in E/R seman-
tics (but not of OWL), and whose consequence is that two objects named
differently always refer to different entities in the world.

In particular, the minimal strategy interprets the semantics of E/R in its
purest form (cf. [1]) by not using GS, while using UNA, the intermediate strategy
does not use either GS or UNA, and finally the maximal strategy, which is the
closest to OWL semantics, use GS, but UNA does not hold.

Different strategies proved useful in the aforementioned project because they
address different requirements. The minimal strategy is of course conservative
with the possible conceptualisations admitted by the original specification, while
the maximal one allows us to simulate the consequences of E/R into OWL seman-
tics, with its pros and cons, e.g. suggesting domains and ranges, or unification
of properties, as well as spotting potential issues when applying the simulation.

In Fig. 2 we illustrate a small E/R diagram based on SIOC10, and an excerpt
of the OWL ontology returned by DiTTO by using the maximal strategy for the
conversion.
10 SIOC Ontology: http://sioc-project.org/ontology.

7

Fig. 2. The exemplar E/R diagram developed through yEd and the conversion (shown
in Manchester Syntax) produced by DiTTO using the maximal strategy.

4 Conclusions

In this paper we presented DiTTO, an online service that converts E/R di-
agrams created with the yEd editor into proper OWL ontologies according to
three different conversion strategies: minimal, intermediate and maximal. Future
extensions of the tool will address the management of additional E/R features
(such as primary and foreign keys, and multiple and optional attributes), as well
as different kinds of diagrams (e.g. UML and Graffoo11) as input.

References

1. Berardi, D., Calvanese, D., De Giacomo, G. (2005). Reasoning on UML class dia-
grams. In Artificial Intelligence, 168 (1-2): 70-118. DOI: 10.1016/j.artint.2005.05.003

2. Brockmans, S., Haase, P., Hitzler, P., Studer, R. (2006): A Metamodel and UML
Profile for Rule-Extended OWL DL Ontologies. In Proceedings of the 3rd European
Semantic Web Conference. DOI: 10.1007/11762256 24

3. Gasevic, D., Djuric, D., Devedzic, V., Damjanovic, V. (2004). Converting UML
to OWL Ontologies. In Proceedings of the 13th international World Wide Web
Conference on Alternate track papers & posters. DOI: 10.1145/1013367.1013539

4. Object Management Group (2009). Ontology Definition Metamodel (ODM) Version
1.0. http://www.omg.org/spec/ODM/1.0/PDF

5. Sowa, J. F. (1987). Semantic Networks. In Encyclopedia of Artificial Intelligence.
John Wiley & Sons. ISBN: 0471503053.

11 Graffoo: http://www.essepuntato.it/graffoo.

8

CEDAR: a Fast Taxonomic Reasoner Based on
Lattice Operations

Samir Amir and Hassan Aı̈t-Kaci

Université Claude Bernard Lyon 1, France

{samir.amir,hassan.ait-kaci}@univ-lyon1.fr

Abstract. Taxonomy classification and query answering are the core
reasoning services provided by most of the Semantic Web (SW) rea-
soners. However, the algorithms used by those reasoners are based on
Tableau method or Rules. These well-known methods in the literature
have already shown their limitations for large-scale reasoning. In this
demonstration, we shall present the CEDAR system for classifying and
reasoning on very large taxonomies using a technique based on lattice
operations. This technique makes the CEDAR reasoner perform on par
with the best systems for concept classification and several orders-of-
magnitude more efficiently in terms of response time for query-answering.
The experiments were carried out using very large taxonomies (Wikipedia:
111599 sorts, MESH: 286381 sorts, NCBI: 903617 sorts and Biomodels:
182651 sorts).1 The results achieved by CEDAR were compared to those
obtained by well-known Semantic Web reasoners, namely FaCT++, Pel-
let, HermiT, TrOWL, SnoRocket and RacerPro.

Keywords: Semantic Reasoning, Lattice Operations, Partial-Order En-
coding

1 Introduction

The demo will demonstrate how an implementation of a system based on lattice
operations can be used for taxonomic reasoning in a robust and scalable way.
Indeed, this challenge was defined on the frame of CEDAR project. 2 CEDAR
system is a Boolean reasoner that can support a huge amount of sorts with-
out any noticeable degradation of query evaluation performance. The essential
technique we used for implementing the CEDAR reasoner is based on bit-vector
encoding. This method was proposed over 20 years ago for implementing efficient
lattice operations [1]. Since the common aspect of all Semantic Web reasoning
systems is the representation and processing of taxonomic data, we implemented
a taxonomic concept classification and Boolean query-answering system based

1 We use “sort” as a synonym of atomic “class” or “concept.” In other words, sorts
are partially ordered symbols.

2 Constraint Event-Driven Automated Reasoning—http://cedar.liris.cnrs.fr

9

on the method described above. We made measurements over several very large
taxonomies under the exact same conditions for so-called TBox reasoning. A
comparative evaluation was conducted to assess the performance of CEDAR over
the mentioned systems which have been implemented by using OWL-API. 3 In
terms of query-answering response time, CEDAR is several orders-of-magnitude
more efficient than that of the best existing SW reasoning systems.

2 Lattice Operations for Taxonomic Reasoning

The CEDAR reasoner is an implementation in Java of the technique described
as bottom-up transitive-closure encoding in [1]. This technique consists in rep-
resenting the elements of a taxonomy (an arbitrary poset) as bit vectors. Thus,
each element has a code (a bit vector) carrying a “1” in the position correspond-
ing to the index of any other elements that it subsumes. In this manner, the
three Boolean operations on sorts are readily and efficiently performed as their
corresponding operations on bit-vectors. This is possible if the bit-vectors encod-
ing the sorts comprising a taxonomy are obtained by computing the reflexive-
transitive closure of the ”is-a” relation derived from the subsort declarations.

3 Demonstration

The demo will show how CEDAR differs from existing and known reasoners in
terms of classification (Figures 1 and 2) and query answering (Figures 3 and
4) where it is several orders-of-magnitude more efficient than other reasoners.
Developed software integrates six other reasoners to provide a comparison with
CEDAR (HermiT [4], FaCT++ [7], RacerPro [2], TrOWL [6], Pellet [5] and
SnoRocket [3] all of which use the OWL-API interface). The proposed structure
of the demonstration is the following:

– Classification performance using very large taxonomies as Wikipedia4 (111599
sorts), NCBI5(903617 sorts), MESH6 (286381 sorts) and Biomodels7 (182651
sorts). The demo will show the results illustrated in Figures 1 and 2 where
CEDAR is always among the best three out of six reasoners.

– Query Answering using boolean queries (and, or and not) involving a large
number of concepts (up to 100 concepts). The obtained results will be com-
pared with those of traditional reasoners as shown in Figures 3 and 4.

– Saving and reusing an encoded taxonomy. With CEDAR, there is no need to
perform a classification each time. A classified taxonomy can be saved and
reused.

– Detecting Cycles: We will show how to detect cycles in taxonomies, which
are a particular case of inconsistency resulting from modeling errors.

3 http://owlapi.sourceforge.net
4 http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php
5 http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
6 http://www.nlm.nih.gov/mesh/meshhome.html
7 https://code.google.com/p/sbmlharvester/

10

FaCT++

HermiT

TrOWL

Pellet

RacerPr

CEDAR

0

5

10

15

20

25

time (s)

Wikipedia (111 599 sorts)

FaCT++

HermiT

TrOWL

Pellet

RacerPr

CEDAR

0

10

20

30

40

50

60

70

80

time (s)

 MESH (286 381 sorts)

Fig. 1. Classification time per reasoner for the Wikipedia and MeSH taxonomies

9.12 10.52

82.05

24.34

35.32

12.12

0

10

20

30

40

50

60

70

80

90

FaCT++

HermiT

TrOWL

Pellet

RacerPro

CEDAR

time (s) time (s)

 Biomodels (182 651 sorts)

time (s)

65.22 47.62

671

270
295

120

0

100

200

300

400

500

600

700

800

FaCT++

HermiT

TrOWL

Pellet

RacerPro

CEDAR

time (s)

NCBI (903 617 sorts)

Fig. 2. Classification time per reasoner for the Biomodels and NCBI taxonomies

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60 70 80 90 100

HermiT

TrOWL

Pellet

Snorocket

CEDAR

number of concepts
in the query

Wikipedia : (111 599 sorts)

log (time)

Fig. 3. Query response time per reasoner for the Wikipedia taxonomy

11

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60 70 80 90 100

HermiT

TrOWL

Pellet

Snorocket

CEDAR

log(time)

MESH (286 381 sorts)

number of concepts
in the query

Fig. 4. Query response time per reasoner for the MESH taxonomy

4 Acknowledgements

The authors wish to thank Mohand-Säıd Hacid for his comments. This work was car-

ried out as part of the CEDAR Project (Constraint Event-Driven Automated Reason-

ing) under the Agence Nationale de la Recherche (ANR) Chair of Excellence grant

No ANR-12-CHEX-0003-01 at the Université Claude Bernard Lyon 1.

References

1. Äıt-Kaci, H., Boyer, R., Lincoln, P., and Nasr, R. Efficient implementation
of lattice operations. ACM Transactions on Programming Languages and Systems
11, 1 (January 1989), 115–146.

2. Haarslev, V., Hidde, K., Möller, R., and Wessel, M. The RacerPro knowl-
edge representation and reasoning system. Semantic Web Journal 1 (March 2011),
1–11.

3. Lawley, M. J., and Bousquet, C. Fast classification in Protégé: Snorocket as an
OWL 2 EL reasoner. In Proceedings of the 2nd Australasian Ontology Workshop:
Advances in Ontologies (Adelaide, Australia, December 2010), T. Meyer, M. A.
Orgun, and K. Taylor, Eds., AOW’10, ACS, pp. 45–50.

4. Shearer, R., Motik, B., and Horrocks, I. HermiT: A highly-efficient OWL
reasoner. In Proceedings of the 5th International Workshop on OWL Experiences
and Directions (Karlsruhe, Germany, October 2008), U. Sattler and C. Dolbear,
Eds., OWLED’08, CEUR Workshop Proceedings.

5. Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. Pellet: A
practical OWL-DL reasoner. Journal of Web Semantics 5, 2 (June 2007), 51–53.

6. Thomas, E., Pan, J. Z., and Ren, Y. TrOWL: Tractable OWL 2 reasoning infras-
tructure. In Proceedings of the 7th Extended Semantic Web Conference (Heraklion,
Greece, May-June 2010), ESWC’10, Springer-Verlag, pp. 431–435.

7. Tsarkov, D., and Horrocks, I. FaCT++ description logic reasoner: System
description. In Proceedings of the 3rd International Joint conference on Automated
Reasoning (Seattle, WA, USA, August 2006), U. Furbach and N. Shankar, Eds.,
IJCAR’06, Springer-Verlag, pp. 292–297.

12

Demonstrating The Entity Registry System:
Implementing 5-Star Linked Data

Without the Web

Marat Charlaganov1, Philippe Cudré-Mauroux2, Cristian Dinu1,
Christophe Guéret1, Martin Grund2, and Teodor Macicas2?

1 DANS, Royal Dutch Academy of Sciences—The Netherlands
{firstname.lastname}@dans.knaw.nl

2 eXascale Infolab, University of Fribourg—Switzerland
{firstname.lastname}@unifr.ch

Abstract. Linked Data applications often assume that connectivity to
data repositories and entity resolution services are always available. This
may not be a valid assumption in many cases. Indeed, there are about
4.5 billion people in the world who have no or limited Web access. Many
data-driven applications may have a critical impact on the life of those
people, but are inaccessible to such populations due to the architecture
of today’s data registries. In this demonstration, we show how our new
open-source ERS system can be used as a general-purpose entity registry
suitable for deployment in poorly-connected or ad-hoc environments.

1 Introduction

There is an estimated number of 2 billion individuals who have access to the In-
ternet and can thus use centralized cloud hosted solutions for sharing data. Many
of these centralized solutions are well-known (Facebook, Wikipedia, WikiData,
etc.) and make it possible to share semi-structured data about entities. Linked
Data comes into this picture as a solution to interlink the isolated data silos
by linking those entities through semantically rich connections. The expected
outcome being a globally connected data space everyone can contribute to.

Unfortunately those who do not have access to seamless data connectivity and
web hosting services can not benefit from Linked Data. Even when computers are
interconnected through local mesh networks, the dependency on web platforms
makes it impossible to de-reference the description of an entity.

For example, let us consider the case of the XO laptops deployed by the OLPC
(One-Laptop-Per-Child) foundation3. OLPC brings Information and Communi-
cation Technology (ICT) to young learners in the poorest areas of the world so
that they can develop new skills and work collaboratively using multimedia appli-
cations. So far, two million children world-wide have received an XO and use it to
work with their peers. Data-sharing is however limited to synchronous messages
using XMPP-based channels between two running instances of an application. In

? Authors are listed in alphabetical order.
3 http://one.laptop.org/

13

http://one.laptop.org/

this context, the asynchronous editing of a database shared by different applica-
tions is a challenging architectural problem. External data-hosting, pre-defined
schemas and data-caching can be a solution: “Sugar Network”4, a data-sharing
service built for Sugar—the learning environment of the XO—implements such
a platform for community support.

This kind of approach is however limited in scope and requires to have some
connectivity to the central server. The goal of the Entity Registry System (ERS)5

is to provide a lightweight, versatile, linked data publication tool that does not
rely on third party data hosting or services. ERS replaces the Web as a platform
for publishing linked data. It lets a swarm of small devices interconnected in
an intermittent way create/update/delete entities within a globally shared data-
space. By having the triples hosted directly on the machines creating them, the
system supports different connectivity contexts.

ERS tackles one of the three challenges for accelerating the adoption of
Linked Data and data-intensive applications in developing parts of the world [1,
3].

2 The Entity Registry System (ERS)

ERS is designed around lightweight components: Contributors, Bridges, and
Global Servers, which collaboratively support data-sharing and data-intensive
applications in intermittently connected settings. It is compatible with the RDF
data model and makes use of the available connectivity to share data, but does
not base its content publication strategy on the Web. No single component is
required to hold a complete copy of the registry. The global content consists of
the union of what every component decides to share. We hereafter briefly de-
scribe the components and the implementation. The interested reader is invited
to consult [2] for more details on the system and on performance considerations.

2.1 Components

Contributor: Contributors read and edit the content of the registry. They may
create and delete entities, look for entities, and contribute to the description
of entities. Every contribution is identified by the contributor name so that
the collectively-created description of an entity can be traced back to in-
dividual contributors. Contributors are free to make any statement about
any entity in the system. They use a local data-store in which they persist
their contributions to the description of the entities. They may also cache
the contributions of others when appropriate.

Bridge: Bridges do not directly contribute to the content of the registry. They
are used to connect isolated closed networks and improve the availability of
the individual descriptions shared by the contributors. Bridges can theoreti-
cally store content coming from any contributor, but will typically store the
data only for a limited amount of time.

4 http://wiki.sugarlabs.org/go/Sugar Network
5 http://worldwidesemanticweb.org/projects/entity-registries/

14

http://worldwidesemanticweb.org/projects/entity-registries/

Global Server: ERS deployments can feature any number of bridges and con-
tributors. In addition, some use-cases may require the presence of global
servers that contain a copy of all the data going through the bridges. A
global server provides a single entry point to the registry content. It exposes
the contents of an ERS to other systems, for instance to the Web of Data.

2.2 Implementation

URNs of the form urn:ers:<path>:<identifier> are used to uniquely identify
entities and contributors within an ERS. Individual contributions, in the form
of triples, are stored in CouchDB instances run by the contributors. CouchDB’s
synchronisation system is used to propagate these contributions in the network
by replicating them with other contributors or bridges. In addition, a search
feature enables running federated queries over a set of CouchDB instances. The
system source code is available at https://github.com/ers-devs/ers under
an open licence.

3 Demonstration scenario

Figure 1 shows the sample deployment we created for this demonstration featur-
ing three different physical locations, eight contributors, two bridges, and a global
server. In our setup, we create one physical class-room scenario with multiple
semi-connected devices consisting of multiple OLPC XO laptops, a class-room
bridge server on a RaspberryPi and a dedicated global server that is connected
via Internet from Fribourg, Switzerland.

Global Server / Distributor

Bridge Bridge

Contributor Contributor

Contributor Contributor

Contributor

ContributorContributor

Contributor

L1

L2
L3

Fig. 1. An example ERS deployment across three different locations

The contributors (XO laptops) are creating, consuming and storing struc-
tured data about entities. One bridge is used to ensure information flow and
data distribution between the nodes, even if there is no reliable direct connec-
tion between two contributors. The global server is used to expose the entities
within ERS as de-referencable HTTP URIs.

In our sample application, we support asynchronously discussion among
school pupils. ERS is used to edit the content of a global Q&A database. In con-
trast to common approaches, the messages are stored and served from the laptop

15

https://github.com/ers-devs/ers

(a) Four contributors and a bridge (b) The messaging application

Fig. 2. Demo setup 2(a) and messaging application 2(b)

of their publishers directly. These questions and answers are stored as entities de-
scribed and interlinked using common vocabularies (SIOC, RDF, etc.). To post
a message, the software creates a new entity and puts the text, the name of the
creator and a visibility status (public/private) as part of the description of the
said entity. When appropriate, these triples gets then automatically replicated to
other devices, eventually transiting through a bridge. Links between messages
are established by referring to the identifiers of the entities when adding new
messages, thereby creating conversation threads.

A video has been recorded to show the asynchronous dispatch of messages
between XO devices. This scenario involves two XOs from the 2007 generation
and a RaspberryPi model B used as a bridge. The video can be seen on Vimeo
at https://vimeo.com/70883238.

Acknowledgment

This work was supported by the Verisign 2012 Internet Infrastructure Grant
program.

References

1. The World Wide Semantic Web community. http://worldwidesemanticweb.org/,
visited Aug 20, 2013.

2. Marat Charlaganov, Philippe Cudré-Mauroux, Cristian Dinu, Christophe Guéret,
Martin Grund, and Teodor Macicas. The Entity Registry System: Implementing
5-Star Linked Data Without the Web. arXiv preprint, August 2013.

3. Christophe Guéret, Stefan Schlobach, Victor De Boer, Anna Bon, and Hans Akker-
mans. Is data sharing the privilege of a few ? Bringing Linked Data to those without
the Web. In Proceedings of ISWC2011 - ”Outrageous ideas” track, Best paper award,
pages 1–4. Best paper award, 2011.

16

https://vimeo.com/70883238
http://worldwidesemanticweb.org/

NoHR: Querying EL with Non-monotonic rules

Vadim Ivanov1,2, Matthias Knorr1, and João Leite1

1 CENTRIA & Departamento de Informática, Universidade Nova de Lisboa, Portugal
2 Department of Computing Mathematics and Cybernetics, Ufa State Aviation Technical

University, Russia

Abstract. We present NoHR, a Protégé plug-in that allows the user to take an
EL+

⊥ ontology, add a set of non-monotonic (logic programming) rules – suitable
e.g. to express defaults and exceptions – and query the combined knowledge base.
Provided the given ontology alone is consistent, the system is capable of dealing
with potential inconsistencies between the ontology and the rules, and, after an
initial brief pre-processing period utilizing OWL 2 EL reasoner ELK, returns
answers to queries at an interactive response time by means of XSB Prolog.

1 Introduction

Ontology languages have become widely used to represent and reason over taxonomic
knowledge, and often such knowledge bases are expressed within the language of the
OWL 2 profile OWL 2 EL.1 For example, the clinical health care terminology SNOMED
CT,2, arguably the most prominent example in the area of medicine and currently used
for electronic health record systems, clinical decision support systems, or remote inten-
sive care monitoring, to name only a few, builds on a fragment of OWL 2 EL and its
underlying description logic (DL) EL++ [2].

Since OWL and its profiles are based on DLs [3], hence monotonic by nature, which
means that once drawn conclusions persist when adopting new additional information,
the ability to model defaults and exceptions with a closed-world view is frequently
requested as a missing feature. For example, in clinical health care terminology, it would
be advantageous to be able to express directly that normally the heart is on the left side
of the body unless the person is a dextrocardiac, which matters when applying ECG or
defibrillation to a patient.

In recent years, there has been a considerable amount of effort devoted to extending
DLs with non-monotonic features – see, e.g., related work in [8] – many of the exist-
ing approaches focusing on combining DLs and non-monotonic rules. The latter are
one of the most well studied formalisms (in the area of Logic Programming) that ad-
mit expressing defaults, exceptions, and also integrity constraints in a declarative way.
As such, they are part of the RIF,3 the other language for the Semantic Web whose
standardization is driven by the W3C.4

1 http://www.w3.org/TR/owl2-profiles/
2 http://www.ihtsdo.org/snomed-ct/
3 http://www.w3.org/TR/rif-overview/
4 http://www.w3.org

17

http://www.w3.org/TR/owl2-profiles/
http://www.ihtsdo.org/snomed-ct/
http://www.w3.org/TR/rif-overview/
http://www.w3.org

XSBJava Virtual Machine
Protégé

NoHR Plugin

GUI

ELK

Query
Processor

InterProlog

NoHR
Rules Tab

OWL File

NM Rules
File

XSB
Knowledge

Base

Query
Answering

Tables

Tracer/
Debugger

NoHR
Query Tab

Translator

Ontology

NM Rules

Protégé
Ontology

NM Rules
Base

Fig. 1. System Architecture of NoHR

Here, we focus on Hybrid MKNF under the well-founded semantics [7] combin-
ing ontologies and such rules, because, as argued for the preceding semantics in [8], the
overall framework is very general and flexible, and unlike [8], [7] has a polynomial data
complexity and admits top-down query-answering based only on the information rele-
vant for the query, and without computing the entire model – no doubt a crucial feature
when dealing with large ontologies such as SNOMED with over 300,000 classes.

In our ISWC 2013 Research Track paper [5], we describe a system, realized as a
plug-in for the ontology editor Protégé 4.X,5 that allows the user to query combinations
of EL+

⊥ ontologies and non-monotonic rules in a top-down manner. To the best of our
knowledge, it is the first Protégé plug-in to integrate non-monotonic rules and top-down
queries. Our approach is theoretically founded on the abstract procedure SLG(O) [1]
and developed upon the usage of the consequence-driven, concurrent EL reasoner ELK
[6] to classify the ontology part, whose result is translated into rules which, together
with the non-monotonic rules, subsequently serve as input for the top-down query en-
gine XSB Prolog.6 Additional features of the plug-in include: the possibility to load
and edit rule bases, and define predicates with arbitrary arity; guaranteed termination
of query answering, with a choice between one/many answers; robustness w.r.t. po-
tential inconsistencies between the ontology and the rules in case the EL+

⊥ ontology
contains DisjointWith axioms; leveraging of XSB tabling mechanisms to improve
performance, and trace/debug features, e.g., to provide explanations.

2 System Description

In this Section, we briefly describe the architecture of NoHR, our plug-in for Protégé,
as shown in Fig. 1 and discuss some features of our implementation and querying in
XSB. For the technical details and the evaluation of our approach, we refer to [5].

The input for our plug-in consists of an OWL file, which can be manipulated as
usual in Protégé, and a rule file. For the latter, we provide a tab called NoHR Rules that

5 http://protege.stanford.edu
6 http://xsb.sourceforge.net

18

http://protege.stanford.edu
http://xsb.sourceforge.net

Fig. 2. NoHR Query Tab with a query interestingCity(X), onSea(X, Y)

allows the user to load, save and edit rule files in a text panel. The syntax follows Prolog
conventions, so that one rule from Ex. 2 in [5] can be represented, e.g., by

SeaSideCity(X) :- PortCity(X), not NonSeaSideCity(X).

The NoHR Query tab as shown in Fig. 2 also allows for the visualization of the rules
(in the lower left corner), but its main purpose is to provide an interface for querying the
combined KB. Whenever the first query is posed by pushing “Execute”, the translator
is started, initiating the ELK reasoner to classify the ontology and return the result to
the translator. It is verified whether DisjointWith axioms appear in O which deter-
mines whether the transformation into rules has to contain means to check for potential
inconsistencies or not. Then, accordingly, a joint (non-monotonic) rule set is created in
which predicates and constants, i.e., all terms, are encoded using MD5. This requires
the user to write case-sensitive rules (w.r.t. to the ontology), but ensures full compati-
bility with XSB Prolog’s more restrictive admitted input syntax. The resulting program
is transfered to XSB via InterProlog [4], which is an open-source Java front-end that
provides the ability to communicate between Java and a Prolog engine.

Next, the query can be sent via InterProlog to XSB, and answers are returned to the
query processor, which collects them and sets up a table showing for which variable
substitutions we obtain true, undefined, or inconsistent valuations (or just shows the
truth value for a ground query). The table itself is shown in the Result tab of the Output
panel (see Fig. 2), while the Log tab shows measured times and system messages, in-
cluding those from XSB via InterProlog. XSB not only answers queries very efficiently
in a top-down manner, with tabling, it also avoids infinite loops.

19

Once the query has been answered, the user may pose other queries, and the sys-
tem will simply send them to XSB directly without any repeated preprocessing. If the
user changes data in the ontology or in the rules, then the system offers the option to
recompile, but always restricted to the part that actually changed.

During the demo exhibition, we take a given/chosen ontology loaded into Protégé,
and we show, first how to edit, load, and save rules, and subsequently, run queries on the
combined knowledge base. In particular, we interactively demonstrate how changing the
ontology and the rules affects the query results, also in the presence of inconsistencies
between the ontology and the rule set. For that purpose, we use data sets of two kinds,
namely toy examples for which the query result can be verified right away and some of
the real world ontologies, utilized already during testing in [5] (cf. Fig.3), to which we
add non-monotonic rules.

Our plug-in is under active development and the most recent version is available at
https://code.google.com/p/nohr-reasoner/. The example file sets for
testing can also be found on this web page.

Acknowledgments. We would like to thank Miguel Calejo for his help with Inter-
Prolog, Pavel Klinov for his help with ELK, Terry Swift for his help with XSB, and
Gonca Güllü for her collaboration. Vadim Ivanov was partially supported by a MUL-
TIC – Erasmus Mundus Action 2 grant. Matthias Knorr and João Leite were par-
tially supported by FCT funded project ERRO – Efficient Reasoning with Rules and
Ontologies (PTDC/EIA-CCO/121823/2010) and Matthias Knorr also by FCT grant
SFRH/BPD/86970/2012.

References

1. Alferes, J.J., Knorr, M., Swift, T.: Query-driven procedures for hybrid MKNF knowledge
bases. ACM TOCL 14(2) (2013)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI’05: 19th Int. Joint Conf.
on Artificial Intelligence. pp. 364–369. Morgan Kaufmann (2005)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 3rd edn. (2010)

4. Calejo, M.: Interprolog: Towards a declarative embedding of logic programming in java. In:
Alferes, J.J., Leite, J.A. (eds.) JELIA. Lecture Notes in Computer Science, vol. 3229, pp.
714–717. Springer (2004)

5. Ivanov, V., Knorr, M., Leite, J.: A query tool for EL with non-monotonic rules. In: ISWC
2013. Springer (2013), to appear

6. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Concurrent classification of EL ontologies. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) Proceedings of the 10th International Semantic Web Conference (ISWC’11). LNCS,
vol. 7032. Springer (2011)

7. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics under
the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)

8. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5) (2010)

20

https://code.google.com/p/nohr-reasoner/

A Search Interface for Researchers to Explore
Affinities in a Linked Data Knowledge Base

Laurens De Vocht1, Erik Mannens1, Rik Van de Walle1,
Selver Softic2, and Martin Ebner3

1 Ghent University - iMinds, Multimedialab
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

{laurens.devocht,erik.mannens,rik.vandewalle}@ugent.be
2 Virtual Vehicle Research Center - Area Information and Process Management

Inffeldgasse 21a, 8010 Graz, Austria
selver.softic@tugraz.at

3 Graz University of Technology, IICM - Institute for Information Systems and
Computer Media

Inffeldgasse 16c, 8010 Graz, Austria
martin.ebner@tugraz.at

Abstract. Research information is widely available on the Web. Both
as peer-reviewed research publications or as resources shared via (mi-
cro)blogging platforms or other Social Media. Usually the platforms sup-
porting this information exchange have an API that allows access to the
structured content. This opens a new way to search and explore research
information. In this paper, we present an approach that visualizes in-
teractively an aligned knowledge base of these resources. We show that
visualizing resources, such as conferences, publications and proceedings,
expose affinities between researchers and those resources. We character-
ize each affinity, between researchers and resources, by the amount of
shared interests and other commonalities.

1 Introduction

Research 2.0 as adaptation of the Web 2.0 for researchers defines researchers as
main consumers of information. Typically researchers define queries with a set
of keywords when searching for information related to their work, for example
using Google or digital archives such as PubMed. Linked Data technologies offer
an entity based infrastructure to resolve the meanings of the keywords and the
relations between them. Combining keyword resolution and resource expansion
with Linked Data entities and filtering the results with personal preferences
enhances the search precision. Currently many researchers have a Social Media
account, such as on Twitter or Mendeley. We use these accounts to personalize
the search. Our interface supports searching for scientific events, authors or
groups of authors, as well as finding publications, and proceedings. The interface
uses a search engine which relies on Linked Data knowledge base containing
research related and personal information.

21

2 Real-time Keyword Disambiguation

We chose a real-time keyword disambiguation to guide the researchers in ex-
pressing their research needs. We do this by allowing users to select the correct
meaning from a drop down menu that appears below the search box. Present-
ing candidate query expansion terms in real-time, as users typed their queries,
can be useful during the early stages of the search [1]. In this is case it is very
important that the users understand meaning of the suggested terms. Therefore
we use an as straightforward as possible representation of the keyword mappings
as shown in Figure 1.

Fig. 1. Mapping of keywords to Linked Data entities.

3 Exploring Resources

Researchers can improve the definition of their “intended” search goal over sev-
eral iterations. Each time a combination of various resources is visualized. The
visualization suggests new queries: they are generally most useful for refining
the system’s representation of the researcher’s need. In case they have no idea
which entity to focus on or what topic to investigate next they get an overview
of possible entities of interest, like points of interest on a street map. By profil-
ing their activities and contributions on Social Media and other platforms such
as their own research publications, the affinity with the proposed resources is
enhanced. An iteration can consist of either one of two actions:

1. Query Expansion: The user expands the query space by clicking the re-
sults retrieved by initial keyword based search.The resolution of results hap-
pens based upon the properties of Linked Data like rdf:label, owl:sameAs,
rdf:seeAlso, dc:title or dc:description.

2. Additional Query Formulation: Additional query expansion happens ei-
ther through adding further keywords as well as through keyword combina-
tions already entered where the back-end tries to deliver additional results
based upon connection paths between the resources.

22

4 Visualizing Relations between Resources

We find relations between resources after matching the input given by the re-
searcher in the knowledge base. With the delivery of first results, our engine
expands the query and enhances the context. For this purpose we used a model
and an implementation that builds upon on our earlier work on the “Everything
is Connected” engine (EiCE) [2] and semantic profiling [3].
In the visualization we emphasize the affinities by showing, on a radial map [4],
how the current focused entity is related to the other found entities. It is based
on the concept of affinity that can be appropriately expressed in visual terms
as a spatial relationship: proximity [5]. We additionally express the amount of
unexpectedness as novelty of a resource in each particular search context. To
further enhance the guidance of users during search we have used two other
visual aids:

1. Color: Every entity has a type and associated unique color. For a certain
result set the user gets an immediate impression of the nature of the found
resources.

2. Size: We rank each entity according to novelty and relation to the context
and enlarge those that should attract attention from the researcher first. A
goal of the search is to explore information not seen before which makes it
difficult to define an accurate search goal. Besides allowing to search specific
entities, our visualization facilitates exploratory browsing. This is particu-
larly useful when information seeking with unclear defined search targets
[6].

Figure 2 shows how researchers can track the history of their search: the explored
relations are marked red and clearly highlight the context of a search. Researchers
can click on a list of resources they have searched to focus the visualization.
A screencast of the search interface is available online4. In this screencast, we
show how researchers interact with the search interface and the above described
visualization.

5 Conclusions

We have developed an interface for personalized search in a social driven knowl-
edge base for researchers. Combining the latest Linked Data technologies with
an advanced indexing and path finding system, EiCE and Web 2.0 technologies
(such as JQuery and Django). The result is a semantic search application provid-
ing both a technical demonstration and a visualization that could be applied in
many other disciplines beyond Research 2.0. The main contribution of our work
is, besides retrieving resources from Linked Data repositories, allowing users to
interactively explore relations between the resources and find out the affinity
with each resource.

4 http://semweb.mmlab.be/search_interface_for_researchers

23

http://semweb.mmlab.be/search_interface_for_researchers

Fig. 2. A red line marks the explored relations in the visualized search context.

6 Acknowledgement

The research activities that have been described in this paper were funded by
Ghent University, iMinds (Interdisciplinary institute for Technology) a research
institute founded by the Flemish Government, Graz University of Technology,
the Institute for the Promotion of Innovation by Science and Technology in
Flanders (IWT), the Fund for Scientific Research-Flanders (FWO-Flanders),
and the European Union. The authors would like to acknowledge the finan-
cial support of the “COMET K2 - Competence Centres for Excellent Technolo-
gies Programme” of the Austrian Federal Ministry for Transport, Innovation
and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family
and Youth (BMWFJ), the Austrian Research Promotion Agency (FFG), the
Province of Styria and the Styrian Business Promotion Agency (SFG).

References

1. White, R.W., Marchionini, G.: Examining the effectiveness of real-time query ex-
pansion. Information Processing & Management 43(3) (2007) 685–704

2. De Vocht, L., Coppens, S., Verborgh, R., Vander Sande, M., Mannens, E., Van de
Walle, R.: Discovering meaningful connections between resources in the web of data.
In: Proceedings of the 6th Workshop on Linked Data on the Web (LDOW). (2013)

3. De Vocht, L., Van Deursen, D., Mannens, E., Van de Walle, R.: A semantic approach
to cross-disciplinary research collaboration. International Journal of Emerging Tech-
nologies in Learning (iJET) 7(S2) (2012) 22–30

4. Yee, K.P., Fisher, D., Dhamija, R., Hearst, M.: Animated exploration of dynamic
graphs with radial layout. In: Proceedings of the IEEE Symposium on Information
Visualization (INFOVIS). (2001)

5. Pintado, X.: The affinity browser. In: Object-oriented software composition. Pren-
tice Hall (1995) 245–272

6. Pace, S.: A grounded theory of the flow experiences of web users. International
journal of human-computer studies 60(3) (2004) 327–363

24

Cite4Me: A Semantic Search and Retrieval Web
Application for Scientific Publications

Bernardo Pereira Nunes1,2, Besnik Fetahu1, Stefan Dietze1, and Marco A. Casanova2

1L3S Research Center, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
{nunes, fetahu, dietze}@L3S.de

2Department of Informatics, Pontifical Catholic University of Rio de Janeiro,
Rio de Janeiro/RJ – Brazil, CEP 22451-900

{bnunes, casanova}@inf.puc-rio.br

Abstract. Cite4Me is a Web application that leverages Semantic Web technolo-
gies to provide a new perspective on search and retrieval of bibliographical data.
The Web application presented in this work focuses on: (i) semantic recommen-
dation of papers; (ii) novel semantic search & retrieval of papers; (iii) data inter-
linking of bibliographical data with related data sources from LOD; (iv) innova-
tive user interface design; and (v) sentiment analysis of extracted paper citations.
Finally, as this work also targets some educational aspects, our application pro-
vides an in-depth analysis of the data that guides a user on his research field.

1 Introduction

The huge amount of Web data and resources, particularly in the academic area, calls for
strategies to analyse and explore resources and data.

While scientific disciplines are very data- and knowledge-intensive, the lack of se-
mantic tools hampers information management and decision making. This includes sci-
entific data as well as unstructured academic publications as one of the key outcome
of scientific work. This is due to information access offered by digital library providers
such as ACM Digital Library1 and Elsevier2 being mostly based on free text search and
hierarchical classification3.

Thus, we present a novel Web application for exploratory search, retrieval and visu-
alization of scientific publications. Cite4Me aims at providing a single access point for
accessing papers and, therefore, assisting searchers on finding relevant topics, papers,
and unveiling new nomenclature more efficiently. For this, we use reference datasets
such as DBpedia4 to explore semantic relationships between scientific papers and user
queries. We also perform a topic coverage analysis to provide an overview of different
bibliographic datasets. Cite4Me is a Web application which exploits results of previous
research works [2–5].

1 http://dl.acm.org
2 http://www.elsevier.com
3 http://www.acm.org/about/class/
4 http://dbpedia.org

25

2 Cite4Me - The Application

Cite4Me implements semantic and co-occurrence-based methods to search and retrieve
academic papers and suggest related work in a user-friendly interface that assists users
in exploring relationships between authors, institutions, papers and query terms. Due to
space restrictions, we present in this paper the most relevant features of Cite4Me to the
Semantic Web field.

2.1 Search and Retrieval

Cite4Me implements standard techniques, such as free text search, to search and re-
trieve scientific publications. In this section, we emphasize the semantic and exploratory
search mechanisms.

Exploratory Search. The exploratory search or graph search component assists users
to discover related work, people and institutions that are working on a specific topic.
A crucial step to provide this type of search is the annotation of the publications’ con-
tent. For this, we used DBpedia Spotlight API5 for extracting entities, entity types and
their categories. For instance, the categories of the extracted concepts are used to inter-
link publications through the topics they cover. In cases where two publications share
the same category (dcterms:subject property), then a link between both publications is
created. Figure 1 shows an example of topically related publications.

Fig. 1. Preview of the exploratory search funcionality.

Semantic Search. The semantic search component of Cite4Me is similar to the explicit
semantic analysis (ESA) technique [1]. After running the annotation process aforemen-
tioned, the relatedness score between the enriched concepts (DBpedia entities) found

5 http://dbpedia.org/spotlight

26

in the user query terms and the publications’ content are computed and ranked. The
relatedness score is computed based on the tf-idf score for the entities found in the pub-
lications’ content. The ranking of the retrieved documents is based on the sum of the
tf-idf scores of the matching concepts.

Figure 2 illustrates the semantic search functionality. Alongside the results of the
semantic search a tag cloud shows the most prominent terms for a given user query.
The tag cloud is updated while browsing through the list of results. The tags are selected
based on the tf-idf score for the entities found in the abstract of the retrieved papers.

Fig. 2. Preview of the semantic search funcionality.

Paper recommendation. Another important feature of Cite4Me and which differen-
tiates it from similar tools is the semantic paper recommendation. Given a scientific
publication, the tool recommends a related paper based on a score calculated according
to direct and lateral relationships between the publication of interest and the remaining
papers in our corpus.

To compute the relatedness score, we rely on previous work by Nunes et al. [2, 4],
where the paths connecting two enriched concepts in the scientific publications are anal-
ysed using a variation of the Katz index, a measure based on Social Network Theory,
and quantifying the weight of the connectivity between two concepts given a knowledge
graph (in our case DBpedia graph).

After computing the relatedness scored between enriched concepts, the paper rec-
ommendation relies on an aggregated measure that takes into account the relatedness
inter-documents. Finally, we generate a ranked list of pairwise publications according
to the overall score (see [5] for more details). Thus, the top-ranked publication is rec-
ommended to the user, as shown in Figure 3.

3 Datasets

Currently, Cite4Me is linked to a dataset (LAK Dataset6) which contains semi-
structured research publications from the ACM Digital Library (under a special license)

6 http://www.solaresearch.org/resources/lak-dataset/

27

Fig. 3. An example of paper recommendation based on S CS w.

and other public datasets (see also [6] for details). The dataset contains 315 full papers
along with their descriptive metadata while new publications are added continuously.
Metadata as well as the full text body are freely available in a variety of formats, includ-
ing RDF accessible via a public SPARQL endpoint. We are currently working on ex-
panding the number of papers available in Cite4Me. However, due to copyright reasons,
the process to expose scientific publications from publishers is still under discussion.

4 Conclusion

This paper presented the application of previous works in the Semantic Web field within
Cite4Me, a Web application that assists users in finding relevant scientific papers by ex-
ploring semantic relationships between them. For more information about the Cite4Me
Web application please refer to http://www.cite4me.com.

References

1. E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipedia-based
explicit semantic analysis. In Proceedings of IJCAI’07, pages 1606–1611, San Francisco,
CA, USA, 2007.

2. B. Pereira Nunes, S. Dietze, M. A. Casanova, R. Kawase, B. Fetahu, and W. Nejdl. Combining
a co-occurrence-based and a semantic measure for entity linking. In ESWC, 2013 (to appear).

3. B. Pereira Nunes, B. Fetahu, and M. A. Casanova. Cite4me: Semantic retrieval and analysis of
scientific publications. In M. d’Aquin, S. Dietze, H. Drachsler, E. Herder, and D. Taibi, editors,
LAK (Data Challenge), volume 974 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

4. B. Pereira Nunes, R. Kawase, S. Dietze, D. Taibi, M. A. Casanova, and W. Nejdl. Can entities
be friends? In Proceedings of WOLE, in conjuction with the ISWC’12, volume 906 of CEUR-
WS.org, pages 45–57, Nov. 2012.

5. B. Pereira Nunes, R. Kawase, B. Fetahu, S. Dietze, M. A. Casanova, and D. Maynard. Inter-
linking documents based on semantic graphs. In Proceedings of KES’13, 2013 (to appear).

6. D. Taibi and S. Dietze. Fostering analytics on learning analytics research: the lak dataset. In
Proceedings of the LAK Data Challenge, held at LAK2013, April 2013.

28

Best-effort Linked Data Query Processing with
time constraints using ADERIS-Hybrid

Steven Lynden, Isao Kojima, Akiyoshi Matono, and Akihito Nakamura

Information Technology Research Institute
National Institute of Advanced Industrial Science and Technology (AIST), Japan

{steven.lynden|isao.kojima|a.matono|nakamura-akihito}@aist.go.jp

Abstract. Answering SPARQL queries over the Web of Linked Data is a
challenging problem. Approaches based on distributed query processing
provide up-to-date results but can suffer from delayed response times,
indexing-based approaches provide fast response times but results can
be out-of-date and the costs of indexing the growing Web of Linked Data
are potentially huge. Hybrid approaches try to offer the best of both. In
this demo paper we describe a system for answering SPARQL queries
within fixed time constraints by accessing SPARQL endpoints and the
Web of Linked Data directly.

1 Introduction

Answering Linked Data queries in a timely manner is a challenging problem. An
example of one approach towards this is Sindice [1], which provides a SPARQL
query interface over RDF data that has been indexed via crawling the Web of
Linked Data. Other examples include approaches based on distributed query
processing over SPARQL endpoints [5], in addition to link traversal, live ex-
ploration and hybrid approaches as surveyed in [3], which access the Web of
Linked Data directly during query execution. However, such approaches may
result in unpredictable query execution times in the order of minutes for even
basic queries, and while there are obviously applications that would utilise such
results, it is sometimes more important that an approximate or incomplete an-
swer is provided within a shorter time frame. In this paper we introduce a system
based on a hybrid approach where SPARQL endpoints such as Sindice and the
Web of Linked Data are accessed in parallel to answer queries within fixed time
constraints. The system can be found at http://aderis.linkedopendata.net.

2 Hybrid Linked Data Query Processing with Time
Constraints

The approach, illustrated in Figure 1, proceeds as follows:

1. A federated SPARQL query is parsed and compiled into a set of triple pat-
terns. The query is entirely declarative written without knowledge of the

29

Fig. 1. System details
The active discovery manager and endpoint query manager run in parallel for a fixed
time, are then terminated and the local graph is converted into a query result.

location of data, in contrast to, for example the SPARQL 1.1 Federation [2]
extensions.

2. A local graph component is initialised to store intermediate results, i.e. triples
which have been found to match the set of triple patterns in the query.

3. Two components are executed, the endpoint query manager and the active
discovery manager. The endpoint query manager sends queries to SPARQL
endpoints and the active discovery manager dereferences URIs and matches
the RDF triples retrieved with triple patterns in the query.

4. After a time t, for which the query is scheduled to run, the endpoint query
manager and active discovery manager are terminated and the local graph
component is used to obtain the result of the federated query.

For a detailed description of the optimisation strategies implemented by the
active discovery manager and endpoint query manager, please refer to [4]. For
the purposes of an effective demonstration we have chosen t to be 10 seconds
for the optimisation and configuration of the system, however the value can be
changed. The rationale being that this is a response time within which at least
some useful answers can usually be obtained and for which users are generally
willing to wait. Compared with the work as presented in [4], we have extended the
system with a cache and more extensive statistics from the Web of Linked Data
aimed at prioritising the retrieval of fresh, up-to-date data by the active discovery
manager. As queries are answered on a best-effort basis, it is important to give
the user an idea of how complete the results are estimated to be. An estimate of
the completeness of the results (low, medium, or high) is given to the user based
on the number of relevant URIs that could not be dereferenced by the active
discovery manager in the time allowed, combined with other indicators such as

30

overlap between the triples retrieved from SPARQL endpoints and URIs (i.e. a
high degree of overlap indicates that URIs not yet dereferenced would be likely
to provide triples already retrieved from endpoints and be therefore unlikely to
provide additional query results).

The proposed approach provides increased coverage and fault tolerance due
to the fact that multiple data sources are used and the effects of individual
data source unavailability can be mitigated. The system provides parallel query
execution by pushing down query fragments to individual SPARQL endpoints
and automatically optimises the queries sent to individual endpoints to comply
with fair-use restrictions such as bounds on query execution time.

3 ADERIS-Hybrid Web Application

The proposed demo presents the ADERIS-Hybrid Web application implementing
the previously described approach, built on our previous work on the Adaptive
Distributed Endpoint Integration System (ADERIS) [5], to provide a Web appli-
cation implementing the hybrid approach described in this paper. The proposed
demonstration will highlight the salient aspects of the system including the con-
struction of SPARQL queries, where a set of example queries are provided which
can be easily edited by the user; results of queries are presented to the user using
the Google Visualization API complemented by a visual representation of the
query execution process, as shown in Figure 2. A summary of the statistics used
by the query processor is also presented.

4 Conclusion

Answering SPARQL queries over the Web of Linked data with reasonable re-
sponse times is an important, challenging problem. The proposed demo is a Web
application based on our approach in [4], extended with a cache, additional data
source statistics, and an estimate of the completeness of the result.

References

1. Sindice: The Semantic Web Index. http://sindice.com.
2. SPARQL 1.1 Federation Extensions. http://www.w3.org/2009/

sparql/docs/fed/gen.html.
3. O. Hartig. An Overview on Execution Strategies for Linked Data Queries.

Datenbank-Spektrum, 13(2):89–99, 2013.
4. S. Lynden, I. Kojima, A. Matono, A. Nakamura, and M. Yui. A Hybrid Approach

to Linked Data Query Processing with Time Constraints. In C. Bizer, T. Heath,
T. Berners-Lee, and M. Hausenblas, editors, WWW2013 Workshop on Linked Data
on the Web - LDOW 2013.

5. S. Lynden, I. Kojima, A. Matono, and Y. Tanimura. ADERIS: Adaptively inte-
grating RDF data from SPARQL endpoints (Demo Paper). In Proceedings of the
Database Systems for Advanced Applications (DASFAA) Conference 2010, 2010.

31

Fig. 2. Web application
The figure is a screenshot of the Web application. Here, the user has executed a
SPARQL query, which can be seen in the upper left-hand portion of the screen, and
obtained 2 results (not shown in this screenshot due to space restriction). The user
is utilising the system’s “explain” feature to view how the results were obtained. The
percentage of RDF triples that make up the local graph from SPARQL endpoints, the
cache and the Web of Linked Data are shown, in addition to a confidence measure that
the results are complete.

32

Assisted Policy Management for
SPARQL Endpoints Access Control

Luca Costabello, Serena Villata?, Iacopo Vagliano, and Fabien Gandon

INRIA Sophia Antipolis, France
{firstname.lastname}@inria.fr

Abstract. Shi3ld is a context-aware authorization framework for pro-
tecting SPARQL endpoints. It assumes the definition of access policies
using RDF and SPARQL, and the specification of named graphs to iden-
tify the protected resources. These assumptions lead to the incapability
for users who are not familiar with such languages and technologies to
use the authorization framework. In this paper, we present a graphical
user interface to support dataset administrators to define access policies
and the target elements protected by such policies.

1 Introduction

Shi3ld1 [2] is an access control framework for querying Web of Data servers. It
protects RDF stores from incoming SPARQL queries, whose scope is restricted
to triples included in accessible named graphs only [1]. In particular, Shi3ld
determines the list of accessible graphs by evaluating pre-defined access policies
against client attributes sent with the query. It adopts exclusively Semantic Web
languages, reuses existing proposals, and protects data up to triple level. The
drawback of such framework is that it relies on the assumption that dataset
administrators have a proficient knowledge of RDF and SPARQL, and that they
are able to manage vocabularies and define new named graphs. In this paper, we
address this open issue by presenting a web application that allows non-expert
dataset administrators to manage Shi3ld context-aware access control policies, by
hiding the complexity of RDF and SPARQL. The Shi3ld policy manager allows
the definition of context-aware access conditions featuring user, environment
(time and location above all), and device attributes. Moreover, such application
allows a simpler definition of new named graphs over a set of existing triples.
The work presented in this paper can be classified among the works trying to
hide the complexity of SPARQL and the Semantic Web to end users [4–6]. Such
proposals mainly consist in GUIs to query, search, visualize, browse and edit
triples published on the Web of Data. In our work, we deal with querying issues
and we tackle the problem of providing a user-friendly interface for the creation
of context-aware access control policies for triple stores.

? The author acknowledges support of the DataLift Project ANR-10-CORD-09
founded by the French National Research Agency.

1 http://wimmics.inria.fr/projects/shi3ld/

33

2 Our Proposal

The Shi3ld policy management GUI2 is designed to support the interaction
with two kinds of dataset administrators: non-experts, which are assumed not
to know the SPARQL query language and RDF, and experts, which are able to
edit access policies source code. In particular, the following functionalities are
proposed:

– Policies visualization and modification: the application shows the list
of policies stored in the triple store through a grid view. Each policy is
an expandable row that, if selected, shows the main features of the policy
like the policy target (i.e. the named graphs protected by the policy), the
privilege granted by the policy (Create, Update, Read, Delete), and the
access conditions (SPARQL 1.1 ASK queries) which specify the requirements
that need to be satisfied to access the target resource. Users can edit all
these elements, e.g., they associate the policy to another named graph, add
or remove privileges, or modify the defined access conditions. Two different
views are proposed to the user: i) a graphical view where operations are
performed without the need to write policies using SPARQL and RDF to
support non-expert administrators, and ii) a textual editor which allows to
directly write policies using SPARQL and RDF for expert administrators.

– Policies creation: the creation of a new context-aware policy is managed by
a wizard. In particular, the wizard proposes the following views: i) the defini-
tion of the policy name (which is then “translated” into an rdfs:label), the
target named graph (it is possible to select one of the already defined named
graphs included in the triple store, or to define a new one as we will detail
later), and the privilege(s) to associate to the policy; ii) the view concern-
ing the User dimension, that consists in a text box where the administrator
inserts the features that must be satisfied by the user accessing the target
resource, e.g., foaf:knows :ACME boss. The text box provides autocomple-
tion and it suggests a list of properties showing the associated vocabulary (to
date, we use the foaf3 and relationship4 vocabularies, but other vocab-
ularies can be added); iii) the view concerning the Environment dimension,
that consists in two parts: the first one defines temporal conditions, and the
second one deals with geographical conditions. Temporal conditions are ex-
pressed with a time picker, to select the desired time interval in which the
access is granted. The definition of the geographical condition is done with
a map interface5, enriched with a movable marker and a resizable radius;
iv) the view concerning the Device dimension, similar to the User view, that
suggests the access properties related to the device used to access the target

2 Video available at http://wimmics.inria.fr/projects/shi3ld/
3 http://xmlns.com/foaf/spec/
4 http://purl.org/vocab/relationship/
5 http://developers.google.com/maps/

34

resource (we use the Delivery Context vocabulary6 but further vocabularies
can be added). At the end of the wizard, the access policy is automatically
generated and stored in the triple store.

– Named graphs creation: the administrator is assisted in the definition
of a new named graph. Shi3ld access policies must be associated to named
graphs, and this leads to a number of difficult tasks for non-expert users,
since it involves the use of non-trivial SPARQL features. We thus provide a
GUI to mask such complexity, by letting administrators define a new named
graph starting from the set of triples they want to associate to such newly
defined named graph. The application asks for the label of the named graph
to be created and it presents the template of a SELECT query, to be completed
with the desired triple pattern. A preview of the selected triples is shown,
thus letting the administrator check which triples will be added to the named
graph. If results are satisfying, the new named graph is created and it can
be used as the access policy target.

Figure 1 shows how user actions are translated into SPARQL and RDF by the
Shi3ld Policy Manager. The application supports the administrator in creating,
editing and deleting both policies and target named graphs. SPARQL queries are
completely masked to end users, unless the embedded SPARQL textual editor
is opened.

View policies / Edit policy / Delete policy SELECT / DELETE INSERT / DELETE

Create new policy INSERT DATA

Create new named graph SELECT / INSERT

View named graphs / Edit / Delete SELECT / DELETE INSERT / DELETE

Administrator operations Generated SPARQL query

Fig. 1: The administrator operations and the resulting SPARQL query.

The Shi3ld Policy Manager is a web application developed in JavaScript
and backed by a Fuseki SPARQL 1.1 triple store7. The server-side relies on the
Node.js platform8, and the front-end is built over jQuery, the Twitter Bootstrap
framework9, and Backbone.js10 as structure. The SPARQL editor is provided by
Flint11.
6 http://www.w3.org/TR/dcontology/
7 http://jena.apache.org/documentation/serving_data/
8 http://nodejs.org/
9 http://twitter.github.io/bootstrap/

10 http://backbonejs.org/
11 http://openuplabs.tso.co.uk/demos/sparqleditor

35

3 Future Perspectives

Fig. 2: The Shi3ld user interface.

We have presented a user interface to
declare context-aware policies for the
Shi3ld authorization framework. There
are several issues to be considered as
future research. First, since Shi3ld has
been recently extended to manage also
HTTP access to resources [3], we will ex-
tend this application such that also poli-
cies for Shi3ld-HTTP would be defined
and manageable, i.e., access conditions
are defined as RDF triples instead of ASK
SPARQL queries. Second, we will inte-
grate our interface with the Linked Open
Vocabulary catalogue12 such that ad-
ministrators are supported in including
new vocabularies used to define the ac-
cess conditions. Third, we plan to favour
policy reuse across datasets by adding a
“policy template” sharing functionality.
Moreover, we envision a “deep” proper-
ties validation, (i.e. checking that a cer-
tain URI actually corresponds to a foaf

profile). Finally, we will add a sandbox
to test the access policies effectiveness
on the protected triples.

References

1. Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named graphs. J. Web Sem. 3(4),
247–267 (2005)

2. Costabello, L., Villata, S., Gandon, F.: Context-Aware Access Control for RDF
Graph Stores. In: Procs of ECAI. Frontiers in Artificial Intelligence and Applica-
tions, vol. 242, pp. 282–287. IOS Press (2012)

3. Costabello, L., Villata, S., Rocha, O.R., Gandon, F.: Access Control for HTTP
Operations on Linked Data. In: Procs of ESWC. Lecture Notes in Computer Science,
vol. 7882, pp. 185–199. Springer (2013)

4. Lopez, V., Uren, V.S., Sabou, M., Motta, E.: Is Question Answering fit for the
Semantic Web?: A survey. Semantic Web 2(2), 125–155 (2011)

5. Ngomo, A.C.N., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, i don’t
speak SPARQL: translating SPARQL queries into natural language. In: Procs of
WWW. pp. 977–988. ACM (2013)

6. Sonntag, D., Heim, P.: A Constraint-Based Graph Visualization Architecture for
Mobile Semantic Web Interfaces. In: Procs of SAMT. Lecture Notes in Computer
Science, vol. 4816, pp. 158–171. Springer (2007)

12 http://lov.okfn.org/dataset/lov/

36

OU Social: Reaching Students in Social Media

Miriam Fernandez, Harith Alani, Stuart Brown

Knowledge Media Institute, UK
m.fernandez, h.alani, stuart.brown@open.ac.uk

Abstract. This work describes OU Social, an application that collects
and analyses data from public Facebook groups set up by students to
discuss particular Open University courses. This application exploits se-
mantic technologies to monitor the behaviour of users over time as well
as the topics that emerge from Facebook group discussions. The paper
describes the architecture of OU Social and provides a brief overview of
the analysis results obtained from 44 different Facebook groups examined
over a 6 year period (2007-2013)

Keywords: semantics, social media, education

1 Introduction

The Open University (OU) is the largest university in the United Kingdom
and the leading distance teaching institution in the world. The OU courses are
directly available throughout Europe and, by means of partnership agreements
with other institutions, in many other parts of the world.

Given its on-line learning profile, one of the key goals of the OU is the con-
stant research and development of online learning and teaching solutions based
on the analysis of usage data and on the feedback provided by the users about
their experiences. To acquire this feedback the OU has created several websites
and applications were students can discuss the different courses and share their
learning experiences. This information, as well as OU’s website usage data, is
currently being collected and processed as part of the OU’s usage data analytics
process. However, there are other rich and rapidly growing sources of user feed-
back that are external to the OU, which could also be collected and investigated.
With the emergence of social media, online learning is no longer restricted to
particular in-house sites, but there is a clear tendency for students to share and
discuss their learning material, methodologies and experiences on popular social
networking sites, such as Facebook and Twitter. 1

This paper presents OU Social, a prototypical tool for collecting and analysing
content from a large set of relevant Facebook public groups. These groups have
been specifically set up by Facebook users to bring together other students who

1 http://www.eric.ed.gov/PDFS/ED535130.pdf
http://www.topuniversities.com/sites/qs.topuni/files/Students-Online-Useage-
Global-Trends-Report-2013-nc.pdf

37

enrolled in particular OU courses or modules. The designed tool integrates two
semantic analysis modules: (i) the behaviour analysis module, which categorises
users into different behavioural roles (leaders, followers, etc.) by using a semantic-
rule based methodology and, (ii) the topic analysis module, which extracts and
monitors the concepts that emerge from Facebook groups discussions (using a
semantic annotation system). Data extracted from these modules is enriched via
the OU’s liked data portal (data.open.ac.uk) to provide a better overview of the
courses under analysis.

The rest of the paper is structured as follows: Section 2 presents the archi-
tecture of the system and provides a brief overview of the semantic analysis
modules. Section 3 presents some preliminary results obtained by this tool after
analysing 44 different Facebook groups over a 6 year period (2007-2013). Section
4 concludes the paper and outlines future work.

2 System Architecture

This section describes the architecture of OU Social and provides an
overview of its components. A video of this demo is available un-
der http://people.kmi.open.ac.uk/miriam/OUSocial/OUSocialVideo.mov. The
demo is not publicly accessible to avoid disclosing private student information.

Fig. 1. OU Social Architecture

Data Collection: Departing from the list of OU course codes, a crawler has
been developed that extracts the name of all those Facebook public groups and
pages containing a course code (e.g., B120) and the words ”Open University” or
”OU”. For each of these groups information about users and posts is extracted
(by using the Facebook Graph API2) and stored in an internal database.

Behaviour Analysis: The Behaviour Analysis component shows the type
of people discussing a particular topic or concept of interest with regard to their
online behaviour. It allows the OU’s course managers to focus on a smaller,
more manageable, set of students (read their contributions, monitor their opin-
ion, etc.). The analysis module not only identifies those students that are mostly
active (e.g., leaders, contributors) but also those who are generally inactive and
may need additional learning support (e.g., lurkers, followers). Specifically, this

2 https://developers.facebook.com/docs/reference/api/

38

analysis distinguish among eight types of user roles: Lurker, Follower, Daily User
Contributor, Broadcaster, Leader, Celebrity and Super User. This analysis mod-
ule makes use of the OUBO (Open University Behaviour Analysis Ontology) and
the SIOC (Semantically Interlinked Online Communities ontology) ontologies to
model the behaviour of users in the different Facebook groups. To infer the differ-
ent roles that a user adopts over time the module applies semantic rules encoded
using SPIN (e.g, if popularity=high and contribution=high then role=leader).
For more details of this model, the ontologies and the role extraction process,
the reader is referred to the following publication [1].

Topic Analysis: Questions, answers, discussions, learning material, etc. are
distributed and shared via social networking sites. Detecting what are the topics
that emerge from these discussions can help to identify emerging issues with re-
spect to certain elements of interest to the OU. To obtain the topics for each post
the analysis component makes use of TextRazor 3, a natural language processing
tool based on knowledge bases such as Wikipedia, DBPedia and Freebase. Tex-
tRazor identifies key entities and topics in a piece of text, returning a mapping
between each posts and a list of URIs.

Data Enrichment To complement the results of the analyses with con-
crete information about the courses discussed in the Facebook groups, course
information is extracted via SPARQL queries from the OU’s linked data site
(data.open.ac.uk). E.g., the OU maintains a taxonomy of course categories (sci-
ence, chemistry, ...) that complements the results obtained by the topic analysis.

3 Analysis Results

An initial analysis have been conducted for 44 different Facebook groups over a
period of six years, from 2007 till 2013, including a total of 136,704 posts and
19,094 users. The demo aims to show conference attendees how different analyses
can be performed using this tool and how the use of semantic technologies can
help course managers and university staff to productively exploit social media
to obtain relevant feedback. Figures 1a and 1b display two examples of the OU
Social analyses. Figure 1a displays a tag cloud visualising the relevant topics
across all Facebook groups. Among these top topics we can find People, Works,
Network Protocols, Behavioural Sciences and Educational Technology. This vi-
sualisation can also be obtained for each group individually. Additionally, the
tool also allows the visualisation of the evolution of topics over time. Wikipedia
links are provided for each of the displayed topics thanks to the information
provided by TextRazor. Regarding the behaviour analysis, Figure 1b displays
an example of the role composition for the community built around the M263
Facebook group. We can see the evolution of the different roles over time. At the
beginning, during the creation of the group, it was mostly composed by inactive
users (lurkers and followers) but between the end of 2011 and the beginning of
2012 a mixed of different roles was present in the community, including leaders

3 http://www.textrazor.com/

39

and super users, which are the most active an engaged roles. The application
allows monitoring the role composition over time for all Facebook groups as well
as monitoring the behaviour of individual users. For a particular user the appli-
cation displays her role path (the different roles that the user adopts over time)
in all Facebook groups where the user has participated. Studying the user’s be-
havioural paths can help us to detect particular patterns that students follow
before dropping or loosing interest about course. Note that each of the stud-
ied Facebook groups is linked to a particular OU course. To obtain information
about the course, therefore complementing the results of the analyses, we make
use of the OU’s linked data portal (data.open.ac.uk). Using different SPARQL
queries we can obtain information about OU courses, their title, description,
available locations, required level and categorisation, among others.

Figure 2.1 Top Topics
across Facebook groups

Figure 2.2 Behaviour analysis for group
M263

4 Conclusions and Future work

This paper presents OU Social, a semantic social media analysis platform de-
veloped to collect and analyse students’ feedback about OU courses expressed
in Facebook public groups. The prototype is based on two semantic analysis
modules that identify the behaviour of users and the emergent topics over time.
Information about the courses is also integrated into the system by exploiting
the OU’s linked data portal. As seen by the video, extensions can be added to
this prototype to facilitate the daily work of course managers. We are currently
looking at tools like Google Trends (http://www.google.co.uk/trends/), Melt-
water Buzz (buzz.meltwater.com), etc. to select visualisations that can better
display the result of the analyses. Despite the existence of many other social
media analysis tools in the market, OU Social is specifically designed to fulfil
the needs of OU course managers. Apart from the interface extensions we are
currently working on the integration of students historical data. This will en-
able correlating their behaviour and topic interests with their performance in
different courses, providing the bases for more sophisticated analyses.

References

1. M. Rowe, M. Fernandez, S. Angeletou and H. Alani. (2012). Community analysis
through semantic rules and role composition derivation. Web Semantics: Science,
Services and Agents on the World Wide Web.

40

Demonstration: Semantic Web Enabled Smart
Farm with GSN

Raj Gaire1, Laurent Lefort1, Michael Compton1, Gregory Falzon2, David
Lamb2 and Kerry Taylor1

1 CSIRO Computational Informatics, Acton, Australia
{raj.gaire, laurent.lefort, michael.compton, kerry.taylor}@csiro.au
2 Precision Agriculture Research Group, University of New England, Australia

{gfalzon2, dlamb}@une.edu.au

Abstract. GSN is an open source middleware designed for managing
data produced by sensors deployed in a sensor network. We have ex-
tended the GSN to enable (i) semantically aware preparation, exchange
and processing of the data (ii) user specified event processing for alerts,
and (iii) associate sensor data to things. Here, we demonstrate our smart
farm as a use case of a semantically aware sensor network for better
integration of sensor data.

1 Introduction

Sensing devices are used in agriculture to measure and control farming activities.
Smarter use of these measurements requires integration with other information.
For example, soil condition measurements such as temperature and volumetric
water content together with historical and weather forecast data can help make
decisions about the time to sow a particular crop. Similarly, the cattle location
data together with the current weather data can help monitor the cattle welfare.
Since such data are often distributed across different organisations, the semantic
web can be used as an integration mechanism for making better decisions.

Sensors produce data streams continuously or at short intervals generating
large volumes of data. Therefore, data management is a prominent issue with
sensor networks. Global Sensor Network (GSN) [1], an open source middleware,
provides some foundation for the management of the streaming sensor data.
In order to enable integration of this data across the web, it is necessary to
employ ontologies like SSN [2] and techniques like Linked Data [3] that are
widely accepted in the semantic web community. The disparity between existing
tools like GSN and the need for providing open access for an effective integration
of sensor network data exists as a barrier.

Our Kirby Smart Farm is a prototypical 269 hectare livestock property lo-
cated in Armidale, NSW. In this paper, we use our smart farm to illustrate how
GSN can be extended to enable integration of sensor network data with external
data, define situation monitoring conditions to produce alerts, and extend the
sensor measurements to implement web of things in a farm. Specifically, in Sec-
tion 2, we describe the architecture of smart farm system. Section 3 highlights

41

our extensions of GSN and semantic web aspects, followed by the conclusion in
Section 4. Furthermore, the semantic network aspect of our work in a farming
environment is described in [4] while the business aspect is explained in [5]. This
system can be accessed from our website http://smartfarm-ict.it.csiro.au.

2 Architecture

Our farm contains a mixture of environmental and livestock tracking sensor
nodes: 100 soil sensors, 2 weather stations and 65 cattle tags. A soil sensor node
contains sensors measuring ground temperature, soil temperature, volumetric
water content (VWC) and electric conductivity (EC). A weather station node
contains sensors measuring air temperature, photo-synthetically active radiation
(PAR), pressure, wind, rain and hail measurements. These nodes also contain
sensors to measure temperature, battery status, solar voltage and current of the
platform in which the sensors are embedded. Finally, the cattle have active tags
attached to their ears, which send radio signals to base stations. Based on the
time lapsed to receive the signal at three base stations, the locations of cattle
are determined3.

Fig. 1: The Smart Farm System Architecture

The architecture design of the smart farm is shown in Fig 1. Here, the signal
received from all the sensors are collected by a gateway located on the farm
and sent to smartfarm servers through a high speed broadband network. The
smartfarm server contains four software components: data listener (a python
script library), RabbitMQ4 (a message queue system), GSN (a sensor network
middleware) and Virtuoso5 (a triple store enabled DBMS). The data listener

3 http://www.taggle.com.au/livestock.php
4 http://www.rabbitmq.com
5 http://virtuoso.openlinksw.com/

42

directly receives data from the farm, transforms them to text messages and then
publishes the messages to the message queue. The GSN is configured with virtual
sensors which subscribe to these messages.

Fig 2. CCI SPARQL query Fig 3. CCI as a composite variable of
temp, humidity, wind speed and PAR

Our sensor network requires management of both static and dynamic data.
We have used a hybrid approach to manage them using GSN and Virutoso [4].
Live linked data in RDF format are provided through GSN, while Virtuoso
is used to provide archived data in data cube [6] format and visualised using
VisualBox6 (see Fig 2,3).

3 Semantically Enabled GSN

GSN is particularly useful in micro-management of live sensor data. However,
GSN in its original form has a few limitations: it requires upgrades of dependent
libraries; it lacks some important concepts (e.g. it is not possible to specify the
units of measurements); it supports limited situation monitoring queries; and it
does not provide data in a format expected by the semantic web community. We
have modified GSN to overcome these limitations. In addition, we have extended

Fig 4. The smart farm map interface Fig 5. The interface for user defined events

GSN to provide additional features. Firstly, a combination of Java/R algorithms

6 http://visualbox.org

43

is implemented for geo-spatial data processing to produce spatially aggregated
cross-sectional data, generate heatmaps and infer relevant measurements corre-
sponding to the cattle location (see Fig 4). Secondly, complex event processing
system has been created based on semantic event descriptions [7], which is also
embedded in GSN. We have identified and implemented a number of alert con-
ditions, such as ‘sowing time’ for a crop, ‘cattle not in farm’, ‘frost’, and ‘soil
compaction’ which are particularly useful to farmers. At the same time, users
can specify their own alerts (see Fig 5), enabling them to embed their knowl-
edge into the system. Thirdly, composite variables as cattle welfare indicators
comprehensive climate index (CCI) [8] and heat load index (HLI) [9] have been
implemented. Finally, GSN is extended to produce RDF data in linked data
formats for both live and archived data.

4 Conclusion

In this paper, we presented Kirby ‘Smart’ Farm as a prototype farm installed
with various sensors and connected with a broadband network. We demonstrated
that by enabling a farm with the semantic web and providing query capability
on both the static (i.e. archived) and the dynamic (i.e. live) linked data, we can
fulfil the needs of the farmers and help them make better decisions.

References

1. Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor
network deployment. In: Proceedings of the 32nd international conference on Very
large data bases, VLDB Endowment (2006) 1199–1202

2. Lefort, L., Henson, C., Taylor, K., Barnaghi, P., Compton, M., Corcho, O., Garcia-
Castro, R., Graybeal, J., Herzog, A., Janowicz, K., et al.: Semantic sensor network
xg final report. W3C Incubator Group Report 28 (2011)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS) 5(3) (2009) 1–22

4. Gaire, R., Lefort, L., Compton, M., Falzon, G., Lamb, D.W., Taylor, K.: Semantic
web enabled smart farming. In: Proceedings of the 1st International Workshop on
Semantic Machine Learning and Linked Open Data (SML2OD) for Agricultural and
Environmental Informatics, ISWC (2013) accepted

5. Griffith, C., Heydon, G., Lamb, D., Lefort, L., Taylor, K., Trotter, M., Wark, T.:
Smart farming: Leveraging the impact of broadband and the digital economy (2013)

6. Cyganiak, R., Reynolds, D., Tennison, J.: The rdf data cube vocabulary, w3c work-
ing draft 05 april 2012. World Wide Web Consortium (2012)

7. Taylor, K., Leidinger, L.: Ontology-driven complex event processing in heteroge-
neous sensor networks. In: The Semanic Web: Research and Applications. Springer
(2011) 285–299

8. Mader, T., Johnson, L., Gaughan, J.: A comprehensive index for assessing environ-
mental stress in animals. Journal of Animal Science 88(6) (2010) 2153–2165

9. Gaughan, J., Mader, T.L., Holt, S., Lisle, A.: A new heat load index for feedlot
cattle. Journal of Animal Science 86(1) (2008) 226–234

44

Exploring Linked Open Data with Tag Clouds

Xingjian Zhang, Dezhao Song, Sambhawa Priya, and Jeff Heflin

Department of Computer Science and Engineering, Lehigh University
19 Memorial Drive West, Bethlehem, PA 18015, USA
{xiz307,des308,sps210,heflin}@cse.lehigh.edu

Abstract. In this paper we present the contextual tag cloud system:
a novel application that helps users explore a large scale RDF dataset.
Unlike folksonomy tags used in most traditional tag clouds, the tags in
our system are ontological terms (classes and properties), and a user can
construct a context with a set of tags that defines a subset of instances.
Then in the contextual tag cloud, the font size of each tag depends
on the number of instances that are associated with that tag and all
tags in the context. Each contextual tag cloud serves as a summary of
the distribution of relevant data, and by changing the context, the user
can quickly gain an understanding of patterns in the data. Furthermore,
the user can choose to include RDFS taxonomic and/or domain/range
entailment in the calculations of tag sizes, thereby understanding the
impact of semantics on the data. The system runs on the BTC2012
dataset with more than 1.4 billion triples from which we extract over
380,000 tags. Several scalability challenges must be overcome in order to
achieve a responsive interface.

Keywords: Tag Cloud, Data Visualization, Data Exploration

1 Introduction

We present the contextual tag cloud system1 as an attempt to address the fol-
lowing questions: How can we help casual users explore the Linked Open Data
(LOD) cloud? Can we provide a more detailed summary of linkages beyond the
LOD cloud diagram2? Can we help data providers find potential errors or missing
links in a multi-source dataset of mixed quality?

In analogy to traditional Web 2.0 tag cloud systems, an instance is like a web
document or photo, but is “tagged” with formal ontological classes, as opposed
to folksonomies. Tags are then another name for the categories of instances. We
extend the expressiveness and treat classes, properties and inverse properties as
tags that are assigned to any instances that use these ontological terms in their
triples. The font sizes in the tag cloud reflect the number of matching instances
for each tag, indicating the distribution of tags used by instances in this dataset.
We allow the user to change their focus on a specific subset of instances in the

1 http://gimli.cse.lehigh.edu:8080/btc/
2 http://lod-cloud.net/

45

dataset by specifying a combination of ontological terms as the context on the
fly. The context is a set of tags or the negation of tags, where the negation of
a tag means that the tag is not assigned to the instances. Then the resulting
contextual tag cloud will resize tags to display the conditional distribution of
tags for the instances that satisfy this context.

Although materialization can lead to many interesting facts, a single erro-
neous axiom in the uncurated dataset could generate thousands of errors. Rather
than attempting to guess which axioms are worthwhile, our system supports
multiple levels of inference; and at any time a user can view tag clouds with the
same context under different entailment regimes, which helps users understand
the dataset better and helps data providers investigate the errors in the dataset.

To demonstrate the scalability of our system, we load the entire BTC2012
dataset. This complex dataset contains 1.4 billion triples, from which we extract
198.6M unique instances, and assign more than 380K tags to these instances.
This multi-source, large-scale dataset brings us challenges in achieving accept-
able performance and user-interface design as well as affordable preprocessing.
Details of the technical aspects can be found in our research paper3.

2 System Features

The initial tag cloud has no context (or semantically owl:Thing), and the tags
in the cloud reflect the absolute sizes of instances related to each tag. We put
classes and properties into two separate views, so that users will not treat a
property called “author” (which may have domain Publication) as a class name
by mistake. To emphasize that difference, we also add an icon with “C” or “P”
in front of each tag. If a tag is clicked, it will be added to the current context,
and then a new tag cloud will be shown for the updated context. A user can
add/remove any tags to/from the context, and explore any dynamically defined
types of instances. A user can also switch to Instance View to investigate the
detailed triples of instances specified by the context.

A user can also change the inference regime: (1) No Inference; (2) Taxonomy
Inference; (3) Domain/Range Inference; and (4) Both Inference. If a set of tags
are entailed to be equivalent, we choose a cannoncial tag to group them under.
We display a ≡ after the canonical tag to indicate this; clicking it will display
the equivalent tags. Also for any tag cloud, we can turn on the negation mode,
and then the tag sizes indicate how many instances do not have this tag under
the current context and inference level. A negation tag can be also added to the
context, which mathematically means the relative complement. Fig. 1 shows an
example of the property tag cloud with negation tag in the context.

We show tag clouds in pages when there are too many tags. To help users
locate specific tags in the tag cloud, we initially sort the tags by their local names
alphabetically. When the system receives a request (context and inference level),

3 Xingjian Zhang, Dezhao Song, Sambhawa Priya and Jeff Heflin. Infrastructure for
Efficient Exploration of Large Scale Linked Data via Contextual Tag Clouds. 12th
International Semantic Web Conference. Sydney, Australia. 2013.

46

Tag font sizes reflect

sizes of intersections.

Users can construct a context by

clicking on tags or removing them

Tags of an instance can vary

under different inference rules

Fig. 1. Property tag cloud shows property usages of instances of foaf:Group that are
not instances of schema:MusicGroup.

it will process tags in alphabetic order, and then stream out whatever is available
for the requested page. If the user chooses to browse tags alphabetically, then the
streaming of results is generally able to stay ahead of the user by pre-fetching
results for tags on subsequent pages. Instead of browsing, a user can also search
for tags by keywords. We index the local name, rdfs:label and rdfs:comment

(if it exists) for each tag to support such keyword search. The retrieved tags will
then be shown in the tag cloud sorted by their relevance to the keyword with
their frequencies under the current context and inference regime. In addition,
we provide sorting by tag frequency as another option, so that users can easily
see the most popular tags under the current context and inference. However, we
have to wait until all the frequencies are computed to enable this sort option.
For some contexts, it can take a few minutes for the overall computation of
thousands of pages of results. We show a progress bar of the computation and
the estimated time left; but before sort is enabled, users can still browse by
alphabetical order or search with keywords.

3 Use Cases

We believe our system can be used for multiple purposes. Here we shall briefly
describe four scenarios where a user explores the BTC dataset.

Choose the right terms for SPARQL. A user wants to build a SPARQL
query on lakes, but does not know what classes about lakes are available. Then
by starting with a keyword search “lake”, the user is presented with a tag cloud
containing all tags that match the keyword, and finds that dbpediaowl:Lake

contains the most instances. After picking this class, the user wonders what
property to use for quering the area of a lake. Then by searching again with key-
word “area”, the user is presented with the contextual tag cloud with keyword-
matched tags whose sizes reflect the intersection of the instances of the tags and

47

dbpediaowl:Lake. It turns out dbpediaowl:areaTotal is the best choice of the
property.

Learn interesting facts. A casual user tries a keyword search on “Man-
hattan”. There are classes of parks, streets, etc. located in Manhattan. However,
it also has the class yago:ManhattanProjectPeople; the user adds this to the
context to explore in more detail. In the resulting tag cloud, the user finds var-
ious categories for such people, and then searches again for “scientist”. Then
surprisingly there is a tag freebase:computer.computer scientist. The user
is intrigued, because she did not know that any computer scientists were involved
in the effort to build the first atomic bomb. By adding that tag and switching
to the Instance View, she finally learns that this scientist is John von Neumann.

Detect Co-reference Mistakes. Sometimes when two tags have a small
unexpected intersection, it is due to an error, rather than an interesting fact.
For example, a user finds the tag yago:BritishComputerScientist has one
common instance with dbpediaowl:MusicalArtist (as shown by a very small
tag). By adding this tag and looking into the triple details in the Instance View,
we can see the two dbpediaowl:abstract values clearly refer to two different
people who have the same name but different birth years but have been connected
by an erroneous owl:sameAs statement.

Examine ontological errors. Under Domain/Range Inference, a user finds
that foaf:Person appears in the tag cloud of context dbpediaowl:Software,
implying that some people are software, or vice versa! If the user turns off the Do-
main/Range Inference, this error will disappear. What is wrong with this infer-
ence? If a property is claimed as having domain foaf:Person, then any instance
using this property will be classified as the instance of this class. With this as-
sumption in mind, the user adds both foaf:Person and dbpediaowl:Software

to the context, selects the property view and Domain/Range Inference, and sorts
the properties by frequency. Then the top tag is foaf:homepage, which has all
the instances in the current context (by hovering the mouse over the tag, we can
see the frequency of this tag). This is very suspicious, and by clicking on the “P”
icon before foaf:homepage, the user can see that foaf:Person is an inferred
super tag of this tag, and that causes the error. By checking the raw ontology
we find that although the domain of foaf:homepage is owl:Thing in the foaf

schema, two other sources in the BTC dataset make the claim that the domain
is foaf:Person and foaf:Agent respectively.

4 Conclusions

In this paper we introduce the features and use cases of the contextual tag
cloud system. The contextual tag cloud system is a novel tool that helps both
casual users and data providers explore the BTC dataset: by treating classes and
properties as tags, we can visualize patterns of co-occurrence and get summaries
of the instance data. From the common patterns users can better understand
the distribution of data in the KB; and from the rare co-occurrences users can
either find interesting special facts or errors in the data.

48

Comparing ontologies with ecco

Rafael S. Gonçalves, Bijan Parsia, and Uli Sattler

School of Computer Science, University of Manchester, Manchester, United Kingdom

Abstract. In this paper we present the diff tool ecco, which detects changes to
both axioms and concepts between OWL ontologies. Furthermore, the tool aligns
axiom changes between each other, according to a fine-grained change categori-
sation, and subsequently aligns axiom changes with the concepts that each of
those directly affect. The diff is open source, and made available as a standalone
command-line tool, as well as a Web-based application.

1 Introduction

The diff tool presented in this paper, ecco, incorporates structural and semantic tech-
niques to detect differences between OWL ontologies at both axiom and concept level.

At the axiom level, ecco uses structural difference to detect additions and removals,
and subsequently verifies whether these changes have any logical impact (i.e., whether
they are logically effectual or ineffectual). Based on these two, coarse-grained cate-
gories, we derive finer-grained ones that reflect the apparent impact of the changes
detected, as described in [1]. For instance, by further constraining an axiom A v B
into A v B u C we “strengthen” it, and the relation between the stronger axiom and
its preceding version is made explicit by our categorisation (that is, we align the source
and target of the change), and suitably presented by our tool. Such a categorisation of
changes is shown to facilitate the navigation through, and analysis of axioms in the diff.

In addition to detecting axiom changes, ecco computes entailment and term differ-
ences between ontologies. Differences at the entailment level are computed according
to several entailment grammars explained in [2], and only shown to users upon re-
quest. These entailment differences are used to retrieve the sets of concepts that were
specialised or generalised, that is, concepts which have a new superconcept or a new
subconcept, respectively. Finally, the tool aligns concept changes with axiom changes,
where each (effectual) axiom is aligned with the concepts it directly affects.

The diff ecco is freely available as a command-line tool with advanced features, as
well as a Web-based application. Both of these output an XML change set file and a
transformation of that into HTML, which allows users to browse through and focus on
those changes of utmost interest using any Web browser and operating system.

2 Related Work

Structural difference, based on OWL’s notion of structural equivalence, is used in
several tools to present axiom changes between ontologies; specifically within Con-
tentCVS [3], Bubastis [6] and OWLDiff [5]. However, none of these produce any form

49

of alignment between axioms. The tool ContentCVS also computes entailment differ-
ences between ontologies, but does not extrapolate affected concepts from the entail-
ments in the diff. The tool CEX [4] computes entailment and concept differences be-
tween acyclic EL terminologies with role hierarchies and range restrictions. In addition
to the major restriction on its input, CEX does not compute changes between axioms,
nor does it produce any form of alignment between axioms and the terms they affect.

3 ecco: A hybrid diff for OWL 2 ontologies

The diff ecco is an open source Java tool available at https://github.com/
rsgoncalves/ecco. Most major (i.e., computationally expensive) operations are
performed in parallel, taking advantage of new concurrency features in Java 7. The
command line interface allows tuning the diff using advanced options, all of which
can naturally be used programatically as well. Additionally, there is a Web-based front
end that allows users to use the system on small to medium ontologies, without hav-
ing to download it. A demo instance of the Web-based version of ecco is deployed
at http://owl.cs.manchester.ac.uk/diff.1 In order to demonstrate the
functionality of the tool, as well as how its output can be interpreted, we carry out
an example diff walkthrough using the toy ontologies in Table 1, and further on we
show the output of ecco on those same ontologies.

Table 1: Example ontologies O1 and O2.
O1 O2

α1 : A v B β1 : A v B
α2 : B v C β2 : B v C u F
α3 : C v ∃r.X β3 : C v ∃r.X
α4 : ∃r.X v ∃r.Y β4 : X v D
α5 : X v D u E β5 : F v ∃r.Y uG
α6 : F v ∃r.Y

To start with, ecco computes the sets of additions and removals between O1 and
O2 according to structural equivalence. From these changes the tool distinguishes be-
tween those that have logical impact (effectual) and those that do not (ineffectual), that
is, we check which removed axioms are entailed by O2 (ineffectual removals), and
analogously for added axioms. This coarse-grained categorisation is shown in Table 2.

Table 2: Coarse-grained categorisation of changes in diff(O1,O2).
Removals Additions

Effectual Ineffectual Effectual Ineffectual

{α4, α5} {α2, α6} {β2, β5} {β4}

1 The code is hosted at https://github.com/rsgoncalves/ecco-webui.

50

https://github.com/rsgoncalves/ecco
https://github.com/rsgoncalves/ecco
http://owl.cs.manchester.ac.uk/diff
https://github.com/rsgoncalves/ecco-webui

Subsequently, ecco performs a fine-grained categorisation of the changes accord-
ing to entailment and justification relations, allowing us to identify and align changes
between ontologies. The categorisation is shown in Table 3, where we denote effec-
tual additions as EffAdds(O1,O2), ineffectual additions as IneffAdds(O1,O2), and
analogously for removals.

Table 3: Fine-grained categorisation of changes in diff(O1,O2).
Coarse-grained Fine-grained Axiom Axiom

category category change alignment

EffAdds(O1,O2)
Strgth(O1,O2) β2 {α2}

StrgthNT(O1,O2) β5 {α6}

A
dd

iti
on

s

IneffAdds(O1,O2) NewRed(O1,O2) β4 {α5}

EffRems(O1,O2)
Weakng(O1,O2) α5 {β4}

PrRem(O1,O2) α4 –

IneffRems(O1,O2) NewRed(O1,O2)
α2 {β2}R

em
ov

al
s

α6 {β5}

The fine-grained categorisation shown in Table 3 reveals such changes as α2 be-
ing strengthened into β2 with shared terms, and similarly α6 into β5 though using new
terms. In the set of ineffectual changes we have only new retrospective (resp. prospec-
tive) redundancies, that is, added axioms (resp. removed axioms) for which there are
more constraining axioms in O1 (resp. O2). For instance, β4 is a weaker version of
α5. Within the effectual removals we have α5 which is weakened into β4 using shared
terms, and α4 which has no identifiable relation with axioms in O2.

After axiom changes are categorised, ecco detects which atomic terms had their
meaning affected between ontologies.2 In order to do that, ecco first computes differ-
ences w.r.t. finite sets of entailments, defined according to some entailment grammar.3

From the sets of lost and gained entailments, so called witness axioms, the tool ex-
trapolates the affected terms depending on whether these occur on the left hand side
of an entailment difference (specialised term), or right hand side (generalised term).
Furthermore, ecco distinguishes between whether a concept A is directly affected, or
indirectly affected via some other concept change which propagates to A. Finally, the
tool aligns term and axiom changes based on witness axioms and their justifications:
if the justification for a witness axiom that witnesses a direct (resp. indirect) change to
A contains an effectual change α, then α is said to directly (resp. indirectly) affect A,
denoted {α} →d A (resp. {α} →i A). In Table 4 we show the result of computing and
aligning term differences according to entailments between atomic concepts.

2 Currently restricted to concept changes only, though roles are easily added.
3 The tool supports all entailment grammars specified in [2], e.g., differences w.r.t. atomic sub-

sumptions, or differences over subsumptions involving asserted subconcepts.

51

Table 4: Affected concepts with corresponding witness axioms and justifications.
Affected Effect Witness Justification(s) Axiom
concept axioms alignment

A
Gained A v F {β1, β2} {β2} →i A

superconcept A v G {β1, β2, β5} {β5} →i A

B
Gained B v F {β2} {β2} →d B

superconcept B v G {β2, β5} {β5} →i B

Sp
ec

ia
lis

ed

X Lost superconcept X v E {α5} {α5} →d X

G
Gained

F v G {β5} {β5} →d G

subconcept
B v G {β2, β5} {β2} →i G
A v G {β1, β2, β5} — ” —

F
Gained B v F {β2} {β2} →d F

subconcept A v F {β1, β2} — ” —

G
en

er
al

is
ed

E Lost subconcept X v E {α5} {α5} →d E

4 Discussion

In this paper we presented the diff tool ecco, and exemplified how its categorisation
mechanisms and presentation of differences can facilitate change analysis. By cate-
gorising axioms the tool presents the changed axioms and what they are a change of.
Thus we can group and align changes according to their impact, allowing users to shift
their attention to specific types of changes rather than going through an unstructured
change set while inspecting both ontologies. Based on the combination and alignment
of axiom and term changes, ecco provides a comprehensive and intelligible change re-
port that would suit most ontology engineers, whether they are only interested in term
or axiom changes. In particular, it facilitates the understanding of the impact of axiom
changes on the ontology, and the meaning of its terms (via entailment differences). The
diff tool is freely distributed as both a command line tool and a Web-based application.

References
1. Gonçalves, R.S., Parsia, B., Sattler, U.: Categorising logical differences between OWL on-

tologies. In: Proc. of CIKM-11 (2011)
2. Gonçalves, R.S., Parsia, B., Sattler, U.: Concept-based semantic difference in expressive de-

scription logics. In: Proc. of ISWC-12 (2012)
3. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga Llavori, R.: Supporting concurrent

ontology development: Framework, algorithms and tool. DKE 70(1), 146–164 (2011)
4. Konev, B., Ludwig, M., Wolter, F.: Logical difference computation with CEX 2.5. In: Proc. of

IJCAR-12 (2012)
5. Kr̆emen, P., Šmı́d, M., Kouba, Z.: OWLDiff: A practical tool for comparison and merge of

OWL ontologies. In: Proc. of DEXA-11 (2011)
6. Malone, J., Holloway, E., Adamusiak, T., Kapushesky, M., Zheng, J., Kolesnikov, N.,

Zhukova, A., Brazma, A., Parkinson, H.: Modeling sample variables with an experimental
factor ontology. Bioinformatics 26(8), 1112–1118 (2010)

52

Linked Scientometrics: Designing Interactive
Scientometrics with Linked Data and Semantic

Web Reasoning

Grant McKenzie1, Krzysztof Janowicz1, Yingjie Hu1, Kunal Sengupta2, and
Pascal Hitzler2

1 University of California, Santa Barbara, CA, USA
2 Wright State University, Dayton, OH, USA

Abstract. In this demo paper we introduce a Linked Data-driven,
Semantically-enabled Journal Portal (SEJP) that offers a variety of
interactive scientometrics modules. SEJP allows editors, reviewers, au-
thors, and readers to explore and analyze (meta)data published by a jour-
nal. Besides Linked Data created from the journal’s internal data, SEJP
also links out to other sources and includes them to develop more power-
ful modules. These modules range from simple descriptive statistics, over
the spatial analysis of visitors and authors, to topic trending modules.
While SEJP will be available for multiple journals, this paper shows its
deployment to the Semantic Web journal by IOS Press. Due to its open
& transparent review process, SWJ offers a wide variety of additional in-
formation, e.g., about reviewers, editors, paper decisions, and so forth.

1 Introduction

Scientometrics are playing an increasingly important role in facilitating the un-
derstanding of different research fields as well as the research topics within them.
In combination with Semantic Web reasoning, Linked Data provides the prin-
ciples to structure and interlink data in a way that facilitates data integration
and knowledge discovery and can therefore enhance scientometric analysis. In
this paper, we present a Linked Data-driven, semantically-enabled journal portal
(SEJP) that currently supports over 20 different interactive analysis modules.
These modules range from simple descriptive statistics such as the acceptance
rate of a journal to more complex modules that provide spatial analysis and
topic modeling. For instance, SEJP allows editors to visualize authors together
with keywords reflecting their expertise to better select reviewers for a new pa-
per submission. While SEJP will be deployed to other IOS Press journals in the
future, this paper showcases the SEJP functionality by showing its application
to the structured data from the Semantic Web journal (SWJ).3 SWJ adopts
a unique open and transparent review process. This provides a rich amount of
data related to the review and publication process, including not only papers’
contents, but also reviewers and their reviews, assigned editors, paper decisions,
resubmission time lines, and so forth.

3 The current SEJP version can be used at http://sejp.geog.ucsb.edu/SWJPortal

53

2 The Linked Data Portal for SWJ

2.1 Structuring and Publishing Data

SWJ employs a highly customized version of the popular Drupal content man-
agement system (CMS)[1]. All submissions, reviews, notifications, and feedbacks
are contributed through the CMS, storing content in a relational database man-
agement system. The first step in developing the portal was to export all data
from the database, and convert it to the Resource Description Framework (RDF)
format, making use of the bibliographic ontology BIBO [2]. While most of the
data accessed from SWJ can be modeled by BIBO, the ontology was extended to
include aspects such as the versioning of articles (AcademicArticleVersion). Once
the data was organized and relationships were defined (e.g., Article hasAuthor),
a custom Java converter was constructed using the OWL API and published
online via Apache Jena’s SPARQL server Fuseki ; see [3] for details.

2.2 User Interface

Once the back-end data was organized, structured, and published to the Web, a
modular user interface was developed to allow visual analysis of the SWJ data. A
modular approach was taken with a plug and play mentality, allowing the analysis
modules to be separated and configured based on the particular requirements
of the applications. Built through HTML5, CSS, JavaScript, D3, and ExtJS,
the front-end interface for the application is light-weight and compatible with
any modern W3-compatible browser. Given the separation between the back-end
data and the front-end analysis modules, SEJP is able to integrate data from
other SPARQL endpoints and APIs; in our case the Semantic Web Dog Food
portal and Microsoft Academic Search.

3 Modules

A variety of scientometric modules were developed for analyzing the SWJ data.
Visual-analytic tools range from pie charts showing paper submission types to
Cartograms of website visitors to edge-node graphs showing links between col-
laborating authors. Two of the more unique trend modules are discussed here.

3.1 Research Topic Trends

This module shows how the research topics contained in the SWJ trend over
time. In order to construct this module, a topic modeling approach was taken
to extract latent topics in papers submitted to the SWJ. First, the text for all
original submissions between March 2010 and April 2013 were accessed, cleaned
of standard English stop-words and non-alpha numeric characters and stemmed4.
The submissions were then grouped by time periods (3 month are considered as

4 Using the Snowball stemmer - http://snowball.tartarus.org

54

one period), combining text from all articles within this period in to one single
document. This produced a total of 13 documents. Latent Dirichlet allocation
(LDA) was then applied to the documents with the purpose of extracting a
set number of latent topics. LDA is an unsupervised, generative probabilistic
model used to infer latent topics in a textual corpus [4]. In this case, LDA is
applied across the set of 13 documents and topics are discovered, represented as a
multinomial distribution over words. Based on the co-occurrence of words in the
corpus and a numerical value for the resulting topics, LDA produces probability
values for each word in each topic and for each topic in each document. The
LDA model was tested with 50, 20 and 10 topics, and 20 topics produce the
most human comprehensible results for this module. An example of one of these
topics is shown in Figure 1a with font-size indicating relative probability of the
word existing in the topic.

(a) Word cloud showing
an example topic.

(b) Research topic trending module showing how
topics change over time

Fig. 1: Research topic trending module

The topics are then displayed through the user interface via an interactive
line graph constructed with the JavaScript D3 charting library (Figure 1b). LDA
defines each document (publications grouped by time period) as a distribution
over all topics with the total probability across all topics summing to 1. Visu-
ally this is represented with time period shown on the X-axis and probabilities
for each topic (multiplied by 100) shown on the Y-axis. Initially the 20 topics
are color coded and shown on the chart with the option to show or hide each
topic through a click-able legend on the right. Hovering one’s mouse over a line
produces a pop-up bubble that informs the user of the topic strength as well as
the top ten words most probable to that topic.

3.2 Author-paper-keyword Hive Chart

The author-paper-keyword hive chart module (Figure 2) is a unique interactive
visualization showing the relationship between authors, papers, and keywords.
This module has the capability to help users to discover the possibly hidden
relations among the three distinct types of data.

Hovering over a node on the authors axis (orange) produces a one-to-many
relationship on the keyword axis (green) showing all the keywords mentioned by

55

Fig. 2: Hive chart showing relationships between authors, papers and keywords.

a specific author. Additionally, there is a one-to-many relationship between the
selected author and the papers (blue axis) that he or she has contributed to the
SWJ. The same relationships are true of selecting any node in either the paper
or the keywords axis, allowing for exploration of the data from any node. This
module allows users to find authors who are concerned with similar research
topics, and can also help visually discover all the coauthors of a researcher.
Editors can use the module to find suitable reviewers.

4 Conclusions

This demo paper presents a Linked Data-driven, semantically-enabled journal
portal for scientometrics and deploys it to the Semantic Web journal. SEJP uses
a journal’s internal data and also connects to other (Linked Data) sources to
includes them in the analysis. Two scientometric analysis modules were discussed
in the prior sections focusing on the changing of topics over time as well as the
relations between authors, papers and keywords. These modules, however, are
only a small subset of a suite of interactive modules developed for the portal.
As development continues to progress, new modules and tools will be added,
further advancing the portal’s capability for scientometrics. In the near future,
SEJP will be deployed to other journals as well.

References

1. Hitzler, P., Janowicz, K., Sengupta, K.: The new manuscript review system for the
semantic web journal. Semantic Web 4(2) (2013) 117–117

2. D’Arcus, B., Giasson, F.: Bibliographic ontology specification. Online:
http://bibliontology.com/specification (November 2009) Last accessed 2013-5-12.

3. Hu, Y., Janowicz, K., McKenzie, G., Sengupta, K., Hitzler, P.: A linked data-driven
semantically-enabled journal portal for scientometrics. International Semantic Web
Conference (October 2013)

4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. the Journal of
machine Learning research 3 (2003) 993–1022

56

The Benefits of Incremental Reasoning in OWL EL

Yevgeny Kazakov and Pavel Klinov

The University of Ulm, Germany
{yevgeny.kazakov, pavel.klinov}@uni-ulm.de

Abstract. This demo will present the advantages of the new, bookkeeping-free
method for incremental reasoning in OWL EL on incremental classification of
large ontologies.1 In particular, we will show how the typical experience of a
user editing a large ontology can be improved if the reasoner (or ontology IDE)
provides the capability of instantaneously re-classifying the ontology in the back-
ground mode when a change is made. In addition, we intend to demonstrate how
incremental reasoning helps in other tasks such as answering DL queries and
computing explanations of entailments. We will use our OWL EL reasoner ELK
and its Protege plug-in as the main tools to highlight these benefits.

1 Introduction

The EL family of Description Logics (DLs) are tractable extensions of the DL EL
featuring conjunction and existential restriction. It is the formal basis of the OWL EL
profile [2] of the Web ontology language OWL 2 specifically aimed at applications
that require management of large terminologies, which is common in biology, health
care and life sciences. Ontology classification is the core reasoning task used by such
applications. It requires computing all entailed (implicit) subsumption relations be-
tween atomic classes. Specialized EL reasoners, such as CEL [3], ELK [4], jcel [5],
and Snorocket [6] are able to compute the classification for ontologies as large as
SNOMED CT [7] with about 300,000 axioms. Classification plays the key role dur-
ing ontology development, e.g., for detecting modeling errors that result in mismatches
between terms. But even with fast classification procedures, frequent re-classification of
ontologies can introduce significant delays in the development workflow, especially as
ontologies grow over time. This motivates development of incremental reasoning meth-
ods which do not recompute the entire class hierarchy after local changes but manage
to incorporate the changes incrementally.

The demo will present a novel incremental reasoning procedure implemented in
ELK 0.4.0 and its positive impact on re-classification and related reasoning problems.2

1.1 State of the Art

Several incremental reasoning procedures have been developed for ontology languages.
Most procedures maintain extra information to trace conclusions back to the axioms in
order to deal with axiom deletions.

1This submission complements the accepted research paper which explains the developed
incremental reasoning method in full technical detail [1].

2A screencast will be available at https://code.google.com/p/elk-reasoner/.

57

The Pellet reasoner [8] implements a technique called tableau tracing to keep track
of the axioms used in tableau inferences [9]. Tracing maps tableau elements (nodes, la-
bels, and relations) to responsible axioms. Upon deletion of axioms, the corresponding
elements get deleted. This method is memory-intensive for large tableaux and currently
supports only ABox changes.

The module-based incremental reasoning method does not perform full tracing of
inferences, but instead maintains a collection of modules for derived conclusions [10].
The modules are (not necessarily minimal) subsets of the ontology that entail the re-
spective conclusion. If no axiom in the module was deleted then the entailment is still
valid. Unlike tracing, the method does not require changes to the reasoning algorithm,
but still incurs the cost of computing and storing the collection of modules.

Managing the extra information such as traces or modules, broadly referred to as
bookkeeping, typically incurs only a linear overhead. However, even that can substan-
tially hurt user experience on large ontologies such as SNOMED CT.

1.2 Common Use Cases for Incremental Reasoning

The most frequently occurring scenarios when incremental reasoning is beneficial can
be summarized as follows:

Continuous Classification The typical ontology development workflow consists of
adding, removing, or modifying axioms and occasionally invoking a reasoner to classify
the ontology. The latter is done to verify that the changes do not trigger any unwanted
entailments and that all desirable entailments are there. Since classification tends to get
slower as the ontology grows large, the ontology engineers often do it “offline” after
a considerable set of changes has been accumulated. This is sub-optimal because if an
error did occur it can become a needle in the haystack to find. A better approach is to
classify the ontology continuously in the background mode, i.e., similarly to how mod-
ern IDEs continuous compile software’s source code and immediately point out errors.
Of course, this approach requires a fast, incremental incorporation of changes.

DL Queries Certain applications make use of a form of queries, also called DL Queries,
based on complex class expressions. Every DL query is a class expression for which in-
ferred superclasses, subclasses, or individuals need to be computed. One example of
such application is the Virtual Fly Brain project.3 DL Queries can be straightforwardly
implemented by introducing fresh class names. Suppose superclasses need to be com-
puted for a complex class C. Then one can introduce a fresh class name C ′, add the
axiom C ′ v C to the ontology, and then re-classify it so that C ′ finds its place in the
class hierarchy. Obviously, the last step is better be implemented incrementally.

2 Incremental Reasoning in ELK

This section briefly describes the main aspects of the incremental reasoning procedure
implemented in ELK. Full technical details, including the EL+ inference rules, algo-

3http://www.virtualflybrain.org/

58

rithms, proofs, and experiments can be found in the research track paper [1]. Also, the
interested reader can run the code examples provided on the ELK Web page.4

There are two main ideas behind our method. The first has been borrowed from
the known DRed (over-delete, re-derive) method for maintaining materialized views in
databases [11]. When an axiom is deleted or modified, conclusions of all EL+ infer-
ences in which the axiom was used (as a side-condition) are deleted. Then the same
happens to conclusions of all inferences which use deleted conclusions as premises
(until a fixpoint). It is well-known that it may lead to over-deletion since some conclu-
sions may have alternative derivations. Our second idea is based on partitioning of all
conclusions to identify those which may need to be restored. Crucially, partitions are
not stored, as modules or traces, during the forward classification and do not incur any
overhead. Due to space limitations, we only illustrate the method on a small example.

Example 1. Consider the following EL+ ontology O:
(ax1): A v ∃R.B (ax2):∃R.B v C (ax3): B v ∃S.A
(ax4):∃S.C v C (ax5): C v D (ax6):∃S.> v D

One can see that O entails the following atomic subsumptions: A v C, B v C,
and B v D (we omit the intermediate inferences). Now, let us see what will happen if
(ax4) is deleted. The axiom was used to derive B v C (together with (ax3) and another
conclusion A v C) which is retracted first. Then B v D is also deleted since it was
produced by an inference which had B v C as a premise (using (ax5)). After that the
conclusions whose left hand-side is one of {∃S.C,∃S.A,B} are repaired (intuitively,
these are classes whose superclasses changed during the deletion). The repair stage
re-applies the inference rules w.r.t. the remaining axioms and restores the conclusion
B v D using (ax3) and (ax6). Other conclusions, e.g., for A or C on the left, are intact.

Our experiments demonstrate that in practice the partitioning tends to be pretty fine
and the changes are rather local, i.e., not many partitions need to be repaired. This is
the reason why for large ontologies, such as SNOMED CT, incremental classification is
10–40 times faster than full classification, making re-classification nearly instantaneous
(see [1] for more details and a comparison with the modularity-based method).

3 Structure of the Demonstration

Finally we describe what we intend to demonstrate during the demo session. Our gen-
eral goal is to demonstrate performance gains resulted from incremental reasoning to
give ontology developers a sense of how their user experience can be improved.

3.1 Continuous Classification

We will use large ontologies, such SNOMED CT, an EL+ version of GALEN, or others
suggested by participants, to demonstrate the sub-second re-classification for a typical
ontology editing workflow. We will use the ELK Protege 4+ plug-in5 which allows users

4
https://code.google.com/p/elk-reasoner/wiki/IncrementalReasoning

5Available at https://code.google.com/p/elk-reasoner/downloads/list

59

to turn incremental reasoning on and off to highlight the performance differences. We
plan to prepare some changesets, including those introducing errors, e.g., class unsatis-
fiability, but will also let the participants make their own changes to ontology axioms.

3.2 Fast DL Query Answering

We will demonstrate fast answering of DL queries based on incremental reasoning.
For large ontologies, such as SNOMED CT, it will be visible that answering a single
query takes considerably less time than re-classification. We plan to use the DL Query
plugin for Protege for interactive query answering (so that participants can enter their
own queries). To people more interested in answering DL queries via a programming or
Web interface, we will show how a simple Web service can handle parallel DL queries
posted over HTTP (by computing the corresponding EL saturations incrementally).

References

1. Kazakov, Y., Klinov, P.: Incremental reasoning in OWL EL without bookkeeping. In: Inter-
national Semantic Web Conference. (2013) to appear.

2. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C., eds.: OWL 2
Web Ontology Language: Profiles. W3C Recommendation (27 October 2009) Available
at http://www.w3.org/TR/owl2-profiles/.

3. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In Parsia, B., Sattler,
U., Toman, D., eds.: Proc. 19th Int. Workshop on Description Logics (DL’06). Volume 189
of CEUR Workshop Proceedings., CEUR-WS.org (2006)

4. Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent classification of EL ontologies. In
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist,
E., eds.: Proc. 10th Int. Semantic Web Conf. (ISWC’11). Volume 7032 of LNCS., Springer
(2011) 305–320

5. Mendez, J., Ecke, A., Turhan, A.Y.: Implementing completion-based inferences for the EL-
family. In Rosati, R., Rudolph, S., Zakharyaschev, M., eds.: Proc. 24th Int. Workshop on
Description Logics (DL’11). Volume 745 of CEUR Workshop Proceedings., CEUR-WS.org
(2011) 334–344

6. Lawley, M.J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2 EL rea-
soner. In Taylor, K., Meyer, T., Orgun, M., eds.: Proc. 6th Australasian Ontology Workshop
(IAOA’10). Volume 122 of Conferences in Research and Practice in Information Technol-
ogy., Australian Computer Society Inc. (2010) 45–49

7. Schulz, S., Cornet, R., Spackman, K.A.: Consolidating SNOMED CT’s ontological commit-
ment. Applied Ontology 6(1) (2011) 1–11

8. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. J. of Web Semantics 5(2) (2007) 51–53

9. Halaschek-Wiener, C., Parsia, B., Sirin, E.: Description logic reasoning with syntactic up-
dates. In: OTM Conferences (1). (2006) 722–737

10. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y., Suntisrivaraporn, B.: Incremental
classification of description logics ontologies. J. of Autom. Reason. 44(4) (2010) 337–369

11. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In Bune-
man, P., Jajodia, S., eds.: Proc. 1993 ACM SIGMOD Int. Conf. on Management of Data,
Washington, D.C., ACM Press (May 26-28 1993) 157–166

60

Curating Semantic Linked Open Datasets for
Software Engineering

Kavi Mahesh, Aparna Nagarajan,

Apoorva Rao Balevalachilu, and Karthik Prasad

Centre for Knowledge Analytics and Ontological Engineering - KAnOE,
PES Institute of Technology, Bangalore 560085 India

{drkavimahesh,aparna.nagarajan26,
apoorva.rao.b,karthikprasad008}@gmail.com

http://kanoe.org/

Abstract. A typical software engineer spends a significant amount of
time and effort reading technical manuals to find answers to questions es-
pecially those related to features, versions, compatibilities and dependen-
cies of software and hardware components, languages, standards, mod-
ules, libraries and products. It is currently not possible to provide a
semantic solution to their problem primarily due to the non-availability
of comprehensive semantic datasets in the domains of information tech-
nology. In this work, we have extracted, integrated and curated a linked
open dataset (LOD) called LOaD-IT exclusively on this domain from
a variety of sources including other LODs such as Freebase and DBPe-
dia, technical documentation such as JavaDocs and others. Further, we
have built a technical helpdesk system using a semantic query engine
that derives answers from LOaD-IT. Our system demonstrates how pro-
ductivity of the software engineer can be improved by eliminating the
need to read through lengthy technical manuals. We expect LOaD-IT
to become more comprehensive in the future and to find other related
practical applications.

Keywords: Linked Open Data, software engineering, technical helpdesk,
information retrieval, semantic search.

1 Introduction
Software developers, test engineers, researchers and students face technical queries
in the course of their daily work. The solution to their problems, more often than
not, is to go through some technical documentation, search for information, look
for a similar question on on-line forums, or to ask somebody who is considered an
expert in that domain. Unfortunately, information from these sources is rather
unstructured, distributed and difficult to obtain. The process of going through
the technical documentation is tedious and time consuming. What the person
ideally wants is a quick and precise answer to the question perhaps augmented
by a suitable visualization to aid comprehension. The objective of our work is to
enhance workplace productivity of information technology workers by reducing
the effort and time spent in searching for technical information.

There is currently no readily available LOD that covers the factual knowl-
edge sought by a typical information technology (IT) worker. Thus, our solution
begins by semanticizing the relevant documentation by creating a linked open
data store, which we call LOaD-IT (available as an RDF dump in N-Quads for-
mat at http://datahub.io/dataset/load-it). The potential of this highly special-
ized linked data is tapped by building Kappa, a technical assistant application
prototype (Kappa is hosted at http://kanoe.org/lod/loadit-kappa.html). Kappa
takes keyword queries as input and provides specific factual answer(s) instead

61

http://kanoe.org/

of large number of HTML pages that may or may not contain the correct and
complete answer. It also saves the user from scrolling through long manuals and
documents to manually extract the answer. In order to provide results in the
form of facts, the application first performs query interpretation as described in
[1]. The user of the application need not have any knowledge of the structure of
LOaD-IT or knowledge of RDF formats. Simple keywords entered in a search bar
suffice. Search results are presented as a list of facts along with hyperlinks to rel-
evant pages. Further, a graphical representation of the relevant RDF sub-graph
is shown to help the user visualize the facts. Use of anontology to implement se-
mantic search together with Web search has been demonstrated before (see, e.g.,
[2]). However, such methods typically require semantic meta-data or annotations
to be manually added to existing documents or web pages.

2 Creating the Semantic LOD on Information
Technology: LOaD-IT

Existing semantic datasets [3] like DBPedia, Freebase and YAGO are quite large
and cover multiple domains while focusing heavily on common areas of interest
rather than technical domains such as IT. It is unlikely that a retrieval engine on
such a general-interest LOD will provide the necessary recall or precision for IT
users. Our aim is to curate an LOD specific to the IT and software engineering
domains which will also be of smaller size than the above LODs.

Another concurrent objective is to generate RDF quads from technical man-
uals, user guides and other documentation that are widely available but demand
considerable amount of time and effort to sift through. Semanticization of this
kind of documentation will contribute to raising the quality of answers (i.e., re-
call and precision) that the dataset is capable of providing at a fine grain of de-
tail. Extraction of RDF facts from free flowing paragraphs of explanatory texts
amounts to solving core problems of natural language processing and seman-
tic information retrieval. Therefore, we take the practical approach of selecting
‘low-hanging fruit? by focusing on relatively well-structured technical documen-
tation. Java Platform Standard Edition 7 Documentation API was selected for
this purpose because of its definite structure in HTML tables and consistent lay-
out, thereby facilitating extraction of clean and accurate facts. The widespread
use of Java in industry and academia is another factor why this documentation
API is a good choice for our purposes.

The methodology adopted for constructing the LOD has two parts:
2.1 Filtering Existing Datasets
A set of carefully chosen seed words from the domain of IT and software en-
gineering is used to select matching resources from Freebase and DBPedia. For
each of these resources, all triples matching the resource in their subject fields
are selected. All other triples are filtered out as irrelevant to our domain of inter-
est. These operations were carried out using Unix Shell scripts. The numbers of
triples obtained by this method from Freebase and DBPedia are shown in Table
1 below.
2.2 Extracting triples from technical documentation
1. A crawler is built to cover the entire documentation collection.
2. A screen scraping package is designed and built to parse the pages and

extract facts after a thorough study of the layout of each type of page.
3. Rules are written for logical mapping into quads:

(a) Check if any reuse of predicates is possible from existing vocabularies
like DC, FOAF, SKOS, and SIOC. Reuse wherever possible.

(b) If compatible predicates are not found, create new predicates that can
appropriately describe the relationships. For instance, to link a Java
method to its return type or modifier, a new predicate is required.

62

(c) Create and publish the required explanatory pages for predicates in RDF
and HTML formats. URLs are used to generate quads: (Subject, Pred-
icate, Object, Context) according to the conventions of Linked Open
Data.

4. A suitable software library is used to load the quads into a database or data
store.

The documentation of Java 7 SE is obtained from the official web site and parsed
using a Python Library called BeautifulSoup4 [4]. The LOaD-IT dataset thus
obtained has 1.4 million quads. Statistics of the dataset are given in Table 1.

Table 1. Numbers and Data Sizes in LOaD-IT

Source OriginalSize F ilteredSize RetainedQuads

Freebase 49 GB 128 MB 740149
DBPedia 44 GB 184 MB 433834
Javadocs < 1 GB 65 MB 268275
TOTAL LOaD-IT 377 MB 1442258

3 Kappa: The LOaD-IT Retrieval Engine
Kappa first constructs the top k query candidates for the given keywords us-
ing the methodology outlined in [1]. Once the SPARQL query candidates are
generated and the best query is selected, the results are obtained by sending an
HTTP request to a REST API provided by our wrapper for LOaD-IT. This API
access to LOaD-IT can be used also by other applications in the future. Results
obtained as JSON objects are rendered both as triples and graphically to help
the user in visualizing the relevant RDF sub-graph of LOaD-IT. An easy-to-use
browser-based interface is provided for this purpose. In addition, the query is
also sent to external Web search engines (e.g., Bing) as well as on-line technical
discussion forums (e.g., StackOverflow). Results from external engines are also
displayed to the user to help them look for external content related to the query.
Fig. 1(a) shows the overall architecture of LOaD-IT and Kappa.

4 Example Scenarios
Two example scenarios and results are presented below to illustrate the usage
of Kappa and LOaD-IT.

Scenario 1 The user wants to know what to write in the import statement in
a Java program if he has a need to use a method from the Driver Class in Java.
In fact, the user may not even know whether Driver is the name of a Class or a
Package.
Keywords entered: Package Driver
Facts retrieved:

java.sql type package
java.sql member Driver
Driver type class
A graphical rendering of these three triples in shown in Fig. 1(b)

Scenario 2 The user wants to know the details of the Integer Class in Java.
Keywords entered: Integer
Facts retrieved:

Integer comment Integer class wraps a value of the primitive type int in an object
Integer member highestOneBit,hashCode,valueOf,getInteger..
Integer type class

63

http://docs.oracle.com/javase/7/docs/api/java/sql/package-summary.html
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.kanoe.org/lod/lodit/type/package
http://docs.oracle.com/javase/7/docs/api/java/sql/package-summary.html
http://www.kanoe.org/lod/lodit/type/member
http://docs.oracle.com/javase/7/docs/api/java/sql/Driver.html
http://docs.oracle.com/javase/7/docs/api/java/sql/Driver.html
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.kanoe.org/lod/lodit/type/class
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://www.w3.org/2000/01/rdf-schema#comment
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://www.kanoe.org/lod/lodit/type/member
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#highestOneBit%28int%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#hashCode%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#valueOf%28int%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#getInteger%28java.lang.String,int%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.kanoe.org/lod/lodit/type/class

(a) Schematic diagram of the architecture of
Kappa

(b) Visualization of
Facts Returned by
Kappa

Fig. 1.

5 Conclusion and Future Work
Our primary aim was to create a linked open dataset for the IT domain. After
filtering existing datasets, we created a crawler and used screen scraping to ex-
tract RDF quads from semi-structured technical documentation. We integrated
and normalized the dataset to ensure its compatibility with other LODs and
our application Kappa. A reasonably large technical dataset was obtained and
its potential was illustrated by a simple yet meaningful and useful application,
a fact-finding engine that serves as a technical helpdesk for practicing software
engineers.

The dataset can be further enlarged and enriched to include RDF quads
extracted from other technical documentation and on-line discussion forums.
Further, it can be refined and grown over time by adopting a crowd-sourcing
approach. Additionally, a vocabulary can be created specifically for predicates
that are useful in a software engineering context and can be standardized to bring
in global acceptance. The facts that are rendered can be enriched by natural
language processing techniques to bring them closer to proper English.

We expect LOaD-IT to find several other useful applications in the near
future. An immediate possibility is to use it as a controlled vocabulary plus on-
tology for corporate knowledge management. It can also be used to further auto-
mate the generation and management of program comments and documentation
in software engineering by integrating it with IDE for various programming lan-
guages and platforms. None of these is readily possible without LOaD-IT wherein
a federated retrieval engine would have to query various general-purpose LODs
as well as document repositories and the Web. LOaD-IT together with Kappa
promises to deliver the levels of precision and recall to make them useful in
real-world software engineering situations.

A demonstration of our application Kappa is available at http://kanoe.
org/lod/loadit-kappa.html.

References
1. Tran, T., Wang, H., Rudolph, S. et al.: Top-k Exploration of Query Candidates for

Efficient Keyword Search on Graph-Shaped (Rdf) Data. (2009) 405-416
2. Karanth, P., Mahesh, K.: Integrating Knowledge Base Retrieval with Web Search

using Semantic Roles In: Lecture Notes in Engineering and Computer Science: Pro-
ceedings of the International MultiConference of Engineers and Computer Scientists
2012 (IMECS 2012, ICCS 2012), Vol. 1, ISBN 978-988-19251-1-4 pp. 344-349 IAENG
Hong Kong (2012)

3. Bizer, C., Jentzsch, A., Cyganiak, R.: State of the LOD Cloud. Version 0.3 (Septem-
ber 2011), (2011)

4. Richardson, L.: Beautiful Soup-HTML. XML parser for Python, (2008)

64

http://kanoe.org/lod/loadit-kappa.html
http://kanoe.org/lod/loadit-kappa.html

Optique 1.0: Semantic Access to Big Data?

The Case of Norwegian Petroleum Directorate’s FactPages

E. Kharlamov1,??, M. Giese2, E. Jiménez-Ruiz1, M. G. Skjæveland2, A. Soylu2,
D. Zheleznyakov1, T. Bagosi3, M. Console5, P. Haase4, I. Horrocks1,

S. Marciuska3, C. Pinkel4, M. Rodriguez-Muro3, M. Ruzzi5, V. Santarelli5,
D. F. Savo5, K. Sengupta4, M. Schmidt4, E. Thorstensen2, J. Trame4, and

A. Waaler2

1 University of Oxford, UK; 2 University of Oslo, Norway;
3 Free University of Bozen-Bolzano, Italy; 4 fluid Operations AG, Germany;

5 Sapienza Università di Roma, Italy

Abstract. The Optique project aims at developing an end-to-end system
for semantic data access to Big Data in industries such as Statoil ASA
and Siemens AG. In our demonstration we present the first version of the
Optique system customised for the Norwegian Petroleum Directorate’s
FactPages, a publicly available dataset relevant for engineers at Statoil
ASA. The system provides different options, including visual, to formu-
late queries over ontologies and to display query answers. Optique 1.0
offers installation wizards that allow to extract ontologies from rela-
tional schemata, extract and define mappings connecting ontologies and
schemata, and align and approximate ontologies. Moreover, the system
offers highly optimised techniques for query answering.

1 Introduction

Accessing the relevant data in Big Data scenarios is increasingly difficult both
for end-user and IT-experts, due to the volume, variety, velocity, and complexity
dimensions of Big Data. This brings a high cost overhead in data access for large
enterprises. For instance, in the oil and gas industry, engineers spend 30–70% of
their time gathering and assessing the quality of data. The Optique project1 [1,
2] advocates for a next generation of the well known Ontology-Based Data Access
(OBDA) approach to address the data access problem. The project aims at
solutions that reduce the cost of data access dramatically. In our demonstration
we present the first version of the Optique system which we customised for the
Norwegian Petroleum Directorate’s (NPD) FactPages.2

OBDA systems address the data access problem by presenting a general
ontology-based and end-user oriented query interface over heterogeneous data
sources. The core elements in a classical OBDA systems are an ontology, describing

? The research was supported by the FP7 grant Optique (n. 318338).
?? Corresponding author: evgeny.kharlamov@cs.ox.ac.uk
1 http://www.optique-project.eu/
2 http://factpages.npd.no

65

http://www.optique-project.eu/
http://factpages.npd.no

Ontology
Visualisation

Answer
Visualisation

Visual Query
Formulation

SPARQL
Editor

Ontology and
Mapping

Management

VisualisationQuery Formulation Interface System Interface

Query
Answering

NPD
FactPages

Triple Store

Presentation
Layer

Application
Layer

Data Layer

ReasonerReasoner

Expert
users

End
users

Automatic extract:
ontology &

Direct Mappings

Import
metadata

Semi-automat.
extract:

R2RML Mapps

Saturate ontology
from metadata

Load
ontology

Align
ontology

Add external ontology

Approximate
ontology

Import onto.
vocabulary
& metadata

Installation Wizards
AdvancedBasic

out

NPD
FactPages

Fig. 1. Left : General architecture of the Optique 1.0 system; Right : installation process

the application domain, and a set of mappings, relating the ontological terms
with the schemata of the underlying data sources. End-users formulate queries
using the ontological terms and thus they are not required to understand the
structure of the data sources. These queries are then automatically translated
using the ontology and mappings into an executable code over the data sources.

State of the art OBDA systems, however, have shown among others the
following limitations:
– The usability of OBDA systems is hampered by the need to use a formal

query language. Even if the users know the ontological vocabulary, they may
find difficult to formulate queries with several concepts and relationships.

– The prerequisites of OBDA, i.e., ontology and mappings, are in practice
expensive to obtain. Additionally, they are not static artefacts and should
evolve according to the new end-users’ information requirements.

– The efficiency of the translation process and the execution of the queries is
usually not sufficiently addressed in OBDA systems.

The first version of the Optique system, i.e., Optique 1.0, aims at partially
overcoming the above limitations. Demonstration videos are available at following
address: http://www.cs.ox.ac.uk/isg/projects/Optique/demos/iswc2013/.

2 System Overview

A general three-layer architecture of the Optique system is depicted in Fig-
ure 1 (Left). The current version of the system offers two main functionalities:
to query/visualise data and install/maintain the ontology and the mappings. At
the backend, the system also offers an efficient query processing mechanism.

Optique 1.0 allows to pose queries via a visual query formulation (VQF)
interface, a SPARQL editor, or from a query catalog. VQF exploits reasoning
in order to show both explicit and implicit domain knowledge to guide the
formulation of the query.

66

http://www.cs.ox.ac.uk/isg/projects/Optique/demos/iswc2013/

Queries are executed by the Query Answering module based on Ontop system.3

Ontop provides functionalities for rewriting SPARQL queries using the system’s
ontology and mappings, syntactic and semantic query optimisation, and query
unfolding. Thus, high efficiency of query answering is guaranteed. Rewritten and
unfolded queries are in SQL and they are executed over the NPD FactPages data,
which is stored in a relational database. The query answers are converted into
triples in order to confirm the format of the system’s ontology, temporally stored
in the system’s triple store, and displayed to the user in a tabular way or on
maps (using OpenStreetMap).

The installation and maintenance of the ontology and the mappings is done via
the Ontology and Mapping Management component. Currently, this component
includes two installation wizards: basic and advanced. In Figure 1 (Right) we
depict workflows of the wizards. The basic wizard exploits the relational database
metadata and automatically extracts an initial version of the ontology and direct
mappings4 to the ontology entities. The advanced wizard, unlike the basic one,
requires the user intervention and an ontology vocabulary as input in order to
(manually) create and edit R2RML mappings.5 Both the basic and advanced
wizards provide functionalities to align the bootstrapped ontology with a state of
the art domain ontology and approximate the resulting ontology if it is outside
the desired OWL 2 QL profile.6 Alignment is performed using the ontology
matching system LogMap,7 which has shown to work well in practice and also
includes mapping repair facilities.

Optique 1.0 is built on top of the Information Workbench8 (IWB), a generic
platform for semantic data management. The IWB provides a shared triple
store for managing the assets of Optique 1.0, such as, ontologies, mappings,
query logs, (excerpts of) query answers, database metadata, etc. The IWB also
provides generic interfaces and APIs for semantic data management, e.g., ontology
processing APIs. In addition to these backend data management capabilities, the
IWB provides a flexible user interface which follows a semantic wiki approach,
based on a rich, extensible pool of widgets for visualisation, interaction, mashup,
and collaboration.

Finally, Optique 1.0 is customised for the NPD FactPages, which is a public,
freely available dataset created to regulate and overlook the petroleum activities
on the Norwegian Continental Shelf (NCS) and contains information collected
from a wide range of activities on the NCS, e.g., operating companies, fields,
discoveries, facilities, pipelines, and seismic surveys—both historic and current
data. Its data has been converted and published as semantic web data [3], of
which parts have been fed into the Optique 1.0 system.

3 http://ontop.inf.unibz.it/
4 http://www.w3.org/TR/rdb-direct-mapping/
5 http://www.w3.org/2001/sw/rdb2rdf/r2rml/
6 http://www.w3.org/TR/owl2-profiles/
7 http://code.google.com/p/logmap-matcher/
8 http://www.fluidops.com/information-workbench/

67

http://ontop.inf.unibz.it/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/2001/sw/rdb2rdf/r2rml/
http://www.w3.org/TR/owl2-profiles/
http://code.google.com/p/logmap-matcher/
http://www.fluidops.com/information-workbench/

Fig. 2. Optique 1.0 System, visual query formulation component

3 Demonstration Details

During the demonstration we will describe the NPD FactPages and present
functionalities of the Optique 1.0 system, with the focus on the following aspects:
query formulation and execution, and system installation. These aspects will
be illustrated on the NPD FactPages data. For the query formulation we will
stress our visual query formulation tool that currently supports construction of
tree-shaped conjunctive SPARQL queries. The demonstrated queries will be from
the oil industry domain. An example query is: “Find all fields that are operated
by ’Statoil Petroleum AS’ and which have a facility that produces oil”; it can be
seen in the screenshot of the VQF in Figure 2. We will run queries and present
results both in tables and maps, e.g., the location of “Fields” and “Oil facilities”
will be displayed on maps. Regarding the system’s installation, we will present
both basic and advanced wizards and guide through their steps, that is, loading
metadata, extraction of an ontology and mappings, alignment with the domain
ontology, and approximation of the integrated ontology. We will also show how
to edit extracted direct mappings and define new R2RML mappings.

References

1. M. Giese et al. “Scalable End-user Access to Big Data”. In: Big Data Computing.
Ed. by R. Akerkar. Chapman and Hall/CRC, 2013.

2. E. Kharlamov et al. “Optique: Towards OBDA Systems for Industry”. In: ESWC
postproceedings volume: Best Workshop Papers. 2013.

3. M. G. Skjæveland, E. H. Lian, and I. Horrocks. “Publishing the Norwegian Petroleum
Directorate’s FactPages as Semantic Web Data”. In: The Semantic Web – ISWC
2013. Ed. by H. Alani et al. Vol. 8219. LNCS. 2013.

68

Hunting for Inconsistencies in
Multilingual DBpedia with QAKiS

Elena Cabrio, Julien Cojan, Serena Villata, and Fabien Gandon

INRIA Sophia Antipolis, France
{firstname.lastname}@inria.fr

Abstract. QAKiS, a system for open domain Question Answering over
linked data, allows to query DBpedia multilingual chapters with natural
language questions. But since such chapters can contain different infor-
mation w.r.t. the English version (e.g., more specificity on certain topics,
or fill information gaps), i) different results can be obtained for the same
query, and ii) the combination of these query results may lead to inconsis-
tent information about the same topic. To reconcile information obtained
by distributed SPARQL endpoints, an argumentation-based module is
integrated into QAKiS to reason over inconsistent information sets, and
to provide a unique and motivated answer to the user.

1 Introduction

In the Web of Data, the combination of the information items concerning a single
real-world object coming from different data sources, e.g., the results of a single
SPARQL query on different endpoints, may lead to an inconsistent results set,
mining the overall quality of the data itself. In particular, this problem arises
while querying DBpedia multilingual chapters, since different information can be
provided for the same query (e.g. answers can be either identical, contradictory,
or one can subsume the other). To reconcile information provided by multilingual
DBpedia chapters to obtain a consistent results set, we embed an argumentation
module in QAKiS, that i) detects the semantic relations linking each piece of
information to the others returned by the different SPARQL endpoints, and ii)
adopts abstract bipolar argumentation theory to reason over the inconsistencies
among the answers, and to return a consistent (sub)set of them to the user.

An abstract bipolar argumentation framework (BAF) [2] represents a neg-
ative relation between elements called arguments through a binary attack rela-
tion, and a positive relation among arguments through a binary support relation.
Argumentation semantics then allow to reason about the arguments and their
relations to detect the set of accepted arguments, i.e., those considered as be-
lievable by an external evaluator with full knowledge of the BAF. However, such
kind of crisp evaluation of the arguments is not suitable for the real life scenar-
ios where a numerical value is required. This is why we adopt and extend the
fuzzy labeling algorithm proposed in [3] to consider also the support relation in
addition to the attack one.

The overall argumentation framework together with the acceptability degree
of each argument is used to motivate to the user the answer the system returns.

69

2 Extending QAKiS to reason over inconsistent answers

QAKiS (Question Answering wiKiFramework-based System)1 [1] addresses the
task of QA over structured knowledge-bases (e.g., DBpedia), where the relevant
information is expressed also in unstructured forms (e.g., Wikipedia pages). It
implements a relation-based match for question interpretation, to convert the
user question into a query language (e.g., SPARQL). More specifically, it makes
use of relational patterns (automatically extracted from Wikipedia), that cap-
ture different ways to express a certain relation in a given language. QAKiS is
composed of four main modules (Fig. 1): i) the query generator takes the
user question as input, generates the typed questions, and the SPARQL queries
from the retrieved patterns; ii) a Named Entity (NE) Recognizer; iii) the
pattern matcher takes as input a typed question, and retrieves the patterns
matching it with the highest similarity; and iv) the SPARQL package handles
the queries to DBpedia. QAKiS targets questions containing a NE related to the
answer through one ontological property, i.e., questions match a single pattern.

Fig. 1: QAKiS workflow

Given the answers retrieved by DBpedia multilingual endpoints for a SPARQL
query, the argumentation module assigns a support or attack relation between
the arguments (see Fig 2): i) identity [assigned relation: support]: if two
endpoints provide identical answers (Fig. 2a-b where both French and English
DBpedia SPARQL endpoints provide Italy as answer to Where is the Colosseum
located? ; sameAs links are used to recognize the translation of the same word
in multilingual DBpedia). Arguments are merged into a unique one becoming
highly acceptable as shared by several sources2; i) subsumption [assigned re-
lation: support], when one of the answers is more specific than the other, both
in terms of spacial relation (Fig. 2d) and hyperonymy (Fig. 2c where Gibson is a
Guitar)3; iii) conflict [assigned relation: attack], if the answers are different,

1 http://qakis.org/qakisArgumentation
2 The starting confidence score of this argument is calculated as the arctangent of the

confidence scores of the endpoints providing such answer (max value = 1).
3 External sources of semantic knowledge are exploited, e.g., GeoNames, YAGO.

70

and there is no subsumption (Fig. 2e-f where the locations of the Colosseum by
Italian and English DBpedia are contradictory). When each endpoint provides
a list of values as answer (e.g., DBpedia non-functional properties, Fig. 2g),
QAKiS does not consider arguments of the same list as conflictual.

IDENTITY
RELATION

LIST

ATTACK
RELATION

SUBSUMPTION
RELATION

GRAPH-BASED VISUALIZATION (BLUE arrows = SUPPORT, RED arrows = ATTACK) RELATION AMONG
INFORMATION ITEMS

ARGUMENTATION
RELATION

SUPPORT
RELATION

SUPPORT
RELATION

ATTACK
RELATION

SUPPORT
RELATION

Fig. 2: Semantic relations and their mapping in argumentation

Fig. 3: QAKiS demo interface.

We assign an apriori confidence
score to the endpoints according to
their dimensions and solidity in terms
of maintenance (other methods are
under investigation). Starting from
the obtained set of arguments and
relations, the module calculates the
arguments’ acceptability degree (i.e.,
the arguments that will be proposed
to the user as more reliable). We
propose a bipolar fuzzy labeling al-
gorithm where A is a fuzzy set
of trustful arguments, and A(A) =
maxs∈src(A) τs is the membership de-
gree of argument A in A given by
the trust degree of the most reliable
source offering argument A, where τs
is the degree to which source s ∈
src(A) is evaluated as reliable. A bipo-
lar fuzzy labeling is a total function
α : A → [0, 1]. We say that α is a bipolar fuzzy labeling iff, for all arguments
A, α(A) = avg{min{A(A), 1 − max

B:B
−−−−→
attack A

α(B)}; max
C:C

−−−−−→
support A

α(C)}.
α(A) = 0 means that A is outright unacceptable, α(A) = 1 means A is fully
acceptable. All cases in-between provide the degree of the acceptability of the
arguments which are considered accepted at the end, if they overcome a certain
threshold. The result of the fuzzy labeling is the arguments confidence score.

71

Figure 3 shows the QAKiS demo interface. The user can select the DBpedia
chapter he wants to query besides English, i.e. French or German DBpedia (top
right corner) [1]. Then the user can either write a question or select among a
list of examples. QAKiS outputs i) the user question, ii) the generated typed
question, iii) the pattern matched, iv) the generated SPARQL query, v) the
answer, and vi) the graph of the answers by the different endpoints and their
relations, together with their confidence score.

Since QAKiS currently targets only questions containing a NE related to the
answer through one ontological property, we extracted from QALD-24 data the
questions corresponding to such criterion, i.e. 58 questions, and we run them
over QAKiS (querying English, German and French DBpedia endpoints). Since
QALD-2 questions are created for English DBpedia, only in 25/58 cases there
are at least two endpoints that provide an answer. We carried out two sets of
experiments. In Experiment 1 (input: the answers obtained from the different
DBpedia endpoints, manually creating the SPARQL query), performances of
the argumentation module in identifying the arguments from the endpoints are
F-meas. 0.97, in relation assignment are F-meas. 0.72. Errors in arguments iden-
tification are due to missing SameAs links in DBpedia: the algorithm does not
merge translations of the same answer, and it considers them as different. Wrong
relation assignments are mainly due to missing attacks among arguments.

Since QAKiS performances are about ∼50%, the results of Experiment 2
(submitting natural language questions to QAKiS) are obtained accordingly, F-
meas 0.72 for argument identification and F-meas 0.55 for relation assignment
(the argumentation module is biased by QAKiS mistakes). The average com-
putation cost of the argumentation module is ∼5s for 1-answer, and ∼125s for
n-answers questions. The complexity is quadratic, at least one SPARQL query is
sent for each couple of answers. We are working on the algorithm optimization.

3 Future perspectives

Extensions are planned in several directions: i) to let the user assign the confi-
dence degree to the information sources embedding this feature in the QAKiS
interface; ii) extend the set of ontologies we consider to detect further relations
(positive and negative) among the information items; iii) perform a user evalu-
ation campaign to verify which kind of visualization is better usable.

References

1. Cabrio, E., Cojan, J., Gandon, F., , Hallili, A.: Querying multilingual DBpedia with
QAKiS. In: Procs of ESWC 2013. Demo papers. (2013)

2. Cayrol, C., Lagasquie-Schiex, M.C.: Bipolarity in argumentation graphs: Towards a
better understanding. In: Procs of SUM 2011, pp. 137–148. LNCS, v. 6929 (2011)

3. da Costa Pereira, C., Tettamanzi, A., Villata, S.: Changing one’s mind: Erase or
rewind? In: Procs of IJCAI2011. pp. 164–171. IJCAI/AAAI (2011)

4 Question Answering Linked Data challenge: http://bit.ly/QALD2

72

Demo: Swip, a Semantic Web Interface using
Patterns

Camille Pradel, Ollivier Haemmerlé, and Nathalie Hernandez

IRIT, Université de Toulouse le Mirail, Département de
Mathématiques-Informatique, 5 allées Antonio Machado, F-31058 Toulouse Cedex
{camille.pradel,ollivier.haemmerle,nathalie.hernandez}@univ-tlse2.fr

Abstract. Our purpose is to provide end-users with a means to query
ontology based knowledge bases using natural language queries and thus
hide the complexity of formulating a query expressed in a graph query
language such as SPARQL. The main originality of our approach lies in
the use of query patterns. Our contribution is materialized in a system
named SWIP, standing for Semantic Web Interface Using Patterns. The
demo will present use cases of this system.

1 Introduction

End-users need to access the huge amount of data available through the Internet.
With the development of RDF triplestores and OWL ontologies, a need for
interfacing SPARQL engines emerged, since it is impossible for an end-user to
handle the complexity of the “schemata” of these pieces of knowledge. We think
that the availability of voice recognition software which are becoming more and
more popular, especially on smartphones, implies that we now have to work on
the translation of NL queries into formal queries. The main hypothesis behind
our work states that, in real applications, the submitted queries are variations
of a few typical query families. We propose to guide the interpretation process
by using predefined query patterns which represent these query families. The
process benefits from the pre-established families of frequently expressed queries
for which we know that real information needs exist.

In [1], we proposed a way of building queries expressed in terms of conceptual
graphs from user queries composed of keywords. In [2] we extended the system in
order to take into account relations expressed by the user between the keywords
he/she used in his/her query and we introduced the pivot language allowing
these relations to be expressed in a way inspired by keyword queries. In [3],
we adapted our system to the Semantic Web languages instead of Conceptual
Graphs. Such an adaptation was important for us in order to evaluate the interest
of our approach on large and actual knowledge bases. The Swip system also
participated in the first and third editions of the Question Answering over Linked
Data (QALD) challenge. The results of this participation are detailed in [4].

This article gives a brief overview of our approach and presents its imple-
mentation which will be demonstrated.

73

2 Swip system overview

In the SWIP system, the query interpretation process is made of two main steps:
the translation of the NL user query into a pivot query, and the formalization of
this pivot query, respectively described in subsections 2.1 and 2.2.

2.1 From natural language to pivot query

The whole process of interpreting a natural language query is divided into two
main steps, with an intermediate result, which is the user query translated into a
new structure called the pivot query. This structure is half way between the NL
query and the targeted formal query, and can be expressed through a language,
called pivot language, which is formally defined in [3]. Briefly, this structure
represents a query made of keywords and also expresses relations between those
keywords. We use this pivot language in order to facilitate the implementation of
multilingualism by means of a common intermediate format: a specific module
of translation of NL to pivot has to be written for each different language, but
the pivot query formalization step remains unchanged. This translation step is
detailed in [4]. It consists of four stages.

The first stage aims at identifying in the NL query named entities corre-
sponding to knowledge base resources; this allows these entities to be considered
as a whole and prevents the parser from separating them in the next stage. Then,
in the second stage, a dependency tree of the user NL query is processed by a
dependency parser, taking into account the previously identified named entities.
The third stage aims at identifying the query focus, i.e. the element of the query
for which the user wants results (the element corresponding to the variable which
will be attached to the SPARQL SELECT clause); SWIP is also able to detect
count queries which ask for the number of resources fulfilling certain conditions
and correspond in SPARQL to a SELECT query using a COUNT aggregate as a
projection attribute, and dichotomous (or boolean) queries which allow only two
answers (True or False / Yes or No), and are expressed in SPARQL with an ASK

query. Finally, a set of predefined rules are applied to the dependency graph in
order to obtain the elements of the pivot query and their relations.

2.2 From pivot to formal query

Formalizing pivot queries using query patterns was the first task we tackled and
is extensively described in [2] and [3]. We briefly describe the structure of a query
pattern and the process of this formalization.

A pattern is composed of an RDF graph which is the prototype of a relevant
family of queries. Such a pattern is characterized by a subset of its elements –
either class, property or literal type –, called the qualifying elements, which can
be modified during the construction of the final query graph. It is also described
by a sentence in natural language in which a distinct substring must be associated
with each qualifying element. For now, the patterns are designed by experts who

74

know the application domain. The designer of a pattern builds its RDF graph
manually, selects its qualifying elements and also gives the describing sentence.

The process of this step is as follows. Each element of the user query expressed
in the pivot language is matched to an element of the knowledge base. Elements
of the knowledge base can either be a class, a property, an instance or a literal
type (which can be any type supported by SPARQL, i.e. any type defined in
RDF Schema). Then we map query patterns to these elements. The different
mappings are presented to the user by means of natural language sentences. The
selected sentence allows the final SPARQL query to be built.

A recent evolution of the pattern structure makes the patterns more modular
and the query generation more dynamic. We can now assign values of minimal
and maximal cardinalities to subgraphs of the patterns, making these subgraphs
optional or repeatable when generating the formal query. The descriptive sen-
tence presented to the user also benefits from this novelty and no longer contains
non relevant parts (parts of the pattern which were not addressed by the user
query), thus making our system more ergonomic.

3 Implementation and evaluation

A prototype of our approach was implemented in order to evaluate its effective-
ness. It is available at http://swip.univ-tlse2.fr/SwipWebClient. It was
implemented in Java and uses the MaltParser1 for the dependency analysis of
English user queries. The system performs the second main process step (trans-
lating from pivot to formal query) by exploiting a SPARQL server based on the
ARQ2 query processor, here configured to exploit LARQ3, allowing the use of
Apache Lucene4 features, such as indexation and Lucene score (used to obtain
the similarity score between strings).

Experiments were carried out on the evaluation framework proposed in task
1 of the QALD-3 challenge5. A detailed analysis of the results is available in [4].
The evaluation method was defined by the challenge organizers. It consists in
calculating, for each test query, the precision, the recall and the F-measure of the
SPARQL translation returned by the system, compared with handmade queries
of a gold standard document. We participated in both subtasks proposed by the
challenge organizers, one targeting the DBpedia6 knowledge base and the other
targeting an RDF export of Musicbrainz7 based on the music ontology8. The
quality of the results varies with the target KB.

1
http://www.maltparser.org/

2
http://openjena.org/ARQ/

3 LARQ = Lucene + ARQ, see http://jena.sourceforge.net/ARQ/lucene-arq.html
4
http://lucene.apache.org/

5
http://greententacle.techfak.uni-bielefeld.de/~{}cunger/qald/index.php?x=task1&q=3

6
http://dbpedia.org

7
http://musicbrainz.org/

8
http://musicontology.com/

75

http://swip.univ-tlse2.fr/SwipWebClient
http://www.maltparser.org/
http://openjena.org/ARQ/
http://jena.sourceforge.net/ARQ/lucene-arq.html
http://lucene.apache.org/
http://greententacle.techfak.uni-bielefeld.de/~{}cunger/qald/index.php?x=task1&q=3
http://dbpedia.org
http://musicbrainz.org/
http://musicontology.com/

On the Musicbrainz test dataset, we processed 33 of the 50 test queries. 24
were correctly interpreted, 2 were partially answered and the others failed. The
average precision, recall and F-measure, calculated by the challenge organizers,
are all equal to 0.51. We consider these results as quite good and very encour-
aging. However, results on the DBpedia dataset are more disappointing. We
processed 21 of the 100 test queries, of which 14 were successful, 2 were partially
answered and 5 were not correct. The average precision, recall and F-measure
are all equal to 0.16.

The proposed demo will showcase a didactic user interface which displays
results of intermediate steps. The target dataset will be Musicbrainz and the
target language English. It will also be possible to visualize and edit query
patterns through a control panel in order to influence the interpretation process.

4 Conclusion and future work

In this paper, we presented the approach we are designing to allow end users
to query graph-based knowledge bases. This approach is implemented in the
SWIP system and is mainly characterized by the use of query patterns in the
interpretation of the user NL query. The setting up of the two main parts of the
system process is nearly done and the first results are very encouraging.

We plan to extend our work in several directions: experimenting the ease
of adaptation to different user languages, by participating to the multilingual
task of the QALD challenge, and collaborating with IRSTEA (the French insti-
tute of ecology and agriculture) in order to build a real application framework
concerning French queries on organic farming; experimenting methods to auto-
mate or assist the conception of query patterns; extending the query that can
be processed by our system, for example by taking into account extensions of
SPARQL 1.1, such as aggregates; exploring new leads allowing the approach to
evolve and stick more to the data itself than to the ontology, in order to obtain
better results on datasets from the Web of linked data, such as DBpedia.

References

1. Comparot, C., Haemmerlé, O., Hernandez, N.: An easy way of expressing conceptual
graph queries from keywords and query patterns. In: ICCS. pp. 84–96 (2010)

2. Pradel, C., Haemmerlé, O., Hernandez, N.: Expressing conceptual graph queries
from patterns: how to take into account the relations. In: Proceedings of the 19th
International Conference on Conceptual Structures, ICCS’11, Lecture Notes in Ar-
tificial Intelligence # 6828. pp. 234–247. Springer, Derby, GB (July 2011)

3. Pradel, C., Haemmerlé, O., Hernandez, N.: A semantic web interface using pat-
terns: The swip system (regular paper). In: Croitoru, M., Rudolph, S., Wilson, N.,
Howse, J., Corby, O. (eds.) IJCAI-GKR Workshop, Barcelona, Spain, 16/07/2011-
16/07/2011. pp. 172–187. No. 7205 in LNAI, Springer, http://www.springerlink.com
(mai 2012)

4. Pradel, C., Peyet, G., Haemmerlé, O., Hernandez, N.: Swip at qald-3: results,
criticisms and lesson learned (working notes). In: CLEF 2013, Valencia, Spain,
23/09/2013-26/09/2013 (2013)

76

Using Ontologies to Identify Patients with Diabetes in
Electronic Health Records

Hairong Yu, Siaw-Teng Liaw, Jane Taggart, and Alireza Rahimi Khorzoughi

School of Public Health & Community Medicine and Research Centre for Primary Health Care
& Equity, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia

{hairong.yu,siaw,j.taggart}@unsw.edu.au

alireza.rahimikhorzoughi@student.unsw.edu.au

Abstract. This paper describes a work in progress that explores the applicabil-
ity of ontologies to solve problems in the medical domain. We investigate
whether it is feasible to use ontologies and ontology-based data access (OBDA)
to automate common clinical tasks faced by general practitioners (GPs), which
are labor-intensive and error prone in terms of relevant information retrieved
from electronic health records (EHRs). Our study aims to improve the selection
of diabetes patients for clinical trials or medical research. The biggest impedi-
ment to automating such clinical tasks is the essential bridging of the semantic
gaps between existing patient data in EHRs, such as reasons for visit, chronic
conditions and diagnoses, pathology tests and prescriptions stored in general
practice EHRs (GPEHR), and the ways which medical researchers or GPs in-
terpret those records. Our current understanding is that automated identification
of diabetes patients can be specified systematically as a solution supported by
semantic retrieval. We detail the challenges to building a realistic case study,
which consists of solving issues related to conceptualization of data and domain
context, integration of different datasets, ontology creation based on the
SNOMED CT-AU® standard, mapping between existing data and ontology,
and the challenge of data fitness for research use. Our prototype is based on da-
ta which scale to thirteen years of approximately 100,000 anonymous patient
records from four general practices in south western Sydney.

Keywords: Ontology, Diabetes Mellitus, Electronic Health Records, eHealth,
Knowledgebase Management, Ontology_Based Database Access

1 Introduction

This paper reports on work that explores the applicability of ontologies for solutions
in the health domain. In Australia, the main health applications of ontologies appear
to be the SNOMED terminology services. We investigated the feasibility of the use of
ontologies and OBDA to automate clinical tasks, such as identifying patients with
specific diabetes mellitus (DM) phenotypes in EHRs contributing to the data reposito-
ry of the electronic Practice Based Research Network (ePBRN). The ePBRN is used

77

to conduct translational research on primary and integrated care, including tracking
patients, managing chronic disease, and providing quality evidence-based care. The
biggest barrier to automating the clinical task of identifying a patient with DM is the
semantic gaps between patient data in EHRs, such as reasons for visit, diagnoses,
pathology tests and prescriptions, and how these EHR data are interpreted. For exam-
ple, in addition to a diagnostic label, DM can be implied by a blood glucose test with
suggestive levels of diabetes, certain medications such as oral hypoglycaemics or
insulin, or the use of DM supplies such as glucose diagnostic strips. By using ontolo-
gies, our experiments show that it is possible to automate this interpretation process
and build a reusable conceptual infrastructure over diverse standards or experience or
datasets. Currently most efforts at automation is only limited within individual clinics
or in a physician-driven process or at data levels.

The SNOMED CT-AU®, the Australian extension to SNOMED CT® (Systema-
tized Nomenclature Of Medicine Clinical Terms), is an ontology which formally de-
fines classes of medical procedure, pharmaceutical or biologic product, and body
structure and so on. The SNOMED CT-AU® Ontology (SCAO) is the reference ter-
minology for EHRs in Australia. SCAO is available in Web Ontology Language
(OWL) format from the Australian National E-Health Transition Authority (NEHTA).
Our experiments showed that the integration of SNOMED CT-AU and the Diabetes
Identification Ontology (DIO) based on ePBRN data to select patients with DM is
well suited for our case study. Our key approach is that the automation of the process
of identifying DM patients is an issue of semantic retrieval, i.e. selection criteria can
be expressed as semantic queries, which are processed by a reasoner to retrieve ex-
plicit information on eligible patients from datasets and infer implicit knowledge from
ontologies simultaneously.

The objective of this study is to assess the practicality and utility of ontologies in a
real world environment. The technical challenges of conceptualization of data and
domain context, ontology integration of different datasets or ontologies, mapping
between existing datasets and ontologies, and finding solutions to ensure data fitness
for clinical or research use will be described and discussed in the following sections.

2 Methodology

The architecture for this study comprises six parts separated by dashed lines as shown
in Figure 1. Patient data were extracted from individual GPEHRs, e.g. Medical Direc-
tor™1 at each clinic by GRHANITE™2. The software provides a data repository over
server called GRHANITE™ Databank, in our case the ePBRN repository operated by
MS SQL Server™. The ABox, associated with instances of ontology classes or prop-
erties, is populated through ontopPro (formerly known as an OBDA plugin for Proté-
gé3). Another primary component in our knowledgebase, the TBox, related to concep-

1 http://www.hcn.com.au/Products/Medical+Director
2 http://www.grhanite.com/
3 http://protege.stanford.edu/

78

tual terminologies defined in ontologies, is built through Protégé, a popular open
source ontology editor and knowledgebase framework.

Fig. 1. ePBRN Diabetes Identification Case Study Solution Architecture

Clinical selection criteria are formulated as semantic queries in SPARQL Protocol
and RDF Query Language (SPARQL). The SPARQL query engine QUEST4 that
comes with ontopPro5 checks the queries against the knowledgebase to retrieve
matched patients. A demonstration is given for each of six parts in Figure 1.

The first step in building this solution is creating the specific DIO in hierarchical
conceptual modeling, based on the Australian National Guidelines for Type 2 Diabe-
tes Mellitus (T2DM) and discussions with the research team and GPs participating in
the ePBRN. The output of this first task is a formalized ontology which consists of 4
main classes Actor, Content, Mechanism and Impact and 68 subclasses with ob-
ject/data properties. Some of them can be mapped to the SNOMED CT-AU Ontology
(SCAO), which has more than 300,000 concepts.

Due to the small number of concepts captured by the DIO, the mapping can be op-
erated manually. For example, T2DM is a Disease under the subclass of Problem
which has a superclass Context in DIO. In the SCAO, T2DM is a disorder of glucose
metabolism which is a subclass of Disease under the highest level concept of Clinical

4 http://semanticweb.org/wiki/Quest/
5 http://ontop.inf.unibz.it/

79

finding. Similarly, Actor class in DIO corresponds to Environment or Geographical
location in SCAO. However the automation of integration of two ontologies can be
complex for large terminologies.

Next we linked the server objects in SQL Server to integrate other heterogeneous
datasets by T-SQL™. The SQL query results are mapped by ontopPro for ABox asso-
ciated with relevant classes in ontologies. This meant that the schematic or semantic
heterogeneity challenges faced were solved at either data or ontology level. The map-
ping mechanism supplied by ontopPro theoretically based on OBDA [1], provided a
big advantage on populating class members, assigning property values, and incorpo-
rating schematic data in the ePBRN repository with semantic concepts in ontologies.
The raw data in EHRs that contribute to the ePBRN repository are incomplete, incor-
rect and inconsistent (against external standards or internal logic perspectives). We
used definitions of properties in DIO or mappings created in ontopPro to solve core
data quality issues before preparation of semantic queries.

We then wrote semantic queries in SPARQL according to requirements from do-
main experts, and ran them through QUEST, the query engine and OWL reasoner.
The query results are expected to identify DM patients and help clinicians to manage
the cycle of care for the cohort. The SPARQL queries were validated using SQL over
an artificial dataset of 100 patients schematically similar to the ePBRN dataset. The
approach that we developed and tested on the artificial dataset will be scalable to the
ePBRN repository of more than 100,000 patient records. Other use case scenarios,
for example assisting researchers to conduct association and/or controlled studies will
contribute to the validation of the architecture.

3 Discussion and Conclusion

We have briefly presented a feasibility study of the use of ontologies to detect pa-
tients with DM in real world EHRs. Using real patient datasets, we solved some engi-
neering challenges around ontology creation and integration, bridging between ontol-
ogies and datasets, and data quality [2]. Apart from usability, interoperability and
scalability aforementioned, other quality attributers are assessed closely for architec-
ture evaluation for instance, modifiability with many facades/locations where da-
ta/data types are transferred in our solution, integrability and extensibility which are
especially critical as several open source software components are used in our design.

References

1. M. Lenzerini, Data Integration: A Theoretical Perspective, Proc. of the 21st ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS’02),
pp. 233 – 246.

2. S.-T. Liaw, et al. Data quality and fitness for purpose of routinely collected data – a gen-
eral practice case study from an electronic Practice-Based Research Network, in: AMIA
Annual Symposium Proceedings, 2011:785–794.

80

Monitoring the Status of SPARQL Endpoints

Pierre-Yves Vandenbussche1, Carlos Buil Aranda2,
Aidan Hogan3, and Jürgen Umbrich1

1 Fujitsu (Ireland) Limited, Swords, Co. Dublin, Ireland
2 Department of Computer Science, Pontificia Universidad Católica de Chile

3 Digital Enterprise Research Institute, National University of Ireland, Galway

Abstract. We demo an online system that tracks the availability of
over four-hundred public SPARQL endpoints and makes up-to-date re-
sults available to the public. Our demo currently focuses on how often
an endpoint is online/offline, but we plan to extend the system to col-
lect metrics about available meta-data descriptions, SPARQL features
supported, and performance for generic queries.

1 Motivation

In previous work [2], we presented an analysis of the landscape of public
SPARQL endpoints and asked the question: are these endpoints ready for ac-
tion?4 Taking the full list of 427 public endpoints from the CKAN/DataHub
catalogue (as available at the time of writing), for each endpoints, we conducted
a number of experiments to gauge the following four main aspects:

Discoverability: What kinds of meta-data descriptions are available about the
endpoints and their content? How easy are these descriptions to find?

Interoperability: Which SPARQL (1.1) features does each endpoint support?
Which features (or combinations of features) lead to exceptions?

Efficiency: How do the endpoints perform for answering generic forms of
queries? How is cold-cache performance vs. warm-cache performance? What
is the latency like over HTTP?

Availability: What are the average uptimes of the endpoints? How many end-
points are dying/have died? How many endpoints have high reliability?

Our results showed that about half of the endpoints listed on CKAN/-
DataHub are now offline, that only a few endpoints make meta-data descrip-
tions available about their content (VoID) or features supported (SPARQL 1.1
Service Descriptions) in easy-to-find locations, that there was mixed adoption

This work was supported by Fujitsu (Ireland) Ltd. & by Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 (Lion-2). Carlos Buil-Aranda was supported by
CONICYT/FONDECYT project No. 3130617.

4 This work is accepted for the Experiments track of ISWC 2013 [2]. This demo paper
rather focuses on our tool for making results available to the community.

81

of SPARQL and (recently standardised) SPARQL 1.1 features, that the per-
formance of different endpoints over HTTP for generic queries could vary by
orders of magnitude, and that less than one third of the endpoints had an aver-
age availability in the interval 99–100% (i.e., at least two-nines availability). We
concluded that the usability of different public endpoints varies greatly.

We thus propose a system that tracks and collects metrics about public
endpoints over time. Currently, our service tracks the hourly availability of end-
points, and we plan to extend it to collect weekly metrics about the available
meta-data, supported features and performance of these endpoints, as well as
other metrics that the community may wish to suggest.

In Section 2, we first discuss our current “SPARQL Endpoint Status” sys-
tem, available online at http://labs.mondeca.com/sparqlEndpointsStatus/.
Thereafter, in Section 3, we discuss our proposed extensions.

2 SPARQL Endpoint Status

Monitoring Availability The system automatically collects and updates a list
of public SPARQL endpoints from the CKAN/DataHub catalogue. These end-
points are queried on an hourly basis using two alternative SPARQL queries:

ASK WHERE{ ?s ?p ?o . } SELECT ?s WHERE{ ?s ?p ?o . } LIMIT 1

The ASK query on the left is issued first. If this query fails (from previous
experience, we note that some endpoints do not support ASK [2, § 3]), we try the
SELECT query on the right. Both queries are selected at they should be as cheap
as possible for the endpoint to run: our goal is simply to check whether or not
the endpoint is available for answering queries. If the endpoint returns a valid
SPARQL response for either query, we then say that the endpoint is available
at that timepoint. We also record the time taken for the query to execute.

At the time of writing, we have collected more than two million hourly pings
across hundreds of endpoints over a period of more than two years. Detailed
analysis of these availability results is available in [2, § 5].

User Interface We provide a user interface to browse and visualise the hourly
results. The user interface supports two primary views.

The first view, exemplified in Figure 1, provides a full list of all the moni-
tored endpoints, their availability in the past 24 hours (ratio of successful hourly
queries in that period), and their availability in the past seven days. A green/yel-
low/red/gray icon indicates, resp., that the endpoint is operating normally/avail-
able but had problems in the past 24 hours/not available currently/not available
once in the past 24 hours. As per the icons listed on the right of the screenshot,
each endpoint is also associated with (1) an RSS feed to provide updates on
availability information, (2) a link to the endpoint itself and (3) a link to the
relevant CKAN/DataHub page for the dataset it relates to.

The second view provides details for a given endpoint. Figure 2 shows an
example screenshot for the DBpedia endpoint. The graph on the left shows the

82

http://labs.mondeca.com/sparqlEndpointsStatus/

Fig. 1. Screenshot of current SPARQL Endpoint Status list

response times for the last 24 hourly pings to that endpoint. The graph on the
right plots the 24 hour availability for each of the last seven days.

Fig. 2. Screenshot of current SPARQL Endpoint Status detail view for DBpedia

RDF Meta-data Results of the hourly pings are exported as RDF. Figure 3
presents an example description. We reuse existing vocabularies as much as pos-
sible (VoID, dcterms, etc.) to describe each dataset, their related SPARQL end-
point, title and identifier, etc. To capture availability information, we designed
a new vocabulary (no existing one handled this feature). The “endpoint status”
vocabulary5 (ends) allows the description of a status observation with the in-
formation of date, description (we are here reusing dcterms vocabulary), status
availability and response time. All RDF data are then published in a SPARQL
Endpoint available at: http://labs.mondeca.com/endpoint/ends.

5 http://labs.mondeca.com/vocab/endpointStatus/

83

http://labs.mondeca.com/endpoint/ends
http://labs.mondeca.com/vocab/endpointStatus/

Fig. 3. Schema used to express SPARQL endpoint availability in RDF

3 Future Extensions

Our system currently captures endpoint availability and query latency. In line
with the discussion of Section 1 and the methods of our experimental paper [2],
we wish to extend our system to track more metrics about public endpoints.
These would include: (1) what meta-data descriptions about each endpoint/-
dataset are available and where (e.g., VoID, SPARQL 1.1 SD), (2) what query
features each endpoint supports (e.g., SPARQL 1.1, full-text), (3) what per-
formance can be expected for generic queries (atomic lookups, dump queries,
controlled joins). Since the queries are more expensive to run, we propose run-
ning them on a weekly basis to not overburden endpoints. We would then extend
our UI and RDF vocabulary to make these metrics available. We are very much
open to suggestions/use-cases from the community for collecting further metrics.
Furthermore, we are considering making a locally deployable version for clients
to monitor endpoints of relevance to them.

Acknowledgements: This paper was supported by Fujitsu (Ireland) Lim-
ited, and funded in part by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2). Carlos Buil-Aranda was supported by the CONI-
CYT/FONDECYT project No. 3130617.

References

1. K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing linked datasets.
In LDOW, 2009.

2. C. B. Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. SPARQL Web-
Querying Infrastructure: Ready for Action? In ISWC. Springer (LNCS), 2013. (Ac-
cepted; to appear.).

3. G. T. Williams. SPARQL 1.1 Service Description. W3C Recommendation, March
2013.

84

GetThere: A Rural Passenger Information
System Utilising Linked Data & Citizen Sensing

David Corsar, Peter Edwards, Chris Baillie, Milan Markovic,
Konstantinos Papangelis, and John Nelson

dot.rural Digital Economy Hub,
University of Aberdeen, Aberdeen, UK

{dcorsar,p.edwards,c.baillie,m.markovic,k.papangelis,j.d.nelson}@abdn.

ac.uk

http://www.dotrural.ac.uk

Abstract. This demo paper describes a real-time passenger information
system based on citizen sensing and linked data.

Keywords: provenance, data quality, citizen sensing, linked data, se-
mantic infrastructure, transport

1 Introduction

Real-time passenger information (RTPI) systems provide details about public
transport, allowing passengers to plan and make decisions regarding their jour-
neys. Typical requirements for RTPI systems include: 1) listing available public
transport services; 2) providing timetable (schedule) information for those ser-
vices; 3) providing (real-time) vehicle locations; and 4) providing details of dis-
ruptions. However, few RTPI systems exist in rural areas for a variety of reasons,
including a lack of infrastructure for obtaining and providing real-time informa-
tion [7]. As part of the Informed Rural Passenger project1, we are developing
GetThere, an RTPI system for rural areas. The GetThere system consists of a
smartphone app, supported by a semantic infrastructure that integrates data
from multiple sources (including users). This system has been deployed in the
Scottish Borders, UK in partnership with First Group.

This demonstration2 will show a typical use of the GetThere app to view
timetabled and real-time vehicle locations for a selected route, contribute vehi-
cle locations while making a journey, report a disruption event, and assess the
quality of real-time locations with and without the presence of disruption. The
demo will utilises the datasets and services shown in Fig. 1.

2 Information Ecosystem

GetThere is supported by a semantic information ecosystem (Fig. 1) itself under-
pinned by a series of ontologies. Semantic web and linked data technologies are

1 http://www.dotrural.ac.uk/irp
2 A video of the demo is available at http://www.gettherebus.com/iswcdemo/

85

used for data representation and storage within the ecosystem as they provide
an effective approach for large scale data integration [4]. Further, accessing and
storing data via SPARQL endpoints allows storage to be handled by technolo-
gies appropriate for the characteristics of individual datasets; for example, using
RDF streams or a database with a R2RML wrapper for high throughput data.

Web Services

External
Datasets

Internal
Datasets

Ontologies

ProvenanceQuality

Travel
Disruption

Timetable Infrastructure NaPTANDisruptionObservationUser

Qual-OSSN Prov-O InfrastructureTransit

Timetable Sensor Location Observation

User FOAF

Disruption

Clients Android Mobile Application

Transport
Sensors SIOC

User

LinkedGeoData

Fig. 1. Real-time passenger information ecosystem.

Details of public transport services and timetables are stored in the Timetable
dataset3 and represented by the Transit ontology4. This dataset is used by the
Timetable Service to provide details of available transport services, timetable,
and vehicle location information to the GetThere app. The Infrastructure dataset
provides details of the road networks used by public transport vehicles. This data
is extracted from openstreetmap.org, and is represented using the Infrastructure
ontology5 (which defines bus route maps) and the LinkedGeoData6 ontology.
NaPTAN7 provides details of bus stops, including their IDs and locations.

The User ontology8 and dataset describe user profiles using SIOC9 and
FOAF10, a description of each user’s msobile device(s), along with details of
public transport journeys made while using the GetThere app. The Observation
dataset uses the Transport Sensors ontology11 which extends the W3C Seman-
tic Sensor Network (SSN) ontology12 to describe observations (e.g. of vehicle
occupancy level, vehicle location) obtained from users of the GetThere app. The
Sensor service provides an API for storing and retrieving sensor and observation

3 Timetable information is received in the ATCO-CIF format (http://www.
travelinedata.org.uk/CIF/atco-cif-spec.pdf); the RDF conversion program is
available at https://github.com/dcorsar/ecosystem.timetable.

4 http://vocab.org/transit/terms/
5 http://www.dotrural.ac.uk/irp/uploads/ontologies/infrastructure.owl
6 http://linkedgeodata.org
7 http://data.gov.uk/dataset/naptan
8 http://www.dotrural.ac.uk/irp/uploads/ontologies/user.owl
9 http://rdfs.org/sioc/spec/

10 http://xmlns.com/foaf/spec/
11 http://www.dotrural.ac.uk/irp/uploads/ontologies/sensors.owl
12 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

86

descriptions expressed using the SSN ontology; the Location Observation ser-
vice handles real-time locations provided by app users. The Travel Disruption
ontology describes different types of disruption, based on an analysis of existing
travel disruption information sources [5]. Disruption reports from app users are
managed and stored by the Disruption service and dataset.

Given the open nature of this data, issues such as data quality and trust
naturally arise [6]. Examples range from malicious users and inaccurate devices
to out-of-date information (e.g. timetables). As part of addressing these issues,
the ecosystem features a service that can evaluate data quality. The quality
ontology (Qual-O13), and its associated quality assessment service are discussed
in detail elsewhere [1]. Briefly, the service is configured with a set of quality
metrics encoded as SPARQL rules expressed against the relevant ontologies.
These guide a SPIN reasoner [3] to perform quality assessment, producing quality
scores which can be utilised by other services to filter low quality data.

Our current quality metrics are focused on real-time locations, and have been
developed following several deployments of the system. They include: Timeliness
- timely observations are under 1 minute old; Accuracy - accurate observations
have a GPS error margin of less than 25 metres; Relevance - relevant observations
are no further than 500 metres from the expected route of travel; Availability -
observations with a high availability score have no more than a 1 minute delay
between being created on the device and published by the ecosystem.

The provenance service uses the W3C Prov-O ontology14 to maintain a record
of the entities, agents, and activities involved in producing data within the
ecosystem. Uses of provenance include: associating users with location obser-
vations generated by their mobile device, which can support detection of po-
tentially malicious users; and recording dataset provenance to ensure the latest
timetable information is provided to users [2].

2.1 The GetThere Smartphone App

The ecosystem has been designed to support a range of applications through
the creation of relevant application services. At present we have used the ecosys-
tem to support the GetThere RTPI system, which is provided via an Android
smartphone app (see Fig. 2). The app invokes the web services, which execute
SPARQL queries against relevant datasets, process the results, and send a re-
sponse to the app. Users are presented with a list of available bus routes; after
selecting a route (and direction, either inbound or outbound), vehicle locations
are displayed. These locations include both estimates based on the timetable and
real-time locations obtained from other users on that route (Fig. 2, left screen-
shot). Bus stops along the route are also shown. The user can access timetable
information for the previous and next arrivals at a particular stop. When the
user boards the bus, they have the option of pressing a button to have their

13 http://sensornet.abdn.ac.uk/onts/Qual-O.ttl
14 http://www.w3.org/TR/prov-o/

87

Fig. 2. Screenshots of the GetThere app showing (left to right): vehicle locations; the
results of invoking the quality assessment service; and creating a disruption report.

location uploaded to the ecosystem every minute. The uploaded location is then
used as the vehicle’s real-time location provided to other users.

Users can view quality assessment results for a real-time vehicle location
by tapping its icon. We are working with users to determine an appropriate
visualisation of quality results. Currently each assessed dimension is shown with
a colour-coded bar representing its quality score (Fig. 2, centre screenshot).
Acknowledgements The research described here is supported by the award
made by the RCUK Digital Economy programme to the dot.rural Digital Econ-
omy Hub; award reference: EP/G066051/1

References

1. C. Baillie, E. Edwards, P. Pignotti, and D. Corsar. Short paper: Assessing the
quality of semantic sensor data. In Proc. of The 6th International Workshop on
Semantic Sensor Networks, page to appear, October 2013.

2. D. Corsar, P. Edwards, N. Velaga, J. Nelson, and J. Pan. Exploring provenance
in a linked data ecosystem. In P. Groth and J. Frew, editors, Provenance and
Annotation of Data and Processes, volume 7525 of LNCS, pages 226–228. Springer
Berlin Heidelberg, 2012.

3. C. Furber and M. Hepp. Swiqa - a semantic web information quality assessment
framework. In 19th European Conference on Information Systems, pages 922–933,
2011.

4. V. Lopez, S. Kotoulas, M. Sbodio, M. Stephenson, A. Gkoulalas-Divanis, and
P. Aonghusa. Queriocity: A linked data platform for urban information manage-
ment. In The Semantic Web – ISWC 2012, volume 7650 of LNCS, pages 148–163.
Springer Berlin Heidelberg, 2012.

5. M. Markovic, P. Edwards, D. Corsar, and J. Pan. Demo: Managing the provenance
of crowdsourced disruption reports. In Provenance and Annotation of Data and
Processes, volume 7525 of LNCS, pages 209–213. Springer Berlin Heidelberg, 2012.

6. S. D. Ramchurn, T. D. Huynh, and N. R. Jennings. Trust in multiagent systems.
The Knowledge Engineering Review, 19(1):1–25, 2004.

7. N. R. Velaga, M. Beecroft, J. D. Nelson, D. Corsar, and P. Edwards. Transport
poverty meets the digital divide: accessibility and connectivity in rural communities.
Journal of Transport Geography, 21(0):102 – 112, 2012.

88

DRETa: Extracting RDF from Wikitables

Emir Muñoz, Aidan Hogan, and Alessandra Mileo

Digital Enterprise Research Institute, National University of Ireland, Galway
{emir.munoz, aidan.hogan, alessandra.mileo}@deri.org

Abstract. Tables are widely used in Wikipedia articles to display re-
lational information – they are inherently concise and information rich.
However, aside from info-boxe s, there are no automatic methods to ex-
ploit the integrated content of these tables. We thus present DRETa: a
tool that uses DBpedia as a reference knowledge-base to extract RDF
triples from generic Wikipedia tables.

1 Introduction

Large amounts of data on the Web are presented in tables [3]. Interpreting and
extracting knowledge from HTML Web tables is thus relevant for many areas,
including: finance, public policy, user experience, health-care, and so forth. How-
ever, such tables are diverse in terms of representation, structure and vocabulary
used; they often contain polysemous (or missing or otherwise vague) attribute
labels, ambiguous free-text cell content and referents, cell spanning multiple
rows and/or columns, split tables, obscured contextual validity, and so forth.
Recovering the semantics of generic Web tables is thus extremely challenging.

Instead of interpreting generic Web tables, we have rather been focussing on
(partially) interpreting the tables embedded in Wikipedia (henceforth “Wik-
itables”). In particular, we have created DRETa: a prototype for (semi-
)automatically performing a best-effort extraction of RDF triples from Wikita-
bles. Though many of the challenges remain the same, focussing on Wikitables
has a number of distinct advantages over the more general Web table scenario:
(1) Wikitable cells often contain links to Wikipedia articles that disambiguate
the entities being talked about; (2) Wikitables contain a high ratio of rich en-
cyclopaedic knowledge; (3) the context of a Wikitable can be mapped to the
article in which it appears; (4) existing RDF knowledge-bases, that offer partial
exports of Wikipedia content, can be used for reference and for mining legacy
entity URIs and predicates. To maximise the precision of the triples extracted
from Wikitables, DRETa exploits these unique advantages insofar as possible.

The DRETa system works by using a suitable reference knowledge-
base—such as DBpedia [1], YAGO2 [4], Freebase [2], etc.—to extract
triples from Wikitables. We only consider tables embedded in article bodies
(class=wikitables in the HTML source), filtering info-boxes (already used by
DBpedia and YAGO2) and tables-of-content. Our prototype system—available
at http://deri-srvgal36.nuigalway.ie:8080/wikitables-demo-0.1.0/—
currently uses DBpedia as the reference knowledge-base. Thus, the RDF triples

89

http://deri-srvgal36.nuigalway.ie:8080/wikitables-demo-0.1.0/

Fig. 1: Split table of current Manchester United F.C. squad members (abridged
from http://en.wikipedia.org/wiki/Manchester_United_F.C.).

extracted by DRETa from Wikipedia’s tables use the same URIs as DBpedia
to identify entities (subject/object URIs) and relations (predicate URIs). Our
system can be seen as enriching the reference knowledge-base with additional
facts found in tables using the legacy relations from the knowledge-base itself.

2 Triple Extraction: A Motivating Example

We sketch the extraction process by way of a real-world example. Figure 1
presents a Wikitable abridged from the “Manchester United F.C.” Wikipedia
article, containing relations between players, their shirt number, country and
position. There are also relations between players and the entity described by
the article (their current club is Manchester United F.C.).

Aside from the No. columns, the cells of the table contain hyperlinks to
other articles in Wikipedia, including countries, football positions, and individ-
ual players. For example, the flags link to articles for the country; GK links to
the article for Goalkeeper (associated football). These links provide unambiguous
referents to Wikipedia entities, which can in turn be mapped directly to DB-
pedia entities and descriptions. Currently, DRETa focuses on the extraction of
relations between cells containing wiki-links and does not consider plain-string
values. For example, it would not try to extract player numbers from the table.

Previous works on extracting RDF from such tables (e.g., [5]) propose a verti-
cal, column-centric approach, where columns are seen as referring to types and/or
relations that can then be extended to all rows. We rather adopt a horizontal,
row-centric approach and look at the pre-existing relations between entities on
the same row. For example, if we find that the predicate dbp:position holds be-
tween dbr:David de Gea and dbr:Goalkeeper (association football) (GK),
we can suggest that the relation holds from all entities in the Player column to
all entities on the same row in the Position column. Similarly, we consider the
article in which the table is found to be a protagonist for the table. If we find
the predicate dbo:team and dbp:currentclub holds from dbr:David de Gea

to dbr:Manchester United F.C., we can propose that the same relations hold
from all entities in the textsfPlayer column to the protagonist (the article
entity).

90

http://en.wikipedia.org/wiki/Manchester_United_F.C.

Candidate triples that we extract are further associated with a number of
features to help classify them as correct/incorrect, associating each triple with
a confidence score. Details of the features are out-of-scope, but, for example, we
hypothesise that the more rows a given relation holds for across entities in two
fixed columns in the reference KB, the higher the likelihood that that relationship
exists on all such rows. Other features, such as a match between the label of the
candidate relation and a column header, can further strengthen confidence in
the match. Using a selection of 750 random triples labelled by three judges, we
employed offline various machine learning methods (SVM, Näıve Bayes, Bagging
Decision Trees, Random Forest, Logistic) to train a range of binary classifiers
that are then made available to the DRETa system for classifying (in)correct
triples, and ultimately for ranking and filtering candidate triples at runtime.

3 DRETa system description

The current DRETa prototype works with DBpedia 3.8 and Wikipedia article
names (for auto-completion) as last updated in May 2013. The user submits a
Wikipedia article title (with the help of auto-complete) and optionally selects
a classifier. The extraction process is then as follows: i) the selected article
is downloaded and cached in memory for future queries; ii) all the tables are
extracted, repaired (as applicable), and filtered; iii) for each table, mappings
from wiki-links to KB entities are executed; iv) candidate relations for pairs of
resources are collected from the reference KB and candidate triples proposed;
v) the selected classifier is run to rank triples by confidence, vi) each candidate
triple is tested against the KB to determine if it is a pre-existing triple or not.

Following our motivating example, Figure 2 presents DRETa’s results for the
Wikipedia article “Manchester United F.C.”. After ca. 11 secs. we get 457 RDF
triples extracted from tables contained in that article as a result. Some of these
triples already exist in DBpedia (rows with an DBpedia icon visible). Others are
novel: from the top-10 extracted triples sorted by confidence, for example, we
extract triples for the birth-places of the footballers Rafael da Silva (Brazil) and
Phil Jones (England), which were not previously known to DBpedia.

4 Conclusion

In this paper, we have presented DRETa: a prototype system for extracting RDF
triples from Wikipedia tables. The process maps entities in table cells to entities
in a reference knowledge-base and then looks for potential relations that hold
between entities on the same row across two given columns, or that hold between
entities in a single column and the article entity. Triples are associated with a
set of features that help classify correct/incorrect triples. A selection of machine
learning methods are used offline to train classifiers, where these classifiers can
then be used to rank the confidence of triples. The prototype is available online
at http://deri-srvgal36.nuigalway.ie:8080/wikitables-demo-0.1.0/.

91

http://deri-srvgal36.nuigalway.ie:8080/wikitables-demo-0.1.0/

Fig. 2: DRETa demo interface showing the top triples extracted from tables in
the “Manchester United F.C.” article with associated confidence scores.

We are currently investigating methods to perform a high-quality “bulk”
triplification of all tables in English Wikipedia. We have used the architecture
of DRETa to extract 22 million triples from over one million tables (all tables)
in English Wikipedia. We have already estimated a 52% precision measure for
the raw candidate triples extracted by our methods and our next steps are to
evaluate the extent to which machine learning techniques and different classifiers
improve this baseline precision by filtering incorrect triples at various thresholds,
and we will identify a gold standard to be able to estimate recall. We also wish
generalize our methods with YAGO2 and Freebase as reference knowledge-bases,
towards a more ambitious generalisation that employs entity-recognition tools
(instead of wiki-links) for processing generic Web tables.

References

1. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann,
S.: DBpedia – a crystallization point for the Web of Data. JWS 7(3), 154–165 (2009)

2. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Wang, J.T.L.
(ed.) SIGMOD Conference. pp. 1247–1250. ACM (2008)

3. Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring
the power of tables on the web. PVLDB 1(1), 538–549 (2008)

4. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A spatially and
temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)

5. Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using linked data to interpret tables. In:
COLD Workshop (November 2010)

92

Enriching Concept Search across Semantic Web
Ontologies

Chetana Gavankar1,2,3, Vishwajeet Kumar2,
Yuan-Fang Li3, and Ganesh Ramakrishnan2

(1) IITB-Monash Research Academy, Mumbai, India
(2) IIT Bombay, Mumbai, India

(3) Monash University, Melbourne, Australia

Abstract. Semantic Web ontologies are fast-growing knowledge sources
on the Web. Searching relevant concepts from this large repository is a
challenging problem. The current Semantic Web search engines provide
either (1) coarse-grained search over ontologies or (2) very fine-grained
search over individuals. We believe searching and ranking concepts across
ontologies provides an ideal granularity for certain tasks such as ontol-
ogy population and web page annotation. Towards this objective, we
propose a novel approach of indexing concepts using ontology axioms
in an inverted file structure and ranking them using a dynamic ranking
algorithm. Our proposed method is generic and domain-independent. A
preliminary evaluation indicates that our proposed method is effective,
outperforming the search function of BioPortal, a large and widely-used
ontology repository.

Keywords: Semantic Web, Ontologies, Concept Search, Indexing

1 Motivation

The current breed of semantic web search engines can be broadly grouped into 2
categories: (1) those that search over ontologies, and (2) those that search over
individual resources. The former may be too coarse-grained as a large ontology
may contain hundreds of thousands or even millions of concepts. On the other
hand, the latter approach may be too fine-grained – many resources may be rele-
vant and returning them individually may not be the best approach. We describe
an approach of retrieving relevant concepts from semantic web ontologies. We
propose a novel technique of indexing concepts using axioms in ontologies. Our
system supports semi-structured queries where names of concepts and relevant
properties can be specified.

2 Related Work

Semantic search engines such as Sindice [1], Swoogle [2, 3], Falcon [4, 5], SWSE
[6] provide semantic web search engine interface. They provide search over coarse-
grained ontology level and fine-grained resources [7] on the semantic web. We
provide search at concept level with middle level granularity. SchemEX [8] is

93

stream based approach and tool for real time indexing and schema extraction
of LOD data. Hu, Bo et. al [9] use information retieval tfidf for indexing the
ontology documents. Semplore [10] use standard IR style indexing for semantic
web content and textual information. In comparison we build index using context
information around concept that makes it easy to search for relevant concept
along with all its context information. The current work semantic web resources
ranking is by adapting and modifying pagerank algorithm used in classical search
engines. ReConRank [11], TripleRank[12] adapt Pagerank/HITS [13] algorithm
for semantic web data. Our ranking function is parameterized using context
features.

3 System Architecture

Our interface provides keyword query input as well as allows to select contextual
information around concepts in an ontology corpus. Given a concept in an ontol-
ogy, all its contextual features are indexed using an inverted file structure. Such
features include the concept’s label, ID, URI, synonyms, data and object prop-
erties used in axioms about the concept, sub classes, super classes, equivalent
classes. This approach enriches concept search by disambiguating a concept from
those with similar names. For example, if heart concept is searched in context of
diseases using our approach, results related to diseases of heart will be ranked
higher, while results in other contexts such as functionality will be ranked lower.
We now explain the ranking algorithm based on contextual features.

Let α, β, γ represent weights of concept label, data properties (i = 1 to m)
and object properties (j = 1 to n) of the concept respectively. Let δ represent
weights of context features (k = 1 to t) like synonyms, provenance of the concept.
The weights α, β, γ and δ are currently are assigned values based on heuristics.
In future we plan to learn these weights using machine learning algorithms. The
weight of concept c in the ontology corpus, denoted Wc, is calculated as follows:

Wc = λ.[α+ β.
m∑
i=1

i+ γ.
n∑

j=1

j + δ.
t∑

k=1

k] (1)

λ =

{
1 if exact match

similarity(x, y) where x and y represent 2 strings
(2)

4 Evaluation

For evaluation purposes we compare our system1 with the search function on
BioPortal,2 a large and widely-used biomedical ontology repository. In our exper-
iment a large portion of ontologies, 252 out of 348 in total, were downloaded from
BioPortal and indexed. Together these ontologies contain more than 660,000
classes.

1 Available at http://qassist.cse.iitb.ac.in/LOD/
2 http://bioportal.bioontology.org/

94

Algorithm 1: Ranking Algorithm
Data: Query Tokens Q = Qc,Qd1

, ..Qdm
,Qo1

, ...Qon ,Qf1
, ..Qft

, Concepts C = C1, C2...Cn

Result: Weight of Concept Wc
1 α ← 0, β ← 0, γ ← 0, δ ← 0, Wc ← 0;
2 foreach element Ci ∈ C do
3 if sim(Qc, label(Ci)) > 0 then
4 α ← α + λ

foreach data property of C do
5 for i=1 to m do
6 if sim(Qdi

, dp(Ci)) > 0 then

7 β ← β + λ

8 foreach object property of C do
9 for j=1 to n do

10 if sim(Qoj
, op(Cm) > 0 then

11 γ ← γ + λ

12 foreach context feature of C do
13 for i=k to t do
14 if sim(Qfk

, feature(Cm) > 0 then

15 δ ← δ + λ

16 Wc = [α + β + γ + δ]

Two metrics widely-used in information retrieval, normalized discounted cu-
mulative gain (NDCG) and mean average precision (MAP) [14], were used to
measure the effectiveness of our approach viz-a-viz BioPortal search across 20
queries. Figure 1 (a) and (b) depict MAP and DNCG results for queries that
do not contain property information as contextual features. It can be seen from
Figure 1 (a) that our system outperforms BioPortal for MAP. Figure 1 (b) shows
that the NDCG values are comparable for the two systems. For queries that con-
tain property information, BioPortal fails to return search results. The results
for queries with property information in Figure 1 (c) depict high precision and
NDCG values.

(a) without property
infomation

(b) without property
infomation

(c) with property infoma-
tion

Fig. 1. Preliminary evaluation results.

5 Conclusion and Future work

Semantic Web search is primarily divided into two types - one which allows
keyword query capability and other which needs SPARQL query input. The lat-
ter gives exact results due to precise input queries. This requires user to have

95

technical knowledge about writing a SPARQL query. We present an approach
of searching for concepts using semistructured keyword queries that incorpo-
rates contextual features to improve precision. A preliminary evaluation and a
comparison with BioPortal’s search function shows the effectiveness of our sys-
tem. In future we will investigate the incorporation of ontology reasoning to
include implicit contextual features. Currently the ranking algorithm derives
feature weights heuristically. Going ahead we will learn the weights using ma-
chine learning methods. In addition to enriched concept search, our further work
will also include property search across ontologies.

References

1. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.
In: ISWC/ASWC. (2007) 552–565

2. Finin, T., Peng, Y., Scott, R., Joel, C., Joshi, S.A., Reddivari, P., Pan, R., Doshi,
V., Ding, L.: Swoogle: A search and metadata engine for the semantic web. In:
In Proceedings of the Thirteenth ACM Conference on Information and Knowledge
Management, ACM Press (2004) 652–659

3. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking
knowledge on the semantic web. In: Proceedings of the 4th International Semantic
Web Conference. (2005) 156–170

4. Qu, Y., Cheng, G.: Falcons concept search: A practical search engine for web
ontologies. IEEE Transactions on Systems, Man, and Cybernetics, Part A 41(4)
(2011) 810–816

5. Cheng, G., Ge, W., Qu, Y.: Falcons: searching and browsing entities on the se-
mantic web. In: World Wide Web Conference Series. (2008) 1101–1102

6. Hogan, A., Harth, A., Umrich, J., Kinsella, S., Polleres, A., Decker, S.: Search-
ing and browsing linked data with swse: the semantic web search engine. Web
Semantics: Science, Services and Agents on the World Wide Web 9(4) (2011)

7. Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in rdf data.
In: International Semantic Web Conference (1). (2011) 83–97

8. Konrath, M., Gottron, T., Staab, S., Scherp, A.: Schemex - efficient construction of
a data catalogue by stream-based indexing of linked data. J. Web Sem. 16 (2012)

9. Hu, B., Croitoru, M., Dasmahapatra, S., Lewis, P., Shadbolt, N.: Indexing ontolo-
gies with semantics-enhanced keywords. In: Proceedings of the 4th international
conference on Knowledge capture. K-CAP ’07, ACM (2007) 119–126

10. Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran, T., Yu, Y., Pan, Y.: Semplore:
A scalable IR approach to search the Web of Data. Journal of Web Semantics 7
(2009) 177–188

11. Hogan, A., Harth, A., Decker, S.: Reconrank: A scalable ranking method for
semantic web data with context. In: 2nd Workshop on Scalable Semantic Web
Knowledge Base Systems. (2006)

12. Franz, T., Schultz, A., Sizov, S., Staab, S.: Triplerank: Ranking semantic web
data by tensor decomposition. In: International Semantic Web Conference. (2009)
213–228

13. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
The ACM 46 (1999) 604–632

14. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
An Introduction to Information Retrieval. Cambridge University Press (2008)

96

Semantic tools for improving software
development in open source communities

Gregor Leban

Jožef Stefan Institute, Ljubljana, Slovenia
gregor.leban@ijs.si

Abstract. Software development communities use different communi-
cation channels such as mailing lists, forums and bug tracking systems.
These channels are not integrated which makes finding information dif-
ficult and inefficient. As a result of the ALERT project we developed
a system that is able to collect and annotate information from various
communication channels and store it in a single knowledge base. Using
the stored knowledge the system can provide users valuable functional-
ities such as semantic search, finding potential bug duplicates, custom
notifications and issue recommendations.

Keywords: information extraction, semantic search, software develop-
ment, open source, data integration

1 Introduction

Large open source communities frequently use several communication channels
for information exchange. Detected bugs are reported on bug tracking systems
such as Bugzilla and Mantis. Forums and mailing lists are used for exchanging
general discussions and questions about various aspects of the developed soft-
ware. Source code is shared and updated using source code management systems
such as git and svn. Project documentation is often written using a platform such
as wiki.

Due to use of various information channels these communities face differ-
ent challenges. A common problem is finding information. In order to find an
answer to a question, the user has to use different search interfaces of these
channels to find information of interest. Additionally, since computer science
terminology contains many synonyms and abbreviations the search has to be re-
peated several times using different keywords. Because of the lack of integration,
duplicates of the same questions are frequently asked on different information
channels. Although some user generated data contains structured information it
is not available to the user. For example, a developer is not able to see who are
the developers who in the past modified a particular method or class. Such func-
tionality can be crucial in identifying who could be responsible for and therefore
fix a particular bug. For large communities such as KDE or Eclipse, the amount
of generated content can also be a problem. When hundreds of posts and bugs

97

are reported each day it is time consuming for a user to sweep though the content
and find the relevant information.

In order to alleviate such problems we developed a system called ALERT
that will be described in the rest of the paper. We will start by describing the
system architecture, followed by main features of the system and finish with a
conclusion.

2 System architecture

In order to integrate information from different information sources we developed
a set of sensors that are able to detect whenever new information is available in
the source. Our sensors can import data from five different types of sources: bug
tracking systems (BTS), mailing lists, forums, source code management systems
(SCM) and wikis. For each data source we collect all available information. In
case of a bug report, for example, we obtain the title and description of a bug as
well as the author name, time, the assigned product and component information,
status and resolution of the bug, etc. In case of a code commit we collect the
comment of the commit, time and author as well as extract all the methods
modified in the commit.

Since all information sources provide some user generated text we first send it
to a text enrichment component that annotates the text using a custom built An-
notation ontology. The ontology has 6,196 distinct concepts that contain 10,233
labels related to computer science. The details of ontology construction are de-
scribed in [1]. After annotating the text we store the information from the sensors
together with the annotations in a knowledge base.

After new data is stored, two components are notified about the change: the
Recommendation service and the Event detector. The Recommendation service
is responsible creating and maintaining an expertise profile for each user. The
profile consists of code expertise (based on the methods created or modified by
the user) and of topics expertise (based on the content the user is writing about).
The Event detector is responsible for detecting if the new data matches any of the
patterns that users provided as their interests. If it matches, then corresponding
users are notified that new information relevant for them has been posted. Addi-
tional component of the ALERT system is also the search/visualization service
which provides an interface for the user to query the knowledge base.

3 Core features of the ALERT system

Advanced search and visualization functionality
ALERT system provides an intuitive user interface (see Figure 1) where the

user can find information by specifying a rich set of search conditions. The most
commonly used is the keyword search. Using the Annotation ontology, the system
is able to expand the search terms with their synonyms. In this way, searching
for term ”dialog” also returns posts containing terms ”window” or ”form”. In
the additional input box the user can specify constraints such as the author

98

Fig. 1. Screenshot of the search interface of ALERT system.

of the post, the product/component of the bug report, id of the bug report or
the file/class/method name. The user can also uncheck individual sources if he
wishes to ignore results from them and also set a specific time period of interest.

Search results are displayed in a list where each item contains the author, date
and a short snippet of text. Selecting an item displays its full details on the right.
Clicking an issue, for example, displays its available meta data, the description
and all following comments. Clicking a commit, on the other hand, displays
the tree of files, classes and methods modified in the commit. Results are also
visualized and summarized using three visualizations based on the research done
in [2]. The social graph shows a network of people involved in the results. There
is an edge between two persons in the graph if one is responding to the others
post (e.g., one person sends an email to the other). The timeline visualization
shows the distribution of results over time. This allows one to quickly identify
interesting patterns, such as very high/low activity. The last visualization is a
tag cloud that provides a keyword summary of results.
Recommending open issues to developers

When bug reports are created, a stack trace with a detailed exception in-
formation is frequently provided. The trace contains names of the methods in
the call path where the exception occurred. Since we are monitoring the source
code developed in the project (using SCM sensors) we are able to automatically
identify references of the known methods. By taking into account also the infor-
mation about who changed individual methods, we can then suggest developers
who can most likely fix a particular issue.

A developer can be recommended even in cases when no stack trace is pro-
vided. In such cases we can recommend developers based on the topics discussed
in the bug report. For each developer we store a profile based on the content
he wrote about. When we need a recommendation for a report we can suggest
developers whose profile matches best with the content of the report.
Bug duplicate detection

99

A common problem on issue tracking systems is that users unknowingly cre-
ate duplicates of the same issue. A bug triager needs to determine if a new report
is describing a new issue or is a duplicate, before he can assign a developer to
fix it. Since this is an error prone and time consuming task we wanted to make
it easier. Given a bug report, the ALERT system can provide the user with a
ranked list of other most content-wise similar bug reports. The similarity is com-
puted using cosine similarity on bug reports represented as TF-IDF normalized
vectors. Our experiments indicate that 60% of bug duplicates can be identified
already by checking only the first 5 most similar reports.
Custom notifications

ALERT system allows the users to define custom patterns of interest and
when they occur, the users are notified about it by an email or in a notification
window inside the system. The user can, for example, choose to be notified when
a post with X, Y or Z topic is published in some information channel, when
more than X new bugs are reported in Y days, when the person X creates a new
post, when a new bug is more than X% similar to an existing bug, etc. Using
such notifications the user does not have to manually check for new relevant
information – instead the content is automatically ”pushed” to him.

4 Conclusion

In this paper we presented a system called ALERT whose goal is to help soft-
ware developing communities. The system collects data from various informa-
tion channels used by the community, extracts available information from it and
stores it in a knowledge base. Using the stored data, the system can provide the
users with advanced functionalities, such as semantic search and visualization
over all information sources, bug recommendation, bug duplicate detection and
custom notifications. The developed system was tested in three open source com-
munities (KDE, Linagora OW2 and Morfeo project) that provided very positive
feedback. The demo of the system containing KDE data is currently running at
http://aidemo.ijs.si/alert/.

5 Acknowledgements

This work was supported by the Slovenian Research Agency and ALERT (ICT-
249119-STREP).

References

1. G. Leban, L. Dali, and I. Novalija. Enabling semantic search in open source com-
munities. In Proceedings of ESWC 2012, Heraklion, Crete, Greece, 2012.

2. L. Stopar and G. Leban. Searching for information in software development projects
using ALERT system. In Proceedings of the 15th International Multiconference on
Information Society IS-2012, 2012.

100

Editing R2RML Mappings Made Easy.

Kunal Sengupta1,2?, Peter Haase1, Michael Schmidt1, and Pascal Hitzler2

1 fluid Operations AG, Walldorf, Germany
2 Wright State University, Dayton OH 45435, USA

Abstract. The new W3C standard R2RML3 defines a language for ex-
pressing mappings from relational databases to RDF, allowing applica-
tions built on top of the W3C Semantic Technology stack to seamlessly
integrate relational data. A major obstacle in using R2RML, though, is
the creation and maintenance of mappings. In this demo, we present a
novel R2RML mapping editor which provides a user interface to create
and edit mappings interactively even for non-experts.

1 Introduction

The RDB to RDF mapping language (R2RML) has recently become a W3C
standard for creating mappings from relational databases to RDF. This enables
many semantic web applications to integrate easily with relational databases.
Although very useful, we observe certain problems with the adoption of the new
standard: (1) creating R2RML rules manually is a time consuming process, (2)
even simple rules could be syntactically heavy in terms of usage of the R2RML
vocabulary, and (3) a steep learning curve is involved in gaining expertise of this
new language. With these issues in mind, we have developed an R2RML mapping
editor that provides an intuitive interface to the users to create, edit and manage
R2RML mappings. The editor is fully integrated into the Information Workbench
[1], an Open Source platform for Linked Data application development.

2 R2RML by Example

A mapping rule in this language is referred to as a TriplesMap. Example 1
illustrates an R2RML mapping rule in Turtle4 syntax. The R2RML mapping in
this example has three components: The predicate rr:logicalTable points to
a structure selecting a table, view, or SQL query from the relational database
that is mapped into RDF; in this example, a custom SQL query is used to
retrieve the columns id, gid and length from the table recording. The predicate
rr:subjectMap points to a structure defining how rows from the logical table
query results are transformed into possibly typed, subjects; in the example, we
create subjects by instantiating the specified rr:template with the values from

? Work performed while at fluid Operations.
3 See: http://www.w3.org/TR/r2rml/
4 See http://www.w3.org/TR/turtle/.

101

http://www.w3.org/TR/turtle/

the {gid} column, and specify mo:recording as the type of these subjects.
The predicate rr:predicateObjectMap points to a structure defining property-
value pairs for the subjects defined by the rr:subjectMap; in the example, for
every subject we create a property mo:duration, pointing to a literal created by
column length of the source database.

Example 1.

rr:logicalTable
[rr:sqlQuery

"""SELECT id, gid, length FROM musicbrainz.recording
WHERE musicbrainz.recording.length IS NOT NULL"""]

rr:subjectMap
[rr:class mo:recording ;
rr:template "http://musicbrainz.org/artist/{gid}\#_"]

rr:predicateObjectMap
[rr:objectMap

[rr:column "length" ;
rr:datatype <http://www.w3.org/2001/XMLSchema\#float>] ;

rr:predicate mo:duration].

As can be seen from the example, the syntax to denote the mapping is rather
convoluted and requires deep technical knowledge of R2RML, its language con-
structs, syntactic details (such as quotation), and the R2RML vocabulary itself.

3 The Mapping Editor

The editor that we have developed in order to overcome these technicalities fea-
tures an intuitive user interface which hides the R2RML vocabulary details from
the user, provides access to relational metadata of the relational database for
which the mappings are to be created, provides instant feedback where, at each
step, the user has the option to preview the triples that would result from the
mapping that is being created, and supports most of R2RML vocabulary except
rr:graph, which we plan to include as we continuously evolve the editor. In the
following we briefly describe the various steps of the editor’s wizard workflow.
Step 1 Datasource, Base URI Selection. The first step in the wizard lets the

user choose the datasource for which mappings shall be defined, i.e. by
design the editor supports the maintenance of mappings over multiple
relational data sources. As part of the datasource selection, the user may
also choose a base URI for URI construction templates specified in the
upcoming steps.

Step 2 R2RML Rule Selection. After datasource selection, the editor loads
and displays previously saved mappings for the datasource. At this point
the user may choose to edit an existing rule or add a new one. The editor
also provides a filter using which the mappings could be looked up based
on involved table names, concept names and property names.

Step 3 Logical Table Selection. In this step, the editor provides various op-
tions to choose a logical table. The logical table could be a database
table, view or a custom SQL query written by the user. If the option to
add a database table is selected, all the tables from the database schema

102

are displayed. Options to preview the table’s data and metadata are also
available. On the other hand, if the option of SQL query is chosen then
an SQL editor is shown where the user can type SQL queries and preview
the results.

Step 4 Subject Map Creation. Once a logical table has been selected, the
editor guides the user to a subject template creation step. By the click
of a button, the user can carry over columns that should be used to
generate the template. Additionally, classes (i.e., types) can be added to
the subject by using the auto-complete field rdf:type, which displays all
the classes that are present in the system. The editor is flexible enough
such that multiple classes can be added. At this stage a preview of the
generated triples can be accessed as well. This provides feedback to the
user such that they can adjust the values in order to obtain the intended
results.

Step 5 Predicate-Object Maps Creation. After the subject map creation,
predicate-object maps can be added to the mapping. Again, the editor
provides flexibility for adding as many predicate-object pairs as needed.
Additionally, for object maps all types of terms defined in R2RML are
supported, namely constant terms, column values, templates, and ob-
ject references. The object reference option lets the user choose from the
previously defined mappings. Furthermore, on choosing the appropriate
rule the child and parent columns are prepopulated from the correspond-
ing logical tables. Again, multiple join conditions can be added through
the interface. The preview triples option is also available at this stage,
again providing the user with valuable feedback. Fig. 1 depicts the screen
corresponding to this step.

Step 6 Textual Representation. Finally, an intuitive textual representation
of the mapping rule is displayed. At this point the user could go back to
any previous step to modify the mapping or otherwise save the mapping.

The demo video: https://www.youtube.com/watch?v=PfP2wmWw9-o is avail-
able online, the video includes a very brief introduction to R2RML and moti-
vation for an editor to create R2RML mappings. The remainder of the demon-
stration shows a use case of mapping MusicBrainz5 database tables to the Music
ontology.6 In particular, we demonstrate two example mappings, where each step
of the mapping creation process is explained and special features of the editor
are highlighted.

Although tools like Karma [2], Ontop [3], Topbraid Composer7, and Neon
Toolkit8 can be used for mapping relational and other datasources to RDF,
the editor presented here provides the following advantages (1) It is the first
editor to fully support R2RML mappings, (2) The preview feature is unique
as the users get instant feedback and can modify the mappings iteratively, (3)

5 MusicBrainz: https://wiki.musicbrainz.org/Next Generation Schema
6 Music ontology: http://musicontology.com
7 See http://www.topquadrant.com/products/TB_Composer.html
8 See http://neon-toolkit.org/wiki/Main_Page

103

https://www.youtube.com/watch?v=PfP2wmWw9-o
http://www.topquadrant.com/products/TB_Composer.html
http://neon-toolkit.org/wiki/Main_Page

Fig. 1. Screen for adding predicate-object maps

It provides easy management of R2RML mappings, (4) It provides a search
utility, where users can find mappings based on table names, concept names and
property names. Apart from these advantages, we are going to further improve
the editor by adding features like automatic mapping suggestions and on click
default mapping [4] generation.

References

1. Hartig, O., Harth, A., Sequeda, J. (eds.): Proceedings of the Second International
Workshop on Consuming Linked Data (COLD2011), Bonn, Germany, October 23,
2011, CEUR Workshop Proceedings, vol. 782. CEUR-WS.org (2011)

2. Knoblock, C.A., Szekely, P.A., Ambite, J.L., Goel, A., Gupta, S., Lerman, K.,
Muslea, M., Taheriyan, M., Mallick, P.: Semi-automatically mapping structured
sources into the semantic web. In: Simperl, E., Cimiano, P., Polleres, A., Corcho,
Ó., Presutti, V. (eds.) The Semantic Web: Research and Applications - 9th Extended
Semantic Web Conference, ESWC 2012, Heraklion, Crete, Greece, May 27-31, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7295, pp. 375–390. Springer
(2012)

3. Rodriguez-Muro, M., Calvanese, D.: -ontop- framework (2012), http://obda.inf.
unibz.it/protege-plugin/

4. Sequeda, J., Arenas, M., Miranker, D.P.: On directly mapping relational databases
to RDF and OWL. In: Mille, A., Gandon, F.L., Misselis, J., Rabinovich, M., Staab,
S. (eds.) Proceedings of the 21st World Wide Web Conference 2012, WWW 2012,
Lyon, France, April 16-20, 2012. pp. 649–658. ACM (2012)

104

http://obda.inf.unibz.it/protege-plugin/
http://obda.inf.unibz.it/protege-plugin/

TRT - A Tripleset Recommendation Tool

Alexander Arturo Mera Caraballo1, Bernardo Pereira Nunes1, Giseli Rabello
Lopes1, Luiz André P. Paes Leme2, Marco A. Casanova1, Stefan Dietze3

1 Department of Informatics, PUC-Rio, Rio de Janeiro/RJ – Brazil
{acaraballo,bnunes,grlopes,casanova}@inf.puc-rio.br

2 Computer Science Institute, Fluminense Federal University, Niterói/RJ – Brazil
{lapaesleme}@ic.uff.br

3 L3S Research Center, Leibniz University Hannover, Germany
{dietze}@l3s.de

Abstract. According to the Linked Data principles, a tripleset should
be interlinked with others to take advantage of existing knowledge. How-
ever, interlinking is a laborious task. Thus, users interlink their triple-
sets mostly with data hubs, such as DBpedia and Freebase, ignoring the
more specific yet often even more promising triplesets. To alleviate this
problem, this paper describes a tripleset interlinking recommendation tool
based on link prediction techniques and evaluates the tool on a real-world
tripleset repository.

Key words: Linked Data, Recommender Systems, Social Networks

1 Introduction

A considerable number of triplesets, following the Linked Data principles, have
already been published in a large number of areas, ranging from geographic
to bibliographic data. This growth makes it difficult to choose which triplesets
should be interlinked with a given tripleset. Thus, users interlink their triple-
sets mostly with data hubs, such as DBpedia and Freebase, ignoring the more
specific triplesets which often contain particularly useful data. Furthermore, the
metadata provided in data repositories such as the DataHub are typically not
sufficient to help users choose the most suitable triplesets to interlink with.

To help alleviate this situation, we describe a tool for tripleset interlink-
ing recommendation, based on previous work by the authors [1, 2]. More pre-
cisely, the tool addresses the tripleset recommendation problem, defined as fol-
lows: Given a tripleset t and a set of triplesets S, rank the triplesets in S based
on the probability of interlinking t with them.

2 TRT - The Tripleset Recommendation Tool

Recommendation Procedure. A tripleset t is a set of RDF triples. A re-
source, identified by an RDF URI reference s, is defined in t iff s occurs as the
subject of a triple in t.

105

Table 1: Local and quasi-local indices

Indice
Equation

Type Name

Local indices

Common Neighbors CNt,u = |Ct ∩ Cu|
Salton Saltont,u = |Ct∩Cu|√

C′
t.C

′
u

Jaccard Jaccardt,u = |Ct∩Cu|
|Ct∪Cu|

Sørensen Sørensent,u = 2.|Ct∩Cu|
C′

t+C′
u

Hub Promoted index HPIt,u = |Ct∩Cu|
min{C′

t,C
′
u}

Hub Depressed index HDIt,u = |Ct∩Cu|
max{C′

t,C
′
u}

Leicht-Holme-Newman LHNt,u = |Ct∩Cu|
C′

t.C
′
u

Preferencial Attachment PAt,u = C′
t.C

′
u

Adamic-Adar AAt,u =
∑

w∈Ct∩Cu

1

log |C′
w|

Resource Allocation RAt,u =
∑

w∈Ct∩Cu

1

|C′
w|

Quasi-local indices
Local Path LPt,u = A2 + εA3

Local Random Walk LRWt,u(s) =
C′

t
2|C| .πt,u(s) +

C′
u

2|C| .πu,t(s)

Let t and u be two triplesets. A link from t to u is a triple of the form (s, p, o),
where s is an RDF URI reference identifying a resource defined in t and o is an
RDF URI reference identifying a resource defined in u; we also say that (s, p, o),
interlinks s and o. We say that t can be interlinked with u iff it is possible to
define links from t to u. A Linked Data network is a graph G = (S,C) such that
S is a set of triplesets and C contains an edge (t, u), called a connection from t
to u, iff there is at least one link from t to u.

Our recommendation procedure analyses the Linked Data network in much
the same way as a Social Network. The inputs of the procedure are: (i) a Linked
Data network G = (S,C); (ii) a target tripleset t not in S (intuitively the user
wishes to define links from t to the triplesets in S); and (iii) a target context Ct

for t consisting of one or more triplesets u in S (intuitively the user knows that
t can be interlinked with u). The output is an order list L of triplesets in S,
called a ranking. The triplesets in the ranking are ordered using link prediction
techniques discussed in what follows.

Link prediction techniques. The procedure uses link prediction theory to
estimate the likelihood of the existence of a link between triplesets. We focus
on local and quasi-local indices to measure the structural similarity between
triplesets [3] according to their link structure. Table 1 summarizes the indices
the procedure implements, where:

106

– Ci is the context of i (triplesets that i points to), where i a specific tripleset;
– C ′

i is the inverse context of i (triplesets that point to i), where i a specific
tripleset;

– Aj is the number of different paths with length j connecting t and u;
– ε is a free parameter;
– πt,u(s) is the probability that a random walker starting on t locates u after
s steps;

– C is the set of all edges of the Linked Data network G.

Description of the TRT Tool in Action. Briefly, suppose that the user is
working on a tripleset t and wants to discover one or more triplesets u such that
t can be interlinked with u. He then uses the tool to obtain recommendations.

The tool first builds the Linked Data network G = (S,C) defined by the
metadata stored in the DataHub repository.

Then, the user defines the rest of the input data the tool requires. He may
define a target context Ct for t, consisting of one or more triplesets in S, in two
different ways: (i) by providing a VoID descriptor Vt for t from which the tool
extracts Ct by analysing the void:linkset declarations occuring in Vt; or (ii) by
manually selecting triplesets from the categories the tool displays. Finally, the
user chooses a similarity index from those shown on Table 1.

From this input data, the tool outputs a ranked list of triplesets, thereby
helping reduce the effort required to find related triplesets for the interlinking
process.

The tool can be accessed at http://web.ccead.puc-rio.br:8080/Uncover/.

3 Evaluation

The tool was evaluated using the DataHub repository, which contains more than
6,000 triplesets, with approximately 15 thousand links that connect only 711
of the available triplesets. The links across triplesets were used to rank and
recommend triplesets for interlinking. The recommendation process was assessed
using the 10-fold cross validation approach, where we randomly divided the
observed links into 10 subsets used as recommendation subgraphs. Finally, the
overall performance was computed in terms of the average of the performances
in the testing partitions.

To evaluate the prediction indices, we used three standard metrics: Area Un-
der the receiver operating characteristic Curve (AUC), Mean Average Precision
(MAP) and Recall. Table 2 summarizes the results for different target context
sizes (shown in the first column of the table). The entries corresponding to the
highest results among the 12 indices are emphasized in boldface underlined. The
reader may observe that the PA index achieved the highest AUC (ranging from
83.74% to 95.90% depending on the target context size). The PA index also
obtained the best MAP (37.83%) for target contexts with very few triplesets,
while the RA index turned out to be more precise (72.42%) for larger target
contexts. Table 2 also shows the coverage results. The PA index obtained the
highest recall (96.4%), regardless of the size of the target context.

107

Table 2: AUC, MAP and Recall of the local and quasi-local indices

AUC CN Salton Jaccard Sørensen HPI HDI LHN PA AA RA LP LRW

1 70.52 47.79 69.84 69.28 48.94 69.31 48.00 83.74 71.31 70.53 70.74 69.67
5 87.10 55.73 81.20 80.93 58.78 80.17 52.24 90.76 88.45 88.02 92.70 83.21
10 92.42 57.14 85.06 84.85 60.84 83.79 52.87 92.81 92.37 92.40 92.25 86.69
20 92.77 58.47 88.34 88.30 59.45 86.54 51.39 94.33 92.53 92.64 92.76 88.22
50 92.84 59.10 92.96 92.99 56.27 92.09 52.30 95.90 92.17 92.72 91.91 90.26

MAP CN Salton Jaccard Sørensen HPI HDI LHN PA AA RA LP LRW

1 18.17 14.49 16.30 14.73 17.08 15.00 14.80 37.83 18.06 17.80 18.46 15.57
5 49.48 25.07 21.80 20.36 35.14 19.20 18.38 48.26 52.20 51.48 58.23 26.05

10 63.49 30.99 30.40 28.71 41.81 24.41 19.44 52.62 63.43 63.71 62.63 31.91
20 71.20 34.22 44.37 43.56 38.14 34.14 17.90 53.97 71.46 72.38 70.59 34.66
50 71.13 27.73 69.49 70.55 20.64 66.14 15.92 47.30 70.99 72.42 67.51 39.03

Recall CN Salton Jaccard Sørensen HPI HDI LHN PA AA RA LP LRW

1 48.72 49.69 49.86 49.76 49.68 49.55 50.02 96.40 50.81 48.74 48.81 49.12
5 81.45 83.80 82.69 83.03 83.68 82.23 82.43 98.45 83.63 82.83 86.90 82.42
10 89.52 88.73 89.42 89.29 89.35 89.85 89.17 98.74 89.49 89.28 88.96 89.21
20 90.03 90.31 89.68 89.18 89.12 89.53 89.19 99.80 89.50 89.58 89.84 90.01
50 90.05 90.16 90.15 90.21 90.04 89.38 88.45 99.56 89.06 89.58 89.02 89.71

4 Conclusions

In this paper, we proposed the use of link prediction techniques to address the
tripleset recommendation problem in the Linked Data domain and presented a
tool that implements the techniques. The tool computes local and quasi-local
indices to predict links between triplesets. The results showed that the tool
performs better, with respect to both AUC and recall, when the PA index is
adopted. In terms of MAP, the PA index should be adopted for smaller context
sizes, while the RA index should be adopted for larger context sizes.

Acknowledgments. This work was partly supported by CNPq, under grants
160326/2012-5, 301497/2006-0, 475717/2011-2 and 57128/2009-9, by FAPERJ,
under grants E-26/170028/2008 and E-26/103.070/2011.

References

1. Leme, L.A.P.P., Lopes, G.R., Nunes, B.P., Casanova, M.A., Dietze, S.: Identifying
candidate datasets for data interlinking. In Daniel, F., Dolog, P., Li, Q., eds.: ICWE.
Volume 7977 of Lecture Notes in Computer Science., Springer (2013) 354–366

2. Lopes, G.R., Leme, L.A.P.P., Nunes, B.P., Casanova, M.A., Dietze, S.: Recom-
mending tripleset interlinking through a social network approach. In: Proceedings
of WISE’13. (2013 (to appear))

3. Lü, L., Jin, C.H., Zhou, T.: Similarity index based on local paths for link prediction
of complex networks. Physical Review E 80(4) (2009) 046122

108

KbQAS: A Knowledge-based QA System

Dat Quoc Nguyen, Dai Quoc Nguyen, and Son Bao Pham

Faculty of Information Technology
University of Engineering and Technology

Vietnam National University, Hanoi
{datnq, dainq, sonpb}@vnu.edu.vn

Abstract We present the first ontology-based Vietnamese QA system KbQAS
where a new knowledge acquisition approach for analyzing English and Viet-
namese questions is integrated.

1 Introduction
Recent years have witnessed a new trend of building ontology-based question answer-
ing (QA) systems to make the use of semantic information in terms of semantic web.
This demo paper introduces a knowledge-based QA system named KbQAS, the first
ontology-based QA system for Vietnamese. The target domain is modeled as an ontol-
ogy in our KbQAS system to leverage techniques and latest advances in the semantic
web. Thus semantic markups can be used to add meta-information to provide more pre-
cise answers to complex questions expressed in natural language. This is an avenue that
has not been actively explored for Vietnamese.

2 System overview
The architecture of our KbQAS system as shown in figure 1 contains a question analysis
component where a new knowledge acquisition approach to systematically build knowl-
edge bases of grammar rules for processing natural language questions over semantic
annotations is integrated. The question analysis component takes the user question as an
input and returns an intermediate element representing the question in a compact form.
The answer retrieval component is responsible for making sense of the user query with
respect to a target ontology using concept-matching techniques for a natural language
phrase and elements in the ontology. It takes an intermediate representation produced
by the question analysis component and an ontology as its input to generate answers.

Illustrative example. For demonstration1 purpose, we exploit an ontology modeling
the organizational structure of an university as referred in our first KbQAS version [1].

Consider the complex structure question of “Liệt kê tất cả sinh viên học lớp K50
khoa học máy tính mà có quê ở Hà Nội?” (“List all students studying in K50 com-
puter science course, who have hometown in Hanoi?”): the Question analysis com-
ponent determines that this question has a query structure of type “And” and two
query-tuples (Normal, List, sinh viênstudent, họcstudy , lớp K50 khoa học máy tínhK50

computer science course, ?2) and (Normal, List, sinh viênstudent, có quêhas hometown,
Hà NộiHanoi, ?).

Query-tuples are then mapped to ontology-tuples by the Ontology mapping module
in the Answer retrieval component: (sinh_viênstudent, họcstudy, lớp_K50_khoa_học_

1 KbQAS available in http://cntt.dyndns.info:8856/KbQAS/
Vietnamese question analysis demonstration at http://cntt.dyndns.info:8856/KbVnQA/
English question analysis demonstration available in http://cntt.dyndns.info:8856/KbEnQA/

2 ? indicates the missing element.

109

máy_tínhK50_computer_science_course) and (sinh_viênstudent, có_quêhas_hometown, Hà_
NộiHanoi). With each ontology-tuple, the Answer extraction module finds all satisfied
instances in the target ontology before generating an answer presented in the figure 1
based on the question structure “And” and the question class “List”.

Figure 1: The system’s architecture and illustrations of question analysis and question answering.

Intermediate representation of question. The intermediate representation used in
our KbQAS system consists of a question-structure and one or more query-tuples in the
following format: (sub-structure, question-class, Term1, Relation, Term2, Term3).
Simple questions only have one query-tuple and its question-structure is the query-
tuple’s sub-structure. More complex questions such as composite questions have sev-
eral sub-questions, each sub-question is represented by a separate query-tuple, and the
question-structure is to capture this composition attribute.

Question analysis component. The question analysis component contains three mod-
ules: preprocessing, syntactic analysis and semantic analysis. It makes the use of JAPE
grammars in GATE framework [2] to specify regular expression patterns based on se-
mantic annotations for question analysis. The preprocessing and syntactic modules are
responsible for identifying noun phrases, question-phrases, and the relations among
noun phrases or between noun phrase and question-phrase in the input questions. The
semantic analysis module embodies the key innovation in the current KbQAS version.
This semantic module utilizes the noun phrase, question-phrase and relation annotations
created by the two preceding modules. It aims to specify the question-structure and to
produce the query-tuples as the intermediate representation of the input question.

In the current semantic analysis module, we propose a new knowledge acquisi-
tion approach for analyzing natural language questions by applying Single Classifi-
cation Ripple Down Rules (SCRDR) methodology [3] to acquire rules incrementally.
A SCRDR knowledge base, where grammar rules over semantic annotations are struc-
tured in an exception structure and new rules are only added to correct errors of existing
rules, is built to generate the intermediate representations of questions. This process is
to create rules in a systematic manner to solve difficulties which appear in such most
existing rule-based question analysis approaches as in Aqualog system [4] and the first
KbQAS version [1] in managing the interaction between rules and keeping consistency
among them. Moreover, our proposed approach enables ones to easily construct a new

110

system or adapt an existing system to a new domain or a new language, thus a lot of time
and effort of human experts can be saved. The experimental evaluation of our method
for English and Vietnamese question analyses is detailed in our previous work [5].

Answer retrieval component. The detail description of this component can be found
in the first KbQAS version [1]. In short, the task of its Ontology mapping module
is to map terms and relations in the query-tuples to concepts, instances and relations
in the target ontology. Then the Answer extraction module finds all instances associ-
ated to mapped instances and concepts, satisfying ontology relations. Depending on the
question-structure and question-class, the best semantic answer will be returned.

Evaluation. The performance of the current KbQAS on a wide range of different Viet-
namese questions is promising with accuracies of 84.1% and 82.4% accounted for the
question analysis and answer retrieval components, respectively.

3 Demonstration: knowledge acquisition for question analysis
In this section, we only illustrate the process of systematically constructing a SCRDR
knowledge base for analyzing English questions3. In demonstration session, however,
we plan to present other illustrations of building English and Vietnamese knowledge
bases for question analysis, and to provide other illustrative examples of the KbQAS.

The following exemplification shows how the knowledge base building process
works. When we encounter the question “who are the researchers in semantic web re-
search area ?” ([QuestionPhrase: who] [Relation: are the researchers in] [NounPhrase:
semantic web research area]). Supposed we start with an empty knowledge base, the
fired rule (i.e. last satisfied rule) is the default rule4 that gives empty conclusion. This
can be corrected by adding the following exception rule to the knowledge base:

Rule: R1
(({QuestionPhrase}):QPhrase ({Relation}):Rel ({NounPhrase}):NPhrase):left
99K :left.RDR1_ = {category1 = “UnknTerm”}
, :QPhrase.RDR1_QP = {} , :Rel.RDR1_Rel = {} , :NPhrase.RDR1_NP = {}
Conclusion: question-structure “UnknTerm” and query-tuple (RDR1_.category1,

RDR1_QP.QuestionPhrase.category, ?, RDR1_Rel, RDR1_NP, ?).
If the condition of rule R1 matches whole input question, a new annotation RDR1_

will be created to entirely cover the input question and new annotations RDR1_QP,
RDR1_Rel and RDR1_NP will also be generated for covering sub-phrases of the in-
put question. Once rule R1 is fired, the matched input question is deemed to have a
query-tuple with sub-structure taking the value of the feature “category1” of RDR1_
annotation, question-class taking the value of the feature “category” of QuestionPhrase
annotation surrounding the same span as RDR1_QP annotation. Besides, the query-
tuple’s Relation is the string covered by RDR1_Rel, Term2 is the string surrounded by
RDR1_NP while Term1 and Term3 are missing.

3 We utilized JAPE grammars employed in AquaLog [4] for detecting the noun-phrase, question-
phrase, and relation annotations in English questions. We also reused question-class definitions
and took question examples of Aqualog for building the SCRDR knowledge base.

4 A rule is composed of a condition part and a conclusion part. A condition is a regular ex-
pression pattern over semantic annotations using JAPE grammars. The conclusion contains
the question structure and the tuples corresponding to the intermediate representation where
each element in the tuple is specified by a newly posted annotations from matching the rule’s
condition. The default rule typically contains a trivial condition which is always satisfied.

111

Using rule R1, the knowledge base returns a correct intermediate representation
of question-structure “UnknTerm” and query-tuple (UnknTerm, QU-who-what, ?, re-
searchers, semantic web research area, ?) for the encountered question.

When it comes to the question “How many researchers work on AKT project?”
([RDR1_: [RDR1_QP: how many researchers] [RDR1_Rel: work on] [RDR1_NP: AKT
project]]), rule R1 is the fired rule. However, rule R1 gives a wrong conclusion of
question-structure “UnknTerm” and query-tuple (UnknTerm, QU-howmany, ?, work,
AKT project, ?). We can add the following exception rule R4 to correct the conclusion
of rule R1 by using constrains via an additional condition:

Rule: R4
({RDR1_}):left 99K :left.RDR4_ = {category1 = “Normal”}
Condition: RDR1_QP.hasAnno == QuestionPhrase.kind == ListWhichHMany
Conclusion: question-structure “Normal” and query-tuple (RDR4_.category1,

RDR1_QP.QuestionPhrase.category, RDR1_QP, RDR1_Rel, RDR1_NP, ?).
The additional condition of rule R4 matches a RDR1_QP annotation which has

a QuestionPhrase annotation covering their substring with “ListWhichHMany” as the
value of its feature kind. The extra annotation constraint hasAnno requires that the text
covered by the annotation (e.g. RDR1_QP) must contain the specified annotation (e.g.
QuestionPhrase). Rule R4 generates the correct output consisting of question-structure
“Normal” and query-tuple (Normal, QU-howmany, researchers, work, AKT project, ?).

Turning to the question “which projects are about ontologies and the semantic
web?” ([RDR4_: [RDR1_QP: which projects] [RDR1_Rel: are about] [RDR1_NP: on-
tologies]] [And: and] [NounPhrase: the semantic web]), it is satisfied by rule R4, never-
theless rule R4 results to an incorrect intermediate representation as RDR4_ annotation
only covers a part of the question. The following exception rule R37 is added to rectify
the conclusion of the rule R4:

Rule: R37
({RDR4_}{And}({NounPhrase}):NPhrase):left
99K :left.RDR37_ = {category1 = “UnknRel”, category2 = “UnknRel”}
, :NPhrase.RDR37_NP = {}
Condition: RDR1_Rel.hasAnno == Relation.category == Rel-Auxiliary
Conclusion: question-structure “And” and two query-tuples (RDR37_.category1,

RDR1_QP.QuestionPhrase.category, RDR1_QP, ?, RDR1_NP, ?) and (RDR37_.category2,
RDR1_QP.QuestionPhrase.category, RDR1_QP, ?, RDR37_NP, ?).

Rule R37 enables to return a correct intermediate representation for the question
with question-structure “And” and query-tuples (UnknRel, QU-whichClass, projects, ?,
ontologies, ?) and (UnknRel, QU-whichClass, projects, ?, semantic web, ?).

References
1. Nguyen, D.Q., Nguyen, D.Q., Pham, S.B.: A Vietnamese Question Answering System. In:

Proc. of KSE’09, IEEE CS (2009) 26–32
2. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphi-

cal Development Environment for Robust NLP Tools and Applications. In: Proc. of ACL’02
3. Richards, D.: Two decades of ripple down rules research. Knowledge Engineering Review

24(2) (2009) 159–184
4. Lopez, V., Uren, V., Motta, E., Pasin, M.: AquaLog: An ontology-driven question answering

system for organizational semantic intranets. Web Semantics 5(2) (2007) 72–105
5. Nguyen, D.Q., Nguyen, D.Q., Pham, S.B.: Systematic Knowledge Acquisition for Question

Analysis. In: Proc. of RANLP 2011. (September 2011) 406–412

112

Generating structured Profiles of
Linked Data Graphs

Besnik Fetahu1, Stefan Dietze1, Bernardo Pereira Nunes1,3, Davide Taibi2 and
Marco Antonio Casanova3

1 L3S Research Center, Leibniz University Hanover, Germany
{fetahu, nunes, dietze}@L3S.de

2 Italian National Research Council, Institute for Educational Technologies, Italy
davide.taibi@itd.cnr.it

3 Department of Informatics - PUC-Rio - Rio de Janeiro, RJ - Brazil
{bnunes, casanova}@inf.puc-rio.br

Abstract. While there exists an increasingly large number of Linked
Data, metadata about the content covered by individual datasets is
sparse. In this paper, we introduce a processing pipeline to automati-
cally assess, annotate and index available linked datasets. Given a min-
imal description of a dataset from the DataHub, the process produces
a structured RDF-based description that includes information about its
main topics. Additionally, the generated descriptions embed datasets into
an interlinked graph of datasets based on shared topic vocabularies. We
adopt and integrate techniques for Named Entity Recognition and auto-
mated data validation, providing a consistent workflow for dataset pro-
filing and annotation. Finally, we validate the results obtained with our
tool.

Keywords: Linked Data, Annotation, Datasets, Metadata

1 Introduction

The emergence of the Web of Data, in particularly Linked Data [1], has led to
a vast amount of data being available on the Web. The DataHub1, which serves
as the central registry for open Web data, currently contains over 6000 datasets,
338 of which are (at the time of writing) part of the Linked Open Data group2.

While datasets are highly heterogeneous with respect to represented resource
types, currentness, quality or topic coverage, only brief and insufficient struc-
tured information about datasets are available. In the case of DataHub, only
simple tags, few structured metadata about the size, endpoints or used schemas
and a brief textual descriptions are available. This causes significant problems
for data consumers (e.g. educational service providers or developers) to identify
useful and trust-worthy data for different scenarios.

Nevertheless, earlier works address related issues [2, 3], such as schema align-
ment and extraction of shared resource annotations across datasets. However,
they do not yet facilitate the extraction of reliable dataset metadata with respect

1 http://www.datahub.io
2 http://datahub.io/group/lodcloud

113

to represented topics. In order to address these limitations, we present an ap-
proach that automatically and incrementally indexes datasets by interlinking and
annotating arbitrary datasets with relevant topics in the form of DBpedia entities
and categories. By incrementally computing topic relevance scores for individual
datasets, we gradually create a knowledge base of dataset meta-information. To
improve scalability the process exploits representative sample sets of resources.
Moreover, to ensure high annotation accuracy a semi-automated evaluation ap-
proach is proposed.

2 Semi-Automatic Dataset Annotation

Our dataset profiling platform automatically extracts top-ranked topic annota-
tions (DBpedia categories) and captures these together with a relevance score for
each dataset description. All dataset descriptions are captured using the VoID
schema3.

2.1 Entity Recognition

The analysis of sampled resources for a set of datasets consists of an an-
notation process using Named Entity Recognition (NER) and disambigua-
tion tools (DBpedia Spotlight4). From each resource we extract the textual
content assigned to the following properties: {rdfs:label, rdfs:comment,
teach:courseTitle, teach:courseDescription, skos:prefLabel, dcterms:
description, dcterms:alternative, dcterms:title, bibo:abstract, bibo:
body, cnrb:titolo, cnrd:descrizione, foaf:name, rdf:value}; and perform
contextual, that is resource-wise, NER. This establishes a common descriptive
layer of top-ranked entities for each dataset extracted from DBpedia.

As the NER process can pose a bottleneck, we introduce an incremental an-
notation extraction process to alleviate this issue. This process avoids annotating
resources similar to previously annotated ones by reusing already obtained an-
notations. Thus, for a predefined threshold similarity τ , from a pool of existing
annotations A, we assign an annotation to a resource if the similarity (resource-
annotation) computed by the Jaccard’s index is above threshold τ :

∀a ∈ A : J(r, a) =
|r ∩ a|
|r ∪ a|

(1)

where a ∈ A represents already extracted annotations, while r is a resource
instance which is analysed using the incremental annotation process.

2.2 Category Annotation

From the extracted annotations (DBpedia entities) A, we analyse the set of as-
signed categories for each annotation. Such information is extracted from the
DBpedia graph via the property dcterms:subject representing the topic cov-
ered by an entity. Furthermore, we leverage the hierarchical category organisa-
tion (as defined by SKOS schema: skos:broader and skos:related) assigned
to entities within DBpedia.

3 http://www.w3.org/TR/void/
4 http://spotlight.dbpedia.org

114

However, such information extracted about categories is only useful when
ranked according to their relevance for each dataset. Hence, we compute a nor-
malised relevance score for each category assigned to a dataset by taking into
(i) entities assigned to a category intra- and inter-datasets; and (ii) number of
entities assigned to a dataset and over all datasets, see Equation 2:

score(t) =
Φ(t,D)

Φ(·, D)
+
Φ(t, ·)
Φ(·, ·)

, ∀t ∈ T ∧D ∈ D (2)

where Φ(·, ·) represents the number of entities associated with a topic t and for
a dataset D, in case of void arguments, it outputs the number of entities in a
dataset or over all datasets.

2.3 Automated Annotation Validation & Filtering Approach

Validation and filtering of extracted annotations is necessary, due to noise inher-
ited from NER&NED results. The approach we propose for filtering out noisy
annotations takes into account the contextual support given for an annotation
from the resource instance it is extracted from. Therefore, we compute a confi-
dence score which measures the similarity between an annotation and a resource
using Jaccard’s index similar to Equation 1, based on values extracted from
properties dbpedia-owl:abstract and rdfs:comment, and the set of analysed
properties listed in Section 2.1, respectively.

Whereas, in the validation phase we consider only entities that have a confi-
dence score above some pre-define threshold and use human evaluators to assess
the relevance of an extracted annotation with respect to the resource context.

3 Results and Evaluation

Our current implementation focuses on educationally relevant datasets as col-
lected in a dedicated group on the DataHub5 from which we selected a subset of
17 datasets based on their accessibility. Our topic annotation used representative,
randomly selected samples of resources from each datasets, with approximately
100 instances for each resource type. Steps included NER, category extraction
and threshold-based filtering using our relevance & confidence scores.

From the extracted categories based on the resulting annotations, we incorpo-
rated only the top-50 categories being the most representative ones for a dataset
based on the computed normalised-score. Results obtained from this processing
are stored as part of a VoID6-based dataset catalog currently being provided as
part of the LinkedUp project7; a catalogue providing access to such extensive
information can be accessed under the following url8.

The evaluation of annotation accuracy was measured based on two datasets:
(a) annotation accuracy without any filtering (see Section 2.3); and (b) anno-
tation accuracy after filtering, where only annotations with scores above some

5 http://datahub.io/groups/linkededucation
6 http://www.w3.org/TR/void/
7 http://www.linkedup-project.eu
8 http://data.linkededucation.org

115

threshold (in our case ≥ 0.15) are considered. The accuracy was measured for
1000 extracted annotations, picked randomly from A. For (a) the accuracy was
71%, whereas for (b) after filtering annotations below threshold τ ≥ 0.15. We
observed an increase in accuracy of almost +10%.

Our demo application9 focuses mainly on representation, profiling and search
functionalities of the analysed datasets based on the structured descriptions. Fig-
ure 1 shows a screenshot of the exploratory search functionality of datasets using
extracted annotations and categories. The user interface provides the following:
– Exploratory search of datasets based on extracted annotations & categories
– Interlinking of datasets based on most representative categories
– List of ranked categories for each dataset

Fig. 1. Screenshot of the profiling of Linked Data demo, with an example category
interlinking different datasets shown on the right hand side panel.

4 Future Work

Our current processing pipeline is able to extract topic annotations for arbitrary
Linked Data with only minimal manual intervention. Having applied it to a small
subset of available datasets, our future work aims at the automatic profiling of all
available LOD datasets, towards providing a more descriptive catalog of Linked
Datasets.
Acknowledgements. This work was partly funded by the LinkedUp (GA
No:317620) and DURAARK (GA No:600908) projects under the FP7 pro-
gramme of the European Commission.

References

1. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst., 5(3):1–22, 2009.

2. M. d’Aquin, A. Adamou, and S. Dietze. Assessing the educational linked data
landscape. In WebSci, pages 43–46. ACM, 2013.

3. D. Taibi, B. Fetahu, and S. Dietze. Towards integration of web data into a coherent
educational data graph. In WWW (Companion Volume), pages 419–424, 2013.

9 http://l3s.de/~fetahu/iswc_demo/

116

ActiveRaUL: A Web form-based User Interface to
create and maintain RDF data

Anila Sahar Butt1,2, Armin Haller1, Shepherd Liu1, and Lexing Xie2

1 CSIRO ICT Centre, firstname.lastname@csiro.au
2 Australian National University, firstname.lastname@anu.edu.au

Abstract. With the advent of Linked Data the amount of automatically
generated machine-readable data on the Web, often obtained by means of
mapping relational data to RDF, has risen significantly. However, manually
created, quality-assured and crowd-sourced data based on ontologies is not
available in the quantities that would realise the full potential of the semantic
Web. One of the barriers for semantic Web novices to create machine-readable
data, is the lack of easy-to-use Web publishing tools that separate the schema
modelling from the data creation. In this demonstration we present ActiveR-
aUL, a Web service that supports the automatic generation of Web form-
based user interfaces from any input ontology. The resulting Web forms are
unique in supporting users, inexperienced in semantic Web technologies, to
create and maintain RDF data modelled according to an ontology. We re-
port on a use case based on the Sensor Network Ontology that supports the
viability of our approach.

1 Introduction

The tools of choice for creating quality-assured ontology instances (the so-called
ABox) are still ontology editors such as WebProtégé [4]. However, creating the ABox
in an ontology editor requires some degree of understanding of RDF(s) and OWL
since the user has to define to which class an individual belongs to and what are
the permissible relationships between individuals. To address this issue, some Web
publishing tools on top of Wikis, Microblogs or Content Management systems have
been developed (e.g. the work discussed in [1], [5] and [3]) that allow a user to exclu-
sively create ontology instances. However, they are mostly developed for a specific
domain (i.e. specific ontologies) and often do not strictly follow OWL semantics and
consequently allow the creation of a logically inconsistent ABox.

In this demonstration we will showcase ActiveRaUL [6], a Web service that op-
erates on a model defined according to the RDFa User Interface Language (RaUL)3

that consists of two parts, [1.] a form model describing the structure of a Web form
with different types of form controls, such as Textboxes, Radiobuttons, Listboxes etc.,
and their associated operations (CREATE, READ, UPDATE or DELETE) and [2.] a data
model defining the structure of the exchanged data as RDF statements which are ref-
erenced from the form model via a data binding mechanism. The ActiveRaUL Web
service also provides functionality to automatically generate a Web form-based user
interface according to the RaUL ontology from arbitrary ontologies. We argue that
the resulting user interfaces are easier-to-use for a semantic Web novice to create

3 See http://purl.org/NET/raul#

117

ontology individuals, and result in more accurate ontology instances than creating
them through traditional ontology engineering tools. We validated this hypothesis in
a user study comparing our system with a state-of-the-art ontology modelling tool.

2 Demonstrating the ActiveRaUL Web service

System Output

xsd:String

Platform

Deployment

Survival
Property

Survival
Range

Deployment
Process Part

DatatypeProperty

Single-length property

Multi-length property
Graph cycle
TransitiveProperty
InverseProperty

Dynamic
Group

ButtonTextbox Group

Group

Group

Button

Page

Dynamic
Group

Textbox

Textbox

Textbox

System Output

xsd:String

Platform

Deployment

Survival
Property

Survival
Range

Deployment
Process Part

Multi-length Property Transitive Property

Graph cycleSingle-length Property Inverse Property

Datatype Property

1

Dynamic
Group

ButtonTextbox Group

Group

Group

Button

Page

Dynamic
Group

Textbox

Textbox

Textbox

1

2

2

3

3

4

4

5

51
IgnoredInAlgorithm

6

ssn:hasSubsystem

ssn:hasOutput

DUL:hasDataValue

ss
n:

at
ta

ch
ed

Sy
st

em

ssn:hasDeploymentssn:deployedO
nP

latform

ssn:deployedSystem

ssn:hasS
urvivalR

ange

ssn:hasSurvivalProperty

ssn:deploym
entP

rocessP
art

hasSubsystem

hasOutput

DUL:hasDataValue

at
ta

ch
ed

Sys
te

m

hasDeploymentdeployedO
nP

latform

deployedSystem

hasS
urvivalR

ange

hasSurvivalProperty

deploym
entP

rocessP
art

Fig. 1. Sub-graph structure for the System class in the SSN ontology

To relieve a Web developer from manually defining a Web form model according
to the RaUL ontology, we have extended the ActiveRaUL service with a deployment
endpoint that upon invocation generates RaUL Web forms from an arbitrary user
submitted ontology. The biggest challenge in automatically creating such Web forms
from an ontology is the mismatch between the graph nature of RDF and the tree
structure of a Web form. In the algorithm implemented in ActiveRaUL we distin-
guish six different types of sub-graphs occurring in ontologies and introduce decision
controls to map these sub-graphs to useable web forms. We will demonstrate these
different types of mapping on a use-case based on the the Semantic Sensor Network
(SSN) ontology that can be used to describe the capabilities of sensors, the measure-
ment processes used and the resultant observations. Figure 1 shows the “System”
class of the SSN ontology and its relations to other classes, whereas Figure 2 shows
a screenshot of a generated Web form by ActiveRaUL of the “System” class. The
numbers 1–6 in both figures indicate the six different types of sub-graphs we distin-
guish in the algorithm (see Figure 1) and how they are displayed in the Web form
(see Figure 2).

118

Fig. 2. Screenshot of ActiveRaUL generated Web form for the ssn:System class

3 Evaluation

We compared ActiveRaUL to the widely used state-of-the-art ontology editing tool,
WebProtégé. The demonstration deployment of ActiveRaUL set up for the user study
already pre-loading the SSN ontology is available at: http://www.activeraul.org/
demo/index.html From the university deployment example defined by the SSN
working group we extracted three test cases, each with a number of tasks. We asked
users to model these test cases in WebProtégé and ActiveRaUL. For evaluating the
two systems we considered three usability metrics, (1) the effectiveness of the sys-
tem in supporting the user to complete the task measured by the accuracy of the
resulting models; (2) the efficiency of the users in using the system measured by the
time they spent on completing a task and (3) a user’s subjective reactions using the
system measured by the widely-used System Usability Scale (SUS) [2]. In the follow-
ing we briefly outline the results of our user study. These results are based on the
performance and feedback of twelve participants: five of which, based on their self-
assessment, were categorised into the semantics experienced user group, and seven
categorised into the semantics inexperienced user group.

119

Table 1. Overall accuracy in completing test cases in WebProtégé and ActiveRaUL

WebProtégé ActiveRaUL

Exp. Users 82.05% 91.03%
Inexp. Users 76.92% 87.91%

All Users 82.05% 91.03%

Accuracy: Table 1 shows the overall accuracy over the three test cases which shows
that the participants performed better in ActiveRaUL, managing to create 91%
correct triples compared to 82% in WebProtégé. For ActiveRaUL, the accuracy of the
participants was already very high in the first test case, even though no participant
has ever used the system before. This confirms our hypothesis that a Web form-
based user interface is familiar enough to computer literate users to create RDF data
correctly, even if the participants are inexperienced in semantic Web technologies.

Table 2. Average times (mm:ss) to complete test cases in WebProtégé and ActiveRaUL

Test Case 1 Test Case 2 Test Case 3
WebProtégé ActiveRaUL WebProtégé ActiveRaUL WebProtégé ActiveRaUL

Exp. Users 3:46 1:50 5:13 1:50 10:24 4:01
Inexp. Users 4:05 2:17 5:23 1:29 11:26 4:08

All Users 3:57 2:05 5:19 1:38 11:00 4:05

Efficiency: Table 2 shows the average times participants required to complete a
test case. Both participant groups, inexperienced and experienced, were significantly
faster (between 27% and 56% faster) completing the test cases in ActiveRaUL com-
pared to WebProtégé.
Usability: After completion of the three test cases in both systems we asked the
participants to rate their subjective reactions on the usability of the systems on
a five-point Likert scale as required by the SUS methodology. SUS yields a single
number representing a composite measure of the usability of a system with scores
in the range from 0 to 100, 100 being the best score. Overall ActiveRaUL scored
72.1 out of 100 points compared with 32.5 for WebProtégé, indicating that the
participants found ActiveRaUL easier to use than WebProtégé for the creation of
ontology instances.

Concluding, our user study proved that ActiveRaUL is indeed easier, more effec-
tive and more efficient to use for the creation of RDF data than the state-of-the-art
ontology editing tool.

References
1. J. Baumeister, J. Reutelshoefer, F. Puppe. KnowWE: a Semantic Wiki for knowledge

engineering. Applied Intelligence, 35:323–344, 2011.
2. J. Brooke. SUS - A quick and dirty usability scale. In P. W. Jordan, B. Thomas, B. A.

Weermeester, A. L. McClelland, editors, Usability Evaluation in Industry. Taylor and
Francis, London, 1996.

3. S. Corlosquet, R. Delbru, T. Clark, A. Polleres, S. Decker. Produce and Consume Linked
Data with Drupal! In Proceedings of ISWC, pages 763–778, 2009.

4. T. Tudorache, C. Nyulas, N. F. Noy, M. A. Musen. WebProtégé: A Collaborative On-
tology Editor and Knowledge Acquisition Tool for the Web. Semantic Web 4(1), 2013.

5. A. Passant, J. G. Breslin, S. Decker. Open, distributed and semantic microblogging with
smob. In Proceedings of ICWE 2010, pages 494–497, 2010.

6. A. Haller, T. Groza, and F. Rosenberg. Interacting with Linked Data via Semantically
Annotated Widgets. In Proceedings of JIST, pages 300–317, 2011.

120

XLore: A Large-scale English-Chinese
Bilingual Knowledge Graph

Zhigang Wang†, Juanzi Li†, Zhichun Wang‡, Shuangjie Li†, Mingyang Li†,
Dongsheng Zhang†, Yao Shi†, Yongbin Liu†, Peng Zhang†, and Jie Tang†

† DCST, Tsinghua University, P.R. China
{wzhigang, ljz, lsj, lmy, zds, sy, lyb, zp,

tangjie}@keg.cs.tsinghua.edu.cn
‡ CIST, Beijing Normal University, P.R. China

zcwang@bnu.edu.cn

Abstract. Current Wikipedia-based multilingual knowledge bases still
suffer the following problems: (i) the scarcity of non-English knowledge,
(ii) the noise in the semantic relations and (iii) the limited coverage of
equivalent cross-lingual entities. In this demo, we present a large-scale
bilingual knowledge graph named XLore, which has adequately solved
the above problems.

1 Introduction

Multilingual knowledge bases are important for the globalization of knowledge
sharing. Knowledge bases such as DBpedia1, YAGO2, and BabelNet3 are main-
ly built upon the multilingual Wikipedia. Some problems are to be addressed:
(i) The imbalanced sizes of different Wikipedia language versions lead to the
highly imbalanced knowledge distribution in different languages. Knowledge en-
coded in non-English languages is much less than those in English. (ii) The
inconsistency of the large category system in Wikipedia causes incorrect seman-
tic relations between concepts that are defined based on categories. For exam-
ple, “Wikipedia-books-on-people is the subCategoryOf People” will lead to the
wrong “Wikipedia-books-on-people is subClassOf People” in DBpedia’s SKOS
schema. (iii) Integrated by directly using cross-lingual links in Wikipedia, the
amount of integrated multilingual knowledge totally depends on these existing
cross-lingual links.

In this demo, we present an English-Chinese bilingual knowledge graph named
XLore to adequately solve the above problems. We use much larger heteroge-
nous online wikis to enrich the Chinese knowledge, utilize a classification-based
method to correctly semantify the wikis’ category systems, and employ a cross-
lingual knowledge linking approach to find new cross-lingual links between enti-
ties. Besides, we use a cross-lingual structured knowledge extraction method to
enrich the semantic relations.
1 http://dbpedia.org/
2 http://www.mpi-inf.mpg.de/yago-naga/yago/
3 http://lcl.uniroma1.it/babelnet/

121

To the best of our knowledge, XLore is the first large-scale cross-lingual
knowledge graph with balanced amount of Chinese-English knowledge. XLore
gives a new way for building such a knowledge graph across any two languages.

2 Approach

As shown in Figure 1, the building of XLore contains three stages: (1) Data
Preprocessing : First we collect and clean the data sets from four online wikis,
namely English Wikipedia, Chinese Wikipedia, Baidu Baike and Hudong Baike.
(2) Knowledge Graph Building : Next, we learn the cross-lingual ontology as
follows: semantify the online wikis to predict correct semantic relations, conduct
cross-lingual knowledge linking to integrate the heterogenous wikis together,
and extract the structured knowledge to enrich more relations in the graph.
(3) Knowledge Query : Finally, we construct an online system for knowledge
acquisition.

Fig. 1. Overview

Semantifying Online Wikis To semantify the online wikis, we are to pre-
dict the correct subClassOf and instanceOf relations between two entities.
We view both the correct subClassOf and the instanceOf relations as is-a

relations. Table 1 shows some examples about the semantic relations.

Table 1. Examples of Semantic Relations

Entity 1 Relation Entity 2 Right or Wrong

European Microstates instanceOf Microstates Right

European Microstates instanceOf Europe Wrong

教育人物(Educational Person) subClassOf 人物(Person) Right

教育人物(Educational Person) subClassOf 教育(Education) Wrong

122

Formally, we learn two series of functions g1 (for English) and g2 (for Chi-
nese) to predict the probabilities to be an is-a relation between two entities.
We define some literal and structural features and train the Logistic Regres-
sion models. The most important features are the head words’ singular/plural
forms of English entities and the substring relationship between the labels of
Chinese entities. By iteratively expanding the training data sets, both the func-
tions achieve over 90.48% F1-score. To keep the semantic relatedness, we treat
the incorrect relations as the subTopicOf relations and import these relations
into the RDF database too.

Cross-lingual Knowledge Linking via Concept Annotation To inte-
grate the knowledge in different languages, we proposed learning based approach-
es for linking equivalent entities in different languages [1][2]. Several features are
defined based on the link structures in wikis to assess the similarities between
two different entities. Then learning models are trained based on the already
known cross-lingual links in Wikipedia, which afterward predict new equivalen-
t entity pairs. In order to find desired number of new cross-lingual links, we
use concept annotation to enrich the inner links within wikis, which improves
the knowledge linking approach considerably. The knowledge linking process as
a whole can execute iteratively, resulting in large number of new cross-lingual
links.

Cross-lingual Structured Knowledge Extraction To enrich kinds of
relations in XLore, we apply our cross-lingual knowledge extraction framework
named WikiCiKE to complete the missing infoboxes [3]. WikiCiKE is based on
the hypothesis: one can use the rich auxiliary (e.g. English) information to as-
sist the target (e.g. Chinese) infobox extraction. We treat this task as a transfer
learning-based binary classification problem. Given an attribute in the target wi-
ki, WikiCiKE automatically generates the cross-lingual training data and learns
the extractor using TrAdaBoost model. Finally, WikiCiKE uses the learned ex-
tractor to extract the missing value from the unstructured article texts. Our
experiments in [3] demonstrate that WikiCiKE significantly outperforms the
monolingual knowledge extraction method and the translation-based method.

3 XLore System

We construct a unified knowledge graph in the form of RDF and use the Open-
Link Virtuoso server4 for systematical data management. Using the proposed
approach, XLore harvests 856,146 classes , 71,596 properties and 7,854,301 in-
stances across English and Chinese. Figure 2 gives a brief statistics the number
of linked entities from different online wikis.

We also deploy an online system to illustrate our XLore. As shown in Figure 3,
the system supports the keyword-based or SPARQL queries, gives the statistical
information, offers visualization demonstrations, etc. A live demonstration of the
system can be found at http://www.youtube.com/watch?v=QKA-RYFfztA. We
invite the readers to try our XLore prototype at http://xlore.org.

4 http://virtuoso.openlinksw.com/

123

(a) Number of Linked Concepts (b) Number of Linked Instances

Fig. 2. Statistics of the Linked Entities.

Fig. 3. Interface of XLore System

References

1. Wang, Z., Li, J., Wang, Z., Tang, J.: Cross-lingual knowledge linking across wiki
knowledge bases. WWW’12

2. Wang, Z., Li, J., Tang, J.: Boosting cross-lingual knowledge linking via concept
annotation. IJCAI’13

3. Wang, Z., Li, Z., Li, J., Tang, J., Z.Pan, J.: Transfer learning based cross-lingual
knowledge extraction for wikipedia. ACL’13

124

Git2PROV: Exposing Version Control System
Content as W3C PROV

Tom De Nies1, Sara Magliacane2, Ruben Verborgh1, Sam Coppens1, Paul
Groth2, Erik Mannens1, and Rik Van de Walle1

1 Ghent University - iMinds - Multimedia Lab
{tom.denies,ruben.verborgh,sam.coppens,

erik.mannens, rik.vandewalle}@ugent.be
2 VU University Amsterdam

{s.magliacane,p.t.groth}@vu.nl

Abstract. Data provenance is defined as information about entities,
activities and people producing or modifying a piece of data. On the Web,
the interchange of standardized provenance of (linked) data is an essential
step towards establishing trust [2]. One mechanism to track (part of) the
provenance of data, is through the use of version control systems (VCS),
such as Git. These systems are widely used to facilitate collaboration
primarily for both code and data. Here, we describe a system to expose
the provenance stored in VCS in a new standard Web-native format:
W3C PROV [4]. This enables the easy publication of VCS provenance
on the Web and subsequent integration with other systems that make
use of PROV. The system is exposed as a RESTful Web service, which
allows integration into user-friendly tools, such as browser plugins.

1 Introduction

Version control systems (VCS) have a long history in computing. The first such
system was the Source Code Control System, developed in 1972 [10]. Nowadays,
VCS are widely popular and becoming more so with the advent of cloud-based
services, such as Github3 and Bitbucket4, that both simplify the management
of the VCS and expose their information through Web interfaces. For example,
Github has over 3 million users and maintains over 6 million repositories.5

Versioning of data is an aspect of provenance: information about entities, ac-
tivities and people producing or modifying a piece of data. Provenance is critical
in contexts ranging from scientific reproducibility to journalism. Furthermore, a
number of sub-disciplines of computer science, including databases, distributed
systems and the Web have been addressing issues related to provenance [8].
Provenance is particularly important to the Semantic Web community because

3 http://www.github.com
4 http://www.bitbucket.com
5 See http://thenextweb.com/insider/2013/04/11/code-sharing-site-github-turns-five-

and-hits-3-5-million-users-6-million-repositories/

125

of the need to ascertain the trust of data originating from multiple interlinked
sources [5]. Because of the importance of provenance to the Web, the W3C pro-
duced the PROV recommendations for the interchange of provenance on the
Web [4]. PROV was recently released and already has over 60 implementations
and is in use by several Linked Data datasets.

Thus, the aim of the system described in this paper is to enable the prove-
nance within VCS to be exposed in a Web-native and interoperable format. This
provenance can then be consumed by other PROV enabled tools. Indeed, given
that the software used to create many Linked Data sets is available through
public version control systems6, we believe that the tool can be used to enrich
the provenance of many of these datasets.

The rest of this paper is organized as follows. We briefly discuss related work
and present a mapping from the Git version control system to PROV. This
is followed by a description of the implementation and demonstration of our
system. In particular, our demo illustrates how the resulting information can be
consumed by other PROV enabled systems. The demonstration (live and video)
is available at the following URI: http://git2prov.org.

2 Related work

This paper is part of a greater effort to create more interoperability among
different platforms that track provenance information, by mapping them to a
standard interlingua such as [4]. Two relevant examples are the Dublin Core
Mapping to PROV [1], and the mapping of the revision history of Wikipedia to
OPM (an ancestor of PROV) [9].

Currently, the most commonly used VCS is Git, an example of a distributed
version control system. Due to brevity we will omit a detailed explanation of
Git, and refer to [6] for an overview.

3 A Mapping from VCS to PROV

Our mapping, shown in Fig. 1, was created by identifying whether the data could
represent information from one or more broad classes of provenance information.
The three classes we used are identified below. For each class, we describe how
provenance can be expressed using concepts from the PROV Data Model [7].

– Dependency - a dependency between two objects expressed as the rela-
tionship between two prov:Entity objects using prov:wasDerivedFrom and
prov:specializationOf , e.g. a file fc was derived from another previous file
fc−1, both are a specialization of a certain file f ;

– Activities - a process expressed as a prov:Activity that connects two prov:Entity
objects, expressed through prov:used and prov:wasGeneratedBy relations,
e.g. a commit c uses a file fc−1 and generates a file fc;

6 e.g. https://github.com/dbpedia or https://github.com/jimmccusker/

twc-healthdata

126

Fig. 1. Mapping of Git operations to PROV concepts. Note that the Activity Start and
End concepts of PROV are not depicted, and correspond to, respectively, the author
time and the commit time of each commit.

– Attribution - attribution information expressed as the prov:Agent that cre-
ated the Entity using the prov:wasAttributedTo and prov:wasAssociatedWith
relations, modeling the two potentially distinct roles of a author and a com-
mitter.

These classes reflect the three use-case perspectives on provenance identified by
the W3C Provenance Primer [3]: object-oriented, process-oriented and agent-
oriented.

4 Implementation

Because we want our conversion tool to be as flexible as possible, we chose
to build a RESTful git2prov Web Service for this purpose, using the Node.js7

framework. The service is available at the following URI: http://git2prov.

org/git2prov?gituri=<your_git_uri>.
The only required input for this service is a URL giturl that refers to a git

repository. In this first proof-of-concept implementation, only openly accessible
repositories are supported. However, adding support for secure repositories is
part of our future work. In addition to giturl, the service accepts a number of
optional parameters, with the default value in bold:

serialization (possible values: [PROV-N, PROV-O, PROV-JSON, PROV-
XML]) This parameter is used to specify the desired PROV serialization.

shortHashes (possible values: [false, true]) This parameter forces the service
to use the short commit hash in the exported provenance, to increase read-
ability for human users

7 http://nodejs.org

127

ignore (possible values: a provenance relation) This parameter is used to filter
the specified relation from the converted provenance.

Note that each provenance document generated by the git2prov service includes
a link to the complete document (without any restricting parameters).

Upon receiving a request, the service clones the git repository to a temporary
location, and performs a git log command on it. The output of this log is then
mapped to PROV as described in Sect. 3, and written to the HTTP response
in the requested serialization. To demonstrate our service, we wrote a small
web application, available at http://git2prov.org. A video is also available at
http://vimeo.com/70980809.

5 Conclusions and Future Work

We believe that systems such as Git2PROV have the potential to become an im-
portant enabler of the widespread interchange of standardized provenance. With
our proof-of-concept implementation, we have shown that it is certainly feasible
to build a lightweight RESTful Web service to convert versioning systems into
PROV. In future work, we aim to improve our work by including more semantic
annotations in combination with the provenance to allow further reasoning over
it, with the prospect of deriving trust assessments.

Acknowledgements These research activities were funded by Ghent Univer-
sity, iMinds, the IWT Flanders, the FWO-Flanders, and the European Union, as
well as the Data2Semantics project in the Dutch national program COMMIT.

References

[1] Daniel Garijo, K.E.: Dublin core to prov mapping - w3c working group note
[2] De Nies, T., Coppens, S., Verborgh, R., Vander Sande, M., Mannens, E., Van de

Walle, R., Michaelides, D., Moreau, L.: Easy Access to Provenance: an Essential
Step Towards Trust on the Web. In: METHOD 2013, Kyoto, Japan (2013)

[3] Gil, Y., Miles, S., et al.: PROV Model Primer. W3C Working Group Note (2013)
[4] Groth, P., Moreau, L.: PROV-Overview: An Overview of the PROV Family of

Documents. W3C Working Group Note (2013)
[5] Groth, P., Gil, Y.: Editorial - using provenance in the semantic web. Web Se-

mantics: Science, Services and Agents on the World Wide Web 9(2) (2011),
http://www.websemanticsjournal.org/index.php/ps/article/view/196

[6] Loeliger, J.: Version Control with Git: Powerful Tools and Techniques for Collab-
orative Software Development. O’Reilly Media, Inc. (2009)

[7] Moreau, L., Missier, P., (Eds.) et al: PROV-DM: The PROV Data Model. W3C
Recommendation (2013)

[8] Moreau, L.: The foundations for provenance on the web. Foundations and Trends
in Web Science 2(2–3), 99–241 (2010)

[9] Orlandi, F., Passant, A.: Modelling provenance of DBpedia resources using
wikipedia contributions. Web Semantics pp. 149 – 164 (2011)

[10] Rochkind, M.J.: The source code control system. Software Engineering, IEEE
Transactions on (4), 364–370 (1975)

128

Publishing Data from the Smithsonian American
Art Museum as Linked Open Data?

Craig A. Knoblock1, Pedro Szekely1, Shubham Gupta1, Animesh Manglik1,
Ruben Verborgh2, Fengyu Yang3, and Rik Van de Walle2

1 University of Southern California
Information Sciences Institute and Department of Computer Science, USA

2 Multimedia Lab – Ghent University – iMinds, Belgium
3 Nanchang Hangkong University, Nanchang, China

{knoblock,pszekely,shubhamg}@isi.edu, manglik@usc.edu,
{ruben.verborgh,rik.vandewalle}@ugent.be, frueyang@gmail.com

Abstract. Museums around the world have built databases with meta-
data about millions of objects, the people who created them, and the
entities they represent. This data is stored in proprietary databases and
is not readily available for use. Recently, museums embraced the Seman-
tic Web as a means to make this data available to the world, but the
experience so far shows that publishing museum data to the Linked Data
cloud is difficult: the databases are large and complex, the information is
richly structured and varies from museum to museum, and it is difficult
to link the data to other datasets. We have been collaborating with the
Smithsonian American Art Museum to create a set of tools that allow
museums and other cultural heritage institutions to publish their data as
Linked Open Data. In this demonstration we show the end-to-end process
of starting with the original source data, modeling the data with respect
to a ontology of cultural heritage data, linking the data to DBpedia, and
then publishing the information as Linked Data.

Recently there have been a number of efforts to publish metadata about the
objects in museums as Linked Open Data (LOD). Some notable efforts include
the Euopeana project [2], which published data on 1,500 of Europe’s museums,
libraries, and archives, the Amsterdam Museum [1], which published data on
73,000 objects, and the LODAC Museum [4], which published data from 114
museums in Japan. Despite the many recent efforts, there are still significant
challenges in publishing data about artwork to the Linked Data cloud. In par-
ticular, the past work requires a user to manually convert their data into RDF
and there has been almost no work on actually linking the cultural heritage data
across sources. The contributions of this work are that we developed a very quick
and efficient method for mapping museum data to a cultural heritage ontology
and we created tools for linking and validating the links to other sources [5].
? This research was funded by the Smithsonian American Art Museum. A demonstra-

tion video is available at: http://youtu.be/1Vaytr09H1w

129

Fig. 1. Source data from the Smithsonian

Datasets. In this demonstration we will use datasets extracted from Smithso-
nian American Art Museum collection management database. Figure 1 shows a
sample of raw data about artists. One of the challenges in mapping this partic-
ular table to RDF is that the meaning of each row is encoded in the last column
of the table, which shows whether the data specifies the place of birth, place of
death, or an associated place. Each row must be mapped to a different property
in the ontology.

Mapping the Data to RDF. The first step in the process is to model the
raw data using an ontology of cultural heritage data. We developed a tool called
Karma [3], which semi-automatically builds a semantic description of a data
source using machine learning techniques. Karma makes it possible to quickly
model the dataset shown in Figure 1. The resulting model, shown in Figure 2,
illustrates several capabilities needed for real datasets, such as customizing the
URL generation and generating different properties for different rows in a table.
After modeling the data, users can ask Karma to publish the model as R2RML
and publish the data as RDF.

Linking to External Datasets. Once the RDF is published, the next step
is to link the information about entities, including artists and locations, to the
corresponding entities in other sources. In particular we link artists to people in
DBpedia and locations to the corresponding locations in Geonames. The name
fields of the artists, possibly augmented with other identifying information such
as birth year, is sent to a reconciliation service that has a fuzzy index of DB-
pedia information. Figure 3 shows a user invoking the reconciliation service on
the Person class, and it shows the resulting links and scores for each match to
DBpedia. The interface also allows a user to verify each of the links and to drill
down into the individual data sources to determine whether the links are correct.

Publishing the Linked Data Once the links have been verified, the informa-
tion is then published and made available as Linked Open Data. We created a
user-friendly version of Pubby4 that describes the content and shows the images

4 http://wifo5-03.informatik.uni-mannheim.de/pubby/

130

Fig. 2. Source model interactively generated using Karma

Fig. 3. Screen shot of the interface for linking the museum data to DBPedia

and labels directly on the page to make the resulting linked data more readable.
Figure 4 shows a screen shot of the published data from the same data source
shown in Figure 1.

Using the Linked Data Once the linking is complete, the Linked Data can also
be used to augment other sources of data. In our project with the Smithsonian,
they found that one use of the Linked Data is to augment their current Web
pages with the additional information available from Wikipedia and the New
York Times, which follows directly from the linking of their data about artists

131

Our Linked Data
on the Smithsonian

Web site

Fig. 4. Linked data viewed in a user-friendly version of Pubby and page of the Smith-
sonian Web site that includes the Linked Data

to DBpedia. Figure 4 shows screen shots of our user friendly version of Pubby
and the Smithsonian American Art Museum’s Web site with the additional links
generated directly from the Linked Data that we produced for them. The Linked
Data can also be used to curate the Smithsonian’s own database, create virtual
online museums, or create new applications that build on the Linked Data.

References
1. Boer, V., Wielemaker, J., Gent, J., Hildebrand, M., Isaac, A., Ossenbruggen, J.,

Schreiber, G.: Supporting Linked Data Production for Cultural Heritage Institutes:
The Amsterdam Museum Case Study. Lecture Notes in Computer Science, pp. 733–
747. Springer Berlin Heidelberg (2012).

2. Haslhofer, B., Isaac, A.: The Europeana Linked Open Data Pilot. Proceedings of the
International Conference on Dublin Core and Metadata Applications, (2011)

3. Knoblock, C., Szekely, P., Ambite, J.L., Goel, A., Gupta, S., Lerman, K., Muslea,
M., Taheriyan, M., Mallick, P.: Semi-Automatically Mapping Structured Sources
into the Semantic Web. Proceedings of the 9th Extended Semantic Web Conference
(2012)

4. Matsumura, F., Kobayashi, I., Kato, F., Kamura, T., Ohmukai, I., Takeda, H.:
Producing and Consuming Linked Open Data on Art with a Local Community.
Proceedings of the Third International Workshop on Consuming Linked Data (2012)

5. Szekely, P., Knoblock, C.A., Yang, F., Zhu, X., Fink, E., Allen, R., Goodlander,
G.: Connecting the Smithsonian American Art Museum to the Linked Data Cloud.
Proceedings of the 10th Extended Semantic Web Conference (2013)

132

GRAPHIUM: Visualizing Performance of Graph and
RDF Engines on Linked Data

Alejandro Flores, Guillermo Palma, Maria-Esther Vidal, Domingo De Abreu, Valeria
Pestana, José Piñero, Jonathan Queipo, José Sánchez

Universidad Simón Bolı́var, Caracas, Venezuela
{aflores,gpalma,mvidal,dabreu,vpestana,jpinero,jqueipo,jsanchez}@ldc.usb.ve

Abstract. We present GRAPHIUM a tool to visualize trends and patterns in the
performance of existing graph and RDF engines. We will demonstrate GRAPHIUM
and attendees will be able to observe and analyze the performance exhibited by
Neo4j, DEX, HypergraphDB and RDF-3x when core graph-based and mining
tasks are run against a variety of benchmarks of graphs of diverse characteristics.

1 Introduction

Graphs are commonly used to represent linked data, and several efficient algorithms
have been proposed to consume and mine graphs. For example, Saha et al. [8] and
Thor et al. [9] have defined densest subgraphs and graph summarization techniques
to mine linked datasets and identify patterns between concepts and links. Further, al-
gorithms for pattern matching, graph traversal, and graph reachability have been ex-
tensively studied in the literature [1]. The majority of these algorithms are computa-
tionally complex, and rely on main-memory structures to efficiently solve core graph
tasks. Additionally, different engines have been developed to manage, store and query
graph databases (e.g., Neo4j [7], DEX [4], HypergraphDB [2], RDF-3x [6]). Each graph
database engine implements particular structures and usually relies on indices to speed
up execution time; additionally, some engines make available APIs comprised of meth-
ods to solve core graph-based tasks. Although existing graph and RDF engines could
be used to store linked data, mined and consumed by existing graph algorithms, there
is no clear understanding of how these algorithms may behave on these engines. We
present GRAPHIUM a visualization tool that exploits different graphical representa-
tions to report on the results of evaluating Neo4j, DEX, HypergraphDB and RDF-3x
on a variety of benchmarks of graphs and graph-based tasks. Visualization techniques
used in GRAPHIUM facilitate the understanding of trends and patterns between the
performance exhibited by these engines during the execution of tasks of reachabil-
ity, traversal, adjacency, pattern matching, densest graph, and graph summarization on
a variety of graphs of different density and size. During the demonstration attendees
will go through the visualization of different patterns that will allow them to uncover
the properties and limitations of existing graph engines, as well as to reach conclu-
sions about which engine is more appropriate for a given task. Demo is available at
http://graphium.ldc.usb.ve/demo/.

2 The GRAPHIUM architecture

GRAPHIUM is built on top of a catalog that keeps experimental results collected dur-
ing the evaluation of existing graph database and RDF engines against a variety of

133

benchmarks. GRAPHIUM exploits visualization services implemented by the D3.js
JavaScript library1. Figure 1 shows GRAPHIUM GUI. In the area enclosed in red rect-
angle number 1, a user can select to analyze: i) a particular graph, e.g., the dense graph
DSJC1000.9; ii) an engine, e.g., Neo4j, DEX; and iii) a particular task, e.g., reach-
ability. Results are visualized in the area enclosed by the blue rectangle number 2;
GRAPHIUM exploits visualization capabilities of the Parallel Coordinates2 to illus-
trate patterns and trends in the performance of each engine.

Fig. 1. The GRAPHIUM GUI for Neo4j, DEX, HypergraphDB and RDF-3x. 1-Selection Area:
Graphs, GDBMs, Tasks, and Metrics can be selected. 2-Visualization Area: visualization ranges
and scales can be chosen; explanation of how create and remove visualization ranges is presented.

3 Demonstration of Use Cases
We consider a benchmark of six graphs: DSJC1000.1, DSJC1000.5, DSJC1000.9,
USA-road-d.NY, USA-road-d.FLA, and Berlin10M. The family of DSJC1000.X
graphs were randomly generated using the techniques proposed by Johnson et al. [3] as
instances to solve the graph coloring problem3; all these graphs have 1,000 nodes, and
the graph density varies from 0.1 to 0.9. Instances of USA-road-d.NY and USA-road-
d.FLA correspond to the New York City and Florida State road networks that were part
of the 9th DIMACS Implementation Challenge - Shortest Paths4. Finally, Berlin10M
was generated with The Berlin SPARQL Benchmark5. The goal of the demonstration
is to visualize trends and patterns that can be found in the performance of Neo4j, DEX,
HypergraphDB, and RDF-3x, where performance is measured in terms of execution
time (elapsed time in msecs.), main-memory required to execute the graph-task (mea-
sured in KB), and secondary-memory needed to store the internal representation of

1 http://d3js.org/
2 http://mbostock.github.io/d3/talk/20111116/iris-parallel.html
3 https://sites.google.com/site/graphcoloring/vertex-coloring
4 http://www.dis.uniroma1.it/challenge9/download.shtml
5 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

134

the graph (measured in MB). Experiments were run on a Sun Fire X4100 M2 ma-
chine with two AMD Opteron 2218 processors with 16GB RAM, running a 64-bit
Linux CentOS 5.5. All tests were executed in cold cache, i.e., we cleared the cache
before running each task by performing the command sh -c "sync ; echo 3 >

/proc/sys/vm/drop caches". Additionally, the machine was dedicated exclusively
to run these experiments. The evaluated graph-based tasks are the following:
Graph Creation: creates and stores internal representation of a graph.
Adjacency: checks node/edge adjacencies.
Reachability: traverses a graph following different strategies: Breadth-first search (BFS)
and Depth-first search (DFS). Additional, k-hops retrieves sets of nodes such that there
is a path of length k from a given start node. External implementations rely on basic
adjacency methods, while internal implementations use API methods provided by the
engines to solve the task.
Pattern matching: solves subgraph isomorphisms. It was evaluated as the result of
traversing the graphs and finding the subgraphs that meet the given patterns; we call
this implementation internal. Additionally, pattern matching tasks were specified as
SPARQL and Cypher queries and evaluated in RDF-3x and Neo4j, respectively.
Densest subgraph: given a graph G = (V,E) this tasks is to find a bipartite subgraph
BSG between subsets S and T of V , such that, that BSG maximizes the density, i.e.,
d(S, T) = |E(S,T)|√

(|S||T |)
where E(S,T) is the set of edges going from S to T . The evalu-

ated algorithm corresponds to the one proposed by Saha et al.[8]; our implementation
exploits node/edge adjacency API methods of the engines.
Graph summarization: given a graph G = (V,E) this tasks is to find a compact rep-
resentation of G or aggregate graph SG comprised of hyper-nodes, hyper-edges, and
corrections. Hyper-nodes correspond to sets of nodes in G, while a hyper-edge connects
two hyper-nodes and represents set of edges between all pairs of nodes in the two hyper-
nodes. The set of corrections corresponds to additions or deletions of edges represented
in the hyper-edges of SG and that are either not present in G (deletions) or that are
not presented in the hyper-edge but that were in G. We evaluate the performance of the
greedy algorithm proposed by Navlakha et al.[5] on Neo4j, DEX and HypergraphDB;
our implementation exploits node/edge adjacency API methods of the engines.

We will demonstrate the following use cases:
Effects of graph characteristics on the performance of the graph and RDF engines.
Graphs are characterized by density, number of edges and nodes, and label distribution.
Attendees will be able to choose between diverse graphs, and analyze the performance
(time and memory) of the different engines in all the studied graph-based tasks. First,
time required to create the internal representation of a graph is affected by both the den-
sity of the graph and the number of edges in any engine. Additionally, we will be able
to observe that even RDF-3x outperforms the rest of the engines in pattern matching, its
performance is impacted whenever the graph is dense. Further, graph density, size and
number of labels affect the performance of both graph summarization and densest sub-
graph in all the engines. Nevertheless, graph summarization seems to be more impacted
by the graph density and the number of labels than for the size of the graph. Contrary,
densest subgraph is more influenced by the size of the graphs.
Effects of the techniques implemented by a given engine in the performance of the

135

graph-based tasks in different graphs. Attendees will observe that RDF-3x exhibits
the best performance during graph creation and adjacency tasks (expressed as SPARQL
queries); in case of k-hops, RDF-3x also outperforms the rest of the engines, except
in the case of dense graphs. DEX seems to overcome the rest of the engines when the
graphs are dense, while Neo4j exhibits better performance in sparse graphs whenever
they have a large number of labels, e.g., USA-road-d.NY and USA-road-d.FLA.
Impact of a given tasks in the performance of the graph and RDF engines. We
show the impact that a given task can have in the performance of an engine. For exam-
ple, during graph creation RDF-3x can exploit main-memory data structures, B+-tree
indices and internal representation of a graph, and exhibits the best performance. Sim-
ilarly, because RDF-3x implements optimization and execution techniques that exploit
the properties of a graph internal representation; thus, the best implementation of this
task seems to be on top of RDF-3x. During the evaluation of k-hops, DEX and Neo4j are
competitive. For traversals, internal implementations are able to exploit the properties
of the data structures and indices implemented by each engine as well as the methods
exported in their APIs; in both BFS and DFS, Neo4j and DEX exhibit a similar perfor-
mance. Finally, when the mining tasks of densest subgraph and graph summarization
are considered, DEX performs quite well in mining tasks if graphs are dense, while
Neo4j has better performance in sparse graphs with a large number of labels.

4 Conclusions

GRAPHIUM allows to visualize patterns in the performance of graph and RDF engines
when they are executed against different benchmarks of graphs and tasks. Different
configurations will be analyzed allowing the attendees to understand the graph char-
acteristics and tasks that benefit the performance of existing graph and RDF engines.
References

1. C. C. Aggarwal and H. Wang. Graph data management and mining: A survey of algorithms
and applications. In Managing and Mining Graph Data, pages 13–68. 2010.

2. B. Iordanov. Hypergraphdb: A generalized graph database. In WAIM Workshops, pages 25–
36, 2010.

3. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated
annealing: an experimental evaluation; part ii, graph coloring and number partitioning. Oper-
ations research, 39(3):378–406, 1991.

4. N. Martı́nez-Bazan, V. Muntés-Mulero, S. Gómez-Villamor, J. Nin, M.-A. Sánchez-Martı́nez,
and J.-L. Larriba-Pey. Dex: high-performance exploration on large graphs for information
retrieval. In CIKM, pages 573–582, 2007.

5. S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded error. In
ACM SIGMOD, pages 419–432. ACM, 2008.

6. T. Neumann and G. Weikum. x-rdf-3x: Fast querying, high update rates, and consistency for
rdf databases. PVLDB, 3(1):256–263, 2010.

7. I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly Media, 2013.
8. B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang. Dense subgraphs with restrictions

and applications to gene annotation graphs. In RECOMB, pages 456–472, 2010.
9. A. Thor, P. Anderson, L. Raschid, S. Navlakha, B. Saha, S. Khuller, and X.-N. Zhang. Link

prediction for annotation graphs using graph summarization. In ISWC, pages 714–729, 2011.

136

SILURIAN: a Sparql vIsuaLizer for UndeRstanding
querIes And federatioNs

Simón Castillo, Guillermo Palma, Maria-Esther Vidal

Universidad Simón Bolı́var, Caracas, Venezuela
{scastillo, gpalma, mvidal}@ldc.usb.ve

Abstract. SPARQL federated queries can be affected by both characteristics
of the query and datasets in the federation. We present SILURIAN a Sparql
visualizer for understanding queries and federations. SILURIAN visualizes SPARQL
queries and, thus, it allows the analysis and understanding of a query complexity
with respect to relevant endpoints and shapes of the possible plans.

1 Introduction

Over the past decade, the number of datasets in the Linking Open Data cloud has ex-
ploded as well as the number of SPARQL endpoints. As more linked data becomes
available, applications from different domains are frequently developed, and queries
that require gathering data from several endpoints are more likely everyday. So far sev-
eral approaches have addressed the problem of executing federated SPARQL queries on
the Web of Data [1, 2, 4]. For example, FedX [4] is a rule-based system able to generate
left-linear plans comprised of subqueries that can be exclusively answered by existing
endpoints (Exclusive Groups (EG)); ANAPSID [1] resorts to source descriptions to de-
termine all the triple patterns that can be executed on the same endpoints and that can be
grouped as star-shaped queries; finally, SPLENDID [2] exploits statistics during source
selection and query planning to identify the subqueries that will be executed to gather
the query answers. Performance of SPARQL queries against these federated engines can
be affected by diverse parameters, e.g., number of triple patterns in the query, number of
endpoints that can answer a triple pattern, and shape of the query. Analyzing a query and
the federation where this query is going to be executed provides the basis not only to un-
derstand the performance of a given federated query engine, but also can be useful dur-
ing query benchmarking. We present SILURIAN a Sparql visualizer for understanding
queries and federations. We will demonstrate SILURIAN; attendees will be able to vi-
sualize SPARQL queries and understand complexity of both federations and possible
plans. The demo is published at http://choroni.ldc.usb.ve/silurian.

2 The SILURIAN architecture

SILURIAN is built on top of existing federated engines to visualize plans generated
by the engines for a given query and federation of endpoints. In this first version, SIL-
URIAN was built on top of ANAPSID[1], and exploits visualization services imple-
mented by the D3.js JavaScript library1. Figures 1(a), (b), (c), and (d) show SILURIAN

1 http://d3js.org/

137

snapshots; users will be able to introduce their own SPARQL queries and select the
federation (Figure 1(a)). Different type of plots will be used to illustrate the properties
of queries and federations. Figure 1(b) uses a Concept Network Browser plot2

to illustrate the endpoints that can answer the triple patterns in a query. Figure 1(c) uses
Force-Directed Graph3 to visualize a join graph of the input SPARQL query.
Each node in the graph represents a triple pattern in the query; an edge between two
nodes exists if the corresponding triple patterns do not share a join variable or there is
no endpoint in the federation that can answer both triple patterns. Finally, Figure 1(d)
relies on a Hierarchical Edge Bundling4 to visualize the decomposition of a
query into subqueries of triple patterns; nodes correspond to triple patterns while edges
connect triple patterns in the same subquery of the decomposition.

(a) SILURIAN Data Entry (b) Triple Patterns Per Endpoint

(c) Join Graph (d) Query Decomposition

Fig. 1. The SILURIAN snapshots for two Federations of Endpoints on FedBench data collections.

3 Demonstration of Use Cases

We motivate our work by observing how the performance of existing federation engines
can be affected during the execution of SPARQL queries with triple patterns bound to

2 http://www.findtheconversation.com/concept-map
3 http://bl.ocks.org/mbostock/4062045
4 http://mbostock.github.io/d3/talk/20111116/bundle.html

138

predicates of general vocabularies such as RDFS or OWL. These vocabulary terms may
occur in almost all data sources, e.g., rdf:type, owl:sameAs, or rdfs:seeAlso;
we denominate these terms general predicates. We designed a set of three queries qj
(j = 0...2), where qi+1 is comprised of more triple patterns bound to general predicates
than qi. First, q0 retrieves the Kegg compound identifier and among their drugs, those
that have a substrate that is an enzyme. Next, q1 selects drugs that meet q0 and their
owl:sameAs link to Drugbank; and finally, q2 checks that these drugs are also drugs
in the DBpedia ontology. Triple patterns bound to general predicates are highlighted.

q0 Select * WHERE {?d drugbank:keggCompoundId ?c. ?e bio2rdf-kegg:xSubstrate ?c.

?e rdf:type bio2rdf-kegg:Enzyme }
q1 Select * WHERE {?d drugbank:keggCompoundId ?c. ?e bio2rdf-kegg:xSubstrate ?c.

?e rdf:type bio2rdf-kegg:Enzyme.?d owl:sameAs ?d1 .}
q2 Select * WHERE {?d drugbank:keggCompoundId ?c. ?e bio2rdf-kegg:xSubstrate ?c.

?e rdf:type bio2rdf-kegg:Enzyme.?d owl:sameAs ?d1 .

?d1 rdf:type dbpedia-owl:Drug .}

An experiment was set up in order to evaluate the performance of different federated
SPARQL query engines: FedX, SPLENDID, and ANAPSID. Queries q0, q1, and q2
were executed on 26 Virtuoso endpoints that locally access the FedBench collections5,
November 2011. Each collection was assigned to one Virtuoso endpoint, except Geon-
ames and DBpedia that were fragmented to impact on the performance of the query de-
composition techniques. Geonames was horizontally partitioned into eleven fragments
and each fragment was assigned to a different endpoint. Additionally, each of the DB-
pedia files was made available through a different SPARQL endpoint, i.e., DBpedia was
vertically partitioned. This study was executed on a Linux Mint machine with an Intel
Pentium Core 2 Duo E7500 2.93GHz 8GB RAM 1333MHz DDR3. We could observe
that the performance of all these engines is deteriorated as the number of triple patterns
on general predicates increases. Based on these results, we formulated the following
research questions: 1) is the observed behavior due to limitations of these federation
engines?, or 2) is this behavior caused by the properties of these queries?. We will visu-
alize the characteristics of queries and federations that provide evidences to answer our
research questions. FedBench 10 collections: DBpedia, NY Times, Geonames, KEGG,
ChEBI, Drugbank, Jamendo, LinkedMDB, SW Dog Food, and SP2B-10M, were inte-
grated into two federations of endpoints. Fed1 comprises the previously explained 26
Virtuoso6 endpoints, and Fed2 is composed of 10 endpoints, one per FedBench collec-
tion. In both federations, Virtuoso timeout was set up to 300 secs. or 100,000 tuples.
Different criteria to decompose SPARQL queries into subqueries answerable by exist-
ing endpoints will be demonstrated; e.g., Exclusive Groups (EG) [2, 4] , Star-Shaped
Group Single endpoint selection (SSGS), and Star-Shaped Group Multiple endpoint se-
lection (SSGM) [3]. We will demonstrate the following use cases:
Effects of number of triple patterns bound to general predicates. We will demon-
strate that in queries as the ones presented in the previous example, almost all the end-
points in the federation can instantiate variables in the triple patterns of the query. Par-
ticularly, triple patterns bound to owl:sameAs could be answerable for 24 out of 26

5 http://fedbench.fluidops.net
6 http://virtuoso.openlinksw.com/, November 2011.

139

endpoints of Fed1 and all the endpoints of Fed2. Federated engines may have to con-
sider all these endpoints to produce a complete answer of the query.
Effects of the number of triple patterns and shape of the query. Attendees will ob-
serve that in queries will a large number of triple patterns that comprised star-shaped
or chain-shaped subqueries, the space of possible plans of the query may exponentially
explode. For example, we will show queries comprise of 46 triple patterns which can
be decomposed into 9 star-shaped subqueries, which could not be executed in any of
existing federated engines in less than 30 minutes. These queries may constitute chal-
lenges for federation engines and should be included in future benchmarks.
Effects of the data fragmentation and replication. The aim of this use case is to show
the effects of data fragmentation and replication in the complexity of SPARQL feder-
ated queries. In federation Fed1, data in Geonames is horizontally partitioned while
DBpedia is vertically fragmented. Attendees will observe that the number of relevant
endpoints increases according to fragments of data are made available from different
endpoints of a federation. For example, in queries with triple patterns bound to pred-
icates in Geonames the number of relevant endpoints is larger in Fed1 than in Fed2.
Because Geonames data is horizontally partitioned, many of the relevant data may not
actually provide the instantiations of the variables required to execute the query. Thus,
federated engines have to either contact all the endpoints to decide which one can exe-
cute the corresponding subqueries or simply pay the price of executing the subquery in
all of them, and the execution of these queries can be costly. These queries may be chal-
lenging for existing federation engines and should be included in future benchmarks.

4 Conclusions

SILURIAN visualizes SPARQL federated queries as well as the properties of the fed-
erations that may impact on the complexity of these queries. Particularly, SILURIAN
helps to understand why data fragmentation and replication among different endpoints,
shape of the queries and the type of predicates in the triple patterns, may affect the per-
formance of a federated query engine. Because main sources of query complexity can
be analyzed, SILURIAN provides the basis for understanding the behavior of existing
engines and may help during the design of benchmarks to evaluate these engines.

References

1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. Anapsid: an adaptive query
processing engine for sparql endpoints. In ISWC, pages 18–34, 2011.

2. O. Görlitz and S. Staab. SPLENDID: SPARQL Endpoint Federation Exploiting VOID De-
scriptions. In COLD, Bonn, Germany, 2011.

3. G. Montoya, M.-E. Vidal, and M. Acosta. A heuristic-based approach for planning federated
sparql queries. In COLD, 2012.

4. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization techniques
for federated query processing on linked data. In ISWC, pages 601–616, 2011.

140

Modeling and Reasoning Upon Facebook
Privacy Settings

Mathieu d’Aquin and Keerthi Thomas

Knowledge Media Institute, The Open University, Milton Keynes, UK
{mathieu.daquin, keerthi.thomas}@open.ac.uk

Abstract. Understanding the way information is propagated and made
visible on Facebook is a difficult task. The privacy settings and the rules
that apply to individual items are reasonably straightforward. However,
for the user to track all of the information that needs to be integrated
and the inferences that can be made on their posts is complex, to the
extent that it is almost impossible for any individual to achieve. In this
demonstration, we investigate the use of knowledge modeling and rea-
soning techniques (including basic ontological representation, rules and
epistemic logics) to make these inferences explicit to the user.

1 Introduction

The notion of social translucence (as defined in [4]) concerns the design of sys-
tems with a social process component, to achieve coherent behaviours from the
user(s) through making such behaviours visible and understandable to them.
This notion is especially relevant in relation to privacy, where the principles
of visibility, awareness and accountability promoted by social translucence are
used to enable a coherent and informed behaviour from the users with respect
to the distribution and propagation of their personal information. This idea is
well illustrated in the notion of “Privacy Mirrors”, i.e., systems that integrate the
necessary tools of “awareness and control to understand and shape the behaviour
of the system” [6].

While these notions might appear to naturally apply to social networking
systems such as Facebook1, their privacy settings and of the mechanisms for in-
formation sharing they implement are only deceptively simple: for an individual
user to keep track of all the necessary elements to understand what information
others might have access to, and what inferences they might derive from it, is
actually too complex to be achieved. For example, while individual photos have
specific privacy scopes, the tagging, comments, likes, geographical information
attached to them can make much more information about the user available
to much more people than the user might intend, without the user’s ability to
understand the full scope of the implications of such sharing and tagging.

In this demonstration, we show how a privacy mirror for Facebook can be
implemented using knowledge modeling and reasoning techniques, to make ex-
plicit to the user some of the inferences that can be made out of information
available about them on the social platform. We use basic ontology modeling,
rules and a simplification of the basic concepts of epistemic logics.

1 http://facebook.com

141

2 Information from Facebook

In this demonstration, to simplify the discussion, we focus on information about
photos, especially the ones (explicitly) referring to the user. However, the basic
notions and approach described apply similarly to other types of information.
The basic concepts extracted using the Facebook Graph API2 concern people
(users), photos, comments, places and dates. Individuals (variables and con-
stants) therefore represent instances of these concepts. Predicates represent rela-
tionships. For example, users can be friends with each-other (friend(bob, alice)),
a photo can be at a place (photoAt(photo1, segovia)), at a certain date
(date(photo1, 08 − 07 − 2013)) and include some users (onPhoto(photo1, bob)).
Finally, any post including photos have a privacy scope which could be everyone,
friendoffriend, allfriends, custom (e.g., scope(photo1, allfriends)).

3 Basic ontological modeling and reasoning

From the explicit data extracted from Facebook, basic information can be in-
ferred using ontology-based mechanisms. For example, including range and do-
main information associated with the predicates mentioned above can help iden-
tifying types of objects (e.g., friend(bob, alice) implies that person(bob) and
person(alice)). Similarly, using constructs available in OWL 2, the friend pred-
icate can be declared to be reciprocal (as it is in Facebook): friend(bob, alice)
implies friend(alice, bob).

Property hierarchies can also be used to introduce intermediary predicates,
more abstract than the notions explicitly available in Facebook. For example,
declaring friend as a sub-property of know (so that friend(bob, alice) implies
know(bob, alice)). The same mechanisms, combined with the property composi-
tion construct available in OWL 2, can be used to represent much more com-
plex inferences (e.g., that if two people are on the same photo, they know each
other). However, for convenience, we choose to use rules (which can also be used
for other types of inferences not feasible with basic OWL constructs) for such
complex implications.

4 Rule-based inference

As mentioned above, some more complex inferences need to be represented that
are not conveniently achieved with ontological constructs. This includes informa-
tion such that being on a picture, geotagged with a certain place, implies that the
user was at that place (wasIn(Per, P l) :- onPhoto(Pic, Per), photoAt(Pic, P l))
or that two users on the same photo know each other (know(Per1, P er2)
:- onPhoto(Pic, Per1), onPhoto(Pic, Per2)), and possibly that they were at the
same place.

2 https://developers.facebook.com/docs/reference/api/

142

5 Epistemic inference

The mechanisms described above make it possible for the model to explicitly
make the inferences possible from the information being shared. However, the
important aspect here is not only which inferences can be made, but who can
make them. To address this, we use notions from epistemic logics [5]. Indeed,
epistemic logics are a type of logic that allows one to express not only statements
about the world, but also about the way the world is perceived or known by
agents in the world. In such a logic, a statement of the form Ka α indicates that
the agent a ‘knows’ the statement α to be true. Basic properties, such as the one
of self reflection (i.e., Ka α → KaKa α) and rules can be used to reason upon
the knowledge agents have of some information.

This framework, combined with information about the privacy settings of
Facebook, allows us to express information regarding which user might have ac-
cess to what item of information. Straightforwardly for example, information on
who knows about a photo can be derived from the privacy scope of the photo
(e.g.,Ka photo(Pic) :- author(Pic, Per), scope(Pic, allfriends), friend(Per, a)).
More complex mechanisms are also represented using this type of rules however,
for example that the friends of somebody tagged in a photo would know about
the photo, or that knowing about a photo implies knowing all the information
attached to a photo and the possible inferences that can be made from them
(e.g., that somebody was in a certain place with somebody else).

6 Implementation

Fig. 1. Screenshots of the system making explicit privacy inferences in Facebook.

The implementation of the system showing to a user the inferences that can
be made from information sharing items concerning them (currently focusing on
photos) and by who is a Web-based interface built in PHP and Javascript, that
allows the user to connect to their Facebook account and extract the relevant
information. The knowledge representation and reasoning mechanisms described
above is delegated to a Prolog-based API, carrying out the ontological reasoning

143

(through a basic mapping between OWL and Prolog), the rule-based reasoning
and a simplified implementation of epistemic rules described in the previous
sections.

As shown in the screenshots of Figure 1, the system displays the inferred
information to the user: 1- the people they are friend with, the ones they know
(without being friends) and the people the user might not know, but who might
have access to some of their information; 2- the photos depicting the user; 3- the
places where the user have been (who with and on what date). Clicking on a
person (as shown on Figure 1) displays information about items shared by this
user, as well as the information they know about the logged-in user. Clicking on
an item displays the information that can be inferred from this item, and the
people who might have access to these inferences.

7 Conclusion

Our goal in this demonstration is to show that knowledge modeling and reason-
ing techniques can support the notion of privacy mirrors, in systems where the
privacy implications of information sharing are complex and difficult for a user to
keep track of. In the demonstration, participants will be able to connect the sys-
tem to their own Facebook account, to check whether the results are surprising,
concerning or on the contrary, just reassuring (which are the types of reactions
we uncovered in another study [3]). In terms of future work, besides completing
and validating the modeling of Facebook’s privacy mechanisms (which can be
a complex task), one of the interesting research directions is to integrate the
model of Facebook with other sources of personal information sharing (using for
example techniques described in some of our previous works, e.g., [1, 2]). The
other direction we plan to investigate is the use of more sophisticated knowledge
representation techniques to deal with the complexity of online social situations,
including uncertainty and different levels of epistemic knowledge of information
(e.g., having access to information vs. having surely seen a piece of information).

References

1. M. dAquin, S. Elahi, and E. Motta. Personal monitoring of web information ex-
change: Towards web lifelogging. Web Science, 2010.

2. M. d’Aquin, S. Elahi, and E. Motta. Semantic technologies to support the user-
centric analysis of activity data. In Social Data on the Web (SDoW) workshop at
ISWC, 2011.

3. M. d’Aquin and K. Thomas. Consumer activity data: Usages and challenges. Knowl-
edge Media Institute, Tech. Report kmi-12-03, 2012.

4. T. Erickson and W. A. Kellogg. Social translucence: an approach to designing
systems that support social processes. ACM transactions on computer-human in-
teraction (TOCHI), 7(1):59–83, 2000.

5. J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and Computer
Science. Cambridge University Press, 2004.

6. E. D. Nguyen, D. H. ; Mynatt. Understanding and shaping socio-technical ubiqui-
tous computing systems. GVU Technical Report;GIT-GVU-02-16, 2002.

144

Do it your own (DIY) Jeopardy Question
Answering System

André Freitas and Edward Curry

Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway

1 Motivation

The evolution and maturity of semantic technologies techniques and frameworks
are bringing functionalities which were once considered academic or prototyp-
ical into real-life applications. Products such as IBM Watson [1] and Siri are
examples of applications which are heavily leveraged on state-of-the-art seman-
tic technologies. These systems provide a synthesis of the functionalities which
are available for general applications today such as: natural language search and
queries over large-scale data, semantic flexibility and integration between struc-
tured and unstructured resources. The success of these projects in demonstrating
the potential of existing technologies lies on the fact that they bring into a sin-
gle system approaches from Natural Language Processing (NLP), Semantic Web
(SW), Information Retrieval (IR) and Databases.

This work demonstrates Treo, a framework which converges elements from
NLP, IR, SW and Databases, to create a semantic search engine and question an-
swering (QA) system for heterogeneous data. Jeopardy and Question Answering
queries over open domain structured and unstructured data are used to demon-
strate the approach. In this work, Treo is extended to cope with unstructured
text in addition to structured data. The setup of the framework is done in 3
steps and can be adapted to other datasets in a simple DIY process.

2 Treo: Querying structured & unstructured data

Treo supports free natural language queries over both structured and unstruc-
tured data. To enable semantic flexibility and vocabulary independency in the
query process, a principled distributional-compositional semantic model is used
to build a distributional structured vector space model (τ − Space) [2]. Distri-
butional semantics focuses on the automatic construction of a semantic model
based on the statistical distribution of co-located words in large-scale corpora.
The distributional semantics component of the model, supports a semantic ap-
proximation between query and dataset terms: operations in the τ − Space are
mapped to semantic relatedness operations using the distributional model as a
commonsense knowledge base [2]. The automatic creation of distributional se-
mantic models supports the transportability of the approach to other datasets

145

and languages, not requiring the manual creation effort of ontologies (Treo does
not rely on ontology-based reasoning for semantic approximation).

In addition to queries over structured data, this work extends the query
mechanism for searching entities in unstructured text. Both structured and un-
structured data are linked in an entity-centric semantic index (Figure 1 (B)).
The elements of the query processing approach are depicted in Figure 1 (A).

Two different query processing strategies are used:
- Query processing over structured data: In the query pre-processing phase,
the natural language query is analyzed by the Interpreter component, where a
set of query triple patterns and features are detected in the user query. The
second phase consists of the vocabulary independent query processing approach
which defines a sequence of search and data transformation operations over the
structured data graph embedded in the τ − Space [2], targeting the maximiza-
tion of the semantic matching with the query. The Query Planner generates
the sequence of semantic search, navigation and transformation operations over
the graph data, which defines the query processing plan, based on a set of query
features which are determined in the pre-processing phase. The third phase con-
sists in the execution of the query processing plan operations over the τ −Space
index.
- Query processing over structured & unstructured data: In case the
query is not addressed by the available structured data, the query can be pro-
cessed against both structured data and unstructured text in the entity-centric
index. The query pre-processing approach for this query type consists on the de-
tection of the query focus by the application of POS Tag based rules and by the
detection and resolution of named entities in the query. The query plan consists
of the composition of keyword-search operations over the text segments asso-
ciated with entities, distributional search operations over structured data, and
keyword search over associated entities. A ranking function weights the results of
all operations, also taking into account the cardinality for each entity (number of
associated entities, facts and text segments). The initial top-20 entity results are
re-ranked based on the computation of the distributional semantic relatedness
scores between the query focus phrase and the associated entity types.

3 DIY Setup Process

The setup of the Treo platform for a new dataset consists in the creation of a
semantic index for both structured and unstructured data, which requires three
steps:

1. Construction of the distributional semantic model: Consists on the use of a
large-scale reference corpora to build the distributional semantic reference
model [2]. In this demonstration Wikipedia 2006 is used as the reference
corpus and Explicit Semantic Analysis (ESA) is the distributional semantic
model.

2. Semantic indexing of structured data: Consists in the indexing of structured
data using the distributional semantic reference model [2]. The framework

146

:company :Bad_Robot_Productions
:creator :J._J._Abrams
:format :Action_(fiction)
:location :Walt_Disney_Studios_(Burbank)
:location :Burbank,_California
:network :American_Broadcasting_Company
:numberOfEpisodes 105
:numberOfSeasons 5
:releaseDate 2001-09-30
:starring :Amy_Acker
:starring :Jennifer Garner

...

:Alias(TV Series)

DBpedia

:type :2006AmericanTelevisionSeriesEndings
:type :2001AmericanTelevisionSeriesDebuts
:type :BadRobotProductions

:Jack Bristow (:Victor Garber) is
Sydney's father and also works for
:SD-6 as a double agent for the :CIA.

:hasSentence

:hasSentence

YAGO

Wikipedia

It stars :Jennifer Garner as :Sydney
Bristow, a CIA agent.

...

Natural Language Query:

Was Margareth Thatcher a
chemist ?

[[:Bill Clinton]] - daughter -
married

Query
Interpreter

Dependency
Parser

Pre-Processing

Query
Planner

Querry
Processor

Query Processing

pre-processed query

Distributional
Search

search operations

Entity Search

Disambiguationuser
feedback

user
feedback

Disambiguation

Operators

Answer:

Yes

Triples:

Margareth Thatcher’s type is English Chemists
Margareth Thatcher’s profession is chemist

Datasets

Reference
Corpora

Indexing

Explicit
Semantic

Analysis (ESA)

Distributional
Indexer

concept vectors

Document
Collection

Text
Indexer

NER

1

2

3

Distributional
Compositional

Index
(Ƭ-Space)

+

Entity-Text
Index

A B

Fig. 1: (A) Semantic indexing and query processing architecture. (B) Entity-centric
representation of structured and unstructured data.

takes as input data any dataset following an Entity-Attribute-Value (EAV)
format. DBpedia 3.7 and YAGO are used as the demonstration datasets.

3. Unstructured data entity-centric indexing: This step takes as input a text
collection, recognizes the named entities based on the structured data pre-
viously indexed, aligning it with the indexed structured data. The demon-
stration uses Wikipedia 2013 as the test collection.

The steps are executed by calling one script, which takes as input the three
types of resources (reference corpora, structured datasets and unstructured texts).
After the setup, natural language queries can be executed against the structured
and unstructured data indexes. Figure 1 shows the components of the Treo ar-
chitecture (A) and an example of the entity-centric linking between structured
and unstructured data (B).

4 Demonstration

The system is demonstrated over the open-domain DBpedia 3.7 /YAGO RDF
datasets and Wikipedia 2013 text data. The RDF datasets consist of 128,071,259
triples (17GB) loaded into the Treo index for structured data. A set of natural
language queries from the Jeopardy challenge1 and from the Question Answering
over Linked Data challenge2 are used to demonstrate the system. In the demon-
stration, users input free natural language queries and the system returns two

1 http://j-archive.com/
2 QALD-1, http://www.sc.cit-ec.uni-bielefeld.de/qald-1, 2011

147

1

2

3

4

Fig. 2: Example queries: (1,2) Queries over structured data (3,4) Jeopardy queries over
structured and unstructured data.

types of results: (i) a list of highly related triples or (ii) post-processed results,
depending on the query type.

Figure 2 (2) shows the output of a query over the structured data index
for the query ‘Was Margaret Thatcher a chemist?’. In addition to the post-
processed answer, which provides a direct (QA-style) answer for the query, the
mechanism shows the justification for the answer with the supporting triples.
Figure 2 (1) shows a query over structured data with a complex query plan
(‘Which cities in New Jersey have more than 10000 inhabitants?’). Figure 2 (3)
and (4) show examples of Jeopardy queries, which typically provide a natural
language description of a named entity or concept (for example: ‘Sydney’s dad,
Jack, was a CIA double agent working against SD-6 on this Jennifer Garner
show’). Further examples can be found online3.

Acknowledgments. This work was funded by SFI Ireland (SFI/08/CE/I1380).

References

1. D. Ferrucci et al., Building Watson: An Overview of the DeepQA Project, AI Mag-
azine, 2010.

2. A. Freitas, E. Curry, J. G. Oliveira, S. O’Riain, A Distributional Structured Se-
mantic Space for Querying RDF Graph Data. International Journal of Semantic
Computing (IJSC), 2012.

3 http://treo.deri.ie/ISWC2013Demo

148

A Machine Reader for the Semantic Web

Aldo Gangemi12, Francesco Draicchio1, Valentina Presutti1

, Andrea Giovanni Nuzzolese13, and Diego Reforgiato1

1 STLab-ISTC Consiglio Nazionale delle Ricerche, Rome, Italy.
2 LIPN, Université Paris13-CNRS-SorbonneCité, France

3 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy.

Abstract. FRED is a machine reading tool for converting text into in-
ternally well-connected and quality linked-data-ready ontologies in web-
service-acceptable time. It implements a novel approach for ontology
design from natural language sentences, combining Discourse Represen-
tation Theory (DRT), linguistic frame semantics, and Ontology Design
Patterns (ODP). The current version of the tool includes Earmark-based
markup, and enrichment with word sense disambiguation (WSD) and
named entity resolution (NER) off-the-shelf components.

1 Introduction

The problem of knowledge extraction (KE) from text is still insufficiently ad-
dressed from a semantic web (SW) perspective. Being able to automatically
produce quality linked data and ontologies from natural language text would be
a breakthrough as it would enable the development of applications that auto-
matically produce machine-readable information from Web content as soon as
it is edited and published by generic Web users. A rather detailed landscape
analysis of the currently available tools for KE, and their exploitation for SW
basic tasks is presented in [4]: it shows the substantial lacking of tools for cre-
ating RDF graphs that are connected enough to perform application tasks such
as event extraction, fact detection, story mining, etc.

FRED4 [5] is an exception, since it is intended to produce semantic data
and ontologies with a quality closer to what is expected at least from average
linked datasets and vocabularies: FRED candidates as a deep version of a ma-
chine reader [3] for the Semantic Web. The following requirements have inspired
the design of FRED: (i) ability to capture accurate semantic structures (i.e.
compliant to formal semantics); (ii) representing complex relations (i.e. n-ary,
multigrade relations); (iii) exploitation of sophisticated lexical resources (e.g.
VerbNet, FrameNet); (iv) no need of large-size domain-specific text corpora and
training sessions (i.e. we address open information extraction); (v) minimal time
of computation; (vi) ability to map natural language to RDF/OWL represen-
tations; (vii) ability to link the extracted knowledge to both lexical linked data
and linked datasets (for maximal interoperability).

4 http://wit.istc.cnr.it/stlab-tools/fred

149

http://wit.istc.cnr.it/stlab-tools/fred

Related works and comparison to other tools for knowledge extraction are
detailed in [5], and [4], where FRED seems to outperform (though on a limited
test) the other tools in sophisticated tasks such as relation and factoid extraction,
frame detection, and taxonomy induction.

2 FRED at work

In this section we present an overview of the system and a scenario that shows
the output resulting from FRED. [2] shows that detecting the most appropriate
frames from the input text leads to improve the design quality of the result-
ing ontology because frames can be directly mapped to an important variety
of ontology design patterns based on n-ary relations. On the above considera-
tion, FRED makes use of Boxer [1], a deep semantic parser based on categorial
grammar and Discourse Representation Theory (DRT), which generates formal
semantic representation of text through an event (neo-Davidsonian) semantics.

Fig. 1. A sample subset of quality ontology production heuristics.

Boxer frame-based approach supports FRED in automatically design an ontol-
ogy by following good modeling practices based on ontology patterns. However,
Boxer tranforms natural language to a logical form compliant with DRT (sub-
stantially a variety of first-order logic) which differs a lot from RDF or OWL,
and the heuristics that it implements for interpreting a natural language and
transforming it to a DRT-based structure can be sometimes awkward when di-
rectly translated to ontologies for the SW, because it obeys pure FOL-oriented
design style. For this reason, Boxer DRT-based output is transformed by FRED
to OWL/RDF ontologies by means of a set of heuristics, some of them are showed
in Figure 1. Figure 2 depicts the main components of FRED: Communication:
exposes APIs for querying the system; Refactoring : transforms Boxer output5

into a convenient data structure to be passed to the Reenginering component;
Reengineering : applies a collection of ad-hoc mapping rules and heuristics for
producing logically consistent OWL/RDF like triples.

In addition, FRED architecture is open to be easily integrated with other
components that exploit the text span markup specification supported its current
version, i.e. Earmark [6]. This solution, which is similar to architectures such as

5 Boxer is an external component.

150

Fig. 2. Block architecture and workflow

NIF and NERD, makes it trivial to augment FRED graphs with off-the-shelf
components for e.g. NER, WSD, etc. Our demo, available online6, allows a user
to enter any text (or select one from the list of examples provided), and by simply
clicking the Read It! button, to receive a RDF/OWL representation of it7. Some
features can be customized, e.g., type of output, NER or WSD activation, tense-
relation between events activation, etc. By default, the output is in the form
of Graphviz-like graphs (showing only a core subset of triples), to allow human
users to quickly check the OWL/RDF representation.

FRED output consists in RDF triples including either fixed properties: rdf:type,
rdfs:subClassOf, owl:sameAs, dul:associateWith, owl:equivalentTo, Ear-
mark properties, thematic roles for extracted events, etc., or customized prop-
erties produced by the automatic (machine) reading of the sentence.

Fig. 3. FRED output for the sentence “The Black Hand assassinated Franz Ferdinand
during his visit to Sarajevo.”

6 http://wit.istc.cnr.it/stlab-tools/fred
7 A graphical output is provided for human users

151

As an example, consider the sentence “The Black Hand assassinated Franz
Ferdinand during his visit to Sarajevo.” Figure 3 shows FRED output for this
sentence: an instance of dul:Event, fred:assassinate 1, is used to represent
the assassination of Franz Ferdinand. It is typed as fred:Assassinate, which
is disambiguated by the VerbNet frame vn.data:Assassinate 42010000. Such
an event involves the individual fred:Black hand as agent, and the individ-
ual fred:Franz ferdinand (who is recognized and resolved as the same in-
dividual as dbpedia:Archduke Franz Ferdinand of Austria) as patient. Fur-
thermore, the RDF graph expresses that such an event happened fred:during

fred:visit 1. FRED heuristically assigns a type fred:Visit to fred:visit 1;
such a type is disambiguated by means of alignments to WordNet, which in turn
is aligned to other ontologies, so that FRED can infer e.g., that fred:Visit is a
d0:Activity. The location of the visit is also identified and correctly resolved to
dbpedia:Sarajevo. Notice that FRED assigns types to all identified individuals
either by using classes from existing ontologies e.g., DOLCE, Schema.org, etc.,
when the entity can be resolved e.g., as a DBpedia entity, or by creating new
classes based on the terms used in the input text and disambiguating them on
WordNet.

FRED also supports more sophisticated constructs, e.g. propositional refer-
ents, called situations, full-fledged negation on events or situations, and basic
modalities over events.

3 Conclusion

We have presented FRED, a machine reader for the Semantic Web, which au-
tomatically extracts rich and connected knowledge from text, represents it as
OWL/RDF, and links it to other resources: VerbNet, FrameNet, WordNet, DB-
pedia, foundational ontologies, etc. The current research is on mainly evaluating
it on vertical tasks, and extending its internal components for multilinguality.

References

1. Johan Bos. Wide-Coverage Semantic Analysis with Boxer. In Johan Bos and
Rodolfo Delmonte, editors, Semantics in Text Processing, pages 277–286. College
Publications, 2008.

2. Bonaventura Coppola, Aldo Gangemi, Alfio Massimiliano Gliozzo, Davide Picca,
and Valentina Presutti. Frame detection over the semantic web. In Lora Aroyo et
al., editor, ESWC, volume 5554 of LNCS, pages 126–142. Springer, 2009.

3. Oren Etzioni, Michele Banko, and Michael Cafarella. Machine reading. In Proceed-
ings of the 21st National Conference on Artificial Intelligence (AAAI), 2006.

4. Aldo Gangemi. A comparison of knowledge extraction tools for the semantic web.
In Proceedings of ESWC2013. Springer, 2013.

5. Valentina Presutti, Francesco Draicchio, and Aldo Gangemi. Knowledge extraction
based on discourse representation theory and linguistic frames. In EKAW: Knowl-
edge Engineering and Knowledge Management that matters. Springer, 2012.

6. Peroni S., Gangemi A., and Vitali F. Dealing with markup semantics. In Pro-
ceedings of the 7th International Conference on Semantic Systems, Graz, Austria
(i-Semantics2011). ACM, 2011.

152

ONTOMS2: an Efficient and Scalable ONTOlogy
Management System with an Incremental

Reasoning

Min-Joong Lee1, Jong-Ryul Lee1, Sangyeon Kim1, Myung-Jae Park1, and
Chin-Wan Chung2

Department of Computer Science , KAIST, Daejeon, Republic of Korea
{mjlee,jrlee,sangyeon,jpark}@islab.kaist.ac.kr1 chungcw@kaist.edu2

Abstract. We present ONTOMS2, an efficient and scalable ONTOlogy
Management System with an incremental reasoning. ONTOMS2 stores
an OWL document and processes OWL-QL and SPARQL queries. Espe-
cially, ONTOMS2 supports SPARQL Update queries with an incremen-
tal instance reasoning of inverseOf, symmetric and transitive properties.

1 Introduction

In order to efficiently manage ontology data, various ontology data management
systems [4–6] are proposed based on RDBMS. However, existing ontology data
management systems do not support updates incrementally. To efficiently man-
age such large sized ontology data, we need a way of incremental updating for
ontology data. We propose an incremental update strategy to efficiently handle
a large amount of ontology data and the frequent updates of such ontology data.
Our incremental update strategy provides an insertion and deletion based on
SPARQL Update with the support of some important semantics of ontologies
such as inverseOf, symmetric, and transitive. We apply our incremental update
strategy to ONTOMS which is an efficient and scalable ONTOlogy Management
System proposed in [6].

ONTOMS efficiently manages large sized OWL data based on RDBMS and
using OWL-QL. It stores OWL data into a class based relational schema to in-
crease the query processing performance. Figure 1 describes an example of OWL
data stored into relational tables in ONTOMS. Unlike other approaches, ON-
TOMS generates a class based relational schema, where one relation is created
for each class. Each class relation contains associated properties as its attributes.
For more details of ONTOMS, please refer [6].

We denote the new version of ONTOMS where our incremental update strat-
egy and SPARQL processor are applied as ONTOMS2. We designed the archi-
tecture of ONTOMS2 as depicted in Figure 2. The core modules of ONTOMS2
are OWL Data Storage Module, Instance Inference Module, SPARQL Module,
and OWL-QL Module. To apply our incremental update strategy to ONTOMS,
we create SPARQL Module in Query Processing Module and modified Instance
Inference Module for the incremental reasoning. OWL Data Storage Module ob-
tains class and property hierarchy information from OWL Reasoner, Pellet, and

153

GraduateStudent

UID degreeFrom degreeFrom_S degreeFrom_E

GS1

Professor

UID degreeFrom degreeFrom_S degreeFrom_E

Prof1 Univ1 6 7

GraduateStudent_
takesCourse

UID Value

GS1 C1

GS1 C2

Professor_
teachesCourse

UID Value

Prof1 C1

Prof1 C2

Course

UID

C1

C2

Fig. 1. Relational Tables in ONTOMS

User

ONTOMS2

OWL Data
Storage
Module

Instance
Inference
Module

Query Processing
Module

SPARQL
Module

OWL
Reasoner
(Pellet)

RDBMS

OWL-QL
Module

OWL DataClass, Property
Hierarchies

Class, Property
Definitions

Tuples for
Class,

Property,
Instance

New
Instances

Properties,
Instances

SQL
Query

Query
Result
in Tuples

Query Query
Result

Incremental
Reasoning

Fig. 2. The Architecture of ONTOMS2

generates relationship information among classes and properties when parsing
the given OWL data. Once OWL data is stored, Instance Inference Module per-
forms instance reasoning with properties which are collected along with their
values from RDBMS, and stores newly generated instances into RDBMS. The
details of instance reasoning for initial OWL data can be found at Section 6
in [6]. The Query Processing Module processes OWL-QL query and SPARQL
query. When a SPARQL update query is given, SPARQL Module processes it
through Instance Inference Module for the incremental reasoning.

2 Ontology Data Update

SPARQL Update There are several query languages for OWL such as OWL-
QL and SQWRL . However, all of them support a read-only(select) query only.
The previous version [6] of ONTOMS2 uses a OWL-QL to retrieve instances.
We enhanced ONTOMS to have an ability to update ontology data by adding
the SPARQL processor in addition to the OWL-QL processor. This is because
OWL is developed as a vocabulary extension of RDF, SPARQL is a de facto
query language for RDF, and recently W3C published a recommendation [2] for
the SPARQL update.

According to the SPARQL Update recommendation proposed byW3C, SPARQL
Update provides three operations related to update : INSERT DATA, DELETE
DATA, and DELETE/INSERT. The INSERT DATA operation is to add new
triples into the ontology data while the DELETE DATA operation is to remove
triples from the ontology data. Lastly, the DELETE/INSERT operation is to re-
move triples and add new triples into the ontology data with the WHERE clause.
ONTOMS2 supports all INSERT DATA, DELETE DATA, and DELETE/INSERT
operations. Due to the space limitation, we omitted the detailed syntax. Please
refer Chapter 3 SPARQL 1.1 Update Language in [2] for the detailed syntax.

Incremental Reasoning Only some of existing ontology data management
systems support the update for ontology data. Even though there are some
existing systems with the update feature, the instance reasoning for the updates
has to be conducted from the scratch due to the constraints of the system while
ONTOMS supports an incremental reasoning. Thus, the instance reasoning of
the existing systems for each update is performed by processing all the stored
triples. Eventually, it degrades the update processing performance.

154

OWL defines several types of properties. However, only inverseOf, symmet-
ric and transitive properties may generate new facts(triples). The incremental
reasoning for the inverseOf and symmetric properties can be done in a straight
forward way. For the insertion and deletion of transitive property triples, we
adapt the SQL-based transitive closure maintenance algorithm presented in [3]
to effectively maintain the transitive properties. We cut down the step for finding
truly new tuples among the generated tuples by unifying the transitive closure
table and multi-value class property table. This reduces costly table join opera-
tions and it also reduces a storage size.

3 Experiments

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2000 4000 6000 8000 10000

In
fe
rr
ed
 t
ri
pl
es

Insert triples

Inferred triples

(a) The number of inferred triples

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 2000 4000 6000 8000 10000

T
im
e
(s
)

Insert / delete triples

JENA insertion

ONTOMS insertion

JENA deletion

ONTOMS deletion

(b) The update processing time

Fig. 3. Experimental results

The most important enhanced point of ONTOMS2 over ONTOMS is that
ONTOMS2 supports an efficient ontology data update with an incremental rea-
soning. Therefore, we focused on the incremental reasoning performance when
ontology data is updated. We compare ONTOMS2 with JENA which is one of the
most popular ontology data management systems. JENA provides the SPARQL
update feature through ARQ. However, ARQ only supports the instance reason-
ing with non-update(SELECT) queries1. Therefore, we implemented a simple
SPARQL update interface for JANA which uses OntModel. Among reasoners in
JENA, OWL MEM MICRO RULE INF is used.

Note that, in JENA, the instance reasoning should be re-run from the scratch
for each update query and the update processing time for JENA does not contain
the time for storing the results of the instance reasoning into the relational tables
while ONTOMS2 does the incremental reasoning and the update processing time
for ONTOMS2 contains the storing time. Our experiments were performed on
2.27GHz Intel Xeon with 12GB of main memory. We implemented ONTOMS2
using MS SQL Server 2008 and Java. For JENA [1], Jena-2.6.4 version is used.

Figure 3(a) shows the number of triples to be inferred for various sizes of
insertion triples(facts). All fact triples have same transitive property. New triples
to be inserted as a facts are generated such that their subjects and objects are
randomly selected from subjects and objects of previously inserted fact triples.

1 ARQ supports a SPARQL update query on basic Model only, not on OntModel or
InfModel. However, JENA uses OntModel or InfModel for the reasoning.

155

In JENA, the instance reasoning for each insertion is conducted from the scratch
while the instance reasoning of ONTOMS2 is incrementally conducted. As a
result, ONTOMS2 outperforms JENA for the insertion and deletion due to the
incremental update strategy. The results are as shown in Figure 3(b).

4 Demo

Fig. 4. Query interface and Query wizard of ONTOMS2

During the demonstration, we will illustrate how our system handles SPARQL
queries over ontology data such as retrieving instances of classes or proper-
ties, inserting/removing instances which satisfy a specific condition with an
incremental reasoning. Our system also contains a GUI-based wizard to help
a user to create a SPARQL query easily. The screen shots of ONTOMS2 are
depicted in Figure 4 and the recorded video can be found at our demo page
(http://islab.kaist.ac.kr/ONTOMS2/).

Acknowledgments This work was supported by the National Research Foun-
dation of Korea grant funded by the Korean government (MSIP) (No. NRF-
2009-0081365).

References

1. Jena - a semantic web framework for java. http://jena.sourceforge.net/index.html/.
2. Sparql 1.1 update, w3c recommendation 2013. http://www.w3.org/TR/sparql11-

update/.
3. G. Dong, L. Libkin, J. Su, and L. Wong. Maintaining the transitive closure of graphs

in sql. Int. J. Information Technology, 5:46–78, 1999.
4. S. Kang, J. Shim, and S. goo Lee. Tridex: A lightweight triple index for relational

database-based semantic web data management. Expert Syst. Appl., 40(9):3421–
3431, 2013.

5. Z. Pan, X. Zhang, and J. Heflin. Dldb2: A scalable multi-perspective semantic web
repository. In Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT’08.
IEEE/WIC/ACM International Conference on, volume 1, pages 489–495. IEEE,
2008.

6. M.-J. Park, J. Lee, C.-H. Lee, J. Lin, O. Serres, and C.-W. Chung. An efficient and
scalable management of ontology. In Proceeding of DASFAA ’07, pages 975–980,
2007.

156

SPACE: SPARQL Index for Efficient Autocompletion

Kasjen Kramer, Renata Dividino, and Gerd Gröner

WeST, University of Koblenz-Landau, Germany

Abstract. Querying Linked Data means to pose queries on various data sources
without information about the data and the schema of the data. This demo shows
SPACE, a tool to support autocompletion for SPARQL queries. It takes as input
SPARQL query logs and builds an index structure for efficient and fast compu-
tation of query suggestions. To demonstrate SPACE, we use available query logs
from the USEWOD Data Challenge 2013.

1 Introduction

The linked data cloud is mainly accessible in two ways: SPARQL queries and direct
RDF requests. Querying linked data on the Web using SPARQL is different to querying
(relational) databases. First, linked data connect various data sources with heteroge-
neous data. Second, the schema and type statements are often unknown to the user or
even missing in the data source. Thus, querying linked data means to pose queries on
various data sources without information about the vocabulary and structure of the data.

In order to assist users when writing SPARQL queries, we show SPACE, a tool
to support autocompletion of SPARQL queries. Autocompletion enables users to write
queries fast. Existing approaches for query writing assistance make use of RDF datasets
to extract query suggestions or they extract data source descriptions [1, 5] and/or rela-
tionships [2, 3]. Instead, we explore query logs available from SPARQL endpoints. We
argue that previously executed queries are valuable information sources about the un-
derlying data structure and schema of data sources. These queries reveal how resources
are related and they reflect the user interests on resources and their relationships.

Our tool aims at enhancing usability of SPARQL query writing by providing sug-
gestions of different possible query formulations to the user. Besides this, it enables fast
and efficient computation of new suggestions. The computation of suggestions relies on
an index structure for SPARQL queries. The SPACE index structure incorporates the
structure and composition of graph patterns in SPARQL queries.

2 The SPACE Data Structure for Indexing SPARQL Queries

When a user writes a SPARQL query, SPACE aims to find the most similar queries
available in the query logs in order to build new suggestions. A SPARQL query is a
tuple defined as Q = (A,V,G, P,M), where A is the set of prefix declarations (Line 1
in Fig. 1(a)), V is the output form (Line 2 in Fig. 1(a)). G refers to the RDF graph(s)
being queried (Line 3 in Fig. 1(a)), P is a graph pattern (Line 5-8 in Fig. 1(a)) and M are
query modifiers (Line 9 in Fig. 1(a)). In this work, we focus only on graph patterns. In
that view, a query is composed only by its P. The core of SPACE is its index structure.
The index structure is a graph, representing a set of SPARQL queries.

157

(a) It returns the email of the persons named John
Doen and Peter Doen

(b) It returns the email of the persons named John
Doen and Sarah Carey

Fig. 1. SPARQL Queries: Toy scenario

Definition 1 (SPACE Index). The SPACE index I is a hierarchical index in form of a
directed acyclic ordered graph I = (V,E). Each vertex v ∈ V is associated with a level
l(v) ∈ 0, . . . n − 1. Each edge (v, v′) ∈ E leads to a vertex at a higher level (l(v) < l(v′)).
The partial relation ⊆ (set-inclusion) on the setV defines v ⊆ v′ for all (v, v′) ∈ E.

According to Def. 1, the index structure has the following shape:

1. The vertices at the highest index level (n − 1) are represented by elements of the
(pairwise disjoint) infinite sets I, B, L and V (IRIs, Blank nodes, literals and vari-
ables). Additionally, they represent the binary operators AND, UNION, OPT, FIL-
TER, and GRAPH used to combine graph patterns. These vertices have only in-
coming edges.

2. The vertices from index level n − 2 until index level 1 represent graph patterns,
according to the recursive definition in [4]. A triple pattern is a graph pattern of the
form (I∪L∪V)×(I∪V)×(I∪L∪V). If P1 and P2 are graph patterns then (P1 AND
P2), (P1 OPT P2), and (P1 UNION P2) are also graph patterns. Given a SPARQL
built-in condition R, then (P1 FILTER R) is a graph pattern. Finally, given a G ∈ I
or ∈ V , then (G GRAPH P) is a graph pattern.

3. The vertices from index level 1 represent SPARQL queries. Each query is com-
posed by one graph pattern.

4. The (single) vertex, at the (lowest) level 0 (also called root vertex) represents a set
of queries, e.g., all queries of a query log. This vertex has only outgoing edges.

Please note that, the number of graph patterns in the queries determine the height of
the index tree. To illustrate our approach, Fig. 1(a) and Fig: 1(b) present two SPARQL
queries. The first query searches for the email of the persons named John Doen and Peter
Doen. The second one searches for the email of the persons named John Doen and Saray
Carey. The SPACE index structure is shown in Fig. 2. The IRIs foaf:name, foaf:mbox,
the literals ’John Coen’, ’Peter Coen’ and ’Sarah Carey’, the variables ?person and
?email, as well as the operator AND and UNION are represented by the nodes at the
last level. The graph patterns are represented in the levels above. For instance, the triple
pattern t1 is composed by the nodes ?person, foaf:name and ’John Coen’.

The process of searching for suggestions is done by sub-graph matching. Whenever
there is a match of the query written by the user in the index graph, the tool is able to
provide suggestions. The suggestions are ordered regarding to a popularity score. The
popularity score represents the frequency of an element in the queries of the dataset.

2

158

Fig. 2. SPACE Index of our example

When the user start writing a query, up the first symbols he writes, he gets some sug-
gestions. For instance, if the user starts with the symbols 〈, then the tools suggest all
possible URIs found in the graph’ nodes. If the user writes ”?”, the tool searches for
all the nodes representing a variable in the index. Given a variable, the possible follow-
up suggestions are the predicates nodes, in our case, the predicates in ”foaf:name” and
”foaf:mbox”, since they are the only predicates connected to variable nodes in the in-
dex graph. The tool only suggests (parts of) already observed queries. The more the
user writes the smaller is the region where the query may be located in the index graph.
Therefore, the longer the written query is, the more precise are the suggestions. The tool
searches for the most similar queries in the query log in a bottom-up matching manner.
For speeding up, an extra index for prefixes and namespaces is built. Please note that,
nodes representing variables are not named and can be seen as just placeholders. The
substitution method is used to check the equality of graph patterns.

3 SPACE in Use

Dataset: To demonstrate our tool, we collect queries from available query logs from the
USEWOD Data Challenge 2013 1 posted to SPARQL endpoints. In particular, the logs
are from the two following sources: Open-BioMed.org.uk and BioPortal. The Open-
BioMed.org.uk service offers gene expression search for Drosophila research, as well
as drug discovery for the Alzheimer’s disease. BioPortal provides access to commonly
used biomedical ontologies.
Tool demonstration: The SPACE2 is a web application tool written in Java and is based
on the Jena framework. Its client-side is implemented in Javascript code. Fig. 3 shows a
screenshot of the tool. SPACE is composed of two parts: (1) the not-editable part, repre-
senting an incomplete SELECT query and (2) the editable part, representing the graph
pattern of the query. Suggestions are given to the user starting from the moment the
user writes something in this field. The autocompletion functionality includes sugges-
tion of IRIs such as classes and properties, of literals, of variables, of SPARQL binary
operators as well as of namespaces and prefixes.

1 USEWOD Data Challenge: data.semanticweb.org/usewod/2013/challenge.html
2 SPACE: http://west.uni-koblenz.de/Research/systems/SPACE

3

159

Fig. 3. SPACE screenshot

4 Conclusion and Outlook

In this paper, we have shown SPACE, a SPARQL editor that assists users when writ-
ing SPARQL queries. The tool is based on a hierarchical index structure of SPARQL
queries, which enables fast computation of the most similar queries that are available
in the query logs in order to generate new suggestions. So far, we have focused on the
suggestions of query patterns.

We plan to proceed this research into three directions: (1) incorporate all operators
of SPARQL and apply optimizations, (2) combine with approaches based on dataset
statistics to improve recommendation, (3) conduct a user evaluation to get feedback
from users to estimate which suggestion is intuitive with respect to human feeling.

References

1. S. Campinas, T. E. Perry, D. Ceccarelli, R. Delbru, and G.. Tummarello. Introducing RDF
Graph Summary with application to Assisted SPARQL Formulation. In DEXA, 2012.

2. T. Gottron, A. Scherp, B. Krayer, and A. Peters. Lodatio: Using a schema-level index to
support users in finding relevant sources of linked data. In K-CAP’13, 2013.

3. M. Jarrar and M. D. Dikaiakos. A Query Formulation Language for the Data Web. IEEE
Trans. on Knowledge and Data Engineering, 24(5):783–798, 2012.

4. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. ACM Trans.
Database Syst., 34(3):16:1–16:45, September 2009.

5. M. Zviedris and Barzdins G. ViziQuer: A Tool to Explore and Query SPARQL Endpoints. In
ESWC, volume 6644 of LNCS, pages 441–445. Springer, 2011.

4

160

SemantEco Annotator

Patrice Seyed1,2, Katherine Chastain2, Brendan Ashby2, Yue Liu2,
Timothy Lebo2, Evan Patton2, and Deborah McGuinness2

1DataONE, University of New Mexico, Albuquerque, NM 87131

 2Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
{seyeda2, chastk, ashbyb, liuy18, lebot, pattoe, dlm}@rpi.edu

Abstract. Generating useful RDF linked data is not a straightforward process
for scientists using today’s tools. In this paper we introduce the SemantEco
Annotator, a semantic web application that leverages community-based
vocabularies and ontologies during the translation process itself to ease the
process of drawing out implicit relationships in tabular data so that they may be
immediately available for use within the LOD cloud. Our goal for the
SemantEco Annotator is to make advanced RDF translation techniques
available to the layperson.

1 Introduction

Scientists generating datasets of tabular data make choices about how they record that
data. These decisions are informed by many factors, including how scientists
understand and analyze the data. Often, information that can be gleaned from a table
alone is limited by the initial input strategy, including what is appropriate for the table
headers (i.e., attributes) and cell values, and the conventions for structure and
terminology. There may be implicit information apparent only to the creator, leading
to challenges for uniformly interpreting data generated by different researchers.
Linked data formats based on web standards such as RDF provide an avenue for
addressing this problem, allowing the data to be more explicitly represented in
statements uniquely typing entities and relationships described in data using common
vocabularies. Unfortunately, the process for translating source data into linked data
has its own barriers, as software tools allowing scientists that are inexperienced with
linked data to perform translations are lacking.

In our demonstration we introduce SemantEco Annotator, a semantic web
application for translating tabular data into RDF for immediate use in the LOD cloud.
The annotator serves as a frontend to the csv2rdf4lod [1] conversion tool that uses an
RDF metadata vocabulary to specify a variety of powerful techniques for translating
data from CSV to RDF. We see the SemantEco Annotator as an application that
makes translation more accessible to the layperson, and which can act as a module in
a larger semantic workbench. We created our initial implementation for our
SemantEco environment, which uses linked data to present water quality data in a
visual and interactive manner [2]. In the next section we describe other RDF
translation tools, following which we highlight the primary translation techniques the

161

annotator currently enables, and finally we provide some insight into how the
application was developed, and our future work.

2 Related Work

There are existing tools both for converting tabular data to RDF and for semantic
annotation. RDF Refine1 is an extension to OpenRefine where conversion to linked
data requires that a user 1) define a “skeleton” for the final RDF as a tree structure, 2)
maps table columns to nodes of the tree. Our tool combines these steps, providing a
simpler interface by keeping all of the interactions for RDF mapping situated with the
original data table. The users also retain the flexibility to define or change the schema
as they go along. RDF Refine also allows certain types of conversions through
"transposition" that requires the user to change the structure of the original tabular
data in order to perform the conversion. Our approach enables similar modifications
while maintaining the original structure of the CSV file.

Anzo Express2 by Cambridge Semantics enables semantic annotation of Excel
spreadsheets, and also provides various other functions, including an OWL ontology
editor. Our tool focuses on re-use of existing ontologies and community-standard
vocabularies. In contrast to both RDF Refine and Anzo Express, csv2rdf4lod has the
added functionality of generating provenance statements using popular vocabularies3
that enable tracking the original dataset through each of the stages from retrieval,
through conversion, and its publication as dump files or into a SPARQL endpoint.

3 Introducing the SemantEco Annotator

To illustrate the primary translation techniques available through the annotator, we
consider data from the Darrin Freshwater Institute that tracks the quality of lake water
in New York State’s Adirondack region. The techniques are 1) row and cell-based
translation; 2) implicit and explicit bundling; and 3) leveraging OWL ontology
classes, properties, and individuals to formulate new RDF statements. Each of these
techniques is demonstrated and discussed in detail in our video linked at
https://github.com/apseyed/SemantEcoAnnotator/wiki.

3.1 Row and Cell-Based Translation

A simple RDF translation of a table generates a triple for each non-empty cell value,
where the subject, predicate, and object URIs are formed from the row, column, and
cell value, respectively. The subject URI is either generated from a convention or

1 http://refine.deri.ie/
2 http://www.cambridgesemantics.com/products/anzo-express
3 http://prefix.cc/void,dcterms,prov

162

constructed from a column’s cell value. This default technique as row-based
translation, since every triple generated from a row shares the same subject.

In more complex tabular arrangements, each row may instead contain many
subjects that are described across multiple columns, and are related direct or
indirectly. The technique for this pattern is cell-based translation. Figure 1 illustrates
a scenario where it is useful for columns F and G, which contain measurements of
NH4+ and NO3, respectively, for a water sample. Direct or indirect features of the
measurements are contained in other cells in the same row, and relate back to the
sample. Columns are designated for cell-based translation via a context menu.
Translating the indirect relationships requires bundling, which we discuss in the next
section.

Fig. 1. An excerpt of water quality data from Darrin Freshwater Institute including information
about the sample (Cols. A-E) and two of its measurements (Cols. F,G). Directed arcs above the
table illustrate relationships between what is described in columns, which our annotator helps a
user describe and ultimately generates for the user via translation into RDF.

3.2 Bundling

Sometimes a column represents a description of an entity identifiable in another
column. The Date (col. B) describes when the Sample (col. A) was taken; the user can
capture this relationship by creating an explicit bundle. In contrast, columns may
describe an unspecified, or implicit set of entity not captured by another. For the
water sample data, the Lake Name (col. C), the depth to the bottom of the lake (col.
D, Z Max), and the depth of sample collection (col. E, Sample Z) together represent a
sample location. The user can represent the implicit entity by bundling the columns
that represent it together, in an implicit bundle. Bundled columns are visually “pushed
down” into a new row in the header to show they are now grouped, and subordinate
aspects of the entity they are bundled into. After the bundling selection is complete,
the user has a choice of one of the existing column identifiers for explicit from a drop-
down list, or declaring it an implicit bundle.

163

 For the water measurement columns (F, G) designated for cell-based conversion,
there is vital unit information in the header. We provide a subject annotation feature
to directly assert out-of-band triples about the measurement units. Annotations are
created with the context menu and accept dragged properties and classes to generate
further triples. We illustrate these steps in our demonstration video.

3.3 Enhancing RDF Translation with OWL Ontologies

In connection with the aforementioned translation techniques, we provide
mechanisms for using OWL ontologies. The right side of the interface includes a
catalog of ontologies to choose from, which in turn populates trees with choices of the
ontologies’ classes, properties, and datatypes, for adding semantics to the resultant
RDF data. If an object, data, or annotation property node is dragged from the tree
interface into a column, the triples generated for that column will use the given
predicate. Dragging a class node into the column will type the object of the triple as
an instance of the given class. We also employ restrictions to selections based on
previous choices for a column. This is highlighted in our demonstration video,
through use of various scientific-observation ontologies such as OBO-E4.

4 Discussion and Future Work

Once enhancements are committed RDF files for the enhancement parameters and the
RDF produced by csv2rdf4lod are downloadable for use as LOD. In the future we will
leverage logical restrictions from ontologies to guide the user to constructs that are
most appropriate for subsequent enhancements. We also plan to extend the ontology
menu to load any ontology listed in catalogs such as BioPortal3, as well as via URI.
While the annotator enables translation of data into RDF using existing ontologies
and vocabularies, other components can enable mappings of terms within data
packages to ontology concepts. This environment would essentially enable generation
of semantically enriched data as linked data to enable better search capabilities.

References

1. Lebo, T., Erickson, J.S., Ding, L., Graves, A., Williams, G.T., DiFranzo, D., Li, X.,
Michaelis, J., Zheng, J., Flores, J., Shangguan, Z., McGuinness, D.L., and Hendler, J.
Producing and Using Linked Open Government Data in the TWC LOGD Portal. In Linking
Government Data, pages 51–72. New York, 2011. 10.1007/978-1-4614-1767-5_3

2. Seyed, A. P., Lebo, T., Patton E., McCusker J., and McGuinness D. L. SemantEco: A Next-
 Generation Web Observatory. 1st International Web Observatory Workshop. 22nd
 International World Wide Web Conference, Rio de Janeiro, May 13-17, 2013.

3https://semtools.ecoinformatics.org/oboe
4http://bioportal.bioontology.org/ontologies

164

A user interface to build interactive
visualizations for the semantic web

Miguel Ceriani, Paolo Bottoni, and Simona Valentini

Sapienza, University of Rome, Italy
ceriani@di.uniroma1.it, bottoni@di.uniroma1.it, simo.valentini@hotmail.it

Abstract. While the web of linked data gets increasingly richer in size
and complexity, its use is still constrained by the lack of applications
consuming this data. We propose a Web-based tool to build and execute
complex applications to transform, integrate and visualize Semantic Web
data. Applications are composed as pipelines of a few basic components
and completely based on Semantic Web standards, including SPARQL
Construct for data transformation and SPARQL Update for state transi-
tion. The main novelty of the approach lays in the support to interaction,
through the availability of user interface event streams as pipeline inputs.

1 Introduction

A number of tools, libraries and frameworks exist for manipulating and visualiz-
ing Semantic Web data. The RDF applications built with these tools are usually
written in a host (imperative) programming language, possibly using (declara-
tive) Semantic Web languages (SPARQL, OWL, rule languages) at specific steps
of the process. The combination of different approaches, though effective from
a programming point of view, makes it difficult to a user to grasp the overall
process, at the same time making the reuse of parts of the process harder.

We propose an entirely functional approach in which an application is de-
signed building a pipeline composed of a set of operators on RDF graphs. A
Web-based application supports the developer in visually building the pipelines,
which can then be used as components of other pipelines to achieve complex
applications through a modular approach, under complete user control.

The application generated from a pipeline is also Web-based and is respon-
sive to relevant user interface events, thanks to automatically generated event
management and AJAX 1 client/server interaction.

After discussing related work in Sect. 2, Sect. 3 describes the pipeline editor,
while Sect. 4 presents the software architecture and Sect. 5 outlines the presented
demo Finally, Sect. 6 discusses conclusions and future work.

2 Related Work

During the last few years, two pipeline languages, DERI Pipes [1] and SPAR-
QLMotion [2], have emerged as the state of the art for defining RDF trans-

1 Asynchronous JavaScript And XML

165

formations, offering a high level interface to execute operations on linked data,
providing a set of basic operators on RDF graphs to build the pipelines, which
are then typically executed in the context of a batch or Web application, in the
latter case in response to GET or POST requests. Similarly, networked graphs [3]
propose a view-based approach, where an RDF-based syntax is used to define
new graphs in terms of queries on existing graphs, possibly using recursion.

The Visualbox [4] and Callimachus [5] systems have been proposed explicitly
for linked data visualization. In their two-step model/view approach, SPARQL
queries select data and a template language generates the (XML) visualization.

We leverage these approaches to give developers the possibility of specifying
event-based interactive applications through pipelines composing query-based
operators on graphs. As the User Interface state and events can be used as
inputs of the queries, programmers can build complex visualization scenarios.

3 Dataflow Editor

The editor is contained in a Web page (see Fig. 1) providing tools to create and
modify dataflows saved as RDF graphs on a Graph Store [6] and composed of:

Fig. 1. A screenshot of the web-based editor

– a component panel(left), where components represent language operators;
– the data sources tab (left), allowing reference to RDF data sources already

known to the system or the creation of new ones;
– the pipelines tab (left), allowing developers to use, view or modify other

pipelines created by the user or any pipeline available online (in which case
it would not be modifiable);

166

– the editor area (center), where the pipeline is built by dragging, linking and
configuring the desired components;

– the command panel (upper right), contains some buttons for operations re-
lated to the whole pipeline, e.g. saving it or executing it;

– the helper area (bottom-left corner), for contextual help on components;
– the source code area (bottom), showing the RDF graph for the dataflow.

3.1 Components

A pipeline is a side-effect-free dataflow programming module, taking as input an
RDF Dataset and returning another RDF Dataset. Each component is identified
by a Name (visualized in the interface) and an ID (used as fragment identifier to
programmatically identify the component). The available components are:

– the default input graph and the (named) input graphs
– the default output graph and the (named) output graphs
– the union graphs generated by merging the RDF triples of a set of graphs;
– the construct graphs generated by executing a SPARQL 1.1 Construct [7]

query against a set of graphs;
– the updatable graphs, whose content is incrementally modified during an

execution of the pipeline by executing a SPARQL 1.1 Update [8] request
against a set of graphs each time one of these graphs changes;

– existing pipelines which can be used as components in the current pipeline.

A pipeline can be designed just for reuse by other pipelines. If a pipeline
has to be executed (i.e. it is a top level pipeline), its default output graph must
comply with an XML DOM Ontology2 describing the XML DOM in RDF. It will
represent a HTML or SVG document, to be rendered by the user interface. Its
default input graph will receive the DOM Events generated in the user interface,
described with a DOM Events Ontology3.

4 Software Architecture

The main blocks of the application are the editor, the pipeline repository and
the dataflow engine. The editor is a rich Web application with its client side
logic coded in HTML+CSS+JavaScript. The pipeline repository is an instance
of Graph Store that must be located in the same host of the editor. The dataflow
engine is a Java based (using Apache Jena [9]) web application that maintains
the state of each running pipeline instance; when a new instance is launched
(e.g., from the editor) the engine initializes the pipeline and returns to the client
its output along with a piece of JavaScript logic to report the handled events
back to the server; each time an event is fired on the client, the dataflow engine is
notified and answers with the changes that have to be executed on client content.

2 http://www.swows.org/2013/07/xml-dom
3 http://www.swows.org/2013/07/xml-dom-events

167

http://www.swows.org/2013/07/xml-dom
http://www.swows.org/2013/07/xml-dom-events

On the client side, any modern browser with JavaScript support is sufficient to
use both the editor and the generated application. The software is free and
available on line4.

5 Demonstration

We will demonstrate how to build a data visualization through the creation
of a pipeline. Static content (e.g., an SVG world map) will be referenced as
Datasource and composed with dynamic content built from RDF Datasources
(e.g., the FAO Geopolitical Ontology) using some chained Construct queries
(e.g., to color the map based on some statistic); to add interaction the Default
Input of the pipeline (user interface events) will be connected to an Updatable
Graph storing the application state (e.g., the selected statistic)5.

6 Conclusions and Future Work

We have presented a user interface to build pipelines which specify transfor-
mations of RDF graphs in order to build data visualization applications. The
RDF pipeline language is based on existing standards (such as SPARQL) and
is unique in having been designed for interactive applications and thus able to
react to graph modification events.

We are a proposing this system as a proof-of-concept and as a test bed for
experimentation in RDF programming with a dataflow approach. We want to
leverage this experimentation to build higher level interfaces, designed also for
usage by non-expert users, as a way to flexibly interact with linked data.

References

1. Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid
prototyping of semantic mash-ups through semantic web pipes. In: Proc. WWW
’09, ACM (2009) 581–590

2. Knublauch, H., et al.: SPARQLMotion Specifications (2010) sparqlmotion.org.
3. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for SPARQL

rules, SPARQL views and RDF data integration on the web. In: Proc. WWW ’08,
ACM (2008) 585–594

4. Graves, A.: Creation of visualizations based on linked data. In: Proceedings of
the 3rd International Conference on Web Intelligence, Mining and Semantics, ACM
(2013) 41

5. Battle, S., Wood, D., Leigh, J., Ruth, L.: The Callimachus Project: RDFa as a Web
Template Language. In: COLD. (2012)

6. Ogbuji, C.: Sparql 1.1 Graph Store HTTP Protocol. W3C REC 21 March 2013
7. Harris, S., et al.: SPARQL 1.1 Query Language. W3C REC 21 March 2013
8. Schenk, S., Gearon, P., et al.: SPARQL 1.1 Update. W3C REC 21 March 2013
9. McBride, B.: Jena: a semantic Web toolkit. Internet Computing, IEEE 6(6)

(Nov/Dec 2002) 55–59

4 http://www.swows.org/
5 A clip of this example is available at http://www.swows.org/?q=ISWC2013.

168

http://sparqlmotion.org/
http://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://www.swows.org/
http://www.swows.org/?q=ISWC2013

Coordinating Social Care and Healthcare using
Semantic Web Technologies

Spyros Kotoulas, Vanessa Lopez, Martin Stephenson, Pierpaolo Tommasi,
Wei Jia Shen, Gang Hu, Marco Luca Sbodio, Veli Bicer, Anastasios Kementsietsidis,

M. Mustafa Rafique, Jason Ellis, Thomas Erickson, Kavitha Srinivas,
Kevin McAuliffe, Guo Tong Xie, and Pol Mac Aonghusa

IBM Research

1 Introduction

Healthcare and Social Care are unique domains in terms of cultural importance, eco-
nomic magnitude and complexity. On a cultural level, the level of advancement of a
society is often measured in terms of protection of the less able. In economic terms,
for 2009, total expenditure on healthcare in the United States was 2.6 trillion USD or
17.4% of the GDP1. Total expenditure on social care was 2.98 trillion USD or 19.90%
of the GDP2. In terms of US Federal government expenditure, social security, medi-
care and medicaid amount to 45% of total spending. In terms of complexity, organiza-
tions that are involved in providing social and medical care are numerous and span a
very wide domain. For example, AHIP, the trade association of health insurers numbers
some 1300 members3; the number of hospitals registered with the American Hospital
Association is 57244 and the number of homeless shelters surpasses 40005. In addition,
medical information is vastly complex: Nuance reports that LinkBase R©6 contains more
than 1 million concepts. Social care depends on information from a very broad domain,
ranging from criminal records to housing.

Coordinating social care and health care has been identified both as a major pain
point and a significant opportunity in modern health and social systems [1]. Several
studies have shown that costs can be contained and outcomes improved with a more
holistic approach to care [2]. As a simple motivating example, consider an individual
quartered in inappropriate housing while suffering from a relatively minor health issue,
aggravated by the housing condition. As a result, the given individual frequently re-
sorts to visiting emergency rooms, resulting in significant cost to the healthcare system
and a less effective treatment. By itself, the housing situation does not warrant state
intervention. Nevertheless, resolving it would dramatically improve the health situa-
tion, resulting in a better quality-of-life for the individual and lower costs for the health
system.

1 http://dx.doi.org/10.1787/888932523215
2 http://www.oecd.org/els/social/expenditure
3 http://www.ahip.org
4 http://www.aha.org/research/rc/stat-studies/fast-facts.shtml, retrieved 19/04/2013
5 http://www.shelterlistings.org/
6 http://www.nuance.com/for-healthcare/resources/clinical-language-

understanding/ontology/index.htm

169

Data Sources

SPARQL

Feder.
Query

Compon
ent

SeDA RDBMS

......

RDF Store

Ancillary Indexes
Feder.
Query

Compon
ent

Full-text

RDF
Store

IBM
Storage
(SAN)

IBM
Storage
(SAN)

IBM
Storage
(SAN)IBM HTTP

Server
IBM HTTP

Server
IBM HTTP

Server

IBM Tivoli
Access

Manager
and

WebSEAL

IBM WebSphere
Application Server

REST
API

View
definitions

Provenance

Node
registry

Linker

Metadata Repository

Feder.
Query

Compon
ent

Link
Repo.
Mgt.
Info

Prov.
DB2
RDF

Ref.
Ontol.

Data source
management

Context
management

View
management

Exploration
interface

Context
Search

Visual
Analytics

Proprietary

Application
administrator

User

Fig. 1: System architecture

Even in this simple example, the challenges presented are significant: How do we
access information in disparate systems, storing vastly heterogeneous information on
various infrastructures? How do we cope with policy constraints disallowing replica-
tion or centralization of data? How do we abstract from the information and represen-
tation complexity?

In this paper, we propose a novel technical solution to augment applications with
cross-domain context, in the domain of Social Care and Healthcare based on business
rules and contextual exploration. We claim that Semantic Technologies can uniquely
address these problems because: (a) The distributed nature of RDF allows access to in-
tegrated information across silos. (b) Explicit and global semantics allow us to ground
business rules across systems. (c) The distributed and incremental data integration paradigm
advocated by linked data can help coping with the complexity of the data.

We present a demonstrator of a system that supports two key use-cases for this do-
main: (a) Displaying a view of the combined needs across several dimensions for a
given person and people in their social context, based on a set of business rules. This
allows a social/health worker to quickly assess the situation of an individual. From a
knowledge management perspective, it requires grounding a set of business rules across
several ontologies and instance data in several data sources. (b) Exploration of the con-
text to surface information not directly covered by the business rules. Given the het-
erogeneity of the domain, the user will most likely need additional information around
a given individual. Our demonstrator uses the business rules as a navigational aid to
explore the semi-structured information.

2 Approach

Key Performance Indicators (KPIs) are used to ground business rules to data, offering
a tree-based view over the factors that contributed to a given KPIs and the weight of

2

170

each factor (influence) to the global vulnerability score, helping us understand relations
across different needs. For example, being homeless (or living under poor housing con-
ditions) is an aggravating factor for health. These views can be applied to an individual,
family members, or socially/geographically organized groups. Each node in a KPI is
associated to two SPARQL queries. The first one is to calculate the score of a given
contributing factor (if present) obtained from a given data source(s) and with a given
weight. The second one is a CONSTRUCT query to retrieve the set of triples provid-
ing additional context in the ontology(-ies) associated to the data that contributed to
the score, as well as the justification on the values from which this KPI factor was de-
rived. The score of a KPI node is the sum of its own score and that of its children. For
both types of queries, rather than being tied to a specific model, we abstract from the
particular representation using a set of query patterns.

An enterprise architecture supporting our approach is shown in Fig. 1. Due to space
restrictions, we describe only the components necessary to understand the basic oper-
ation of the system. Web-facing services use a set of REST services, implemented on
a custom application running on IBM WebSphere Application Server. The main com-
ponents for these services are the Node registry, which tracks nodes in the Federated
Query Engine, the View definitions, that are used to project information out of the graph
model for use by analytics widgets and UI elements. Data Sources are exposed as virtual
RDF, using SeDA, an IBM technology to execute R2RML mappings. The virtual RDF
Data Sources, the Metadata Repository and the Ancillary Indexes are accessed through
the Federated Query Engine, providing transparent access to the distributed informa-
tion. All core components in this architecture can be clustered, for high availability and
performance.

3 Deployment

We have internally deployed a proof of concept based on the above architecture, inte-
grating a set of IBM solutions for clinical and social program information: IBM soft-
ware Patient Care and Insights provides data driven population analysis to support
patient centered care processes. It integrates and analyzes the full breadth of patient
information sourced from multiple systems and different care providers. It stores three
categories of data: extracted patient medical history called clinical summary; medical
data analytics results from an analytics component called care insights and personalized
electronic care plans. IBM Cúram is a business and technology solution to help social
program organizations provide optimal outcomes for citizens, satisfy increasing de-
mand, and lower costs for organizations. In connection to this paper, the information of
interest mainly regards social relationships, known problems concerning employment,
substance abuse, participation in social assistance programs and information concerning
housing, education and safety.

Figure 2 shows some UI components from our proof of concept. Since our approach
is meant to be deployed as part of a existing application, in order to augment them
with information from other systems, we have opted to focus on the context that can
be retrieved, rather than trying to replicate the enterprise application: (a) Genogram,
Fig. 2, floating frame on top-left. We have adapted the genogram visualization [3] to

3

171

Fig. 2: Screenshot

explore the family environment of a person and associated problems. (b) Hierarchical
KPI, Fig. 2, right. The tree allows the user to explore the vulnerabilities of a person us-
ing information coming from several sources. The KPIs themselves are tree structures.
Clicking on a node brings up a contextual exploration view. (c) Contextual exploration,
Fig. 2, bottom-left. The user is able to investigate information related to a node in the
KPI tree based on a graph exploration interface. In addition to elements shown in the
figure, our proof of concept supports exploration and analysis based on the spatial com-
ponent and family relations.

From internal feedback, the main strong points of our approach lie in the ability to
consume data from heterogeneous sources without complicated data warehouses, asso-
ciated ETL processes and setting up related infrastructures, although it remains to be
seen whether the tooling required for a semantic approach will reach the sophistication
of what is currently found in the enterprise domain. In addition, tabular or tree-like vi-
sualizations are strongly preferred to graphs. Future work lies in better-informed data
exploration, mining the RDF graphs to identify meaningful relationships and data in-
consistency checking across silos.

References

1. Rigby, M., Hill, P., Koch, S., Keeling, D.: Social care informatics as an essential part of
holistic health care: A call for action. I. J. Medical Informatics 80(8) (2011) 544–554

2. Peikes, D., Chen, A., Schore, J., Brown, R.: Effects of care coordination on hospitalization,
quality of care, and health care expenditures among medicare beneficiaries. JAMA: the journal
of the American Medical Association 301(6) (2009) 603–618

3. Jolly, W., Froom, J., Rosen, M., et al.: The genogram. The Journal of family practice 10(2)
(1980) 251

4

172

A Distributed Reasoning Platform to Preserve
Energy in Wireless Sensor Networks

Femke Ongenae1, Stijn Verstichel1, Maarten Wijnants2, and Filip De Turck1

1 Department of Information Technology (INTEC), Ghent University - iMinds,
Gaston Crommenlaan 8 bus 201, B-9050 Ghent, Belgium

Femke.Ongenae@intec.ugent.be
2 Expertise centre for Digital Media (EDM), Hasselt University - iMinds,

Wetenschapspark 2, 3590 Diepenbeek, Belgium
Maarten.Wijnants@uhasselt.be

Abstract. A distributed reasoning platform is presented to reduce the
energy consumption of Wireless Sensor Networks (WSNs) offering geospa-
tial services by minimizing the amount of wireless communication. It
combines local, rule-based reasoning on the sensors and gateways with
global, ontology-based reasoning on the back-end servers. The Seman-
tic Sensor Network (SNN) Ontology was extended to model the WSN
energy consumption. One exemplary prototype is presented, namely the
Garbage Bin Tampering Monitor (GBTM).

1 Introduction

The GreenWeCan [1] project investigates a “green” wireless city access network
infrastructure able to offer geospatial services by aggregating data from multiple
sources, in a scalable and cost-effective way, and minimizing energy consump-
tion as well as the human exposure to electromagnetic radiation. The machines
in a WSN range from heavily resource-constrained sensors to powerful back-end
servers. These WSNs often use a hierarchical approach with a sink that intercon-
nects the sensors and the back-end. Power management is important in WSNs.
Sensors are often battery-operated, so their autonomy must be maximized. As
radio transmissions needed for communication are costly operations [2], it is
often beneficial to carry out as much processing as possible on the node itself.

Therefore, a distributed reasoning platform (Section 2) was utilized. Rule-
based reasoning on the sensors allows for conclusions concerning measured vari-
ables to be drawn locally. A back-end ontology-based reasoning mechanism,
which has a complete overview of the senor data being produced, can influence
the behavior of the WSN nodes. Section 3 describes the ontology, which is used
to model and reason on the sensor knowledge to reduce energy consumption.

The use of proven standard reasoning mechanisms in WSNs is still premature.
However, the reduction in energy consumption by a reduced transmission rate,
compared to the extra power needed for such processes, should result in a positive
balance. Moreover, using standard reasoning algorithms, instead of proprietary
ones, makes the approach more generic and facilitates reusability. A prototype
was developed to demonstrate these advantages (Section 4).

173

Wireless Sensor
Network (WSN)

Router

Sensor gateway

Back-end
server

D2R

MySQL Database

(Local) Rule-based sensor reasoning

(Global) Ontology-based overall reasoning User requests

Fig. 1. Reasoning Architecture of the WSN

2 Reasoning architecture

As shown in Figure 1, information requested by the users is gathered from the
sensors, which measure environmental parameters and pre-process them by per-
forming rule-based reasoning. As such, less data is transmitted to the back-end.
The complexity of the local reasoning can be adapted to the sensor’s capabilities,
e.g., battery, to optimize energy consumption. Moreover, the local reasoning is
able to monitor the sensor’s inner workings, e.g., CPU usage, in order to detect
problems that influence energy consumption.

The pre-processed data is forwarded to the back-end via a gateway, optionally
multi-hopping over routers. The sinks perform local, rule-based reasoning, e.g.,
to avoid retransmissions and preserve energy, the network load is monitored.

The back-end maintains an ontology to model the knowledge about the WSN
and its observations. Static information, e.g., sensor specifications, is gathered
from a database using D2R3. The received sensor data is integrated into this
ontology to answer user requests and optimize the overall energy consumption.

Using an ontology ensures reusability and adaptability. Should new types
of sensors be deployed, their semantic description and measurements can be
mapped on the existing ontology. Moreover, by making the ontology publicly
available as well as the data and conclusions corresponding to the run-time
situation of the WSN, new applications can be created by anyone persuing a
new usage and easy integration of this information.

The ontology can also be used to define the local, rule-based reasoning al-
gorithms. The developed Reasoning Sensor App Generator generates sensor ap-
plication code based on an XML-based application description. This description
specifies a rule set and a template. The first contains the reasoning logic, which
is executed each time the sensor wakes up. The second contains the code needed
to run the reasoning logic on hardware.

3 A SSN Ontology extension modeling energy usage

The W3C Semantic Sensor Network Incubator group has developed the SSN On-
tology4 for modeling sensor devices and their capabilities, systems and processes.
Based on brainstorms with GreenWeCan partners, i.e., OneAccess and Bausch
Datacom, the requirements for the modeling concepts were defined. These were
mapped on the SSN Ontology and some extensions were made. The relations

3 http://d2rq.org/d2r-server
4 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

174

Sensor Property
observes

Measurement
Capability

hasMeasurement
Capability

forProperty

ConditioninCondition

Observation

madeObservation

QualityTime qualityOfObservationObservation
SamplingTime

SensorOutput ObservationValue
observationResult hasValue

hasValue

Observed
Property

SymptomFaultSolution

hasSymptom

hasFaulthasSolution

DataProperty

…ParkingSpaceOccupiedLitterBinOpened

InternalProperty

CPUActivity RadioActivitySNRatioUptime

BufferOverflow

Failed
Transmissions

Packets
Received

PacketsSent

is a

is a

…

is a

is a

System hasSubSystem

Battery

hasSub
System SurvivalProperty

BatteryLifetime

AvailableBatteryLifetime

MinimumBatteryLifetimeOccurence

is a

Harvester

SolarPanelis a

ROM

PotentialConfiguration

Radio

Configuration
hasConfiguration
CurrentConfiguration

is a
hasFre-
quency
Band

hasCommuni-
cationChannel

hasHard-
ware
Revision

hasFirm-
ware
Revision

hasTrans-
mission
Power

string string stringstring string

Has
CPUFre-
quency

string

Magnetic
Sensor

has
Fre-
quency

stringstring stringstring

has
Sensi-
tivity

has
Cali-
bration

has
Accu-
racy

is aRFSensor

DeploymentPlatform
deployed
System

hasDeployment

deployedOnPlatform

DUL:PhysicalObject

equivalent

DUL:PhysicalPlace

DUL:SpaceRegion
hasLocation

Link

string
hasLinkQuality

LinksSensor

Network
Role

Sink WorkerRouter

equivalent

is a CPU

is a

is a

Fig. 2. The SSN Ontology extended (indicated in blue) to model energy consumption

between the sensor configurations, networks and applications and the influence
on the energy consumption were also derived.

As shown in Figure 2, the SSN Ontology allows to model sensors, their obser-
vations and measurement capabilities. To avoid error propagation and retrans-
missions, the SNN was extended with concepts to make the quality of the ob-
servations explicit as they can be imprecise, ambiguous or erroneous. Symptoms
define rules, which allow detecting specific phenomena in the observations. Ax-
ioms are defined that reclassify these Symptoms as Faults and Solutions.

The SSN Property concept models the type of metrics that can be ob-
served. The Data- and InternalProperty subclasses are added to group the
application-relevant observations monitored and the hardware-specific proper-
ties internally measured by the sensor. Figure 2 shows some internal properties
to minimize energy consumption, e.g., sleeping schemes and radio settings can
be adjusted to avoid buffer overflows and thus the amount of retransmissions.

The type of a sensor indicates which local reasoning techniques can be adopted.
The Sensor concept in the SSN Ontology is annotated with a reference towards
SensorML5. This specification can be used to reflect all the sensor’s details.

Battery, Harvester, ROM, CPU and Radio concepts are introduced as these
influence the reasoning complexity that can be used. The SSN Ontology already
defines the Battery LifeTime property. Some other battery properties were
added. The Current- and Potential Configurations of the radio and CPU are
also modelled. The first models the currently used values for the characteristics,
while the second represents the combination of values that can potentially be
used together. Similarly, new sensors can be modeled, as shown in Figure 2 for
the Magnetic Sensor and its settings, e.g. Sensitivity.

The location of the sensors can influence the energy consumption. The SSN
Ontology models the WSN’s deployment. To represent the physical locations the
SSN Ontology aligns with the DOLCE Ultra Lite Ontology6. These concepts are
preceded by the DUL namespace in Figure 2. Link and NetworkRole concepts
are introduced to represent the network components used to interconnect the

5 http://www.opengeospatial.org/standards/sensorml
6 http://www.loa.istc.cnr.it/ontologies/DUL.owl

175

nodes and the role each node plays. Characteristics can be attached to the links,
e.g., LinkQuality, which influences packet drops and retransmissions.

Finally, the context in which the WSN operates plays a role. Therefore, the
ontology is linked to existing ones, e.g., the OWL Time ontology and DBPedia7.

4 Garbage Bin Tampering Monitor Prototype
The GBTM monitors garbage bins in Ghent, which are used for small-scale
litter disposal and are equipped with a sensor to detect the opening and closing
of their cover. The cover can only be removed by a special-purpose key. Any
other manipulations are illegitimate. A web-based interface8 allows personnel to
consult the observations, either as raw data, as an alligned table clustering data
per bin or on a map. Anomalies are highlighted by combining the observations
with external data, e.g., garbage collection timetables. The views also allow
optimizing garbage collection routes and timetables.

Rule-based sensor reasoning The garbage bins are equipped with a magnet-
activated reed switch, which stores a type, i.e., open or close, and timestamp in
the sensor’s ROM when a hardware interrupt occurs. To reduce the number
of transmissions, rule-based reasoning accumulates the sensor readings during a
configurable time interval, after which they are transported in bulk to a database
on the back-end server, which exposes them via a D2R-based RESTful interface.

Ontology-based back-end reasoning The sensors issue their measure-
ments once per time interval to the back-end. The Next-Wake-Up-Time configu-
ration parameter determines the timepoint at which this happens. It is preferably
avoided that sensors wake up at the same time as this increases the amount of
retransmissions, particularly in single-hop topologies, due to collisions. There-
fore, if such a situation is discovered, the back-end reasoner will use the WSN
ontology to recalculcate a dephazed next wake-up time scheme.

Rule-based gateway reasoning When the gateway receives a request, it
first checks if the required up-to-date info is available in its cache. If it is, the
cached data is sent to back-end to reduce the amount of data transmitted and
thus the energy consumption. If not, the measurements are retrieved from the
sensors. Determining the time after which data in the cache should be refreshed
is difficult. Applications preferably use the most recent measurements. However,
they need to comply with legislation concerning how much Radio Frequency
communication is used, e.g., 6 minutes per hour for a 169 MHz radio. Therefore,
the gateway monitors the duty cycle and adapts its caching strategy accordingly.

References
1. M. Wijnants, et al.: An eco-friendly hybrid urban computing network combining
community-based wireless LAN access and wireless sensor networking. In: Proc. of
GreenCom. (2012) 410-417
2. P. De Mil, et al.: Design and implementation of a generic energy-harvesting frame-
work applied to the evaluation of a large-scale electronic shelf-labeling wireless sensor
network. EURASIP JWCN (2010) 12

7 http://www.w3.org/TR/owl-time/ & http://wiki.dbpedia.org
8 http://mediasharing2.edm.uhasselt.be/greenwecan_v3/php/gwc_usecase_

gbtm.php

176

SexTant: Visualizing Time-Evolving Linked
Geospatial Data ?

Konstantina Bereta1, Charalampos Nikolaou1, Manos Karpathiotakis2,
Kostis Kyzirakos1, and Manolis Koubarakis1

1 National and Kapodistrian University of Athens, Greece
2 École Polytechnique Fédérale de Lausanne, Switzerland

Abstract. We present SexTant, a Web-based system for the visualiza-
tion and exploration of time-evolving linked geospatial data and the cre-
ation, sharing, and collaborative editing of “temporally-enriched” the-
matic maps which are produced by combining different sources of such
data.

1 Introduction and Motivation

Linked geospatial data has recently received attention as researchers and prac-
titioners have started tapping the wealth of geospatial information available in
the archives of various national cartographic agencies and making it available
on the Web as linked data [2]. As a result, in the last few years, the Web of
data is being rapidly populated with geospatial information. As the real-world
entities represented in linked geospatial datasets evolve over time, the datasets
themselves get updated and both the spatial and the temporal dimension of data
become significant for users.

In the demo paper [4] we presented Sextant3, a tool that enables the vi-
sualization and exploration of the spatial dimension of linked geospatial data.
Sextant enables map creation and sharing, as well as the visualization and ex-
ploration of data by evaluating GeoSPARQL queries on SPARQL endpoints. In
this way rich thematic maps can be created by layering information coming from
the evaluation of GeoSPARQL queries. Sextant is based on standards defined
by the Open Geospatial Consortium (OGC), thus it is interoperable with other
well-known GIS and Web tools such as Google Earth.

In this demo paper we turn our attention to the temporal dimension of linked
geospatial data and present a new version of Sextant that we now rename Sex-
Tant (the capital “T” in the new name emphasizes the time dimension). SexTant
extends the functionalities of the earlier tool by visualizing the temporal dimen-
sion of data having a spatial extent simultaneously on a map and a timeline. The
new capabilities of SexTant build on the temporal features of the data model

? This work was supported by the EU FP7 project TELEIOS (257662), the Greek
NSRF project SWeFS (180), and the EU project Optique (318338).

3 See http://wikipedia.org/wiki/Sextant for the explanation of the name.

177

http://wikipedia.org/wiki/Sextant

stRDF, the query language stSPARQL, and their efficient implementation in the
geospatial RDF store Strabon [1]. stRDF and stSPARQL go beyond the OGC
standard GeoSPARQL by allowing the representation and querying of linked
geospatial data that changes over time [1,3]. SexTant (and this demo paper)
extends the research presented in [1] by demonstrating how graphs defined in
stRDF/stSPARQL can be explored and visualized.

In related work, the French project GEOPEUPLE is also studying the model-
ing and visualization of spatiotemporal data. As an example, the demo available
at http://www.rotefabrik.free.fr/geopeuple/en/onglets-33038.html vi-
sualizes the evolution of administrative regions in France over the time.

2 New Functionalities of SexTant

SexTant extends the architecture of our earlier system presented in [4] and shown
in Fig. 1a as follows (new and modified components are highlighted with pink
boxes). First, apart from the the map ontology used by the earlier system and
shown in Fig. 1b, SexTant employs the temporal ontology dictated by stRDF
and stSPARQL for the modeling of valid time [1]. This ontology enables the
introduction of user-defined time and valid time of a triple in stRDF data.
Times are modelled as instants or intervals and are represented using values
of the datatypes xsd:dateTime and strf:period respectively. Second, one can
now use all the temporal features of stSPARQL to query linked spatiotemporal
data encoded in stRDF. In this way the full capabilities of endpoints using the
spatiotemporal RDF store Strabon can be exploited. Third, the module that
translates the results of stSPARQL queries from XML to KML format has been
extended so that the temporal primitives of stRDF that we mentioned above
are translated into the respective temporal primitives of the KML standard.
An example of this transformation is provided in Fig. 1c. Last, SexTant builds
on the Timemap Javascript library (https://code.google.com/p/timemap/)
for visualizing “temporally-enriched” KML files. This enables the visualization
of geospatial features with associated temporal information on a map and a
timeline simultaneously. Timemap has been transparently integrated in the im-
plementation of the earlier system which is based on the Google Web Toolkit
framework.

3 Demonstration Overview

The demonstration of the spatio-temporal features of SexTant will be based on
a real scenario in which an Earth Observation (EO) scientist studies the changes
in the land cover of an area and assesses the damage caused by fires. This sce-
nario is very common in the EO domain, where data is constantly produced
by satellite sensors and is associated with metadata containing, among others,
temporal attributes, such as the time that an image was acquired. Satellite ac-
quisitions are utilized in related applications such as the CORINE Land Cover

178

http://www.rotefabrik.free.fr/geopeuple/en/onglets-33038.html
https://code.google.com/p/timemap/

(a) (b)

SELECT DISTINCT ?area ?t (strdf:transform(?geometry,

<http://www.opengis.net/def/crs/EPSG/0/4326>) as ?geo)

WHERE {

?area clc:hasLandUse clc:sclerophyllousVegetation ?t .

?area clc:hasGeometry ?geometry .

?ba rdf:type noa:BurnedArea ?t2.

?ba noa:hasGeometry ?geometry2 .

FILTER(strdf:mbbIntersects(?geometry, ?geometry2))

FILTER(strdf:before(?t, ?t2))

}

SPARQL	 query	

SPARQL	 XML	 results	 	
to	 KML	 file	 format	

...

<result>

<binding name='area'>
<uri>http://www.linkedopendata.gr/corineArea_34063</uri>

</binding>

<binding name='geo'>
<literal datatype='http://strdf.di.uoa.gr/ontology#WKT'>
POLYGON((21.821 38.283,21.821 38.282,...))

</literal>

</binding>

<binding name='t'>
<literal datatype='http://strdf.di.uoa.gr/ontology#period'>
[2000-01-01T00:00:00,2012-09-30T00:00:00)

</literal>

</binding>

</result>

...

SPARQL	 XML	 results	 <?xml version='1.0' encoding='UTF-8'?>
<kml xmlns='http://www.opengis.net/kml/2.2'>
<Folder>

<Placemark>

<TimeSpan>

<begin>2000-01-01T00:00:00</begin>

<end>2012-09-30T00:00:00</end>

</TimeSpan>

<name>Result0</name>

<Polygon>

<outerBoundaryIs>

<LinearRing>

<coordinates>21.821,38.283 21.821,38.282...</coordinates>

</LinearRing>

</outerBoundaryIs>

</Polygon>

<ExtendedData>

<Data name='t'>
<value>[2000-01-01T00:00:00,2012-09-30T00:00:00)</value>

</Data>

<Data name='area'>
<value>http://www.linkedopendata.gr/corineArea_34063</value>

</Data>

</ExtendedData>

</Placemark>

</Folder>

</kml>

Query	
evalua9on	

(c)

Fig. 1: (a) SexTant overview and (b) Map ontology (c) Translation of SPARQL
XML results to KML

programme operated by the European Environment Agency that makes available
as a cartographic product the land cover of European areas over time.

To achieve the goal of our scenario, we will combine information derived from
the following datasets that were produced within the project TELEIOS (http:
//www.earthobservatory.eu/): the CORINE Land Cover dataset of year 2000,
a Fire Hotspots dataset that provides information about fire hotspots in Greece,
and a Burned Areas dataset that provides detailed information about areas of
Greece that have been affected by fires during a recent fire season. The EO
scientist will use SexTant to visualize the results of stSPARQL queries that use
several thematic, spatial and temporal criteria so that she will be able to derive
implicit links among the involved datasets due to their spatial and temporal
correlation.

In our scenario, first we will visualize on a map the areas that have been
classified as “sclerophyllous vegetation” according to the CORINE Land Cover
dataset of year 2000. The valid time of the triples that encode information about
these areas will be projected on the timeline. Next, a new layer that visualizes
the hotspots that have been identified during the fire season will be displayed
on the map while the timeline will display the time when the hotspots were
detected. Then, a new layer that depicts the areas that were burned during the
forest fires of 2012 will be overlayed on the map and the timeline. The resulting
map will display to the EO scientist the schlerophyllous forests that got burnt by

http://www.earthobservatory.eu/
http://www.earthobservatory.eu/

Fig. 2: A screenshot from SexTant depicting the evolution of the land cover

the forest fires of 2012 along with a preview of the evolution of the forest fires as
they were detected by satellites so that she can assess the severity of the damage
caused by fires. A similar procedure will be used in order to discover implicit
links among the datasets enriched with provenance information, e.g., discover the
cause of changes in the land cover of areas as represented in CORINE through
the visualization and overlay of the other datasets. Such implicit links can later
on be asserted to enrich all datasets.

Layers that contain solely geospatial information will be retrieved by eval-
uating a GeoSPARQL query on a Strabon, Oracle, Parliament, or Virtuoso
endpoint, while layers that contain spatial and temporal information will be
retrieved by evaluating an stSPARQL query on Strabon. The reason for this
choice is that stSPARQL is the only language that provides the spatial and
temporal primitives that are needed for this scenario, while Strabon is cur-
rently the only “temporally-enabled” geospatial RDF store as we have dis-
cussed in [1]. In this respect our demo will also serve to showcase the new
functionalities of the system Strabon as presented in [1]. A video demonstra-
tion of SexTant that follows the scenario described in this section is available at
http://strabon.di.uoa.gr/sexTant/sexTant-demo-full-version.ogv.

References

1. Bereta, K., Smeros, P., Koubarakis, M.: Representation and querying of valid time
of triples in linked geospatial data. In: ESWC. LNCS, vol. 7882, pp. 259–274 (2013)

2. Koubarakis, M., Karpathiotakis, M., Kyzirakos, K., Nikolaou, C., Sioutis, M.: Data
Models and Query Languages for Linked Geospatial Data. LNCS, vol. 7487, pp.
290–328. Springer (2012)

3. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A Semantic Geospatial
DBMS. In: ISWC. LNCS, vol. 7649, pp. 295–311. Springer (2012)

4. Nikolaou, C., Dogani, K., Kyzirakos, K., Koubarakis, M.: Sextant: Browsing and
Mapping the Ocean of Linked Geospatial Data. ESWC 2013. Demo paper

180

http://strabon.di.uoa.gr/sexTant/sexTant-demo-full-version.ogv

	
	
	
	
	
	
	
	
	
	

	
	
	

	
	

Part	 II:	 Posters	
	 	

	
	
	
	
	
	
	
	
	

	
	 	

	

Query Suggestion by Concept Instantiation

Jack Wei Sun1, Franky1, Kenny Q. Zhu1, and Haixun Wang2

1 ADAPT-Lab, Shanghai Jiao Tong University
2 Google Inc.

Abstract. A class of search queries which contain abstract concepts are
studied in this paper. These queries cannot be correctly interpreted by
traditional keyword-based search engines. This paper presents a simple
framework that detects and instantiates the abstract concepts by their
concrete entities or meanings to produce alternate queries that yield
better search results. 3

Keywords: Query Suggestion, Concept-based Queries, Search Logs

1 Introduction

The quality of search results largely depend on the specificity of the keywords
they put in search engine, for modern search engine are mostly keyword-based.
When user queries do not general good results, search engine may suggest a list
of alternate queries for the user to select and re-submit.

Traditionally, the function of query suggestion is implemented by keyword-
based methods and partially depends on the information from search log [1,
4, 5, 10], which includes click-through data, session data, etc. With the rapid
development of Internet, researchers are increasingly interested in semantic view
of the web and do a lot of work on semantic relation extraction from search log
[2] and concept search [6, 8]. There are also other attempts on sematic query
suggestion without search log [3].

This paper focuses on a class of difficult queries which include abstract con-
cepts, e.g., “hurricane in US state”. The likely intention of this query is to look
for a specific instance of a hurricane that happened to a US state, e.g., Katrina
in Louisiana. Here both hurricane and state are used as abstract concepts which
contain many specific entities. The reason for such an abstract query may be
because the user has forgotten the name of the hurricane or the state.

Search engines today return pages about these abstract concepts, and that
usually means a list of huricanes in the US history for the above example (see
Figure 1). It takes the user at least a few more clicks and scanning through
the pages to find the information needed. Our objectives is to return a list of
suggested queries such as: Katrina in Lousiana, Sandy in Connecticut, Dolly in
Texas.

3 Kenny Q. Zhu (corresponding author) is partially supported by NSFC grants
61100050 and 61033002.

181

Fig. 1. Search Result of Concept-based Query in Bing and Google

To this end, our main approach utilizes a comprehensive, probabilistic taxon-
omy and a search log with access statistics (click-through rate, etc.). The proba-
bilistic taxonomy, called Probase[9], provides large number of concepts and their
instances in is-a relations (e.g. katrina isa hurricane) as well as the typicality of
an instance belonging to a concept. For example, a robin is a typical bird, but
an ostrich is not. Given a user query, we use this taxonomy to detect high level
concepts in it and translate them into likely instances to produce a new query,
and then return the queries from the query log which are closest to the newly
transformed query. Next, we present the prototype system in some detail and
some preliminary experimental results.

2 The Prototype System

Our system is divided into two parts, an offline part which creates an index on
all historical search queries from the search log and an online runtime system
which retrieves a number of relevant queries to an input concept-based query
and ranks them according to a scoring function. The architecture of the system
is shown in Figure 2. Next, we briefly discuss the two key components in the
architecture.

Fig. 2. Architecture of System

182

2.1 Build Index

First, we parse each historical query in the search log and identify all noun-phrase
terms which exist as entities in Probase. Entities are those terms which appear
as the instance in at least one is-a pair in the taxonomy, e.g., katrina, louisina,
etc. Then, we conceptualize these instances into their most likely concepts by
considering the neighboring instances in the same query, using the technique
by Song et al.[7, 8]. For example, query “katrina victims from texas” maybe
conceptualized into “[hurricane] victims from [state]”. Finally, we build an index
of the search log using the concepts as keys.

2.2 Rank Candidates

Given a query, our system first parses the query and recognizes the concepts
in it and then fetch a number of historical queries which are indexed by these
concepts as candidate suggestions. Ranking the candidate is the main challenge
in this work. We apply a hybrid method to calculate the ranking score. This score
takes three factors into consideration, i.e. semantic similarity, context similarity
and quality of suggestion query.

The context similarity, CScore, is measured by the edit distance between
the input query and the candidate in terms of the number of insertion, deletion
or replacement of words. Matched instances in the candidate and the matched
concepts in the input queries which represent semantic information are removed
before calculating the edit distance.

The semantic similarity between a candidate query and an input query is
the combined distance between the instances in the candidate and the corre-
sponding concept in the input. The distance between an instance and a concept
is measured by the typicality score between these two terms in Probase. Be-
cause typicality score is a value between 0 and 1 and can be dense in some range
(around 0.01 in practice), we take logistic function on the typical value to expand
the range into something more distinguishable. We also use a scalar to make it
linear comparable with CScore according to statistics. That is,

SScore(t) = β × (− 1

1 + e−α×t
+ 1)

where t is the typicality value and α is the factor to locate the dense range and
β is a scalar factor. Both factors are learned from some training examples.

We also utilize the click-through rate from the search log, in order to measure
the quality or effectiveness of candidate suggestion. In this paper, we use a simple
measure defined as

QScore(q) =
Num clicks(q)

Frequency(q)

where q is a candidate suggestion query. Besides the click-through rate, the
quality score can be extended to include other information from search log.

Currently, the overall score (the lower, the better) is defined as:

OverallScore = [CScore+ SScore] + e−QScore

183

3 Preliminary Result

We take 1/10 of a 6-month worth of Bing search log as our experimental data
source. To evaluate the system, we arbitrarily select 10 concept-based queries
related to the events happening during the 6-month time span. All suggested
queries from the system are given to 3 human judges who would grade the
suggestion on the scale of 1-5, 1 being the least helpful and 5 being the most
helpful. The averaged normalized precision score of of these results with different
size of search log and the suggestions of two example queries are shown in Figure
3. The results show that having more search log is helpful but the effect saturates
at some point. Complete data set as well as evaluation results can be found at
http://adapt.seiee.sjtu.edu.cn/~jack/query/.

Fig. 3. Average Precision and Examples of the System

References

1. Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query recommendation using query
logs in search engines. In: EDBT 2004 Workshops. pp. 588–596. Springer (2005)

2. Baeza-Yates, R., Tiberi, A.: Extracting semantic relations from query logs. In:
Proceedings of ACM SIGKDD. pp. 76–85. ACM (2007)

3. Bhatia, S., Majumdar, D., Mitra, P.: Query suggestions in the absence of query
logs. In: SIGIR. pp. 795–804 (2011)

4. Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H.: Context-aware query
suggestion by mining click-through and session data. In: Proceedings of the 14th
ACM SIGKDD. pp. 875–883. ACM (2008)

5. Dupret, G., Mendoza, M.: Recommending better queries from click-through data.
In: String Processing and Information Retrieval. pp. 41–44. Springer (2005)

6. Giunchiglia, F., Kharkevich, U., Zaihrayeu, I.: Concept search: Semantics enabled
syntactic search. Semantic Search p. 109 (2008)

7. Song, Y., Wang, H., Wang, Z., Li, H., Chen, W.: Short text conceptualization using
a probabilistic knowledgebase. In: IJCAI (2011)

8. Wang, Y., Li, H., Wang, H., Zhu, K.Q.: Concept-based web search. In: Conceptual
Modeling, pp. 449–462. Springer (2012)

9. Wu, W., Li, H., Wang, H., Zhu, K.Q.: Probase: A probabilistic taxonomy for text
understanding. In: Proceedings of ACM SIGMOD. pp. 481–492. ACM (2012)

10. Zhang, Z., Nasraoui, O.: Mining search engine query logs for query recommenda-
tion. In: Proceedings of the 15th WWW. pp. 1039–1040. ACM (2006)

184

A Protein Annotation Framework Empowered
with Semantic Reasoning

Jemma X. Wu, Edmond J. Breen, Xiaomin Song,
Brett Cooke, and Mark P. Molloy

Australian Proteome Analysis Facility, Maquarie University, Sydney, Australia
{jwu,ebreen,xsong,bcooke,mmolly}@proteome.org.au

Abstract. This paper presents an association discovery framework for
proteins based on semantic annotations from biomedical literatures. An
automatic ontology-based annotation method is used to create a seman-
tic protein annotation knowledge base. A semantic reasoning service en-
ables realisation reasoning on original annotations to infer more accurate
associations. A case study on protein-disease association discovery on a
real-world colorectal cancer dataset is presented.

Keywords: Protein annotation, bioinformatics, semantic reasoning

1 Introduction

To bridge the gap between the biomedical science and bioinformatics, many
biomedical ontologies have been created in the past few years. Ontology-based
semantic annotation for biomedical entities are of interest to both biomedical
researchers and general public. Meanwhile, the biomedical domain has a large
and fast-growing amount of literature resources, among which MedLine1 is the
primary publication repository for biomedical research. Ontology-based biomed-
ical text annotation has shown promising progress and several tools have been
successfully developed and evaluated in biomedical text mining problems[2, 5, 4].
However, these generic text-based biomedical annotation tools only provide con-
cept level annotations. The ability to do protein-oriented semantic annotation
will greatly benefit the proteomics research by enabling easy protein association
discovery. Also, traditional text-based annotation tools tend to create excessive
annotations and some tools expand the raw annotations by using semantic rea-
soning[3]. Inferring of the most informative and accurate annotations will be
very valuable to efficient and accurate association discovery.

This paper proposes an integrated high performance framework that lever-
aging protein annotations and semantic reasoning to an informative protein-
biomedical concepts association Knowledge Base(KB). Starting from a list of
proteins, the system automatically retrieves a pool of MedLine citations and an-
notates the proteins using pre-defined biomedical ontologies. A realisation rea-
soning service is applied to infer more accurate protein association information.
In our preliminary study, the focus is on the discovery of potential protein-
disease associations. A case study on discovering protein-disease associations for
a real-world colorectal cancer tissue protein dataset is presented.

1 http://www.ncbi.nlm.nih.gov/pubmed

185

2 SPRAM: A Semantic PRotein Annotation framework
based on MedLine

We propose a Semantic PRotein Annotation method based on MedLine (SPRAM)
which produces semantically inferred protein annotations based on biomedical
literatures and ontologies (Fig.1). SPRAM starts with a list of proteins of in-

Fig. 1. The framework of Semantic Protein Annotation method based on MedLine.

terest. A list of mapped MedLine publication IDs (PMIDs) for each candidate
protein is produced by searching the UniProt2 and Entrez Gene3 databases. A
parallel process runs to execute PubMed article fetching, semantic annotation
and realisation reasoning based on biomedical ontologies, such as Human Dis-
ease Ontology (HDO4), for the pool of candidate PMIDs. The MedLine citations
retrieved by the PubMed’s Eutil service are further filtered by the co-occurrence
of protein names. We choose the BioPortal’s annotator service5 with no semantic
expanding as our annotator. The raw annotated concepts are post-processed by
a realisation reasoning service to generate a set of clean and accurate protein
annotations and inserted into the knowledge base. Biologists can then issue se-
mantic queries to retrieve all proteins which are associated with one or more
concepts in the ontology.

3 Semantic reasoning for protein annotations

In biomedical ontology annotations, very often an instance is annotated with
multiple classes with subclass relationships in the ontology. To the best of our
knowledge, existing biomedical annotation tools with semantic reasoning func-
tionalities only do semantic expanding[3]. There has been no prior work on
drilling down the annotations to most specific concepts by using the seman-
tic reasoning. Despite, in many cases, the most specific classes of a protein, can
more accurately represent their biomedical categorical information. For example,
the traditional protein Gene Ontology analysis that shows the distribution of bi-
ological process or molecular functions nearly always bias towards the top-level
classes in the ontology[1].

2 http://www.uniprot.org/
3 http://www.ncbi.nlm.nih.gov/gene
4 http://disease-ontology.org/
5 http://www.bioontology.org/wiki/index.php/Annotator Web service

186

We developed a specialised realisation reasoning service for dynamically gen-
erated annotations. Different to the traditional Description Logic most specific
concept reasoning, our algorithm works on a dynamic set of annotations on the
fly instead of assertions in a static KB. Only the most specific annotations will be
stored in the KB. The algorithm takes a set of semantic protein annotations, ε,
and an ontology, O, that ε is based on. A most specific class set, ε

′
, is initialised

to be an empty set, ∅. For each class t ∈ ε for each protein, find all subclasses of
t in O, i.e., {Ci} where Ci v t ∈ O. Class t is added to ε

′
if {Ci} ∩ ε = ∅, i.e.,

t is the most specific annotation in ε given ontology O. The algorithm outputs
the most specific class set ε

′
which will be inserted into the nascent KB.

Fig.2 shows an example of the effect of applying realisation reasoning on the
disease annotations for a protein with a UniProt ID “O43175”. Class “disease”,
“cancer” and “carcinoma” in the original annotation set are all realised to “ade-
nocarinoma” because the last concept is subsumed by those three concepts and
it is also in the original annotation set. This is important because it more accu-
rately represents the biomedical categorical information and reduces complexity.

Fig. 2. An example showing the change to the protein disease annotations after reali-
sation reasoning. Left: the original disease annotation. Middle: a simplified partial view
of Human Disease Ontology. Right: the disease annotation after realisation reasoning.

4 Case study: discovery of proteins-disease associations
for colorectal cancer tissues

Jankova et al. found 45 up-regulated proteins in colorectal cancer tissues by using
experimental protein iTRAQ analysis[1]. The biologists would like to know what
diseases are related to these proteins and if the associations to the colorectal
cancer have been discovered before.

To help biologists achieve these goals, we take these 45 proteins and use our
SPRAM workflow to assist discovering the potential diseases associated with
these proteins. The result was: 1080 MedLine citations, 354 diseases associations
based on HDO, that was reduced to 241 unique associations after realisation
reasoning. SPRAM returns a set of protein-disease association to the biologists.
That includes also the source reference titles and URLs. The biologist can then
use this result to help validate these associations easily by tracing back to the
references.

Fig.3 shows the changes of the distribution of the diseases associated with
these 45 proteins before and after realisation reasoning. The distribution after

187

realisation reasoning represents more accurate and sensible information. For ex-
ample, the top distributed concept, disease, was removed and the next, cancer,
was greatly reduced, thereby producing a clearer set of associations.

(a) DOA distribution before reasoning (b) DOA distribution after reasoning

Fig. 3. The comparison of the Disease Ontology Annotation (DOA) distributions be-
fore and after realisation reasoning for the 45 up-regulated colorectal cancer proteins

To find proteins reported as colorectal cancer related, the biologist issues
a query using the concept, “colorectal cancer”. The semantic reasoning service
rewrites this query into a union of this concept and all of its subclasses. The
result shows that 6 proteins (CEA, NNE, HSP 84, NPM, 3-PGDH and UEV-1)
reported in the literature as being related to colorectal cancer.

5 Conclusion

This paper proposes an automatic protein-oriented association discovery frame-
work based on semantic annotations from literature. A semantic reasoning ser-
vice provides realisation reasoning. We demonstrate the usage of our system on
protein-disease association discovery using a real-world colorectal cancer protein
dataset. In upcoming work, focus will be given to a ranking model of protein
associations and customisable selection of protein-PMID mappings.

References

1. L. Jankova, C. Chan, C. Fung, X. Song, S. Kwun, M. Cowley, W. Kaplan, O. Dent,
E. Bokey, P. Chapuis, M. Baker, G. Robertson, S. Clarke, and M.P. Molloy. Pro-
teomic comparison of colorectal tumours and non-neoplastic mucosa from paired
patient samples using iTRAQ mass spectrometry. Mol Biosyst, 7(11), 2011.

2. R. Jelier, M. Schuemie, A. Veldhoven, L. Dorssers, G. Jenster, and J. Kors. Anni
2.0: a multipurpose text-mining tool for the life sciences. Gen biology, 9(6), 2008.

3. Clement Jonquet, Nigam H. Shah, and Mark A. Musen. The open biomedical
annotator. In AMIA-TBI’09, pages 56–60, 2009.

4. H. Lpez-Fernndez, M. Reboiro-Jato, D. Glez-Pea, F. Aparicio, D. Gachet, M. Bue-
naga, and F. Fdez-Riverola. Bioannote: A software platform for annotating biomed-
ical documents with application in medical learning environments. Computer Meth-
ods and Programs in Biomedicine, 111(1):139 – 147, 2013.

5. Mariana Neves and Ulf Leser. A survey on annotation tools for the biomedical
literature. Brief Bioinform, 18, December 2012.

188

Denoting Data
in the Grounded Annotation Framework

Marieke van Erp1, Antske Fokkens1, Piek Vossen1, Sara Tonelli2, Willem
Robert van Hage3, Luciano Serafini2, Rachele Sprugnoli2, and Jesper

Hoeksema1

1 VU University Amsterdam
{marieke.van.erp,antske.fokkens,piek.vossen,j.e.hoeksema}@vu.nl
2 Fondazione Bruno Kessler {satonelli,serafini,sprugnoli}@fbk.eu

3 SynerScope B.V. willem.van.hage@synerscope.com

Abstract. Semantic web applications are integrating data from more
and more different types of sources about events. However, most data an-
notation frameworks do not translate well to semantic web. We describe
the grounded annotation framework (GAF), a two-layered framework
that aims to build a bridge between mentions of events in a data source
such as a text document and their formal representation as instances.
By choosing a two-layered approach, neither the mention layer, nor the
semantic layer needs to compromise on what can be represented. We
demonstrate the strengths of GAF in flexibility and reasoning through a
use case on earthquakes in Southeast Asia.

1 Introduction

Semantic web applications are ingesting data from more and more different
sources such as output from natural language processing applications, sensor
data, videos or financial transactions. Each of these domains has their own data
annotation practices which first need to be reconciled with semantic web stan-
dards. One issue with integrating information from different sources is that rep-
resentation formats tend to look at their domain in isolation, making it difficult
to integrate information that comes from other domains.

The Grounded Annotation Framework (GAF) [1] aims at addressing this
problem by distinguishing instance mentions which can be domain specific from
instances conform to domain independent semantic web standards. In this man-
ner, we can integrate information for example extracted by NLP tools or from
sensor data in a formal context which can be shared by different applications
and over which we can perform reasoning. This paper addresses the advantages
of using GAF from the point of view of users of Linked Data.

We will describe GAF in Section 2, present an example in Section 3 and
conclude with pointers for future work in Section 4.

189

2 The Grounded Annotation Framework

The main property of GAF is that it distinguishes instances from instance
mentions. A mention is the act of referring to an object where an instance
is the object itself. The relation between instances and mentions is defined by
gaf:denotedBy, which is the only new predicate GAF introduces. Different re-
sources (or even the same resource) may refer to an instance in different ways
and each of these references may have properties of its own. This is quite com-
mon in natural language, where authors tend to alternate terms to refer to the
same object for stylistic reasons, but it can also play a role in other sources of
information. If, for instance, a sensor displays a measured temperature, this dis-
played value has properties of its own that are clearly not properties of the value
that was measured, such as the instrument that was used to measure it and its
error rate. In the remainder of this contribution, we will illustrate GAF through
the example of presenting instances in the Simple Event Model (SEM) [2] and
mentions in the TERENCE Annotation Format (TAF) [3] which represents lin-
guistic properties.

SEM is a model to express who did what, where, and when. It is not the
only RDF model to describe events but as SEM is not tied to a any domain
and is among the most flexible, we chose this model as the core of our semantic
layer. It should be noted however that, in principle any RDF schema can be
integrated into GAF. TAF is designed to annotate coreference relations between
event mentions as well as participants, locations and temporal expressions, which
covers the kind of information also represented in SEM. TAF has the additional
advantage that it already distinguishes between instances and instance mentions
for participants and locations. We use a slightly adapted variant of TAF that
extends this distinction to events and temporal expressions as described in [1].
We chose TAF as it is based on the ISO-TimeML standard and fits our event
use-case, however, any representation format can be used in GAF.

The gaf:denotedBy relations is used to link events represented in SEM to
specific mentions represented in TAF. If a linguistic analysis identifies a syntactic
relation between an event mention and the mention of a person, we can derive
that this person is an Actor of the event in SEM according to the analysis of
a specific text. Mentions thus play an important role in modelling provenance
of information. To model provenance we use the PROV-O ontology [4] as it
is compatible with our RDF representation and is recommended by W3C for
provenance modelling. When we represent alternative views in SEM, these views
are linked to the mentions they were derived from. This leads us to the original
source and hence information in who expressed which view.

Creating GAF Annotations

GAF annotations can be created both by starting from the linguistic layer and
the semantic layer. When starting from text for the mention layer, first TAF
annotations are added to the text using the Celct Annotation Tool [5], which are
then translated to SEM relations using a conversion script. Instances extracted

190

from a particular source (for example a document) are grouped into named
graphs, to which provenance information is added. We use manually defined
rules for mapping TAF to SEM, but plan to use machine learning in the future.

When starting from the semantic layer, events and event properties are linked
to textual mentions. We are currently working towards an annotation environ-
ment based on CROMER [6], which will allow the user to switch easily between
the linguistic and semantic layers.

3 Examples

The example sentences shown in Figure 1 both contain information about the
2004 Indian Ocean Earthquake and Tsunami. The articles disagree on the cause
of the earthquake; where Bloomberg ascribes it to moving tectonic plates, Vet-
eran’s Today sees a stealth attack submarine as the likely cause. Figure 2 shows
that these two declarations can co-exist within the GAF representation of the
earthquake. It is up to the application or user accessing the information to inter-
pret the fact that there is a contradiction and for example select only particular
sources for further processing. GAF provides the glue to connect non-semantic
web data to semantic web representation formats. The rdfs:isDefinedBy relation
at the top of Figure 2 shows how RDF predicates can be used to link GAF
representations to external resources such as the Linked Open Data cloud.1

"Indonesia lies in a zone where the Indo-Australian, Eurasian, Philippine and Pacific plates
meet and occasionally shift, causing earthquakes and sometimes generating tsunamis. There
have been hundreds of earthquakes in Indonesia since a 9.1 temblor in 2004 caused a
tsunami that swept across the Indian Ocean, devastating coastal communities and leaving more
than 220,000 people dead in Indonesia, Sri Lanka, India, Thailand and other countries."
(Bloomberg, 2009-01-07 01:55 EST)

"...were most concerned about the cause, scope, and consequences of the December 26, 2004
Indian Ocean tsunamis because they were far bigger and more destructive than they had
anticipated. More important, it had no clear alibi that their most likely source of the
disaster, the Multi-Mission Platform of the new stealth attack submarine, the USS Jimmy
Carter, had not been the culprit."
(Veteran’s Today, 2011-10-02)

Fig. 1. Sample sentences mentioning the December 2004 Indonesian earthquake

4 Conclusions and Future Work

We have presented GAF, a grounded annotation framework for integrating in-
formation from various sources. We have shown its flexibility in representing
contradicting information from different textual sources.

We are currently developing an annotation tool that allows users to easily
switch between linguistic and semantic annotation layers. After which we plan
to develop tools supporting easy integration of other types of information, such
as data from the Linked Open Data cloud, video metadata or sensor data.

1 http://groundedannotationframework.org/ provides full examples and the GAF def-
inition.

191

Acknowledgements
This research is supported by the European Unions 7th Framework Programme
via the NewsReader Project (ICT-316404) and by the BiographyNet project,
funded by the Netherlands eScience Center (http://esciencecenter.nl/).

gaf:INSTANCE_186gaf:INSTANCE_179

gaf:INSTANCE_197

gaf:INSTANCE_188

sem:subEventOf

sem:subEventOf

sem+:causes

sem:has
Actor

wn30:synset-tsunami-
noun-1

sem:EventType

sem:EventTypesem:Event

rdf:type rdf:type

dbpedia:2004_Indian_Ocean_
earthquake_and_ tsunami

rdf:type

wn30:synset-
earthquake-noun-1

sem:EventType

rdf:type

wn30:synset-shift-
verb-4

sem:EventType

sem:hasLocation

dbpedia:Tectonic_Plate

rdfs:isDefinedBy

sem:Place

rdf:type

skos:exactMatch

taf:INSTANCE_MENTION_118

gaf:denotedBy

taf:INSTANCE_MENTION_120

gaf:denotedBy

gaf:INSTANCE_181

gaf:causes sem:subEventOf

taf:causal_c

skos:exactMatch

taf:INSTANCE_MENTION_112

taf:INSTANCE_MENTION_40

gaf:denotedBy

taf:hasParticipant
_nsubj

"plates"@en "shift"@en "earthquakes"@en "temblor"@en "tsunami"@en

str:anchorOfstr:anchorOfstr:anchorOfstr:anchorOf

rdf:type

rdf:type

gaf:G2

gaf:INSTANCE_200

gaf:INSTANCE_201

dbpedia:Sundra_
Trunch

skos:exact
Match

wn30:synset-stable-
adjective-1

owl:objectProperty

dbpedia:USS_Jimmy_Carter
_(SSN_23)

skos:exact
Match

gaf:INSTANCE_202

sem+:causes

prov:attributedTo

dbpedia:Veterans_Today

gaf:G3

dbpedia:Bloomberg

prov:attributedTo

gaf:denotedBy

str:anchorOf

gaf:G4

taf:annotation_
2013_03_24

prov:wasGeneratedBy

rdf:type
sem:EventType

Fig. 2. GAF representation of Earthquake example

References

1. Fokkens, A., van Erp, M., Vossen, P., Tonelli, S., van Hage, W.R., Serafini, L.,
Sprugnoli, R., Hoeksema, J.: GAF: A grounded annotation framework for events.
In: Proceedings of the first Workshop on Events: Definition, Dectection, Coreference
and Representation, Atlanta, USA (2013)

2. Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use
of the simple event model (SEM). Journal of Web Semantics (2011)

3. Moens, M.F., Kolomiyets, O., Pianta, E., Tonelli, S., Bethard, S.: D3.1: State-of-
the-art and design of novel annotation languages and technologies: Updated version.
Technical report, TERENCE project-ICT FP7 Programme-ICT-2010-25410 (2011)

4. Moreau, L., Missier, P., Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cress-
well, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S., Myers, J.,
Sahoo, S., Tilmes, C.: PROV-DM: The PROV Data Model. Technical report, W3C
(2012)

5. Bartalesi Lenzi, V., Moretti, G., Sprugnoli, R.: CAT: the CELCT Annotation Tool.
In: Proceedings of LREC 2012. (2012)

6. Bentivogli, L., Girardi, C., Pianta, E.: Creating a Gold Standard for Person Cross-
Document Coreference Resolution in Italian News. In: Workshop on Resources
and Evaluation for Identity Matching, Entity Resolution and Entity Management.
(2008)

192

On the Semantics of R2RML and its Relationship with
the Direct Mapping

Juan F. Sequeda

Department of Computer Science, University of Texas at Austin
jsequeda@cs.utexas.edu

Abstract. The W3C Relational Database to RDF (RDB2RDF) standards are po-
sitioned to bridge the gap between Relational Databases and the Semantic Web.
The standards consist of two interrelated and complementary specifications: Di-
rect Mapping of Relational Data to RDF and R2RML: RDB to RDF Mapping
Language. In this paper we present initial results on the formal study of the
R2RML mapping language by defining its semantics using Datalog. We prove
that there are a total of 57 distinct Datalog rules which can be used to gener-
ate RDF triples from a relational table. Additionally, we provide insights on the
relationship between R2RML and Direct Mapping.

1 Introduction

To live up to the promise of web-scale data integration, the Semantic Web will have to
include the content of existing relational databases. In September 2012, two interrelated
and complementary W3C standards, Direct Mapping [1] and R2RML [2], were stan-
darized. R2RML is a mapping language which allows users to manually define map-
pings. Direct Mapping is the default and automatic way to translate relational databases
into RDF without any input from a user, which can be represented in R2RML. The Di-
rect Mapping has been well studied. The W3C specifications present the denotational
and datalog-based semantics of the Direct Mapping [1]. Additionally, the W3C Direct
Mapping has been augmented to include a direct mapping from the relational schema
to OWL in order to prove fundamental correctness properties [3]. However, to the best
of our knowledge, there has not been a thorough study of the R2RML language and
its relationship with the Direct Mapping. As a matter of fact, the semantics of R2RML
have not even been formally defined.

Our methodology is to study the problem of mapping relational databases to RDF
from two different perspectives: logical and physical. Inspired by the relational query
processing workflow, we propose the following workflow. Mappings are expressed in
a declarative language: R2RML. A parser can translate the mapping into a logical ex-
pression: the logical mapping. A logical mapping can be rewritten into other equivalent
logical mappings which may be better for performance. A logical mapping is trans-
lated into a executable program, the physical mapping. A physical mapping can then
be implemented and optimized in different ways. This paper address the first part of
the proposed workflow and presents initial results on the formal study of R2RML by
define its semantics using Datalog. We prove that there are a total of 57 distinct Datalog

193

rules which can be used to generate RDF triples from a relational table. Additionally,
we provide insight on the relationship between R2RML and Direct Mapping. It is our
hypothesis that a core subset of R2RML has the same expressive power as the Direct
Mapping, if views are allowed as input.

2 R2RML

R2RML is a language for expressing mappings from a relational database to RDF.
The input of an R2RML mapping M is a relational schema R and an instance I
of R. The output is an RDF graph. Consider a schema of a database with of tables
EMP(EMPNO,ENAME,DID) and DEPT(DEPTNO, DNAME, LOC). Moreover, we
have the following constraints about the schema of the university: EMPNO is the pri-
mary key of EMP, DEPTNO is the primary key of DEPT and DID is a foreign key in
EMP that references attribute DEPTNO in DEPT. An R2RML mapping is represented as
an RDF graph itself and also has an associated RDFS schema1. For readibility, the RDF
Turtle syntax is the recommended syntax to write R2RML mappings.

Example 1. An R2RML Mapping for the example database.
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix ex: <http://example.com/ns#>.

<#TriplesMap1>
rr:logicalTable [rr:tableName "emp"];
rr:subjectMap [rr:template "http://ex.com/employee/{empno}";

rr:class ex:Employee;];
rr:predicateObjectMap [rr:predicate ex:name;

rr:objectMap [rr:column "ename"];];
rr:predicateObjectMap [rr:predicate ex:department;

rr:objectMap [
rr:parentTriplesMap <#TriplesMap2>;

rr:joinCondition [
rr:child "dept";
rr:parent "deptno";];];].

<#TriplesMap2>
rr:logicalTable [rr:tableName "dept"];
rr:subjectMap [rr:template "http://ex.com/dept/{deptno}";

rr:class ex:Department;];
rr:predicateObjectMap [rr:predicate ex:name;

rr:objectMap [rr:column "DNAME"];].

The Datalog rules defining the R2RML semantics can be found at http://www.
cs.utexas.edu/˜jsequeda/r2rml. We briefly explain the components of R2RML
with the running example. An R2RML mapping consists of a set of Triple Maps. In the
example, there are two Triples Map: <#TriplesMap1> and <#TriplesMap2>.
Each TripleMaps consists of exactly one LogicalTable, exactly one SubjectMap and a
set (which may be empty) of Predicate-Object Maps. A LogicalTable is either an ex-
isting table/view in the database or a SQL query (known also as an R2RML view).
In <#TriplesMap1>, the Logical Tables is the table name "emp". A SubjectMap
generates an RDF term for the subject and optionally an rdf:type statement. A Predica-
teObjectMap is a pair of PredicateMap and ObjectMap which generates the RDF terms
for the predicate and object respectively of a triple, that is associated to the subject
generated by the SubjectMap. An ObjectMap can also be a Referencing Object Map
which allows using the subjects of another Triples Map as an object. Since both Triples
Maps may be based on different logical tables, it may require a join between the logical
tables.

1 http://www.w3.org/ns/r2rml

194

http://www.cs.utexas.edu/~jsequeda/r2rml
http://www.cs.utexas.edu/~jsequeda/r2rml

SubjectMap, PredicateMap and ObjectMap are all Term Maps which is a function
that generates an RDF term from the database. There are three ways of creating an
RDF term, hence three types of Term Maps: 1) Constant-valued Term Map, 2) Column-
valued Term Map, and 3) Template-valued Term Map. In <#TriplesMap1>, the Sub-
jectMap is a Template-valued Term Map because it generates an IRI from a template and
the value of the "empno" column. The PredicateMap is a Constant-valued Term Map
because it generates a constant IRI: ex:name. The ObjectMap is a Column-valued
Term Map because it generates a Literal from the value of the "ename" column.

There are three ways of generating RDF triples. Table Triples are triples describing
an instance of a given class if a Subject Map has a rr:class associated to it. In this
case, the subject is one of the three possible Term Maps, the predicate is rdf:type
and the object is the given class. There are three possible rules to generate Table Triples.
Local Triples are triples that are generated exclusively from a single logical table. Given
that there are three ways of generating and RDF term for each the subject, predicate
and object, there are 27 different possible cases to generating triples, hence 27 different
rules. Reference Triples are triples that are generated for Referencing Object Maps,
through a join conditions to another table Similar to Local Triples, there are also 27
distinct rules to generate triples. Figure 1 depicts al the possible 27 combinations.

Fig. 1. The tree describes the space of 27 possible way of generating RDF Triples

Given that there are 3 rules to generate Table Triples, 27 rules to generate Local
Triples and 27 rules to generate Reference Triples, the following theorem holds.

Theorem 1. The total number of distinct Datalog rules which can be used to generate
RDF triples from a table name is 57.

195

3 Relationship with Direct Mapping

We now focus on a simple yet important subset of R2RML which we call R2RMLcore

which consists of only three rules (out of the 57), one rule each for generating Table,
Local and References Triples. In these rules, subjects are template-valued term maps,
predicates are constant-valued term maps and objects are column-valued term maps.
The following is an example of the a Datalog rule to generate Local Triples:

TRIPLE(S, P,O) ← SUBJECTMAP(TM, SID), PREDICATEOBJECTMAP(TM, POID),

SUBJECTTEMPLATEVALUETERMMAP(SID, T, S),

PREDICATECONSTANTVALUETERMMAP(POID, P),

OBJECTCOLUMNVALUETERMMAP(POID, T,O)

The motivation of R2RMLcore is two-fold. First, the W3C RDB2RDF Test Cases
[5] consist of mainly subject template-valued term maps and predicate constant-valued
term maps. Second, the anecdotal experience of the the author, who has implemented
Ultrawrap [4], a system that supports R2RML, shows that subjects are usually template-
valued term maps and predicates are constant-valued term maps.

Our hypothesis is that R2RMLcore is as expressive as the Direct Mapping, if views
are allowed as input. We first would need to show how any mapping in R2RMLcore

can be expressed in DMviews. This means, that views and constraints would need to
be created from the R2RML mapping. Additionally, there would need to be a mech-
anism to defining templates for IRIs. Subsequently, we would need to show how any
DMviews mapping can be expressed as R2RMLcore.

4 Conclusions

To the best of our knowledge, this is the first work presenting initial results on the formal
study of the R2RML mapping language by defining its semantics using Datalog. and
studying the relationship between R2RML and Direct Mapping. This is ongoing work
where we are now considering additional features of R2RML such as SQL queries,
languages and datatypes. We believe it is important to understand R2RML in order to
know how better support users and build tools.

References
1. M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Sequeda. Direct map-

ping of relational data to RDF. W3C Recomendation 27 September 2012,
http://www.w3.org/TR/rdb-direct-mapping/.

2. S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF mapping language. W3C
Recomendation 27 September 2012, http://www.w3.org/TR/r2rml/.

3. J. Sequeda, M. Arenas, and D. P. Miranker. On directly mapping relational databases to rdf
and owl. In WWW, pages 649–658, 2012.

4. J. Sequeda and D. P. Miranker. Ultrawrap: Sparql execution on relational data. To appear in
Journal of Web Semantics, 2013.

5. B. Villazon-Terrazas and M. Hausenblas. R2RML and direct map-
ping test cases. W3C Working Group Note 14 August 2012,
http://www.w3.org/TR/rdb2rdf-test-cases/.

196

An FCA Framework for Knowledge Discovery in
SPARQL Query Answers

Melisachew Wudage Chekol and Amedeo Napoli

LORIA (INRIA, CNRS, and Université de Lorraine), France
{melisachew.chekol,amedeo.napoli}@inria.fr

Abstract. Formal concept analysis (FCA) is used for knowledge dis-
covery within data. In FCA, concept lattices are very good tools for
classification and organization of data. Hence, they can also be used to
visualize the answers of a SPARQL query instead of the usual answer
formats such as: RDF/XML, JSON, CSV, and HTML. Consequently, in
this work, we apply FCA to reveal and visualize hidden relations within
SPARQL query answers by means of concept lattices.

1 Introduction

Recently, the amount of semantically rich data available on the Web has grown
considerably. Since the conception of linked data publishing principles, over 295
linked (open) datasets (LOD) have been produced1. A reasonable number of
these datasets provide endpoints for accessing (querying) their contents. Query-
ing is mainly done through the W3C recommended query language SPARQL.
The answers of SPARQL queries have often the following formats: RDF/XML,
JSON, CSV, text, TSV, Java Script, XML, Spreadsheet, Ntriples, and HTML. It
might be interesting to analyse, mine, and then visualize hidden relations within
the answers. These tasks can be carried out using Formal Concept Analysis
(FCA).

FCA is used for knowledge discovery within data represented by means of
objects and their attributes [3]. Concept lattices can reveal hidden relations
within data and can be used for organizing, classifying, and even mining data.
A survey of the benefits of FCA to semantic web (SW) and vice versa has been
proposed in [6] (in particular ontology completion [1]). Additionally, studies in
[2] and [4] are based on FCA for managing SW data. The former provides an
entry point to linked data using questions in a way that can be navigated. It
gives a transformation of an RDF graph into a formal context where the subject
of an RDF triple becomes the object, a composition of the predicate and object
of the triple becomes an attribute. The latter obliges the user to specify variables
corresponding to objects and attributes of a context. These variables are used
to create a SPARQL query which is used to extract content from linked data
in order to build the formal context. Following this line, we propose a way to

1 http://linkeddata.org/

197

http://linkeddata.org/

Keyword

1
SELECT
Query

2

Object and Attribute

3

CONSTRUCT Query CONSTRUCT Query SELECT Query

Linked data

Formal Context Concept Lattice

Fig. 1: Architecture of SPARQL answers organization.

organize Semantic Web data, and more precisely, the organization of SPARQL
query answers by means of concept lattices. As a result, the user is able to
visualize, navigate and classify the answers w.r.t. their context. For that, we
propose the architecture depicted in Figure 1, based on three components which
are discussed below:

1. Keyword search: In this component, a keyword (for instance, “14 juillet”) is
used to search (to find information regarding this word) a specified dataset.
To do so, a URI produced from the keyword is sent to the dataset to check
its existence. When this is the case, a CONSTRUCT query containing the
keyword is directed to the endpoint of the dataset. The answers are collected
and organized to create a formal context as explained in the next section.

2. SELECT Query: This component builds a formal context out of the answers
of a SPARQL query. SPARQL queries are converted into CONSTRUCT
queries to form RDF graphs from the answers. Again, this will be illustrated
in the next section.

3. Variables corresponding to objects and attributes of a formal context: This
component enables the user to precisely specify the objects and attributes
of the formal context. Out of which a SPARQL query is formed and sent
to a chosen SPARQL endpoint. The answers of the query are collected to
build a formal context. From that, a concept lattice is constructed. This is
the approach considered by the authors in [4]. An example is proposed in
the next section.

In each case, the objective is to build a formal context and then to build the
associated concept lattice.

2 Proposal

A formal context represents data using objects and their attributes. Formally, it
is a triple K = (G,M, I) where G is a set of objects, M is a set of attributes,

198

and I ⊆ G×M is a binary relation. A derivation operator (′) is used to compute
formal concepts of a context. Given a set of objects A, a derivation operator ′

computes the maximal set of attributes shared by objects in A and is denoted
by A′ (this is done dually with set of attributes B). A formal concept is a pair
(A,B) where A′ = B and B′ = A. A set of formal concepts ordered with the set
inclusion relation form a concept lattice [3].

Definition 1 (RDF as a Formal Context). Given an RDF graph G and a
transformation function σ, a formal context is obtained from G as follows:

– If 〈o1, rdf : type, C〉 ∈ G, then σ(〈o1, rdf : type, C〉) =
C

o1 x

– If 〈o1, R, o2〉 ∈ G, then σ(〈o1, R, o2〉) =

∃R.> ∃R−.>
o1 x
o2 x

We consider a core fragment of RDFS called ρdf [5] which contains the min-
imal vocabulary, ρdf = {sp,sc,type,dom,range}, where sp denotes the
subproperty relation, sc is subclass, and dom stands for domain. This fragment
was proven to be minimal and well-behaved in [5]. Its semantics corresponds to
that of full RDFS. Triples containing schema information are transformed as:

1. If 〈C1, rdfs : subClassOf, C2〉 ∈ G, then σ(〈C1, rdfs : subClassOf, C2〉) =
∀o ∈ G. (o, C1) ∈ I ⇒ (o, C2) ∈ I.

2. If 〈R1, rdfs : subPropertyOf, R2〉 ∈ G, then σ(〈R1, rdfs : subPropertyOf, R2〉)
= ∀o1, o2 ∈ G. (o1,∃R1.>) ∈ I ⇒ (o1,∃R2.>) ∈ I.

3. If 〈R, rdfs : domain, C〉 ∈ G, then σ(〈R, rdfs : domain, C〉) = ∀o1 ∈ G.
(o1,∃R.>) ∈ I ⇒ (o1, C) ∈ I.

4. If 〈R, rdfs : range, C〉 ∈ G, then σ(〈R, rdfs : range, C〉) = ∀o2 ∈ G.
(o1,∃R−.>) ∈ I ⇒ (o2, C) ∈ I.

The users above are able to build a formal context from an RDF graph or a set
of SPARQL query answers. Then, there are several algorithms that can compute
the concept lattice associated with a formal context and that can be used in our
framework.

Example: consider a SPARQL query that selects film titles (as objects of the
formal context) and genres (as attributes) from DBpedia to populate a formal
context. Consequently, this formal context is shown in Figure 2.

A possible concept lattice obtained from the formal context associated with
the query answers is depicted in Figure 3. Now we have a classification of the
results of the query w.r.t. a given topic or constraint. Additionally, this is exactly
the same thing as if we were querying the Web with Google and here we have a
classification of the answers w.r.t. a user constraints.

3 Conclusion

SPARQL query answers are provided in different formats (RDF/XML, CSV,
JSON, TTL, and others), which do not reveal hidden semantics in the answers.

199

Fig. 2: A part of the formal context associated with the query.

Fig. 3: Concept lattice of DBpedia movies and genres.

Concept lattices are useful in this regard. In this work, we used concept lattices
to hierarchically organize and analyse the content of query answers.

This is an ongoing work and we are currently implementing the procedure.
We should investigate how well it scales, given the size of SPARQL query answers
over linked data. Overall, this work shows some of the benefits of FCA that can
be provided to the semantic web.

References

1. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowl-
edge bases using formal concept analysis. In: Proc. of IJCAI. vol. 7, pp. 230–235
(2007)

2. d’Aquin, M., Motta, E.: Extracting relevant questions to an RDF dataset using
formal concept analysis. In: Proceedings of the sixth international conference on
Knowledge capture. pp. 121–128. ACM (2011)

3. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)
4. Kirchberg, M., Leonardi, E., Tan, Y.S., Link, S., Ko, R.K., Lee, B.S.: Formal concept

discovery in semantic web data. In: ICFCA. pp. 164–179. Springer-Verlag (2012)
5. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: The

Semantic Web: Research and Applications, pp. 53–67. Springer (2007)
6. Sertkaya, B.: A survey on how description logic ontologies benefit from FCA. In:

CLA. vol. 672, pp. 2–21 (2010)

200

A Study on the Correspondence between FCA
and ELI Ontologies

Melisachew Wudage Chekol and Amedeo Napoli

LORIA (INRIA, CNRS, and Université de Lorraine), France
{melisachew.chekol,amedeo.napoli}@inria.fr

Abstract. The description logic EL has been used to support ontol-
ogy design in various domains, and especially in biology and medecine.
EL is known for its efficient reasoning and query answering capabilities.
By contrast, ontology design and query answering can be supported and
guided within an FCA framework. Accordingly, in this paper, we propose
a formal transformation of ELI (an extension of EL with inverse roles)
ontologies into an FCA framework, i.e. KELI , and we provide a formal
characterization of this transformation. Then we show that SPARQL
query answering over ELI ontologies can be reduced to lattice query an-
swering over KELI concept lattices. This simplifies the query answering
task and shows that some basic semantic web tasks can be improved
when considered from an FCA perspective.

1 Introduction

Knowledge discovery in data represented by means of objects and their attributes
can be done using formal concept analysis (FCA) [5]. Concept lattices can reveal
hidden relations within data and can be used for organizing and classifying data.
A survey of the benefits of applying FCA to Semantic Web (SW) and vice versa
has been proposed in [8]. As mentioned in that paper, a few of these benefits
ranges from knowledge discovery, ontology completion, to computing subsump-
tion hierarchy of least common subsumers. Additionally, studies in [3] and [7] are
based on FCA for managing SW data while finite models of description logics
(as EL) are explored in [1]. All these studies propose methods for analysing SW
data within FCA. Nevertheless, none of them offers a practical way of represent-
ing SW data within a formal context which is the basic data structure for FCA.
We deem it necessary to provide a mathematically founded method to formalize
the representation and the analysis of SW data based on FCA.

In this work, we focus on ELI (an extension of EL with inverse roles) on-
tologies. EL is one of OWL 2 profiles (OWL 2 EL) which is mainly used for
designing large biomedical ontologies such as SNOMED-CT1 and the NCI the-
saurus2. These two ontologies have large concept hierarchies that can be queried

1 http://www.ihtsdo.org/snomed-ct/
2 http://ncit.nci.nih.gov/

201

http://www.ihtsdo.org/snomed-ct/
http://ncit.nci.nih.gov/

with SPARQL. However, including inferred data in query answering requires ei-
ther a reasoner to infer all implicit information or query rewriting using property
paths (that enable navigation in a hierarchy) [6]. The latter obliges the user to
know the nuts and bolts of SPARQL. To overcome these difficulties, we reduce
SPARQL query answering in ELI ontologies into query answering in concept
lattices along with the transformation of the queried ontology into a formal con-
text. Then, the resulting concept lattice provides support for query answering
(but this does not replace SPARQL) and also for visualization and navigation
of relations within SW data.

Overall, we work towards (i) a formal characterization of the transformation
of ontologies into a formal context, (ii) translating the difficulty of SPARQL
query answering over ontologies into query answering over concept lattices, and
finally (iii) providing organization of SPARQL query answers with concept lat-
tices.

2 Transforming ELI Ontologies into Formal Contexts

A formal context represents data using objects and their attributes. Formally, it
is a triple K = (G,M, I) where G is a set of objects, M is a set of attributes,
and I ⊆ G×M is a binary relation. A derivation operator (′) is used to compute
formal concepts of a context. Given a set of objects A, a derivation operator ′

computes the maximal set of attributes shared by objects in A and is denoted
by A′ (this is done dually with set of attributes B). A formal concept is a pair
(A,B) where A′ = B and B′ = A. A set of formal concepts ordered with the set
inclusion relation form a concept lattice [5].

One difficulty of transforming DL ontologies into formal contexts is mainly
due to the fact that while DL languages are based on the open world assumption
(OWA), FCA relies on the closed world assumption (CWA). The former permits
to specify only known data whereas the later demands that all data should
be explicitly specified. To slightly close the gap between these two worlds, we
provide a transformation that maintains a DL semantics into an FCA setting.

To transform an ELI ontology O = 〈T ,A〉 into a formal context K =
(G,M, I), the schema axioms in the TBox become background implications [4].
Then, individuals in the ABox correspond to objects in G, class names in the
ABox and TBox yield attributes in M , and ABox assertions create relations
between objects and attributes I ⊆ G×M . Here, we consider acyclic TBoxes to
avoid that class names become objects in a context. The following table gives a
summary of the correspondence.

ELI O = 〈T ,A〉 FCA formal context KO = (G,M, I) +
background implications L

T = {C v D} {C → D} ∈ L
A = {C(a), a ∈ G, C ∈M , and (a,C) ∈ I

R(a, b)} a, b ∈ G, ∃R.>,∃R−.> ∈ M , (a, ∃R.>) ∈ I,
and (b, ∃R−.>) ∈ I

202

tC

AFNY

Prd Act

Art

Per

Fig. 1: The ontology in Example 1 and its associated concept lattice.

Example 1. Consider the transformation of the following ELI ontology O =
〈T ,A〉 into a formal context KO and its background implications L.

T = {ActorsFromNewYork (AFNY) v Actor (Act),

FilmProducer (Prd) v Artist (Art),Actor v Artist,Artist v Person (Per)}
A = {tomCruise (tC) ∈ ActorsFromNewYork}

KO AFNY Prd Act Art Per

tC x
L = { AFNY → Act, Prd→ Art,

Act→ Art, Art→ Per }
Construction of a concept lattice: In [4], an algorithm to construct a concept
lattice from a formal context w.r.t. background implications is provided. This
technique is employed here and the concept lattice associated with the formal
context and background implications of Example 1 is depicted in Figure 1.

This is a simple example but SNOMED-CT and NCIT are much larger than
that but not more complex. Let us how a concept lattice based on an ELI
ontology can be queried.

3 SPARQL query answering over ontologies vs query
answering over concept lattices

SPARQL query answering over ELI ontologies can be considered from the point
of view of query answering over KELI concept lattices. Querying concept lattices
amounts to fetching the objects given a set of attributes as query constants and
to fetch the attributes given a set of objects as query constants or terms [2].
Query terms can be connected using the logical operators: and, union, and set
difference to form a complex term.

SPARQL query answering over ontologies can be done in two main ways: (1)
Materialization amounts to computing all implicit data before evaluating the
query. This can be done by using a DL reasoner. (2) Query rewriting amounts to
converting a query into another one using property paths and schema axioms.

203

Query answering over ELI ontologies with SPARQL appears to be harder
than query answering over KELI concept lattices. SPARQL requires expensive
tasks such as materialization and query rewriting but its expressive power is
better than lattice querying. By contrast, lattice querying is practically sufficient
to retrieve instances for ELI ontologies as shown by the following example.

Example 2. Let us consider the evaluation of the SPARQL query Q on the ontol-
ogy O (in Figure 1) and its materialization O′. Q = select all objects, elements
who are artists = SELECT ?x WHERE {?x a Artist .}. Under simple en-
tailment evaluation of a SPARQL query, the answer of Q over O is empty. To
get non-empty answers for Q, one can evaluate Q over the materialization of
O that we call O′, where Q(O′) = {tomCruise}. Another way is to rewrite Q
into Q′ = SELECT ?x WHERE {?x a/rdfs:subClassOf∗ Artist .}. Q′
selects all instances of Artist and that of its subclasses by navigating through
the subclass relation. Then, the evaluation of Q′(O) returns {tomCruise}.

By contrast, Q is converted into a lattice query as q(x) = (x,Artist). The
evaluation of this query over a concept lattice KO obtained from O (Figure
1) is Q′(KO) = {tomCruise}, as it is sufficient to return all objects which are
instances of Artist or any of its subconcept.

4 Discussion

It can be convenient to use FCA as a guideline for designing and querying ELI
ontologies. In addition, FCA provides visualization and navigation capabilities.
The present work does not apply to all ontologies but seems to be well suited
to ELI ontologies. We plan to extend and experiment the proposed approach,
especially with real-world and large datasets.

References

1. Baader, F., Distel, F.: Exploring finite models in the description logic EL gfp. In:
ICFCA. pp. 146–161. Springer (2009)

2. Carpineto, C., Romano, G.: Concept data analysis: Theory and applications. Wiley
(2004)

3. d’Aquin, M., Motta, E.: Extracting relevant questions to an RDF dataset using
formal concept analysis. In: Proceedings of the sixth international conference on
Knowledge capture. pp. 121–128. ACM (2011)

4. Ganter, B.: Attribute exploration with background knowledge. Theoretical Com-
puter Science 217(2), 215 – 233 (1999)

5. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)
6. Glimm, B.: Using SPARQL with RDFS and OWL entailment. Reasoning Web.

Semantic Technologies for the Web of Data pp. 137–201 (2011)
7. Kirchberg, M., Leonardi, E., Tan, Y.S., Link, S., Ko, R.K., Lee, B.S.: Formal concept

discovery in semantic web data. In: ICFCA. pp. 164–179. Springer-Verlag (2012)
8. Sertkaya, B.: A survey on how description logic ontologies benefit from FCA. In:

CLA. vol. 672, pp. 2–21 (2010)

204

Towards Disambiguating Web Tables

Stefan Zwicklbauer, Christoph Einsiedler, Michael Granitzer, and
Christin Seifert

University of Passau
Innstrae 33a, 94032 Passau, Germany

{stefan.zwicklbauer,christin.seifert,michael.granitzer}@uni-passau.de

Abstract. Web tables comprise a rich source of factual information.
However, without semantic annotation of the tables’ content the infor-
mation is not usable for automatic integration and search. We propose
a methodology to annotate table headers with semantic type informa-
tion based on the content of column’s cells. In our experiments on 50
tables we achieved an F1 value of 0.55, where the accuracy greatly varies
depending on the used ontology. Moreover, we found that for 94% of
maximal F1 score only 20 cells (37%) need to be considered on average.
Results suggest that for table disambiguation the choice of the ontology
needs to be considered and the data input size can be reduced.

Keywords: Disambiguation, Semantic Enrichment, Table Annotation

1 Introduction

Tables on web sites or in scientific papers represent a valuable source of informa-
tion for the human reader. For machines the story is different: Although tables
are a structural representation of knowledge, the information itself is meaning-
less to machines – unless it is enriched with semantic information. The Semantic
Web, and specifically the Linked Open Data initiative provide means for repre-
senting any kind of knowledge semantically. If tables were enriched semantically
a variety of new applications could evolve, as is the idea of Google Fusion Ta-
bles [1] where the annotation is done by humans. Tables from different sources
could be automatically aggregated, compared and used to generate new insights.

In this paper we move one step towards fully-automatic semantic table anno-
tation. We propose a simple algorithm to annotate table headers with semantic
types based on the types of all cells in that column. Further, we investigate the
influence of the number of cells on the accuracy of the header-type inference.

2 Related Work

Current approaches in table annotation pursue a collective approach, i.e., the
annotation model encompasses entities, types and relation between types. The
underlying assumption is that columns and the cells in a column have some
relation in common which is modeled in the semantic knowledge base. Limaye et

205

al. [2] use a probabilistic graphical model to collectively annotate types (column
headers), entities (cells), and semantic relations between types. They achieved
an F1 score of 0.56 on the Wiki table data set. The authors observed failures
in the annotation if the corresponding correct links between entity types were
not represented in the knowledge base. A recent paper employs a web search
approach for entity classification [3] using the cell label as search query for a
web search engine and applied text classification on the search results. Venetis
et al. [4] annotate tables with class information crawled from the web based
on a isA database mined with regular expressions. This web-crawled data base
has a wider coverage than any modeled ontological database, but sufferes from
more noise. The authors observe that using a hand-crafted ontology has a higher
precision, but a high coverage is desired for their application of table search. Our
approach differs in the following: First, we do not assume any relation of columns,
or more specifically we do not assume that these relations are modeled in the
knowledge base. Second, the only restriction we employ on the entity type is
their availability in the knowledge base.

3 Approach

The general assumption behind our annotation algorithm is that the cells of a
table column belong to one supertype, which we want to infer. We make no
assumptions of interrelationships between columns, i.e. all columns are treated
separately. Further, we assume that the tables do not have merged cells.

Let li 1 < i ≤ n be the labels of non-header cells i and Ei = {eki } is the set
of all possible semantic meanings of label li. The set T k

i is the set of all type
labels assigned to entity eki . The annotation of table headers is performed in
three steps (compare Figure 1):
Step 1 – Cell entity annotation: For each cell label li we derive a list of k
possible entity candidates Ei using a search-based disambiguation method [5].
We set k = 10 in our experiments.
Step 2 – Entity-type resolution: For each entity candidate eki in Ei a set of types
is retrieved by following the rdf:type and dcterms:subject relations yielding
the set of types T k

i .
Step 3 – Type aggregation: The types assigned to the table header are the t types
that occur most frequently in the set of all types of all cells

⋃
i

⋃
k T

k
i . We set

t = 1 in our experiments, e.g. only use the most frequent type as result.

4 Experiments

Data Set. In our experiments we used dbpedia as knowledge base with type
relations rdf:type and dcterms:subject from the Dublin Core Metadata On-
tology1. We evaluated our approach on 50 tables extracted from Wikipedia pages

1 http://dublincore.org/documents/dcmi-terms/

206

Step 1

Step 3

Step 2

Fig. 1. Annotation process. 1) Cell labels are disambiguated to entity candidates. 2)
Types of entity candidates are determined. 3) Type information is aggregated to de-
termine the header type candidates.

Table 1. Performance for different cell annotation methods and type vocabularies.
Reporting macro-averaged precision π, recall ρ, F1.

Vocabulary πM ρM FM
1

Rdf-Type 0.24 0.22 0.23
DublinCore 0.59 0.51 0.55
Rdf-Type + DublinCore 0.64 0.27 0.38

including all tables mentioned in Limaye et al. [2]. We removed all columns con-
taining numbers or complete sentences.2 The number of columns amounts to 132,
the number of rows varies from 10 to 232 (average 54.1). We manually annotated
the tables’ columns yielding a total of 329 type annotations, 169 rdf:type and
160 dcterms:subject, averaging to 2.49 annotations per column header.

Overall Performance. We assessed the overall performance on the complete data
set. Table 1 shows the results for three different type vocabularies (using Rdf-
Type relations only, using DublinCore subjects only, or using both). In terms of
precision the combined vocabulary performs best (0.64), however only slightly
better than using DublinCore subjects only (0.59), whereas Rdf-type annotations
are worst (0.24). For the combined approach, F1 is low due to the low recall,
which is because we have more correct results in the ground-truth but consider
only the best result in the evaluation.

Table Length. In a second experiment we assessed the influence of the number
of cells on the accuracy of table header disambiguation. From all 192 columns
we randomly selected k cells for the cell-entity annotation step and assessed
the header disambiguation accuracy using the DublinCore vocabulary. We re-
peated the experiment 10 times with different randomly selected cells for each
k ∈ {1, 2, ..7, 8, 10, 12, 15, 20}. Figure 2 shows precision, recall and F1 measure
averaged over all runs. As expected for small numbers of cells the performance
increases significantly when adding one more cell (e.g. from 3 to 4 cells the F1

measure increases from 0.27 to 0.35 a growth of 26%). For larger numbers of
cells there is less information gain by adding one more cell resulting in smaller
increases in performance (all below 10%). Using 20 cells results in F1 of 0.514,
which is 94% of the F1 achieved with all cells (0.547).

2 The data set is available at https://github.com/quhfus/table-disambiguation

207

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

number of cells

pe
rfo

rm
an

ce

●

●

●

●

●

●
●

●

●
●

●
●

●

●

precision
recall
f1
maximum f1

Fig. 2. Performance depending on number of cells. Showing mean and standard devi-
ation over 10 runs, and maximum F1 value (using all cells).

5 Conclusion and Future Work

We proposed an algorithm to annotate table headers with semantics based on the
types of the column’s cells. We achieved similar accuracy as previous work with
more complex methods. We expect the reason for the comparable performance
to be the knowledge base with more exhaustive and qualitative annotations.
From our experiments it seems reasonable to use only a small number of cells
for annotating the header (20 cells lead to 94% of the total achievable accuracy)
if performance is an issue. We plan to exploit more relational knowledge (e.g.
same-as) to further improve the annotations.

Acknowledgements. The presented work was developed within the CODE project

funded by the EU Seventh Framework Programme, grant agreement number 296150.

References

1. Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R.,
Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data management
and collaboration. In: Proc. ACM SIGMOD, New York, ACM (2010) 1061–1066

2. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. Proc. VLDB Endow. 3(1-2) (September
2010) 1338–1347

3. Quercini, G., Reynaud, C.: Entity discovery and annotation in tables. In: Proc.
EDBT, New York, NY, USA, ACM (2013) 693–704

4. Venetis, P., Halevy, A., Madhavan, J., Paşca, M., Shen, W., Wu, F., Miao, G., Wu,
C.: Recovering semantics of tables on the web. Proc. VLDB Endow. 4(9) (6 2011)
528–538

5. Zwicklbauer, S., Seifert, C., Granitzer, M.: Do we need entity-centric knowledge
bases for entity disambiguation? In: Proc. I-KNOW. (2013)

208

A Restful Interface for RDF Stream Processors

Marco Balduini1 and Emanuele Della Valle1

DEIB – Politecnico di Milano, Italy
marco.balduini@polimi.it, emanuele.dellavalle@polimi.it

Abstract. This poster proposes a minimal, backward compatible and
combinable restful interface for RDF Stream Engine.

1 Introduction

A number of RDF Stream Processors exists (e.g., CQELS [1], SPARQLstream [2],
ETALIS/EP-SPARQL [3], Sparkwave [4], INSTANS [5] and C-SPARQL En-
gine [6]), but they do not talk each other.

This hampers comparative evaluations: existing benchmark proposals [7, 8]
had to create software adapters to test the various processors. In this condition, it
is difficult to assess how much the benchmark results depend on the performances
of the processors and how much on those of the adapters.

Moreover, the lack of a shared protocol to transmit RDF streams hinders the
combined usage of those processors. For instance, a user may want: a) to deploy
SPARQLstream to natively process data streams1; b) to semantically enrich the
resulting RDF streams using Sparkwave (or INSTANS); c) to aggregate the
enriched streams in events using the C-SPARQL Engine (or CQELS); and d),
finally, to detect complex events with ETALIS/EP-SPARQL.
This poster proposes a restful interface for RDF Stream Processors that is:

1. minimal – more sophisticated interface can be envisioned, but in this at-
tempt we would like to create a broad consensus, thus we avoid proposing
controversial solutions.

2. backward compatible – we are reusing RDF and SPARQL standards
wherever we can so to guarantee that adaptation of non-streaming clients
for RDF and SPARQL is straight forward.

3. combinable – the proposed interface enforces that the output of a processor
can serve as input to a processor (including the one that generates it).

The remainder of the paper is organised as follows. Section 2 briefly presents
the background required to understand the proposed interface. Section 3 pro-
poses the interface. Section 4 shortly discusses two requirements that are not
considered for this minimal proposal and how the interface can be extended to
cover them. A proof of concept implementation of the proposed interfaces for
the C-SPARQL engine is available for download at http://streamreasoning.org/

download.
1 SPARQLstream rewrites continuous SPARQL queries issued against virtual RDF
streams on continuous SQL-like queries on data streams.

209

2 Background

From a conceptual point of view, existing RDF Stream Processors are homoge-
nous. They define the notion of RDF Stream – an unbound list of tuples < t, τ >
where t is an RDF triple and τ is a non-decreasing timestamp –, and continuous
SPARQL query – a SPARQL query extended so that it can process RDF streams
using continuous operators (e.g., windows to logically convert a portion of the
infinite RDF stream in an RDF graph) and time-aware operators (e.g., sequence
to ask that a graph pattern is detected before another one).

To the best of our knowledge, limited efforts was spent in defining a protocol
for: a) transmitting RDF stream across RDF Stream Processor on separated
machines, b) registering a continuous query in a processor, and c) observing
the continuously evolving results. The only existing solution are proprietary.
For instance, the C-SPARQL Engine is typically used within the Streaming
Linked Data framework [9]. Similarly, CQELS is paired with the Super Stream
Collider [10].

3 Services

A community effort is needed to propose a continuous SPARQL extension that
can span across the existing proposals, but we believe this is the right time to
propose a restful interfaces that processors can easily implement.

The following proposal specifies how to manage RDF streams, continuous
SPARQL queries, and observers of continuous results (see Table 1 for details).

Complying to restful principles, users can register a new RDF stream σ in the
processor using the PUT method on the resource /streams/. As a result the RDF
stream /streams/σ becomes available in the processor. At this point, they can
stream information on the RDF stream POSTing an RDF graph to /streams/σ)
and they can unregister it using the DELETE method. The list of all registered
stream is returned when GETting the resource /streams/.

It is worth to note that, learning from flexible time management in data
stream processors [11], we propose to avoid annotating the streamed RDF graphs
with a timestamp. This complies to the expected input of best effort data stream
processors (e.g. esper). We leave the annotation of the streamed RDF graphs with
application timestamp to a future extension of this minimal protocol. Moreover,
this design decision allows the proposal to be backward compatible. Any
Semantic Web application can send information to an RDF Stream Processor
simply posting an RDF graph.

User can register a new continuous SPARQL query γ in the processor using
the PUT method on the resource /queries/. The proposed interface is agnostic
w.r.t. the language used to declare the query and leaves to the processor to
parse the query in the body of the request. Nonetheless, it requires the query to
refer only to RDF streams already registered in the processor. If the user tries
to register a query on streams that have not been registered, yet, the service
must refuse to register the query. If the registration is successful, the processor
starts the continuous execution of the query and the query /queries/γ appears in

210

Table 1: The herein proposed restful interfaces for RDF Stream Processors. Along
with restful principles, GETing a resource returns what was PUTed.

RDF Streams
Method Address Body Description
PUT /streams/<id> Register new stream
DELETE /streams/<id> Delete specified stream
POST /streams/<id> RDF model Stream new information
GET /streams Get the list of streams

Continuous SPARQL queries
Method Address Body Description
PUT /queries/<id> query Register new query
DELETE /queries/<id> Delete specified query
POST /queries/<id> callback URL Adds an observer
POST /queries/<id> Action [pause, restart] Change query status
GET /queries Get the list of queries

Observers
Method Address Body Description
DELETE /queries/<id>/observers/<id> Delete specified observer
GET /queries/<id>/observers Get observers list

the list of queries that can be retrieved GETting the resource /queries/. As for the
RDF streams, the query /queries/γ can be unregistered using the DELETE method.
The method POST on the resource /queries/γ is used to start observing the query
results, to pause the query and to restart it.

Access to query results follows an observable-observer design pattern. In or-
der to start observing the results of a query γ, a user has to POST a callback
URL to /queries/γ. The created observer ω is identified by an URL of the form
/queries/γ/observers/ω. The user can stop observing the query by DELETing this
resource. Multiple observers per query are possible. Whenever γ computes new
results, the processor notifies all the observers by invoking the provided callback
URLs.

If the query is of the forms SELECT or ASK, results must be formatted according
to SPARQL 1.1 query results2, thus allowing for backward compatibility with
existing SPARQL resultset parsers.

If the query is of the forms CONSTRUCT or DESCRIBE, the processor must POST an
RDF graph containing the result. As a result our proposal is not only backward
compatibility – it is conform to SPARQL 1.1 result formats –, but it is also
combinable – the results of a query can be POSTed to another registered RDF
stream. The callback URL passed as parameter in starting an observer simply
has to be the URL of an existing RDF stream3.

4 Conclusions

The proposal, being minimal, ignored important requirements w.r.t. time mod-
elling, access control, and transmission overhead.
2 Our implementation supports http://www.w3.org/TR/2013/REC-sparql11-results-json/
3 In order to avoid the overhead to stream on HTTP an RDF stream that is consumed
by the same processor, when a query γ of the forms CONSTRUCT or DESCRIBE is registered,
an RDF stream, whose identifier is /streams/γ, is automatically registered. The result
of the query γ is internally streamed on it.

211

Adding the application time to the protocol is only a matter to POST a times-
tamp together with the RDF graph. However, as explained in [11], in the case
of multiple distributed sources POSTing to the same RDF stream, out-of-orders
can appear due to lack of clock synchronisation and different network delays. In
our future work, we will propose this extension and, at the same time, we will
release an open-source package that includes the management out-of-orders.

The proposed interface lacks access control, but it is ready for HTTP-based
access control. An HTTP server, between the user and the Restful service con-
tainer, can handle access to /streams and /queries. Moreover, only the owner of
a query γ can start observing the results of γ or is allowed to list all the ob-
servers (i.e., GETting /queries/γ/obsevers/). However, investigating OAuth-based
access-control is on our research agenda.

Last, but not least, we recognise that the transmission overhead of the pro-
posed solution can reduce the processor throughput if the user frequently POSTs
RDF graphs containing only few triples. In our future work, we intent to explore
the streaming of RDF triples in N-quads format on a Web-socket.

References
1. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and

adaptive approach for unified processing of linked streams and linked data. In:
ISWC. (2011) 370–388

2. Calbimonte, J.P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: ISWC. (2010) 96–111

3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: WWW. (2011) 635–644

4. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over RDF data streams. In: DEBS. (2012) 58–68

5. Rinne, M., Nuutila, E., Törmä, S.: Instans: High-performance event processing
with standard rdf and sparql. In: ISWC (Posters & Demos). (2012)

6. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Querying rdf
streams with c-sparql. SIGMOD Record 39(1) (2010) 20–26

7. Zhang, Y., Duc, P., Corcho, O., Calbimonte, J.P.: SRBench: A Streaming RDF/S-
PARQL Benchmark. In: ISWC. (2012) 641–657

8. Le-Phuoc, D., Dao-Tran, M., Pham, M.D., Boncz, P., Eiter, T., Fink, M.: Linked
stream data processing engines: Facts and figures. In: ISWC. (2012) 300–312

9. Balduini, M., Celino, I., Dell’Aglio, D., Valle, E.D., Huang, Y., il Lee, T.K., Kim,
S.H., Tresp, V.: Bottari: An augmented reality mobile application to deliver per-
sonalized and location-based recommendations by continuous analysis of social
media streams. J. Web Sem. 16 (2012) 33–41

10. Quoc, H.N.M., Serrano, M., Le-Phuoc, D., Hauswirth, M.: Super stream collider–
linked stream mashups for everyone. In: Proceedings of the Semantic Web Chal-
lenge co-located with ISWC2012, Boston, MA, US (2012)

11. Srivastava, U., Widom, J.: Flexible time management in data stream systems. In:
PODS, New York, New York, USA (2004) 263

212

TripleRush

Philip Stutz, Mihaela Verman, Lorenz Fischer, and Abraham Bernstein

DDIS, Department of Informatics, University of Zurich, Zurich, Switzerland
{stutz, verman, lfischer, bernstein}@ifi.uzh.ch

1 Introduction
TripleRush1 is a parallel in-memory triple store designed to address the need for
efficient graph stores that quickly answer queries over large-scale graph data. To
that end it leverages a novel, graph-based architecture.

Specifically, TripleRush is built on a parallel and distributed graph processing
framework. The index structure is represented as a graph where each index vertex
corresponds to a triple pattern. Partially matched copies of a query are routed
in parallel along different paths of this index structure.

Among the existing triple stores, we only know of Trinity.RDF [3] to be im-
plemented on top of a distributed graph processing abstraction. Trinity.RDF
represents the graph with adjacency lists and combines traditional query pro-
cessing with graph exploration.

In TripleRush, an RDF triple is represented as a vertex and SPARQL queries
are answered with a purely exploration-based approach. In other words, TripleRush
does not use any joins in the traditional sense but searches the index graph in
parallel. Whilst traditional stores pipe data through query processing operators,
TripleRush routes query descriptions to data. We implemented TripleRush on
top of our graph processing framework Signal/Collect [2].

TripleRush takes less than a third of the time to answer queries compared
to the fastest of three state-of-the-art triple stores, when measuring time as the
geometric mean of all queries for two benchmarks.

2 Foundation: Signal/Collect
Signal/Collect [2] is a parallel and distributed large-scale graph processing
system written in Scala. Akin to Pregel [1], it allows to specify graph computa-
tions in terms of vertex-centric methods.

The key features of Signal/Collect are: a) it is suitable for expressing
data-flow algorithms and transparently parallelizes them, using vertices as pro-
cessing elements and edges for message propagation, b) it supports different
types of vertices, c) the graph structure can be changed during computation,
d) it supports bulk-messaging and combiners for message-passing efficiency, e)
it supports asynchronous scheduling, and f) it is flexible with regard to edge
representation, messages can be routed directly.

3 TripleRush
TripleRush is a triple store with three types of Signal/Collect vertices:

1 Source code at https://github.com/uzh/triplerush

213

4

3

2

1

DylanElvis inspired

*Elvis inspired DylanElvis *

Dylan* **Elvis * ** inspired

** *

Dylan* inspired

Fig. 1. TripleRush index structure that is created for the triple vertex
[Elvis inspired Dylan].

Triple vertices (level 4, Fig. 1) represent triples in the database. Each contains
subject, predicate, and object information.

Index vertices (levels 1-3, Fig. 1) represent triple patterns and are responsible
for routing partially matched copies of queries (referred to as query particles)
towards triple vertices that match their respective patterns. They also con-
tain subject, predicate, and object information, but one or several of them
are wildcards.

Query vertices (Fig. 2) are added to the graph for each query that is being
executed. The query vertex emits the first query particle that traverses the
index structure. Once all query particles—successfully matched or not—
get routed back to their respective query vertex, it reports the results and
removes itself from the graph.

The graph is built bottom-up, starting by creating a triple vertex for each
RDF triple. These vertices are added to Signal/Collect, which turns them
into parallel processing units. A triple vertex will add its immediate index ver-
tices (if they do not exist yet) and an edge from these vertices to itself. The
construction process continues recursively for the index vertices until the parent
vertex has already been added or the index vertex has no parent.

To ensure the uniqueness of a path from an index vertex to all triple vertices
below it, an index vertex adds an edge from at most one parent index vertex,
always according to the structure that is illustrated in Fig. 1.

The index graph we just described is different from traditional index struc-
tures, because it is designed for the efficient parallel routing of messages to
triples that correspond to a given triple pattern. All vertices that form the index
structure are active parallel processing elements that only interact via message
passing.

Consider the subgraph shown in Fig. 2 and the query processing for the
query: (unmatched = [?X inspired ?Y], [?Y inspired ?Z]; bindings = {}). The
query execution starts by adding the query vertex to the TripleRush graph.

1 The query vertex emits a single query particle, which is routed (by Sig-
nal/Collect) to the index vertex that matches its first unmatched triple

214

Query Vertex *Dylan inspired

DylanElvis inspired

** inspired

Jobs* inspired Dylan* inspired

Elvis inspired Dylan
Dylan inspired ?ZElvis inspired Dylan

Dylan inspired Jobs

Dylan inspired Jobs
Jobs inspired ?Z

No vertex with id
[Jobs inspired *]

Success

Failure

?X inspired ?Y
?Y inspired ?Z

JobsDylan inspired

1 2

3

4

5

6

Fig. 2. Query execution on the relevant part of the index that was created for the
triples [Elvis inspired Dylan] and [Dylan inspired Jobs].

pattern. To determine when a query has finished processing, the initial query
particle is endowed with a large number of tickets.

2 When a query particle arrives at an index vertex, a copy of it is sent along
each edge. The original particle evenly splits up its tickets among its copies.

3 Once a query particle reaches a triple vertex, the vertex attempts to match
the next unmatched query pattern to its triple. If this succeeds, then a
variable binding is created and the remaining triple patterns are updated
with the new binding. The query particle gets sent to the index or triple
vertex that matches its next unmatched triple pattern.

4 If all triple patterns are matched, then the query particle gets routed back
to its query vertex.

5 If no vertex with a matching pattern is found, then a handler for undeliver-
able messages routes the failed query particle back to its query vertex.

6 Query execution finishes when the sum of tickets of all failed and successful
query particles received by the query vertex equals the initial ticket endow-
ment of the first particle that was sent out. Then, the query vertex reports
the result that consists of the variable bindings of the successful query par-
ticles, and removes itself from the graph.

We further perform some optimizations: a) we do dictionary encoding, b)
we remove the triple vertices and turn the third index level into binding index
vertices, which hold a compact representation of all the triples that match their
pattern, c) the index vertices on levels 1 and 2, in addition to a compact edge
representation, use delta-encoding and variable length integers to further reduce
memory usage, d) we use a query optimizer that reorders patterns based on
cardinalities, e) we only send the tickets of the failed particles back to the query
vertex, and f) we use bulk-messaging and message-combiners.

4 Evaluation

In order to evaluate TripleRush, we wanted to compare it with the fastest re-
lated approaches. Trinity.RDF [3] is also based on a parallel in-memory graph
store, and it is, to our knowledge, the best performing related approach. As
Trinity.RDF is not available for evaluations, we made our results comparable
by closely following the setup of their published parallel evaluations. The Trin-
ity.RDF paper also includes results for other in-memory and on-disk systems that

215

were evaluated with the same setup, which allows us to compare TripleRush with
these other systems in terms of performance.

Consistent with the parallel Trinity.RDF [3] evaluation, we benchmarked the
performance of TripleRush by executing the same queries on the LUBM-160 and
DBPSB-10 datasets. More information about the setup is found in [3].

The execution time covers everything from the point where a query is dis-
patched to TripleRush until the results are returned. Consistent with the Trin-
ity.RDF setup, the execution times do include the time used by the query opti-
mizer, but do not include the dictionary encoding and the triple materialization.

The results in Figure 3 show the fastest execution time of 10 runs for all
stores. The results for the other stores are from the Trinity.RDF paper [3] and
were measured on comparable hardware. TripleRush is fastest on all but one
query. These results indicate that the performance of TripleRush is competitive
with, or even superior to other state-of-the-art triple stores.

0.1	

1	

10	

100	

1000	

10000	

L1	 L2	 L3	 L4	 L5	 L6	 L7	

Ex
ec
u1

on
	 T
im

e	
(m

s)
	

LUBM-‐160	 Benchmark	

TripleRush	

Trinity.RDF	

RDF-‐3X	
(In	 Memory)	

BitMat	
(In	 Memory)	

1	

10	

100	

1000	

D1	 D2	 D3	 D4	 D5	 D6	 D7	 D8	

Ex
ec
u1

on
	 T
im

e	
(m

s)
	

DBPSB-‐10	 Benchmark	

TripleRush	 	

Trinity.RDF	

RDF-‐3X	
(In	 Memory)	

BitMat	
(In	 Memory)	

Fig. 3. Execution times for queries on the LUBM-160 and DBPSB-10 benchmarks
(note the logarithmic scale). Comparison data for other stores from [3].

5 Conclusions
The need for efficient querying of large graphs lies at the heart of most Seman-
tic Web applications. During the last decade, research in this area has made
tremendous progress based on a database-inspired paradigm. Parallelizing these
centralized architectures is a complex task. The advent of multi-core computers,
however, calls for approaches that exploit parallelization.

With TripleRush we presented an in-memory triple store that divides the
work among a large number of active processing elements that work towards
a solution in parallel, and our evaluation shows that the performance of this
approach is promising.

References

1. G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD
Conference, pages 135–146, 2010.

2. P. Stutz, A. Bernstein, and W. W. Cohen. Signal/Collect: Graph Algorithms for the
(Semantic) Web. In P. P.-S. et al., editor, International Semantic Web Conference
(ISWC) 2010, volume LNCS 6496, pages pp. 764–780. Springer, Heidelberg, 2010.

3. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for
web scale rdf data. Proceedings of the VLDB Endowment, 6(4), 2013.

216

Adding Time to Linked Data:
A Generic Memento proxy through prov

Miel Vander Sande, Sam Coppens, Ruben Verborgh,
Erik Mannens, and Rik Van de Walle

Ghent University – iMinds – Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

firstname.lastname@ugent.be

Abstract. Linked Data resources change rapidly over time, making a
valid consistent state difficult. As a solution, the Memento framework
offers content negotiation in the datetime dimension. However, due to a
lack of formally described versioning, every server needs a costly custom
implementation. In this poster paper, we exploit published provenance of
Linked Data resources to implement a generic Memento service. Based
on the wc prov standard, we propose a loosely coupled architecture
that offers a Memento interface to any Linked Data service publishing
provenance.

1 Introduction

Linked Data defines data to be published as resources on the web, uniquely
identified by persistent uris. However, the state of these resources changes
rapidly over time, which causes inconsistencies in the links between them. This
is of great concern to enterprises maintaining their data archives extensively.
Requesting a consistent state of resources at a given point in time is crucial
for recovery, analytics and administration purposes. A popular solution is the
Memento framework [3]. It provides access to prior versions of web resources
through datetime negotiation over http. With a fixed datetime, clients can
access a consistent state valid at that time. Unfortunately, every server needs a
custom implementation, since there is no uniform way of exposing the relations
between the different stored versions.

In Linked Data, provenance has been a hot research topic for years. It
formally describes where the current resource state originates from. Recently, the
wc Provenance Working Group released the prov [2] standard, enabling the
publication of provenance in a uniform way. Based on uniform provenance, any
Linked Data server could feed the Memento framework in a loosely coupled way.

In this poster paper, we extend the Memento framework with provenance
discovery and exploit it to enable generic access. We redefine Memento as an inde-
pendent service, compatible with any Linked Data server publishing provenance.
First, we shortly introduce the Memento framework (Section 2) and propose an
extended architecture (Section 3). Next, we describe our approach for generic
provenance-based content negotiation (Section 4). Finally, we add conclusions
and some future work (Section 5).

217

2 Overview of Memento
Memento is an http framework for accessing prior archived versions of web
resources, based on a given datetime. It defines three types of resources:
– Original Resource Ri: an existing resource on the web, of which prior versions

are desired.
– Memento Mi,j : encapsulated prior states of the requested Ri.
– Timegate Gi: a resource supporting content negotiation in the datetime

dimension. When requested, it decides on a best matching Mi,j , where tj is
the given datetime.

An architectural overview is given in Figure 1. The resources Ri, Gi and Mi

are connected through hypermedia. When Ri is requested, the http response
contains a Link header, pointing at Gi. When Gi is requested, it responds with
its Location header set to the selected Mi,j resource. When Mi, j is requested,
the response holds link headers to its related Ri and to the previous, the next,
the first and the last Mi.

client Ri Gi Mi,jget Link: timegate get Accept-Datetime: ti

Link: original
Link: prev, next, first, last

Fig. 1. Hypermedia connecting Original Resource Ri, Timegate Gi and Memento Mi,j

3 Extended architecture
Memento needs a tailored implementation on every server, due to lacking formal
and uniform descriptions about the structure and locations of the different
archives. In our approach, we will use provenance of web resources to create a
generic Memento implementation as demonstrated in Figure 2. We define two
independent types of services: a Linked Data Service lds and a Generic Memento
Proxy gmp. The former publishes a Linked Data resource Li and their provenance
in prov Pi, which describes the archives Ai,j . The latter provides the functionality
of the Memento framework, providing access to the resources Ri, Mi,j and Gi.
The decision logic in Gi now depends on Pi to select a matching Mi,j , which is
explained in Section 4. This results into a loose coupling between lds and gmp,
thus making publishing provenance the only requirement for adding Memento
functionality. This reduces costs and effort, while enabling other applications of
provenance.

4 Generic time-based content negotiation
When requested, the timegate module decides on a Mi,j based on the value
ti from the Accept-DateTime header and the descriptions in Pi. We use the
semantic reasoner eye [1] to implement our decision logic, which has three main
advantages. First, prov descriptions can be directly requested as rdf, using
the prov-o1 ontology, which is natively supported. Second, we can describe our
1 http://www.w3.org/TR/prov-o/

218

http://www.w3.org/TR/prov-o/

ldsgmp

Li

Ai,j

Pi

client Ri

Gi

Mi,j

get

get

get

get

describes

Link: provenanceLink: timegate

Location

Fig. 2. The Generic Memento proxy gmp and the Linked Data service lds are loosely
coupled, creating a generic architecture

1 @prefix prov: <http://www.w3.org/ns/prov#>.
2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
3 <Resource> prov:wasRevisionOf <Resource/1>; prov:wasGeneratedBy :rev3.
4 :rev3 prov:endedAtTime "2012-04-18T14:30:00Z"^^xsd:dateTime.
5
6 <Resource/1> prov:wasRevisionOf <Resource/2>; prov:wasGeneratedBy :rev2.
7 :rev2 prov:endedAtTime "2012-04-15T14:30:00Z"^^xsd:dateTime.
8
9 <Resource/2> prov:wasRevisionOf <Resource/3>; prov:wasGeneratedBy :rev1.

10 :rev1 prov:endedAtTime "2012-04-11T12:30:00Z"^^xsd:dateTime.

Listing 1. Provenance Record for http://example.org/Resource in prov-o

logic in only a few compact n rules. Third, it can easily be extended with more
complex logic if desired later. We can devide the approach into two main steps:
discovery of provenance and selecting the memento.

Discovery of provenance Before any decisions can be made, the provenance has
to be retrieved. As descibed by the prov-aq note2, a link header pointing to
the prov description is added to an http response. The module will lookup
the resource Li and dereference the uri in the header. As stated above, we will
request the provenance in rdf. An example is given in Listing 1.

Selecting the Memento Once the provenance is retrieved, we decide on a memento
Mi,j using semantic reasoning. The resulting rules are demonstrated in Listing 2.
First, we identify all mementos. Each revision is linked to its predecessor using the
predicate prov:wasRevisionOf, forming a chain of revisions with Ri as endpoint.
Relying on the transitive property defined in owl logic, the relation between Ri
and Mi,j is derived by adding the triples on lines 5 and 6.

Next, we select a version valid at a given datetime [line 8]. The predicate
prov:wasGeneratedBy links each version to an instance of prov:Activity, whose
prov:endedAtTime predicate indicates the initiation of validity. The rule starts
with extracting the defined datetime [line 10] and creating a finite list of occuring
datetimes. This list is composed by finding all datetimes [line 11] that occur on
or before the requested datetime [line 13]. The valid version occurs on the latest
datetime in that list [lines 15 and 16], and is added to the response [line 18]. In
addition, we define analogue rules to select the first, the last, the next and the
previous memento as well, since links to all of these resources are required. The
complete rule file can be found here: http://goo.gl/dz13UN.

2 http://www.w3.org/TR/2013/NOTE-prov-aq-20130430/

219

http://example.org/Resource
http://goo.gl/dz13UN
http://www.w3.org/TR/2013/NOTE-prov-aq-20130430/

1 @prefix prov: <http://www.w3.org/ns/prov#>.
2 @prefix pred: <http://www.w3.org/2007/rif-builtin-predicate#>.
3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
4 @prefix e: <http://eulersharp.sourceforge.net/2003/03swap/log-rules#>.
5 prov:wasRevisionOf rdfs:subPropertyOf :memento.
6 :memento a owl:TransitiveProperty.
7
8 :request :datetime "2012-04-11T12:30:00Z"^^xsd:dateTime
9 {

10 :request :datetime ?req_datetime.
11 [] e:findall (?datetime {
12 ?rev prov:endedAtTime ?datetime .
13 (?datetime ?req_datetime) pred:dateTime-less-than-or-equal true.
14 } ?datetime_list) .
15 ?datetime_list e:max ?current_datetime.
16 ?current prov:endedAtTime ?current_datetime.
17 } => {
18 :response :memento ?current.
19 }.
20 ...

Listing 2. nLogic selects the Memento valid at a specific Datetime

After the rule execution, the derived result can be mapped directly to the
response. We add a Location header pointing at Mi,j and add the necessary
Memento-specific Link headers.

5 Conclusion and Future Work
Many enterprises publish their data archives as Linked Data. This requires access
to a consistent state of all resources. The Memento framework solves this, but
requires a costly custom implementation on each server. In the described approach,
we avoid these costs by extending the framework using provenance descibed in
prov. We proposed a loosely-coupled architecture, where a Memento server can
operate independently. We explained how semantic reasoning can implement the
decision logic in a quick and scalable way.

In a related project, we have created r&wbase [4], a triple version control
approach for triple stores. In future work, the capabilities of existing interfaces
(e.g., sparql, Linked Data Platform and the Graph Store Protocol) to access
different versions will be investigated. The approach described in this paper
simplifies datetime-based version selection for these interfaces.

References

1. J. De Roo. Euler proof mechanism, 1999–2013. Available at http://eulersharp.
sourceforge.net/.

2. P. Groth and L. Moreau. PROV-Overview: An Overview of the PROV Family of
Documents. W3C Working Group Note, 2013.

3. H. Van de Sompel, M. L. Nelson, R. Sanderson, L. Balakireva, S. Ainsworth, and
H. Shankar. Memento: Time travel for the Web. CoRR, abs/0911.1112, 2009.

4. M. Vander Sande, P. Colpaert, R. Verborgh, S. Coppens, E. Mannens, and R. Van de
Walle. R&Wbase: git for triples. In Proceedings of the 6th Workshop on Linked Data
on the Web, May 2013.

220

http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/

Distributed SPARQL Throughput Increase: On
the effectiveness of Workload-driven RDF

partitioning

Cosmin Basca and Abraham Bernstein

DDIS, Department of Informatics, University of Zurich, Zurich, Switzerland
{lastname}@ifi.uzh.ch

1 Introduction
The current size and expansion of the Web of Data or WoD, as shown by the stag-
gering growth of the Linked Open Data (LOD) project1, which reached to over 31
billion triples towards the end of 2011, leaves federated and distributed Semantic
DBMS’ or SDBMS’ facing the open challenge of scalable SPARQL query pro-
cessing. Traditionally, SDBMS’ push the burden of efficiency at runtime on the
query optimizer. This is in many cases too late (i.e., queries with many and/or
non-trivial joins). Extensive research in the general field of Databases has iden-
tified partitioning, in particular horizontal partitioning, as a primary means to
achieve scalability. Similarly to [2] we adopt the assumption that minimizing the
number of distributed-joins as a result of reorganizing the data over participating
nodes will lead to increased throughput in distributed SDBMS’. Consequently,
the benefit of reducing the number of distributed joins in this context is twofold:

A) Query optimization becomes simpler. Generally regarded as a hard prob-
lem in a distributed setup, query optimization benefits, at all execution levels,
from fewer distributed joins. During source selection the optimizer can use spe-
cialized indexes like in [5], while during query planning better query plans can
be devised quicker, since much of the optimization burden and complexity is
shifted away from the distributed optimizer to local optimizers.

B) Query execution becomes faster. Not having to pay for the overhead of
shipping partial results around, naturally reduces the time spent waiting for
usually higher latency network transfers. Furthermore, federated SDBMS’ incur
higher costs as they have to additionally serialize and deserialize data.

The main contributions of this poster are: i) the presentation of a novel
and näıve workload-based RDF partitioning method2 and ii) an evaluation and
study using a large real-world query log and dataset. Specifically, we investigate
the impact of various method-specific parameters and query log sizes, comparing
the performance of our method with traditional partitioning approaches.

2 Method Overview
Traditional approaches like Schism construct a graph representation where ver-
texes are tuples that participate in workload transactions. The graph is extended

1 http://linkeddata.org/
2 This work was partially supported by the Swiss National Science Foundation under

contract number 200021-118000.

221

to include all other tuples using a partition-trained classifier. Following this idea,
triples would be considered vertexes, while edges are created when any two triples
participate in the same query. This is however not feasible for RDF data.

Query
Partitions

View

Query
Triples
Index

Federator, or SPARQL
Broker endpoint

1) SPARQL logging

Triple
Partitions

View

Query Graph Partitioning

Triple Propagation & Replication

Partition C

Partition B

Partition A

SPARQL
Query

2) Query Space: Partitioning

3) Triple Space: Replication & Propagation4) Triple Space: Placement

Triples Distribution
Index

Fig. 1. A simple generalized view of the partitioning process.

Following this graph
representation in our
early attempts led to
very dense graphs,
which proved to be
too large for state of
the art graph parti-
tioning software like
Metis [4].3 Next, we
detail all steps seen in

Figure 1 except the simpler 1st phase where queries and their results are logged.
Data Representation & Graph Partitioning. Since mapping triples to ver-
texes does not scale well for RDF data, we pursued an intermediate representa-
tion: the Queries graph.

Q2

Q5Q3

Q4

Q1

100

20

10

150

50

Partition 2

Partition 1Dashed edges are replicated
i.e.: (Q1,Q4) and (Q1,Q3)

Size = 3000

Size = 1500Size = 5000

Size = 10000

Size = 200

Fig. 2. Basic query log-driven data representation.

Each query in the workload be-
comes a vertex, while edges be-
tween queries are formed when
some triples participate in more
than one query, with the num-
ber of common triples as edge
weights (Figure 2). Finally, we
apply Metis on the newly formed
queries graph, forcing balanced partitions as a result of the graph-cut operation.
Replication. After performing the graph-cut, there will still be distributed joins
even on the workload queries (i.e., query Q1 will require a distributed join while
query Q2 not). A straight-forward solution is to replicate the triples that reside
on the border between partitions. We proceed with identifying the minimum set
of triples that needs to be replicated, copying the extra triples from the smaller
sized query (i.e., copy extra triples from query Q1 over to Partition 2).
Propagation. While the process outlined so far guarantees that each query in
the workload can be executed without a single distributed join

?

?

OS P?

?

? ?

?

?

<?, ?, S > <S, ?, ? > <O, ?, ? >

?

?

?

?

?

?
?

?

Fig. 3. Visual depiction of the propagation patterns.

there are no guarantees for fu-
ture unknown queries. A method
of expanding the set of all triples
which participate in all workload
queries is needed. For this we rely
on the principle of (Spatial) Lo-
cality of Reference [3] adapted to
the logical graph representation.
In effect we propagate along the edges in the original RDF data graph to iden-
tify new triples “related” to existing triples which participated in all workload

3 The resulting input edge file amounted to approx. 150GB on disk, crashing Metis.

222

queries. Hence, we perform an n-hop4 edge propagation matching the follow-
ing triple patterns given a triple <s,p,o> (also depicted Figure 3): a) siblings:
< s,?,?>, b) outgoing edges: <o,?,?> and c) incoming edges: <?,?,s>. The re-
maining dataset triples which have not been considered so far, are randomly
distributed to the K selected partitions, or by hashing by subject.

3 Results & Conclusions
We make use of the USEWOD Data challenge [1] log file to extract 400k valid
and well formed SPARQL SELECT queries that produce at least 1 result, all
other log entries are discarded. We use a local instance of the Virtuoso RDF-
store to resolve them against DBpedia 3.5.1. Furthermore, we assume a perfect
distributed query optimizer, able to find the best possible query decomposition.
Measurements were conducted on a node with 72GB of RAM, 8 Cores @2.93GHz.

We compare our method against random partitioning, expert (manual) par-
titioning5 and hash partitioning. For the latter we hash on all possible combina-
tions of a triple: S, P, O, SP, SO, PO and SPO.6 Given the small to average size of
the DBpedia dataset (ca. 43.6 million triples), we fixed the number of partitions
to K = 8, simulating a small to medium sized cluster. Furthermore, we randomly
sampled the workload, with sizes consisting of 1k, 5k, 10k, 25k, 50k and 100k
queries from the total of 400k logged. The number of propagation hops was set
to 0, 1 and 2 respectively while replication was enabled in all cases.

1.55	 2.76	 5.72	 8.87	

9.78	

26.01	
34.29	

59.08	

72.63	

12.13	

28.64	

45.08	
39.47	

65.44	

76.26	

0.00	

10.00	

20.00	

30.00	

40.00	

50.00	

60.00	

70.00	

80.00	

90.00	

0	 10000	 20000	 30000	 40000	 50000	 60000	 70000	 80000	 90000	 100000	

Pe
rc
en

ta
ge
	 o
f	 T
ri
pl
es
	 A
ss
ig
ne

d	
to
	

Pa
r3
3
on

s	
fr
om

	 T
ot
al
	 (P

ar
3
3
on

ed
	 +
	

Re
pl
ic
at
ed

	 +
	 P
ro
pa

ga
te
d)
	

Training	 Workload	 Sample	 Size	 (#	 queries)	

Me/s	 random	 0	

Me/s	 random	 1	

Me/s	 random	 2	

Fig. 4. The % of triples assigned to partitions from total triples, for each training query set.

As we can visually observe in Figure 4 that although the increase in num-
ber of triples reached through the partitioning process (excluding the triples not
connected at all) is significant from 50k to 100k queries, there are diminishing re-
turns as the expansion process starts to slow down. Indeed doubling the number
of queries to log, yields approximatively a 10% increase at this point. Therefore,
we observe that a training log size of 50k queries represents an optimal point.
Performance Impact of Graph Partitioning. Even-though the general
problem of graph partitioning is known to be NP-hard, the approximating algo-
rithm implemented in Metis performs very well, finalizing the queries graph cut
in 0.17 seconds for 1k queries and 0.71 seconds for 100k queries.

4 Multiple hops only enabled for in & out edges to avoid an expensive avalanche effect.
5 Each large dump (if > 1M triples) to own partition, remainder grouped together.
6 We use of the cityhash family of hash functions, due to low-collision rate and speed.

http://www.openlinksw.com/wiki/main/VOS/VOSDownload
https://code.google.com/p/cityhash/

3.66	 3.82	
3.96	

4.40	

8.45	 8.66	

1.34	
1.70	

2.35	 2.15	

5.02	

6.14	

3.34	

0.8	

1.8	

2.8	

3.8	

4.8	

5.8	

6.8	

7.8	

8.8	

9.8	

0	 10000	 20000	 30000	 40000	 50000	 60000	 70000	 80000	 90000	 100000	

Pe
rf
or
m
an

ce
	 Im

pr
oo

ve
m
en

t	
N
or
m
al
iz
ed

	 to
	

Sl
ow

es
t	 (
#	
D
is
tr
ib
ut
ed

	 Jo
in
s)
	

Training	 Workload	 Sample	 Size	 (#	 queries)	

Me/s	 hash	 S	 2	

Me/s	 hash	 S	 1	

Me/s	 random	 2	

Me/s	 random	 1	

Hash	 S	

Expert	 (Manual)	

Hash	 P	

Me/s	 random	 0	

Hash	 SP	

Hash	 O	

Hash	 SO	

Hash	 PO	

Random	

Hash	 SPO	

Fig. 5. The performance improvement relative to the lowest performing method (hash SPO).

Number of Hops Impact when Propagating. Figure 5 plots the relative
performance improvement over the lowest performing method. Non-workload
driven partitioning methods appear as horizontal lines. The worst performing
ones are the Hash SPO method with Random & Hash PO/SO exposing simi-
lar performance levels. Hashing by subject Hash S is performing best, followed
closely by the Expert (manual) distribution method. This could suggest that
the majority of the workload queries are dominated by star-shaped basic graph
patterns and contain few joins.7 When using random distribution of remain-
ing triples our method performs unsatisfactory for smaller workload sizes, but
becomes substantially better by 50k queries. At 100k queries it exposes a 6.14
performance factor being 2.81 and 3.1 times better than Hash S and Expert re-
spectively. When remaining triples are distributed based on subject hashes, the
method outperforms all other methods at all workload sizes. At best (Metis hash
S 2) our method is between 3.6 and 8.66 times better than the lowest performing
and up to 5.32 times better than hashing by subject. In essence the best case
partitioning would produce on average of 0.10 distributed joins per query.

References

1. B. Berendt, L. Hollink, V. Hollink, M. Luczak-Rsch, K. H. Mller, and D. Vallet.
Usewod2011 - 1st international workshop on usage analysis and the web of data. in
20th international world wide web conference (www2011), hyderabad, india, 2011.

2. C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven approach
to database replication and partitioning. Proceedings of the VLDB Endowment,
3:48–57, Sept. 2010.

3. P. J. Denning. The locality principle. Communications of the ACM, 48, July 2005.
4. G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse

Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/∼metis, 2009.
5. Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan. IEEE Xplore - Efficient

Indices Using Graph Partitioning in RDF Triple Stores. In ICDE2009: IEEE 25th
International Conference on Data Engineering, 2009., pages 1263 – 1266, 2009.

7 A fact we intend to investigate in depth in the near future

http://www.cs.umn.edu/~metis

Pay-as-you-go Matching of Relational Schemata
to OWL Ontologies With IncMap?

Christoph Pinkel1 ??, Carsten Binnig2, Evgeny Kharlamov3, and Peter Haase1

1 fluid Operations AG 2 University of Mannheim 3 University of Oxford

Abstract. Ontology Based Data Access (OBDA) enables access to re-
lational data with a complex structure through ontologies as conceptual
domain models. A key component of an OBDA system are mappings be-
tween the schematic elements in the ontology and their correspondences
in the relational schema. Today, in existing OBDA systems these map-
pings typically need to be compiled by hand. In this paper we present
IncMap, a system that supports a semi-automatic approach for match-
ing relational schemata and ontologies. Our approach is based on a novel
matching technique that represents the schematic elements of an ontol-
ogy and a relational schema in a unified way. Finally, IncMap can extend
user-verified mapping suggestions in a pay-as-you-go fashion.

1 Introduction

Today, enterprise information systems of large companies typically store petabytes
of data across multiple relational databases, each with hundreds or thousands
of tables (e.g., [1]). Effective understanding of complex schemata is a crucial
task for enterprises to support decision making and retain competitiveness on
the market. Ontology-based data access (OBDA) [2] is an approach that has
recently emerged to provide semantic access to complex structured (relational)
data. However, in many existing real-world systems (e.g. [2]) that follow the
ODBA principle, the mappings have to be created manually, which constitutes
a significant entry barrier for applying OBDA in practice.

To overcome this limitation, we propose a novel semi-automatic schema
matching approach and a system called IncMap. We focus on finding one-to-
one correspondences of ontological and relational schema elements, while we
also work on extensions for finding more complex mappings.

The matching approach of IncMap is inspired by the Similarity Flooding (SF)
algorithm [3] that works well for schemata that follow the same modeling prin-
ciples. However, we show that applying the SF algorithm naively for matching
relational schemata to OWL ontologies results in rather poor suggestion quality
due to a conceptual mismatch between ontologies and relational schemata. The
contributions of the paper are the following: In Section 2, we propose a novel
graph structure called IncGraph to represent schema elements from ontologies
and relational schemata in a unified way. In Section 3, we present our match-
ing algorithm that supports an incremental pay-as-you-go approach that can

? The research was supported by the EU Commission’s FP7 grant Optique (n. 318338).
?? E-Mail: christoph.pinkel@fluidops.com

225

subclassOf)

Director)
domain)

directs) Movie)
range)

Class)

subclassOf)Object)
Property)

subclassOf)

Data)
Property)

hasTitle)
domain)

subclassOf)

Director(

director)
PK)

...)

Movie(

?tle)

director)
FK)

...)

Ontology(O! Rela2onal(Schema(R!

Director)
ref)

directs) Movie)
ref)

hasTitle)

val)

Director)
ref)

director)
FK) Movie)

ref)

hasTitle)

val)
director)

FK)
Director)

PK)

val)

IncGraph(O)! IncGraph(R)!

val)

Fig. 1. IncGraph Construction Example

leverage existing mappings. Finally, Section 4 presents an experimental evalua-
tion using different (real-world) relational schemata and ontologies. Experiments
show that the basic version of IncMap reduces the effort for creating a mapping
up to 20% compared to applying SF in a naive way. The incremental version of
IncMap can reduce the total effort by another 50%− 70%.

2 The IncGraph Model

The IncGraph model used by IncMap represents schema elements of an OWL
ontology O and a relational schema R in a unified way. An IncGraph model
is defined as directed labeled graph (V, LblV , E, LblE). V represents a set of
vertices, E a set of directed edges, LblV a set of labels for vertices and LblE a
set of labels for edges. A label lV ∈ LblV represents a name of a schema element
whereas a label lE ∈ LblE is either “ref” representing a so called ref-edge
or “value” representing a so called val-edge. Figure 1 shows a cinematography
related ontology O and relational schema R, as well as the result of constructing
graphs IncGraph(O) and IncGraph(R) according to the IncGraph model. While
O and R describe the same entities Directors and Movies and their relationship
in a different way, the IncGraph O and R is designed to represent both in a
structurally similar fashion.

However, after constructing the IncGraph models, structural differences be-
tween IncGraph(O) and IncGraph(R) might still exist due to the mismatch
between the high level view of the domain in ontologies and the low level view
of data in relational databases. IncMap therefore adds annotations in IncGraph
to bridge these structural gaps. Annotations are added as inactive ref-edges
which can be activated during the schema matching process. For instance, addi-
tional ref-edges are added to IncGraph (R) as shortcuts for join-paths to better
match the IncGraph (O). Moreover, another idea is to add inverse ref-edges to
unify the structure resulting from modeling relationships in different directions
(e.g., the directs-predicate in O vs. the directorFK -relationship in R in Figure
1. Finally, results from reasoning over an ontology O can also be integrated into
IncGraph (O). Analyzing these annotations in detail is a future work.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400

Random LS Similarity Inverse LS Dist.

Ef
fo

rt
[a

ct
io

ns
]

IMDB: Naive Similarity Flooding vs. IncGraph
Naive [initial]

IncGraph [initial]
Naive [final]

IncGraph [final]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

Random LS SimilarityInverse LS Dist.

E
ffo

rt
 [a

ct
io

ns
]

Music Ontology: Naive Sim. Flood. vs. IncGraph
Naive [initial]

IncGraph [initial]
Naive [final]

IncGraph [final]

Fig. 2. Naive vs. IncGraph

3 The IncMap System

IncMap takes the IncGraphs produced for a relational schema R and for an
ontology O as input. In its basic version, IncMap applies the original SF algo-
rithm and thus creates initial mapping suggestions for the IncGraph of O and R.
Additionally, IncMap can activate ref-edges (i.e., annotations) before executing
the SF algorithm to achieve better results.

One important extension is the incremental version of IncMap. In this version
the initial suggestions are re-ranked by IncMap by including user feedback. The
idea of user feedback is that the user confirms those mapping suggestions of the
previous iteration, which are required to answer a given user query over O.

We support three methods for incorporating user feedback into the matching
process: First, the naive Initializer method changes the score of confirmed or
rejected mappings to initialize the next run to 1.0 and 0.0, respectively. Second,
Self-Confidence Nodes work similar but the initialization is repeated during the
fix-point computation of the SF algorithm which results in a stronger influence
of the user feedback. Finally, Influence Nodes include additional nodes in the
graph structure to locally influence the score of a confirmed or rejected mappings.
Please refer to [4] for a more detailed description of those methods.

IncMap is designed as a framework and provides different knobs to control
which extensions and variations to use. A major avenue of future work is to
apply optimization algorithms to find the best configurations automatically.

4 Experimental Evaluation

We evaluate IncMap using to two real-world scenarios that provided hand crafted
mappings as gold standard. As a first scenario, we evaluate a mapping from movie
database IMDB to the Movie Ontology (http://www.movieontology.org) The
second scenario is a mapping from the MusicBrainz database to the Music Ontol-
ogy (www.musicontology.com) We evaluate IncMap w.r.t. reducing work time
(i.e., effort) needed to correct the correspondences suggested by IncMap to match
the gold standard. The effort is defined as the sum of steps that users need to
validate the suggested mappings for each node in the IncGraph (O). For validat-
ing one mapping the user needs to reject all suggested correspondences in the
decreasing order of their final ranking score until reaching the correct mapping
whereas each rejection is counted as one step.

227

http://www.movieontology.org
www.musicontology.com

 0

 100

 200

 300

 400

 500

 600

 700

 800

Norm. Sim. Product Original Weights

E
ffo

rt
 [a

ct
io

ns
]

IMDB: Incremental Runs
Non-Incremental

Initializer
Self-Confidence Nodes

Influence Nodes

 0

 1000

 2000

 3000

 4000

 5000

 6000

Norm. Sim. Product Original Weights

E
ffo

rt
 [a

ct
io

ns
]

Music Ontology: Incremental Runs
Non-Incremental

Initializer
Self-Confidence Nodes

Influence Nodes

Fig. 3. Incremental Evaluation

Experiment 1 – Naive vs. IncGraph. In our first experiment we compare the work
time required to correct the mapping suggestions when the schema and ontology
are represented naively as schema graphs, or using IncGraphs. Additionally, we
vary the lexical matcher using three alternatives: randomly assigned scores (base
line), Levenshtein similarity and inverse Levenshtein distance. Figure 2 shows
that IncGraph works better in all cases than the naive approach.

Experiment 2 – Incremental Mapping Generation. In the second experiment we
evaluate the incremental schema matching in IncMap. Figure 3 show the result-
ing work time for the three incremental methods. Most significantly, incremental
evaluation reduces the overall effort (work time) by up to 50%− 70% compared
to the naive non-incremantal version. For both scenarios Self-Confidence Nodes
and Influence Nodes work much better than the naive Initializer approach.

5 Conclusions and Outlook
We presented IncMap, a novel semi-automatic matching approach for matching
relational schemata to ontologies. Our approach is based on a novel unified graph
model called IncGraph for ontologies and relational schemata. Based on the In-
cGraph model, IncMap implements a novel semi-automatic matching approach
inspired by the Similarity Flooding algorithm to derive mappings using both
lexical and structural similarities of ontologies and relational schemata. Our ex-
periments with IncMap on real-world relational schemata and ontologies showed
that the effort for creating a mapping with IncMap is up to 30% less than using
the Similarity Flooding algorithm in a naive way. The incremental version of
IncMap reduces the total effort of mapping creation by another 50%− 70%.

References

1. SAP HANA Help: http://help.sap.com/hana/html/sql export.html (2013)
2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-

Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The mastro system for ontology-based
data access. Semantic Web Journal 2(1) (2011) 43–53

3. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching. In: ICDE. (2002)

4. Pinkel, C., Binnig, C., Kharlamov, E., Haase, P.: IncMap: Pay-as-you-go Matching
of Relational Schemata to OWL Ontologies. In: OM. (2013)

228

Interlinking Multilingual LOD Resources: A Study on
Connecting Chinese, Japanese, and Korean Resources Using

the Unihan Database

Saemi Jang, Satria Hutomo, Soon Gill Hong, and Mun Yong Yi

Department of Knowledge Service Engineering, KAIST, Republic of Korea
Sammy1221@kaist.ac.kr, satriahj@kaist.ac.kr, soonhong@kaist.ac.kr,

munyi@kaist.ac.kr

Abstract. This study proposes a novel method with which Chinese, Japanese, and Kore-
an (CJK) resources on the Web can be effectively matched and connected. The three
countries share Chinese characters even though Japan and Korea have their own lan-
guage. Utilizing the Unihan database, which covers more than 45,000 characters com-
monly used by the three countries, we show that the proposed method outperforms the
traditional method based on string matching in finding similar characters and words used
in these countries. The results represent a first step towards overcoming the multilingual
barrier in semantically interlinking Asian LOD resources.

Linked Open Data (LOD) is an international endeavor to interlink structured data on the Web
and create the Web of Data on a global level. Linking data can be achieved by understanding
the semantic relationships between data and building explicit links for them. Hence, semanti-
cally matching and connecting resources in different languages is crucial to successfully build-
ing linked open data around the world.

Approximately 60 percent of the world population is Asians. Resolving multilingual issues
for the Asian population is one of the important yet challenging tasks as Asian countries most-
ly use their own writing systems. Those approaches that have been developed for English
alphabets and Western language systems cannot be readily adapted to Asian languages sys-
tems as their writing systems are based on different assumptions and conventions. Most of the
LOD frameworks have focused on Western language resources and most of the open resources
in the LOD cloud are connected to the West, significantly hampering the effort to make the
LOD cloud truly a global data space.

In this study, we propose a novel method for matching and interlinking Asian LOD re-
sources and then empirically validate the proposed method using Silk Workbench, an applica-
tion developed in conjunction with the LOD2 EU-FP7 project1. China, Japan, and Korea,
shortened as CJK, are geographically close and collectively account for the largest population
in Asia. The three countries have had mutual interactions for over a thousand years influenc-
ing each other’s language system. In particular, Japan and Korea have been affected by the
Chinese ideographic characters (Han Chinese), which were used by the Han race a long time
ago, which still has a strong impact on the Han Chinese characters used in CJK. Our work
exploits the fact that these three countries share the origins and semantics of certain characters
even though those characters have developed into often differently looking characters over
time.

1 http://lod2.eu

229

Our Proposed Approach.

The Unihan database is a repository for the Unicode Consortium’s collective knowledge re-

garding the CJK Unified Ideographs. The database contains mapping data to allow conversion
to and from other coded character sets and additional information about radical-stroke counts
and phonetic information [1][2]. The database represents a character as a 16-bit character code
and covers more than 45,000 codes. We used reading and semantic information available from
the Unihan database. The reading information in Unihan database shows the pronunciations of
the same unified Ideographs in China, Japan and Korea. The semantic information in Unihan
includes a variety of possible alternative variants beyond the one-to-one matching of Chinese
characters.

Fig. 1. Process diagram of Han edit distance

To identify matching CJK resources characters using the Unihan database, we propose a new
distance measure, called Han Edit Distance (HED). Figure 1 summarizes the overall procedure
for the computation of the proposed Han Edit Distance. First, the source and target Chinese
words are converted into the Unicode number of each character. Then the two Unicode num-
bers are compared in a fixed order. It means that the Unicode number of the first character in
the source word is compared with the Unicode number of the first character in the target word,
the Unicode number of the second character in the source word with the Unicode number of
the second character in the target word, and so on. If matching Unicode numbers are found
between the characters of those two words, those matching numbers are given a score of 0. If
there is not any matching, each Unicode number is converted into the Unicode number of its
compatible variant properties. The next step is to check each radical stroke index properties.
When the radical part of one character is the same as the other, the two characters belong to
the same family. In this case, the number of different strokes is calculated. In the other case,
the semantic distance (SD) is given the maximum score of 30 (which is the maximum number
of strokes for common Chinese characters) and the reading distance (RD) is calculated by
using the reading properties. The total distance is the minimum score between SD and RD.
Finally, the Han edit distance is calculated for the two words and then it is normalized. The
edit distance calculation algorithm is further detailed below.

Han Edit Distance Calculation Algorithm.

HED (0, 0) = 0
SD (i1, i2) = | TotalStroke i1 + TotalStroke i2 |
RD (i , j) = [M (i, j) + JK (i, j) + JO (i, j) + K (i, j) + H (i, j)] * 6
HED (s, t) = min [SD (s, t) , RD (s, t)]

230

Han edit distance is calculated using the distance of both Semantic properties and Reading
properties. When two words have the same family root, their semantic distance is calculated.
Otherwise, a fixed maximum is assigned to SD, and their reading distance is calculated. Se-
mantic distance represents the difference in the total number of different strokes from the two
characters. Although the strokes for each Chinese character are different, the number of Chi-
nese characters that have more than 30 strokes is around 0.23 percent in the Unihan database,
so we defined 30 as the maximum number of the total stroke.

Reading distance mainly focuses on how characters are pronounced in each country. When
each value of the reading properties is equal, 0 is given as the score; otherwise, 1 is given as
the score. Then, the scores from all reading properties are added and multiplied by 6. Multi-
plying by 6 standardizes RD and SD because their maximum values become very close.

Normalized Distance = 1 −
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝐿! + 𝐿! ×𝑛

 (1)

Normalized distance (ND) is defined per Equation 1[3], ranging between 0 and 1 (0≤ND≤1).
The sum of the length of elements is multiplied by 30 (n) since the maximum difference be-
tween characters is defined as 30. When the Normalized distance is 1, the two words are ex-
actly the same. 𝐿! denotes the length of the source word and 𝐿! denotes the target word. Table
1 shows some examples of Han edit distance between Chinese, Japanese, and Korean words.

Table 1. Examples of Han edit distance between CJK words

Evaluation.

Korea and Japan commonly use about two thousands Chinese characters, and China com-

monly uses about 2500 characters. Han Chinese words can be composed of just one character
or more than one characters. We evaluated the performance of the Han edit distance in two
scenarios to reflect this situation. First, similarities at the character level were evaluated utiliz-
ing the most commonly used Chinese characters in CJK. 1,937 synonymous pairs were select-
ed as a test data set for this purpose. Second, similarities at the word level were evaluated. 618
pairs of words, each pair of which has the same meaning across the three countries, were se-
lected as a test data set for this purpose. We evaluated our approach against the Levenshtein
edit distance, which is most widely used for measuring string similarities. When one character
is different, the distance is 1 by the Levenshtein distance while the distance is 30 by the Han
edit distance (HED). The two distance measures are compared after normalization.

 Word Han Meaning Unicode# SD RD HED ND

1
國家 K Nation U+570B U+5BB6

0 30 0 0
国家 C Nation U+56FD U+5BB6

2
今日 J Today U+4ECA U+65E5

0 30 30 0.75
今天 C Today U+4ECA U+5929

3
読書 J Reading U+8AAD U+66F8

0 24 24 0.8
�� C Reading U+8BFB U+4E66

231

Table 2. Results from the character-level comparison

Threshold
=1

Chinese : Japanese Chinese : Korean Japanese : Korean
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Levenshtein 0.5975 0.1946 0.2936 0.5919 0.1850 0.2819 0.6065 0.2525 0.3565
HED 0.5982 0.2710 0.3730 0.6477 0.2952 0.4055 0.6012 0.2739 0.3763

Table 3. Result from the word-level comparison

Threshold
=1

Chinese : Japanese Chinese : Korean Japanese : Korean
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Levenshtein 0.9726 0.3430 0.5071 0.9770 0.3414 0.5060 0.9601 0.5427 0.6934
HED 0.9705 0.4767 0.6393 0.9737 0.5958 0.7393 0.9644 0.6538 0.7793

As shown, most scores of the Han edit distance both at the character-level and at the word-

level are higher than the scores of the Levensthtein distance. In particular, in all recall and F-
measure comparisons, the HED approach shows superior performance consistently at the
character-level and at the word-level, without exception. In the comparisons of precision, the
results are mixed, but without much noticeable difference between the two approaches. On
average, the f-score improvement made by the HED approach is 25% for the character-level
comparison and 26% for the word-level comparison.

Concluding Remarks.

Research on LOD mainly focused on Western resources and measured the similarity of the
resources at the string level. However, these approaches are not readily applicable to non-
Western resources. In this study, we propose a new method to measure similarities among
CJK resources, and demonstrate its effectiveness at the character-level and word-level. The
results show that the proposed approach is able to identify similar resources of the three coun-
tries more effectively than the traditional Levenshtein approach. Our research represents a first
step to overcoming the limitations of interlinking multilingual resources in Asia, in particular
for CJK. The proposed comparator is planned to be implemented on the next version of Silk
Workbench. Future research should involve expanding the approach to include other Asian
countries whose characters are covered by the Unihan database such as Singapore, Taiwan,
Hong Kong, and Vietnam.

Acknowledgements.

This research was conducted by the International Collaborative Research and Development
Program (Creating Knowledge out of Interlinked Data) and funded by the Korean Ministry of
Knowledge Economy.

References.

1. The Unicode Standard (http://www.unicode.org/versions/Unicode6.2.0/ch12.pdf).
2. Unihan database document (http://www.unicode.org/charts/unihan.html).
3. Shigeaki Kodama: String Edit Distance for Computing Phonological Similarity between Words,

proceedings of International Symposium on Global Multidisciplinary Engineering, (2010).

232

Finite Models in RDF(S), with datatypes

Peter F. Patel-Schneider1 and Pat Hayes2

1 Nuance Communications, pfpschneider@gmail.com
2 IHMC, phayes@ihmc.us

The details of reasoning in RDF [2] and RDFS [1] are generally well known.
There is a model-theoretic semantics for RDF [3, 4] and there are sound and com-
plete proof theories for RDF without datatypes [6]. However, the model-theoretic
characteristics of RDF3 have been less studied, particularly when datatypes are
added. We show that RDF reasoning can be performed by only considering finite
models or pre-models, and sometimes only very small models need be considered.

Ter Horst [6] does define Herbrand models for RDF and RDFS, providing the
basis for some model-theoretic characteristics of RDF and RDFS, but he does
not provide a full analysis of RDF datatypes, analyzing instead an incomplete
semantics for datatypes that is easier to reason in. As well, the recent minor
modifications to the semantics of RDF [4], while cleaning up some aspects of en-
tailment in RDF, do make some technical changes that might appear to interfere
with finite model-based reasoning in RDF. An analysis of finite models for RDF
shows that the modified semantics does not introduce any unintended changes
to reasoning in RDF. As well, it provides insights into the modeling strength of
RDF, particularly when blank nodes are not present, and illustrates how finite
datatypes interact with the rest of RDF.

As shown by ter Horst, sound and complete reasoning in RDF and RDFS
without datatypes is decidable, even though RDF and RDFS have an infinite
number of axioms. However, the decidability of RDF reasoning does not neces-
sarily mean that RDF reasoning can be done by considering only finite models.
For example, OWL [5] has decidable reasoning, but nonetheless requires infinite
models, for example by encoding the number line using inverse properties and
number restrictions.

In the new semantics for RDF [4], all IRIs are given denotations in all in-
terpretations. This means that the standard construction for Herbrand models
will result in an infinite model. Infinite datatypes (e.g., xsd:integer) also produce
infinite models, so finite model reasoning in RDF with datatypes is technically
concerned with pre-models, semantic structures that are finite and can be triv-
ially extended to real models. Nonetheless finite model reasoning should be pos-
sible in RDF as RDF does not have inverses, counting, or even equality and
inequality.

Given an RDF graph (or set of RDF graphs), we define the set of identifiers
for the graph as the nodes and predicates of the graph plus the IRIs used in
the RDF (and RDFS, if considering RDFS entailment) semantic conditions and

3 In this paper, RDF by itself will generally be used to indicate both RDF and RDFS,
both with and without datatypes, unless otherwise specified.

233

axioms, except that no container membership property not occurring in the
graph is an identifier for the graph.

We then build some models for the RDF graph as follows.4 We start with the
data values for the recognized datatypes. For every identifier that is not a literal
with a recognized datatype we nondeterministically either nondeterministically
choose some data value as its denotation or add a new domain element as its
denotation. This results in denotation functions where identifiers that do not
denote data values all denote different domain elements. For IRIs and literals
with unrecognized datatypes that are not identifiers of the graph we add two
extra domain elements, one being the denotation of the container membership
properties that are not identifiers for the graph and one being the denotation of
all other identifiers. We then build up the rest of the semantic structure using
the graph and the axioms and rules of inference from ter Horst augmented with
axioms for datatypes and co-denoting identifiers, resulting in a structure like a
datatype-aware Herbrand interpretation except that some non-literal identifiers
might denote data values.

Some of these denotation functions might fail to produce an interpretation
because some datatype domain or range restriction requires a domain element
to be a data value for a particular datatype when it is not. However, if there
is a model for the RDF graph, then this construction will produce at least one
model, because there are no semantic conditions in RDF that require a partic-
ular denotation for an identifier or require or prohibit co-denotation between
identifiers except those related to data values and we have not constrained data
value denotations here except for non-identifiers.

So for every satisfiable RDF graph we have ended up with a set of models.
We now need to show that any model of the graph is at least as strong as one
of these models. For a particular set of denotations the inference rules produce
the weakest possible model. Now consider the extra domain element added for
unmentioned container membership properties. Replicating this domain element
and splitting denotations produces a model that has the same strength as the
original model because the RDF semantic conditions treat all these domain ele-
ments the same and identity cannot be detected. Similarly replicating the other
additional domain element produces a model of the same strength. Because there
is no inequality in RDF, identifying any two domain elements always produces
model that is at least as strong, if it produces a model at all. Thus the restric-
tion that denotations that are not data values be unique produces the weakest
possible models.

In these models all the data values in a datatype that are not the denotation
of some identifier have exactly the same characteristics. A pre-model can thus be
constructed that collapses all these data values into one, finally resulting in finite
model reasoning for RDF. (The result is, of course, not generally a model because
it violates the semantic conditions on the denotation of literals.) A completely
finite semantic structure can be constructed by simply ignoring these denotation
mappings and the mappings for other non-identifiers.

4 For purposes of space some shortcuts in notation will be taken throughout this paper.

234

In the absence of recognized datatypes, the above construction results in
unique Herbrand models just like the ones in ter Horst. In the presence of rec-
ognized datatypes this construction is different from that in ter Horst, as it
captures the full meaning of datatypes, including the requirement to consider
several models. For example, consider a datatype with only two data values, say
ex:two, and the RDF graph

ex:p rdf:range ex:two.
ex:a ex:p ex:u, ex:v. ex:b ex:p ex:u, ex:w. ex:c ex:p ex:v, ex:w.

This RDF graph entails :x ex:p ex:u, ex:v, ex:w. To determine entailment in
these situations more than one model must be considered, hence the choice of
values in the graph above.

If datatypes have sufficient data values of the right kind, however, then it is
possible to only consider models that are more like Herbrand models. Given a
finite set of recognized datatypes D and E a subset of D, let the unconstrained
portion of E be the elements of the intersection of the data spaces for each e in E
that are not in any other datatype in E that is not a superset of the intersection.
Consider two RDF graphs A and B and a set of recognized datatypes D. If the
unconstrained portion of every E, a non-empty subset of D, is of size greater
than the number of data values in it denoted by literals in A and B plus the
number of identifiers in A that are not literals with recognized datatypes plus one
then it is possible to always choose unconstrained elements when picking data
values for identifiers that are not literals with recognized datatypes. Then all
such identifiers will have different denotations, and different denotations from
all literals. This in turn permits the determination of the datatypes that the
denotation of an identifier must belong to by using the D* rules of ter Horst.
Then when determining the denotation of an identifier, if this set is empty add a
new domain element and otherwise pick an unconstrained value for this set. This
results in a single, finite model that can be used for reasoning. Note, however,
that the presence of even a single too-small unconstrained portion may require
examining multiple models.

So we have shown that RDF reasoning can be done by considering only
models of the size of the RDF graph. Is it possible to consider only very small
models? (Datatypes make these considerations even more complex, so this sec-
tion of the paper will ignore datatypes.) If RDF had disjunction, then it would
not be possible to significantly shrink the minimum size of considered models.
For example, consider RDF graphs containing n triples of the form

Si S1 Si. for 1 <= i <= n.

In any model with less than n domain elements, there is some 1 ≤ i 6= j ≤ n
such that Si and Sj have the same denotation. In this model Si S1 Sj . is true
and so in any such model the disjunction of all these triples is true, which is not
a valid entailment.

Even with RDF lacking disjunctions, it is possible to show that very small
models are not adequate. Consider RDF graphs containing triples of the form

Si S1 Sj . for 1 ≤ i 6= j ≤ n.

235

In any model with less than n domain elements, there is some 1 ≤ i 6= j ≤ n such
that Si and Sj have the same denotation, which is then related to the denotation
of each of the Si by the denotation of S1, so the graph containing

:x S1 Sj . for 1 <= i <= n,

is true in each of these models, but this graph is not entailed. Therefore consid-
ering only models of this size or smaller is not sufficient.

If we only consider entailments with no blank nodes in the entailed graph
then smaller models suffice. Consider an interpretation I (for RDF or RDFS
without any recognized datatypes) containing two domain elements e1 and e2
that are neither properties nor classes (call these domain elements ordinary).
Form I ′ from I by simply replacing e1 and e2 with a single domain element e
throughout. Then I ′ is an interpretation, which can be determined by examining
all the appropriate semantic conditions.

So for B1 and B1 identifiers whose denotation in I are neither e1 nor e2, I ′

supports any triple of the form B1 P B2., if and only if I supports the triple.
For any particular such triple this process can be repeated until only three
ordinary domain elements remain. Considering all such shrunken interpretations
is adequate to rule out any invalid entailments, so we need only consider models
with three ordinary domain elements, but of course we need to consider many
interpretations. The ability to have such small models and to then only consider
them shows how weak RDF is as a logic.

We have argued that RDF reasoning can be done by only considering finite
models, even in the presence of datatypes. The exact size and number of the
models that need to be considered depends on a number of factors, including
which recognized datatypes are involved, but generally models of size at least the
number of identifiers in the graph must be considered. If there are no datatypes
or the datatypes are of sufficient size, then a single Herbrand-like model is all
that need be considered. If there are no blank nodes in the entailed graph, then
much smaller models suffice, although multiple models must then be considered.

References

1. Dan Brinkley and R. V. Guha. RDF vocabulary description language 1.0: RDF
schema. W3C Recommendation, http://www.w3.org/TR/rdf-schema, 2004.

2. Richard Cyganiak and David Wood. RDF 1.1 concepts and abstract syntax. W3C
Working Draft, http://www.w3.org/TR/rdf11-concepts, 2013.

3. Patrick Hayes. RDF Semantics. W3C Recommendation,
http://www.w3.org/TR/rdf-mt/, 2004.

4. Patrick Hayes and Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Working
Draft, http://www.w3.org/TR/rdf11-mt/, 2013.

5. Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 web ontology lan-
guage: Structural specification and functional-style syntax. W3C Recommendation,
http://www.w3.org/TR/owl2-syntax/, 2009.

6. Herman J. ter Horst. Completeness, decidability and complexity of entailment for
RDF Schema and a semantic extension involving the OWL vocabulary. Journal of
Web Semantics, 3(2-3):79–115, 2005.

236

Extending R2RML to a source-independent
mapping language for RDF

Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Erik Mannens, and
Rik Van de Walle

Ghent University - iMinds - Multimedia Lab
Gaston Crommenlaan 8, bus 201, B-9050 Ledeberg-Ghent, Belgium

firstname.lastname@ugent.be

Abstract. Although reaching the fifth star of the Open Data deploy-
ment scheme demands the data to be represented in RDF and linked,
a generic and standard mapping procedure to deploy raw data in RDF
was not established so far. Only the R2RML mapping language was
standardized but its applicability is limited to mappings from relational
databases to RDF. We propose the extension of R2RML to also sup-
port mappings of data sources in other structured formats (indicatively
CSV, TSV, XML, JSON). Broadening further its scope, the focus is put
on the mappings and their optimal reuse. The language becomes source-
agnostic, and resources are integrated and interlinked at a primary stage.

1 Introduction

Today, the idea of the (Linked) Open Data is widely spread and adopted. How-
ever, while reaching the fourth star of the Open Data deployment scheme1 is
easily attainable, achieving the fifth demands a well-considered approach and
significantly greater effort. Current solutions are either highly customized to
each case’s specific needs or they follow a schematic and/or syntactic map-
ping approach. This fails to fully depict the semantics as it remains tied to
the source file’s structure. To this end, only R2RML2 became a W3C recom-
mendation aiming to formalize the mappings from relational databases to RDF
(RDB2RDF). In practice though, one publishes data available in different source
formats which, in turn, requires a more generic approach.

A generic language that maps the data independently of the source structure
(schema-agnostic) and puts the focus on the mappings is a prominent advance-
ment. Thereby, one deals with all different source files in a uniform way; in con-
trast with other languages that handle the mappings of different source formats
separately. Therefore, the initial learning costs remain limited and the potential
for the custom-defined mapping’s reuse augments. As a result, the per-file map-
ping model followed so far gets surpassed, leading to contingent data integration
and interlinking at a primary stage. In this paper, we propose an extension of
the R2RML aiming to broaden its scope to cover also mappings from different
structured data formats –CSV, TSV, XML and JSON files– to RDF.

1
http://5stardata.info

2
http://www.w3.org/TR/r2rml

237

2 State of the art

Beyond R2RML which has already several implementations3, other RDB2RDF
mapping languages were defined [1]. In the same context, there are corresponding
languages to support CSV-to-RDF mappings (CSV2RDF), e.g., the XLWrap’s
mapping language [2], the Mapping Master’s M2 [3] and Vertere4. On the other
hand, in the case of mappings from XML to RDF (XML2RDF), the different
tools rely mostly on existing XML solutions. To be more precise, XSLT-based
approaches were explored, as the Krextor [4] and the AstroGrid-D5 mapping
tools, while other implementations deploy mappings using XPath and XQuery,
e.g., the Tripliser6 and the XSPARQL [5]. These solutions for XML sources lead
to mappings on the syntactic level rather than on the semantic level or fail to
provide a solution applicable to a broader domain. Beyond the standard Extract-
Map-Load (EML) mappings, dynamic query translation was also explored, e,g,
in the case of Tarql7 (CSV2RDF) and XSPARQL (mapping and integration
of XML, RDB and RDF resources).

In general, most tools deploy mappings from a certain source format to RDF
(source-centric approaches). There are only a few tools that provide mappings
from various source formats to RDF –DataLift [6], the DataTank [7], Karma [8],
Open Refine8 and Virtuoso Sponger9 are the most well known– but only the
DataTank uses a mapping language. For the latter’s needs, Vertere was extended
not only to cover CSV2RDF mappings but mappings from other structured data
sources as well, namely databases, XML and JSON. Since R2RML became a
W3C standard and due to its analogous nature to Vertere, the extension of
R2RML is considered a prominent solution and its applicability verified.

3 Extending R2RML for a more generic use

An extension of the R2RML language is proposed, aiming to broaden its scope
beyond RDB2RDF mappings, to cover every structured data format (a Global-
As-View approach), and to address the limitations of existing languages. The
R2RML’s RDF graphs are used to express mappings independently of the
source format. Therefore, the same custom mappings are reused whether the
source files are in the same format or not, only by redetermining the references
to the source values to be mapped, as the expected custom mapping defini-
tions remain the same. The vocabulary extending the R2RML is available at
http://mmlab.be/users/andimou/rml.ttl. The expansion is achieved as follows:

3
http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations

4
https://github.com/knudmoeller/Vertere-RDF

5
http://www.gac-grid.de/project-products/Software/XML2RDF.html

6
http://daverog.github.io/tripliser/

7
https://github.com/cygri/tarql

8
http://openrefine.org/

9
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger

238

Extending RDF triples mapping. Triples map is extended not only to
map each row in the logical table, but each resource in the logical source.
To this end, the rr:logicalTable and rr:tableName become a sub-property of
rml:logicalSource and rml:sourceName respectively, while rr:elementName for
XML sources and rr:objectName for JSON sources are introduced. In the exam-
ple, books is a logical table’s, a JSON object’s or an XML element’s name.
<#RDB_CSV_map > rml:logicalSource [rr:tableName "BOOKS"];

rr:subjectMap [rr:template "http :// data.example.com/books/{ISBN}"];

rr:predicateObjectMap [rr:predicate ex:id; rr:objectMap [rml:resource "ID"]].

<#XML_map > rml:logicalSource [rml:elementName "/books"];

rr:subjectMap [rr:template "http :// data.example.com/books/{book/ISBN }"];

rr:predicateObjectMap [rr:predicate ex:id; rr:objectMap [rml:resource "book/ISBN@id"]].

<#JSON_map > rml:logicalSource [rml:objectName "books"];

rr:subjectMap [rr:template "http :// data.example.com/books/{book.ISBN }"];

rr:predicateObjectMap [rr:predicate ex:id; rr:objectMap [rml:resource "book.id"]].

Extending resources’ mapping. In the same context, term maps are ex-
tended to generate RDF terms from any logical resource, either this is a table
row, an XML element or a JSON object. The column-valued term map is ex-
tended to cover every resource term map. Therefore, the R2RML’s rr:column

property becomes a sub-property of the rml:resource which is a valid column
name for relational databases and CSV files, a valid XPath expression for an
XML node’s or attribute’s absolute path and a valid path pattern in JavaScript
syntax for objects in JSON source files, as in the aforementioned example.

Multiple entities per row. Most of the mapping languages (including R2RML)
follow the entity-per-row model and consider that each row’s RDF triples are
mapped to the same subject. In its extended version, R2RML can map sets of
columns to different subjects, which are then related among each other with a
predicate-object triples map. For example, a row may have several columns with
information about an event and a few of them refer to its location, e.g., latitude
and longitude. Using this single row a triples map may be defined for the event
while another triples map may be defined for the location where the event takes
place (this mapping definition might be reused for other locations’ mapping)
and the two of them are related with a predicate-object triples map, as in the
following example:
<#Event_map > rml:logicalSource [rml:elementName "/ events"];

rr:subjectMap [rr:template "http :// data.example.com/events /{ event/id}"];

rr:predicateObjectMap

[rr:predicate ex:location; rr:objectMap [rr:parentTriplesMap <#Location_map >]] ,

[rr:predicate ex:transport; rr:objectMap [rr:parentTriplesMap <#Transport_map > ;

rr:joinCondition [rr:child "event/bus/num"; rr:parent "BUS_NUM"]]].

<#Location_map > rml:logicalSource [rml:elementName "/ events"];

rr:subjectMap [

rr:template "http :// data.example.com/location /{event/location/lat},{event/location/long }"].

<#Transport_map > rml:logicalSource [rr:tableName "TRANSPORTATIONS"];

rr:subjectMap [rr:template "http :// data.example.com/transport /{TYPE }/{ BUS_NUM }"];

rr:predicateObjectMap [rr:predicate ex:name; rr:objectMap [rml:resource "BUS_NAME"]].

Extended the logical sources. According to the rr:sqlQuery, the rml:xmlQuery

is adapted and both are sub-properties of rml:query to serve a query against a
source file. In the same context the rml:queryLanguage is defined to determine
which language is used (indicatively, a W3C standard in the case of XML).

239

Integrated mapping. Extending the reference object map, one can use the sub-
jects of another triples map as the objects generated by a predicate-object map.
Since the triples maps may be based on different logical sources, the potential to
create triples based on integrated sources emerges. At the aforementioned event
example, an element node may refer to the number of the bus going to the event
location, but the bus names are associated to the bus numbers at a separate
table which is mapped by another triples map. The mappings of both of them
are defined and a predicate-object terms map may be used to relate them.

4 Conclusions and Future Work

A generic mapping language is proposed to handle the mappings from different
source formats to RDF. The uppermost goal of such an extension is to keep the
focus on the mappings to be expressed rather than on the data and their original
structure. With this work, we bring into discussion its feasibility, possible barriers
and aspects that should be taken into consideration. In the future the arising
generic mapping language will be used at the DataTank, instead of Vertere, to
cover mappings from different source formats to RDF and, in the same time, to
confront with the standard mapping language for the RDB2RDF mappings.

References

1. Hert, M., Reif, G., Gall, H.C.: A comparison of RDB-to-RDF mapping languages. In:
Proceedings of the 7th International Conference on Semantic Systems. I-Semantics
’11, New York, NY, USA, ACM (2011) 25–32

2. Langegger, A., Wöß, W.: XLWrap – Querying and Integrating Arbitrary Spread-
sheets with SPARQL. In: Proceedings of the 8th International Semantic Web Con-
ference. ISWC ’09, Berlin, Heidelberg, Springer-Verlag (2009) 359–374

3. O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: Mapping Master: a flexible
approach for mapping spreadsheets to OWL. In: Proceedings of the 9th International
Semantic Web Conference on The Semantic Web - Volume Part II. ISWC’10, Berlin,
Heidelberg, Springer-Verlag (2010) 194–208

4. Lange, C.: Krextor - an extensible framework for contributing content math to the
Web of Data. In: Proceedings of the 18th Calculemus and 10th international confer-
ence on Intelligent computer mathematics. MKM’11, Berlin, Heidelberg, Springer-
Verlag (2011) 304–306

5. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between
rdf and xml with xsparql. Journal on Data Semantics 1(3) (2012) 147–185

6. Scharffe, F., Atemezing, G., Troncy, R., Gandon, F., Villata, S., Bucher, B., Hamdi,
F., Bihanic, L., Képéklian, G., Cotton, F., Euzenat, J., Fan, Z., Vandenbussche,
P.Y., Vatant, B.: Enabling Linked Data publication with the Datalift platform. In:
Proc. AAAI workshop on semantic cities, Toronto, Canada (2012)

7. Vander Sande, M., Colpaert, P., Van Deursen, D., Mannens, E., Van de Walle, R.:
The DataTank: an open data adapter with semantic output. In: 21st International
Conference on World Wide Web, Proceedings. (2012)

8. Gupta, S., Szekely, P., Knoblock, C., Goel, A., Taheriyan, M., Muslea, M.: Karma:
A system for mapping structured sources into the Semantic Web. In: 9th Extended
Semantic Web Conference (ESWC2012). (May 2012)

240

PigSPARQL: A SPARQL Query Processing
Baseline for Big Data

Alexander Schätzle, Martin Przyjaciel-Zablocki,
Thomas Hornung, and Georg Lausen

Department of Computer Science, University of Freiburg
Georges-Köhler-Allee 051, 79110 Freiburg, Germany

schaetzle|zablocki|hornungt|lausen@informatik.uni-freiburg.de

Abstract. In this paper we discuss PigSPARQL, a competitive yet easy
to use SPARQL query processing system on MapReduce that allows ad-
hoc SPARQL query processing on large RDF graphs out of the box.
Instead of a direct mapping, PigSPARQL uses the query language of
Pig, a data analysis platform on top of Hadoop MapReduce, as an inter-
mediate layer between SPARQL and MapReduce. This additional level of
abstraction makes our approach independent of the actual Hadoop ver-
sion and thus ensures the compatibility to future changes of the Hadoop
framework as they will be covered by the underlying Pig layer. We re-
visit PigSPARQL and demonstrate the performance improvement when
simply switching the underlying version of Pig from 0.5.0 to 0.11.0 with-
out any changes to PigSPARQL itself. Because of this sustainability,
PigSPARQL is an attractive long-term baseline for comparing various
MapReduce based SPARQL implementations which is also underpinned
by its competitiveness with existing systems, e.g. HadoopRDF.

1 Introduction

Today, MapReduce has been widely adopted in manifold application fields, es-
pecially in the broad area of Big Data, with Hadoop being the most prominent
open source implementation. Though node efficiency is known to be rather poor,
its success is mainly attributed to the inherent high degree of parallelism, ro-
bustness, reliability and excellent scalability properties while running on cheap
and heterogeneous commodity hardware. Furthermore, new nodes can be added
to the system on demand seamlessly at runtime.

Driven by the Semantic Web and Linked Open Data, new challenges with
regard to SPARQL query evaluation arise and scalability becomes an issue as
RDF datasets continuously grow in size, exceeding the capabilities of state of the
art non-distributed RDF triple stores [2]. The wide spread adoption of MapRe-
duce makes it an interesting candidate for distributed SPARQL processing on
large RDF graphs, especially for rather costly queries involving several joins that
cannot be executed in real-time at web-scale and hence need to be processed of-
fline. However, existing approaches in this direction are often accompanied by
proof-of-concept implementations that are hard to deploy or not compatible

241

with newer versions of Hadoop, do not run out of the box or they are even not
available for download at all. Moreover, they often support only a small subset
of SPARQL, usually basic graph patterns. All this hampers the comparison of
different approaches as evaluation results are hard to reproduce and a compre-
hensive evaluation becomes very cumbersome and time consuming.

In this paper we first revisit PigSPARQL1, a mapping from SPARQL to the
query language of Pig [4], that was originally presented in [6]. PigSPARQL is easy
to use without complicated deployment, installation or configuration. By using
Pig Latin as an intermediate layer of abstraction between SPARQL and MapRe-
duce, the mapping is automatically compatible to future versions of Hadoop
(including major changes like the new YARN framework) while it benefits from
further developments and optimizations of Pig without having to change a single
line of code since the query language of Pig is kept backward compatible. This is
confirmed by experiments that are presented in short in this paper (cf. Section 3).
Switching the version of Pig from 0.5.0 to 0.11.0 improved the query execution
times by up to one order of magnitude, while no adaptations of PigSPARQL were
required. Because of this feature of sustainability, PigSPARQL is an attractive
long-term baseline for comparing various MapReduce based SPARQL implemen-
tations. This is also underpinned by PigSPARQL’s competitiveness with existing
systems like HadoopRDF and others (cf. Section 3).

2 PigSPARQL Architecture

Pig is a data analysis platform on top of Hadoop with a fully nested data model,
complemented by a comprehensive imperative query language (Pig Latin) that
gives us a simple level of abstraction from the procedural model of MapReduce by
providing relational style operators like filters and joins which are not available
in MapReduce out of the box. We represent an RDF triple in the data model of
Pig as a tuple of three atomic fields with schema (s, p, o). As we do not require
any preprocessing and RDF triples are converted into the data model of Pig on
the fly, PigSPARQL is particularly suited for ad-hoc query processing, e.g. for
ETL like scenarios where we do not want to build up a costly index structure in
advance. In a typical SPARQL query the predicate of a triple pattern is usually
bounded. Hence, PigSPARQL also supports optional vertical partitioning of the
dataset as an additional preprocessing step.

Our mapping of SPARQL to Pig Latin follows a common design principle
based on an algebraic representation of SPARQL expressions (cf. Figure 1). First,
a SPARQL query is parsed to generate an abstract syntax tree which is then
translated into a SPARQL algebra tree. Next, we apply several optimizations on
the algebra level like the early execution of filters and a rearrangement of triple
patterns by selectivity. Finally, we traverse the optimized algebra tree bottom up
and generate for every SPARQL algebra operator an equivalent sequence of Pig
Latin expressions. At runtime, Pig automatically maps the resulting Pig Latin
script into a sequence of MapReduce iterations. More details are given in [6].

1 See http://dbis.informatik.uni-freiburg.de/PigSPARQL for download.

242

Parser

Algebra Compiler

Algebra Optimizer

Pig Latin Translator

Pig

SPARQL Query

MapReduce

Syntax Tree

Algebra Tree

Algebra Tree

Pig Latin Program

SELECT * WHERE { ?person knows Peter . ?person age ?age
 OPTIONAL { ?person mbox ?mb } FILTER (?age >= 18)}

LeftJoin

knows = LOAD 'rdf/knows' USING rdfLoader() AS (s,o);
age = LOAD 'rdf/age' USING rdfLoader() AS (s,o);
f1 = FILTER knows BY o == 'Peter';
t1 = FOREACH f1 GENERATE s AS person;
t2 = FOREACH age GENERATE s AS person,o AS age;
j1 = JOIN t1 BY person, t2 BY person;
BGP1 = FOREACH j1 GENERATE t1::person AS person,
 t2::age AS age;
F = FILTER BGP1 BY age >= 18;
mbox = LOAD 'rdf/mbox' USING rdf() AS (s,o);
BGP2 = FOREACH mbox GENERATE s AS person,o AS mb;
lj = JOIN F BY person LEFT OUTER, BGP2 BY person;
LJ = FOREACH lj GENERATE F::person AS person,
 F::age AS age, BGP2::mb AS mb;
STORE LJ INTO 'output' USING resultWriter();

BGP
?person mbox ?mb

BGP
 ?person knows Peter .

 ?person age ?age

Filter

?age >= 18

1

1

2

2

3

3

4

4

Fig. 1. PigSPARQL workflow from SPARQL to MapReduce

3 Experiments

Most of the published MapReduce based approaches are proof-of-concept im-
plementations, which are neither well documented nor running out of the box,
nor are available for public. Evaluation of such systems is time consuming and
easily leads to inexplicable results. This hampers the comparability of different
proposed solutions which is a key driver for further development. To introduce a
stable basis for comparison, we suggest PigSPARQL as an easy to use baseline
for SPARQL query processing with MapReduce because of the following reasons:

1. PigSPARQL is a reliable and stable system as it uses Pig as an interme-
diate layer which is widely-used and maintained by Yahoo! Research. Pig’s
processing framework is fairly competitive and continuously optimized and
enhanced with new features. This is confirmed by Figure 2.a that shows
exemplary the runtime improvement of PigSPARQL for SP2Bench Query 2
between Pig 0.5.0 and Pig 0.11.0 where we can observe a speed up by an order
of magnitude without changing a single line of code - other queries exhibit a
similar behavior as can be expected because of PigSPARQL’s architecture.

2. For a comprehensive evaluation of different systems, they should be instal-
lable and usable within a reasonable effort, without the need of tricky config-
urations. In the context of such evaluations, PigSPARQL is very attractive.
The LUBM evaluation of HadoopRDF [3], for example, took us several weeks
including an exhaustive troubleshooting whereas the same evaluation with
PigSPARQL was done in only one day.

3. We evaluated the competitiveness of PigSPARQL with respect to three other
SPARQL engines based on MapReduce by using LUBM, as some of these sys-
tems only support basic graph patterns: (1) HadoopRDF [3] is an advanced

243

SPARQL engine that utilizes a cost-based execution plan for reduce-side
joins. (2) MAPSIN [5] is a map-side index nested loop join based on HBase.
(3) Merge Join [1] is a MapReduce adoption of merge joins for SPARQL
basic graph patterns. Figure 2.b illustrates the execution times for LUBM
Query 4 distinguishing between n-way and 2-way join execution, if sup-
ported. PigSPARQL shows a competitive runtime performance while scaling
smoothly when increasing the size of the dataset. MAPSIN performs a bit
faster, however it uses a sophisticated storage schema based on HBase that
works well for selective queries but decreases significantly in performance for
less selective ones [5]. All approaches need a rather time consuming initial
preprocessing of up to several hours compared to the vertical partitioning of
PigSPARQL, which took less than 14 minutes for 1.6 billion triples.

100 400 800 1200 1600

500

2,000

4,000

6,000

#triples (in million)

ru
n
ti

m
e

(s
)

PigSPARQL (Pig 0.5.0)

PigSPARQL (Pig 0.11.0)

500 1000 1500 2000 2500 3000

20
60

100
140
180
220
260

#universities

ru
n
ti

m
e

(s
)

Merge Join (n-way) Merge Join (2-way)

MAPSIN (n-way) MAPSIN (2-way)

PigSPARQL (n-way) PigSPARQL (2-way)

HadoopRDF

Fig. 2. (a) SP2Bench Query 2. (b) LUBM Query 4.

Conclusion. PigSPARQL is an easy to use and competitive baseline for the com-
parison of MapReduce based SPARQL processing. With the support of SPARQL
1.0, it already exceeds the functionalities of most existing research prototypes.
For future work, we plan to add support for additional SPARQL 1.1 features.

References

1. (2013), http://dbis.informatik.uni-freiburg.de/forschung/projekte/DiPoS/
2. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF Graphs.

PVLDB 4(11), 1123–1134 (2011)
3. Husain, M.F., et al.: Heuristics-Based Query Processing for Large RDF Graphs

Using Cloud Computing. IEEE TKDE 23(9) (2011)
4. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-So-

Foreign Language for Data Processing. In: SIGMOD. pp. 1099–1110 (2008)
5. Schätzle, A., Przyjaciel-Zablocki, M., et al.: Cascading Map-Side Joins over HBase

for Scalable Join Processing. In: SSWS+HPCSW. p. 59 (2012)
6. Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: Mapping SPARQL

to Pig Latin. In: Proc. SWIM. pp. 4:1–4:8 (2011)

244

Discoverability of SPARQL Endpoints
in Linked Open Data

Heiko Paulheim1 and Sven Hertling2

1 University of Mannheim, Germany
Research Group Data and Web Science
heiko@informatik.uni-mannheim.de
2 Technische Universität Darmstadt

Knowledge Engineering Group
hertling@ke.tu-darmstadt.de

Abstract. Accessing Linked Open Data sources with query languages
such as SPARQL provides more flexible possibilities than access based
on derefencerable URIs only. However, discovering a SPARQL endpoint
on the fly, given a URI, is not trivial. This paper provides a quantitative
analysis on the automatic discoverability of SPARQL endpoints using
different mechanisms.

1 Introduction

Query languages such as SPARQL provide efficient ways of accessing Linked
Open Data sources. In his design issues document from 2006, Tim Berners-lee
states that “to make the data be effectively linked, someone who only has the
URI of something must be able to find their way the SPARQL endpoint.” [2].

However, automatically discovering the SPARQL endpoint for a given re-
source is still not a trivial problem. Approaches to solve that problem include:

– Standardized vocabularies for describing datasets, such as VoID, where the
descriptions are provided at URLs that can be canonically derived from a
URI [1], and

– Catalogs of datasets such as datahub1 or the LATC data source inventory2,
which can be queried for a SPARQL endpoint with a given URI.

In this paper, we explore the success rates of those strategies using a large
representative sample of URIs in Linked Open Data, and discuss the results. Fur-
thermore, we propose a simple, multi-strategy resolution service which delivers
SPARQL endpoints for URIs.

2 Strategies for Discovering SPARQL Endpoints

We examine two basic strategies for discovering SPARQL endpoints from a URI:
trying to retrieve VoID descriptions, and leveraging external catalogs of datasets.

1 http://datahub.io/
2 http://dsi.lod-cloud.net/

245

2.1 Retrieving VoID Descriptions

The VoID specification [1] recommends to use the RFC 5785 standard [5] for pub-
lishing discoverable VoID descriptions of a dataset. This means that a URI of the
form http://hostname/.well-known/void is to be used for publishing VoID de-
scriptions. Although the specification states that the /.well-known/void path
segment should be located at the root level, i.e., directly follow the host name
part of the URI, our experiments have shown that it is sometimes located at
deeper locations. Thus, we use the following approach for trying to discover
VoID vocabularies:

Given a URI, remove the portion after the last slash (/), and append
.well-known/void. If no VoID description is found at that location,
and there are segments left after the host name, continue from the
start.

For example, given the URI http://www.example.org/data/xyz, we would
try the following URLs for retrieving a VoID description, using the VoID [1] and
Provenance [3] vocabularies:

1. http://www.example.org/data/.well-known/void and
2. http://www.example.org/.well-known/void,

assuming that the first URL does not return a VoID description.
As a second strategy to retrieving VoID descriptions, we retrieve the RDF

dataset from the (dereferencable) sample URI, and look for one of the following
axioms:

1. ?x void:inDataset ?d
2. ?x prv:containedBy ?d3

Although, in the literature, means other than VoID descriptions have been
proposed to link data to SPARQL endpoints [4], we do not expect them to be
too widely spread, since they are not backed by a standardization document.

2.2 Leveraging External Catalogs

Catalogs of datasets, such as datahub, list datasets as well as their metadata, in-
cluding SPARQL endpoints, if applicable. For our prototype, we use the datahub
catalog, which lists data sets as well as their SPARQL endpoints. Similar searches
could be issued on any catalogs of Linked Open Data.

We have implemented all those strategies in the SEnF (SPARQL Endpoint
Finder) service, a simple web service which can be used to retrieve SPARQL
endpoints for a URI.4

3 We do not demand that ?x is connected to <URI>, e.g., by a rdfs:definedBy state-
ment, in order to make this approach as versatile as possible, and since we assume
that a VoID description linked from a dataset will in most cases be the description
of that dataset, and not of another one.

4 http://tinyurl.com/sparqlsenf

246

Table 1. Results on different strategies for finding SPARQL endpoints on 10,000 ran-
dom URIs, reporting both the number of URIs for which any SPARQL endpoint was
found, as well as the number of URIs for which a valid SPARQL endpoint was found.
The numbers in parantheses denote the total number of endpoints found.

Strategy Datahub Catalog /.well-known/void

(all)
/.well-known/void

(standard)
Link to VoID

found 7,389 (26,124) 110 (392) 94 (288) 9 (9)
valid 1,375 (2,978) 53 (106) 53 (72) 0 (0)

3 Quantitative Analysis

We have tested the approaches discussed above on a random sample of 10,000
subjects in the 2012 billion triple challenge dataset,5 which we deem a represen-
tative sample of Linked Open Data in the wild. Out of those 10,000 URIs, 8,893
were dereferencable.

For each endpoint retrieved by any strategy, we have checked the correctness
of the result by issuing a query of the form ASK {<URI> ?r ?x} at the endpoint,
and consider the returned endpoint as a valid result if TRUE is returned upon
the query.

Table 1 shows the results of our evaluation. The first observation is that in
many cases and by most strategies, more than one endpoint is returned, which
shows that there is some redundancy in terms of SPARQL endpoints (i.e., more
than one endpoint may contain information on a resource).

The main observation is that using external catalogs clearly outperforms
other methods in terms of coverage, being able to locate endpoints for 74% of all
URIs. However, only in 14% of the cases, at least one of the retrieved endpoints6

was online during our experiment7 and actually contains data about the resource
in question, which also demonstrates the limitations of the approach.

The approaches using VoID and the provenance vocabulary are still not
adopted on a large scale, thus, the coverage of those approaches is much lower.
On the other hand, the data found by following /.well-known/void is much
more precise than those delivered by catalogs, showing a precision of 0.48 (in
contrast to 0.19 for the catalog based approach). The approach looking for direct
links to VoID descriptions provided information on endpoints in some cases, how-
ever, the SPARQL statement for checking the validity of the endpoint failed in
those nine cases because the original URI was redirected, and the redirect URI,
which pointed to the dataset, not the resource, was not found in the endpoint.

Furthermore, we can observe that there is a deviation between the standard
specification for providing VoID descriptions (i.e., providing them at the server’s
root directory), and the actual deployment (in some cases, they are located at
deeper levels). This may hint at a practical problem with implementing the

5 http://km.aifb.kit.edu/projects/btc-2012/
6 In some cases, more than one endpoint is retrieved.
7 Carried out between July 22nd and July 23rd, 2013

247

standard, i.e., hosting data sets on servers for which the authority providing the
data set does not have root access rights.

It is further remarkable that for no URI in our sample, an endpoint could
be retrieved by every strategy. This shows that there is a need to use multiple
strategies in parallel, like our implementation of the SEnF service does.

4 Conclusion

The capability of locating SPARQL endpoints for a given URI has been stated
as a desired property of Linked Open Data. In this paper, we have evaluated
several strategies for performing that URI-to-endpoint resolution, based on a
large random sample of the Billion Triple Challenge Dataset.

Approaches using proposed methods such as VoID and the provenance vo-
cabulary are scarcely in use (and sometimes not implemented according to the
specification), they lead to a valid SPARQL endpoint in less than 1% of all
cases. That finding means that catalogs are essential for discovering SPARQL
endpoint, at least in the short and medium term. However, although perform-
ing better than the approaches mentioned before, catalogs also do not provide
information in sufficient quality at the time being.

Overall, we were not able to locate suitable SPARQL endpoints in most of
the cases – for more than 85% of all URIs, no SPARQL endpoint could be found.
The reasons may be two-fold: (i) it is not possible to discover the endpoints with
the methods described in this paper, or (ii) no such endpoints exist. While in
many cases, the latter case is likely (e.g. for single FOAF documents at websites,
or blogging software that publishes RDF(a), but does not provide a SPARQL
endpoint), it is beyond the scope of this paper (if not completely infeasible due
to the open world assumption) to make a statement about the actual availability
of SPARQL endpoints for Linked Open Data URIs.

Our evaluation has furthermore shown that no single strategy outperforms all
other strategies. Thus, for practical purposes, using multi-strategy approaches
such as the SEnF service is the most suitable way for discovering endpoints. Since
the SEnF service follows a modular architecture, new catalogs and/or resolution
strategies may be plugged in as they become available and/or standardized.

References

1. Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describing
Linked Datasets with the VoID Vocabulary. http://www.w3.org/TR/void/.

2. Tim Berners-Lee. Linked Data. http://www.w3.org/DesignIssues/LinkedData.

html.
3. Olaf Hartig and Jun Zhao. Provenance Vocabulary Core Ontology Specification.

http://trdf.sourceforge.net/provenance/ns.html.
4. Kjetil Kjernsmo. The necessity of hypermedia RDF and an approach to achieve it.

In Proceedings of the First Linked APIs Workshop, 2012.
5. Mark Nottingham and Eran Hammer-Lahav. RFC 5785 – Defining Well-Known

Uniform Resource Identifiers (URIs). http://tools.ietf.org/html/rfc5785.

248

RDFChain: Chain Centric Storage for Scalable Join

Processing of RDF Graphs using MapReduce and HBase

Pilsik Choi
1,2 *

, Jooik Jung
1
 and Kyong-Ho Lee

1

1Department of Computer Science, Yonsei University, Seoul, Republic of Korea

pschoi@icl.yonsei.ac.kr, jijung@icl.yonsei.ac.kr,

khlee@cs.yonsei.ac.kr
2Mobile Communication Division, Samsung Electronics

pilsik.choi@samsung.com

Abstract. As a massive linked open data is available in RDF, the scalable stor-

age and efficient retrieval using MapReduce have been actively studied. Most

of previous researches focus on reducing the number of MapReduce jobs for

processing join operations in SPARQL queries. However, the cost of shuffle

phase still occurs due to their reduce-side joins. In this paper, we propose

RDFChain which supports the scalable storage and efficient retrieval of a large

volume of RDF data using a combination of MapReduce and HBase which is

NoSQL storage system. Since the proposed storage schema of RDFChain re-

flects all the possible join patterns of queries, it provides a reduced number of

storage accesses depending on the join pattern of a query. In addition, the pro-

posed cost-based map-side join of RDFChain reduces the number of map jobs

since it processes as many joins as possible in a map job using statistics.

Keywords: Map-side join, chain centric storage,

HBase, NoSQL, RDF, SPARQL, MapReduce, Hadoop

1 Introduction

As an enormous amount of Linked Data is available, processing a SPARQL query

into a massive RDF dataset becomes a challenging task when scalability and perfor-

mance issues are taken into consideration. Progress in many researches into SPARQL

query processing has been made with the use of MapReduce, a distributed parallel

processing framework. In particular, Hadoop
1
 is the most popular open source version

of MapReduce. Particularly, the conventional MapReduce-based join processing

methods are divided into two approaches: reduce-side join and map-side join [1].

Map-side join outperforms reduce-side join since the shuffle and reduce phases of

reduce-side join are not required. However, map-side join requires the datasets to be

equally partitioned by join keys. It is not just non-trivial but demanding for the condi-

tion to be met in the case of multi-way joins. Przyjaciel-Zablocki et al. [2] have pro-

1 http://hadoop.apache.org.

249

mailto:pschoi@icl.yonsei.ac.kr
mailto:jijung@icl.yonsei.ac.kr
mailto:pilsik.choi@samsung.com
http://hadoop.apache.org/

posed the Map-Side Index Nested Loop Join (MAPSIN) using HBase
2
, which is a

distributed, scalable and column-oriented NoSQL storage. HBase is well suited for

random access due to the sparse multidimensional sorted map, and is also appropriate

for a data model that requires processing row keys such as table scans and lookups.

MAPSIN provides an optimized algorithm for reducing the number of storage access

for star pattern joins, but not for chain pattern joins. Therefore, we propose RDFChain

with the following contributions:

 RDFChain reflects every possible join patterns in its storage schema. Specifically,

the proposed chain centric storage, which reflects relations among the subjects and

objects of RDF triples, reduces the number of storage access.

 RDFChain reduces the number of map jobs in multi-way joins. RDFChain esti-

mates the cost of join processing using statistics to split a query. The queries sepa-

rated include as many triple patterns (TPs) as possible to be processed in a map

job. Thus, RDFChain processes as many joins as possible in a single map job.

2 Proposed Architecture

RDFChain consists of two components, the data loading component and the query

processing one. RDF triples are converted into an N-triple format which is natively

supported by Hadoop and then loaded using map jobs. At this stage, we employ the

bulk load of HBase instead of directly putting every triple into a table. We also create

all the statistics [3] required by our join execution.

2.1 Storage Design

The proposed method stores RDF triples as follows:

 RDF triples with the terms that co-exist in both the subject and object parts of tri-

ples are located in the Tcom table. A RDF triple with the term as a subject is consid-

ered as a Subject-Predicate-Object (SPO) triple. A RDF triple with the term as an

object correspond to Object-Predicate-Subject (OPS).

 SPO triples which are not located in Tcom are stored in Tspo.

 OPS triples which are not located in Tcom are stored in Tops.

If a term is used not only as a subject but also as an object in triples, it would be a row

key in Tcom. Tcom has two column-families to represent OPS and SPO schemas. A

predicate comes to a column. The subject and object terms become the values of the

corresponding columns for OPS and for SPO, respectively. A subject may have sev-

eral predicates and a predicate may also have several objects. This means that triples

are stored in a triple group by a subject as a row. Although Tcom may be sparse and

have a lot of empty fields, empty fields do not occupy storage in HBase. When look-

ing into rows in Tcom, some OPS and SPO triple groups share the same row key.

2 http://hbase.apache.org.

250

http://hbase.apache.org/

These triple groups indicate chain pattern relationship. In other words, the target tri-

ples of a chain pattern join must exist in Tcom. RDFChain does not index the predi-

cates of RDF triples. Having a table with predicates as row keys has serious scalabil-

ity problems because the number of predicates in an ontology is usually fixed, rela-

tively small in RDF datasets [3].

2.2 Query Planning

A join pattern is determined by the relationship of join variables in a query. Subject-

Subject (SS) and Object-Object (OO) relationships are subject to star pattern joins

while Object-Subject (OS or SO) relationships are subject to chain pattern joins. A

query graph is a directed graph derived from a query. A triple pattern is referred to as

a node and each join pattern is referred to as an edge. A logical plan is derived from a

query graph. A logical plan includes a set of triple pattern groups (TPGs) and the join

order of them. RDFChain determines the logical plan with the selection rules pro-

posed. The selection rules focus on reducing the number of bindings. A chain TPG is

a priority for grouping of TPGs.

2.3 Query Execution

Where a triple pattern has rdf:type as its predicate, we analyze the class hierarchy in

the corresponding ontology tree by utilizing Tcom instead of storing the triples inferred

and then extends the logical plan. The logical plan is transformed into a physical plan

for actual join processing on MapReduce and HBase. Each TPG in a logical plan is

transformed into a map job in a physical plan. RDFChain makes table mappings for

each TPG using an HBase index and accesses tables with an HBase filter based on the

structure of a TPG. The first map job uses HBase tables as the query input. The

intermediate result of each map job is stored in a distributed file system and then tak-

en as an input of a map job iteration.

For a star pattern join, RDFChain efficiently retrieves a row through a single stor-

age access in a map job since its storage has a triple group by subject or object as a

row. For a chain pattern join, RDFChain only scans Tcom since the triple groups

satisfying a chain pattern are located in Tcom. Therefore, Tcom is more efficient for a

chain pattern join due to the reduced number of storage access. In multi-way joins,

only the rows with possibility of satisfying a chain pattern join are passed on as inputs

of map job iterations, thereby reducing the processing time.

Two chain TPGs with disjoint join variables are compatible [4]. RDFChain esti-

mates the cost of processing compatible sets in a map job. The cost of a map-side join

is the sum of all the cost-consuming tasks of a map job. Since we do not need to con-

sider the shuffle and reduce phases of a reduce-side join, we only take account of the

time to process a join. In a conventional reduce-side join, a map task simply writes

data according to a join key for an actual join in the reduce phase. However, the pro-

posed map task of RDFChain is relatively heavy to iterate both binding and pattern

matching. So, it may exceed the execution time assigned to the task. This problem can

be resolved by a static method of increasing the timeout or a computing power. How-

ever, for a stationary time duration in a map task environment, we split TPGs based

251

on a threshold to dynamically solve this problem. We limit the number of TPGs

which can be processed in a map job using statistics such as the number of objects of

frequently used subject-predicate pairs and the number of predicate-object pairs for

every subject. We are able to estimate an intermediate result. The number of bindings

for join variables dominates the number of map jobs. All map jobs run sequentially. If

the cost does not exceed time limit, a single map job is generated.

3 Experimental Results

We used a Jena SPARQL parser and the Amazon's Elastic MapReduce service. Ten

clusters of large instances were run on Hadoop 0.20.2 and HBase 0.92.0. We experi-

mented with the LUBM 10K, LUBM 20K and LUBM 30K datasets, which consist of

1.3, 2.7 and 4.1 billion triples respectively, and a subset of benchmark queries, Q1,

Q2, Q3, Q4, Q7 and Q9 [5]. The queries include simple and complex structures and

provide star and chain pattern joins. Q3, Q4, Q7 and Q9 require type inference. We

compared RDFChain with HadoopRDF [6] in terms of reduce-side join and MAPSIN

[2] for map-side join.

RDFChain showed the best performance in large non-selective queries (Q2 and Q9).

In particular, Q2 and Q9 have a complex structure, a low selectivity due to unbound

objects, and a relationship of a chain pattern join. RDFChain greatly reduced the size

of the intermediate results by limiting RDF triples to actual candidate rows which can

satisfy a chain pattern join. RDFChain also shows smaller number of storage accesses

than MAPSIN. Since Tcom is a common subset of Tspo and Tops, it scales down the scan

space. RDFChain splits TPGs with compatible mappings and process the divided

TPGs in a map task. So, the number of map jobs decreases in turn.

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF)

grant funded by the Korea government (MSIP) (No. NRF-2013R1A2A2A01016327).

References
1. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A Comparison of

Join Algorithms for Log Processing in Mapreduce. In: Proc. International Conference on

Management of data (2010)

2. Przyjaciel-Zablocki, M., Schätzle, A., Hornung, T., Dorner, C., Lausen, G.: Cascading

Map-Side Joins over Hbase for Scalable Join Processing. CoRR, abs/1206.6293 (2012)

3. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph

pattern optimization using selectivity estimation. In: WWW, pp. 595–604. ACM (2008)

4. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, I.,

Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.

(eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)

5. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems.

Journal of Web Semantics 3, 158–182 (2005)

6. Husain, M., McGlothlin, J., Masud, M., Khan, L., Thuraisingham, B.: Heuristics-Based

Query Processing for Large RDF Graphs Using Cloud Computing. IEEE Transactions on

Knowledge and Data Engineering, vol. 23, no. 9, pp.1312-1327 (2011)

252

Context Aware Sensor Configuration Model for
Internet of Things

Charith Perera1,2, Arkady Zaslavsky2, Michael Compton2, Peter Christen1,
and Dimitrios Georgakopoulos2

1 Research School of Computer Science, The Australian National University,
Canberra, ACT 0200, Australia

{charith.perera, peter.christen}@anu.edu.au,
2 CSIRO ICT Center, Canberra, ACT 2601, Australia

{charith.perera, arkady.zaslavsky, michael.compton

dimitrios.georgakopoulos}@csiro.au

Abstract. We propose a Context Aware Sensor Configuration Model
(CASCoM) to address the challenge of automated context-aware config-
uration of filtering, fusion, and reasoning mechanisms in IoT middleware
according to the problems at hand. We incorporate semantic technologies
in solving the above challenges.

1 Introduction

Broadly, configuration in IoT paradigm can be categorized into two: sensor-level
configuration and system-level configuration. Sensor-level configuration focuses
on changing a sensor’s behaviour by configuring its embedded software param-
eters such as sensing schedule, sampling rate, data communication frequency,
communication patterns and protocols. In this paper, we are focused on devel-
oping a system-level configuration model for IoT midddleware platforms. Specif-
ically, our proposed model identifies, composes, and configures both sensors and
data processing components according to the user requirements. In existing IoT
middleware (e.g. GSN), many configuration files and programming codes need
to be manually defined by the users (without any help from GSN). An ideal IoT
middleware configuration model should address all the above mentioned chal-
lenges. The configuration model we propose in this paper is applicable towards
several other emerging paradigms, such as sensing as a service [4].

2 Problem Analysis

Our research question is ‘How to develop a model that allows non-IT experts
to configure sensors and data processing mechanisms in an IoT middleware ac-
cording to the user requirements?’. Extended explanations are provided in [3].
Research challenges are highlighted in Figure 1. Context-Aware Sensor Config-
uration Model (CASCoM) simplifies the IoT middleware configuration process
significantly. Figure 2 compares the execution-flow of sensor configuration in
the current GSN approach and the CASCoM approach. The proposed solution
CASCoM is illustrated in Figure 3.

253

Our objective is
to help the user

to overcome
these challenges

A user wants to
monitor / detect

/ discover
 a phenomenon

User does not know which data
processing components to use

User does not know how to
configure the IoT middleware

User does not know which
sensors to use to retrieve data

Fig. 1. Research Challenges, User Requirements, and Our Objective

3 The CASCoM Architecture

In phase 1, users are facilitated with a graphical user interface, which is based on
a question-answer (QA) approach, that allows to express the user requirements.
Users can answer as many question as possible. CASCoM searches and filters the
tasks that the user may want to perform. From the filtered list, users can select
the desired task. The details of the QA approach are presented later in this
section. In phase 2, CASCoM searches for different programming components
that allow to generate the data stream required. In phase 3, CASCoM tries to find
the sensors that can be used to produce the inputs required by the selected data
processing components. If CASCoM fails to produce the data streams required
by the users due to insufficient resources (i.e. unavailability of the sensors),
it will provide advice and recommendations on future sensor deployments in
phase 4. Phase 5 allows the users to capture additional context information.
The additional context information that can be derived using available resources
and knowledge are listed to be selected. In phase 6, users are provided with one
or more solutions3. CASCoM calculates the costs for each solution in using
technique disucced in [2]. By default, CASCoM will select the solution with
lowest cost. However, users can select the cost models as they required. Finally,
CASCoM generates all the configuration files and program codes which we listed
in Figure 2(a). Data starts streaming soon after.

3 Solution is a combination of sensors and data processing components that can be
composed together in order to satisfy the user requirements.

(b) CASCoM Work-flow(a) Current GSN Work-flow
Configuration Begins

Search the task and click configure

(optional) Discover additional context

(optional) Receive advice on future improvements

(optional) Optimize the configuration

Find what type (kind) sensors need to be
configured in order to solve the problems at hand

Manually find whether required types of
sensors are available to be used

Configuration Completes

Find out the low level details of those sensors
such as data types and measurements

Find wrapper details of those selected sensors

Manually search for appropriate data
processing components

Write the Virtual Sensor (VS), a java class,
manually by composing different data processing

components and compile the class

Write a new Virtual Sensor Definition
(VSD), a XML file, manually by referring

to correct wrappers and data types

Configuration Begins

Configuration Completes

Fig. 2. Configuration Execution-flow Comparison: (a) Current GSN (b) CASCoM

254

Users

Phase 1:
Understand User

Requirements

Phase 2:
Select Data Processing

Components

Phase 3:
Select Sensors

Phase 4
(Optional):

Provide advice and
 Recommendations

Phase 5
(Optional):

Discover Additional
Context

Phase 6
(Optional):

Context-based Cost
OptimizationApplications

Fig. 3. The Context-Aware Sensor Configuration Model (CASCoM)

Q
A

-T
D

O
 C

la
s

se
s

S
S

N
O

 C
la

s
se

s
S

C
O

+
 C

la
s

se
s

In
d

iv
id

u
al

s

TaskAction Domain

Output

Application DataStream DataItem

:performs

:performedBy

QA-TDO

:belongsToQuestion
:hasQuestion

:supports :requires

Question:hasQuestion

 : hasDataType

Property

 : hasProperty

Sensor
 ssn: observes: hasDataType

MeasurementCapability

Quality
MeasurementProperty

Accuracy ResponseTime
 ssn:hasMeasurementCapability

 ssn:hasMeasurementProperty

Wrapper

 :connectsThrough

DataValue

:hasDataValue

SSNO

DataProcessingComponent

 : produces Input

: requires

DataItem(Repeat)

 : hasDataType

Property (Repeat)

 : hasProperty

DataItem(Repeat)Property

 : hasProperty

 : hasDataType

DataValue
ProcessingCapability

Quality
MeassurementProperty

MemoryRequirement

OperatingProperty
Accuracy

: hasDataValue

 : hasProcessingCapability

: hasMeasurementProperty

 : hasOperatingProperty

Package
ProcessingClass

Method

 : hasPackage

 : hasProcessingClass

 : hasMainMethod

SCO+

DataType

DataType DataType

Fig. 4. Extracts of different ontological data models used in CASCoM: QA-TDO, SCO
[1], and SSN ontology (w3.org/2005/Incubator/ssn/wiki/SSN). These model are used
to store sensor descriptions, software component description, and domain knowledge.

4 Evaluation, Discussion and Lessons Learned

Results: Figure 5(a) shows that CASCoM allows to considerably reduce the
time required for configuration of data processing mechanism in IoT middleware.
Specifically, CASCoM allowed the three types of users to complete the given task
50, 80 and 250 times faster (respectively) in comparison to the existing approach.
According to Figure 5(b), the Java reflection approach takes slightly more time
to specially when initializing. Though the Java reflection approach can add more
flexibility to our model, the additional overhead increases when the number of
components and operation involved gets increased. The overheads can grow up
to unacceptable level very quickly when GSN scales up (e.g. more user requests).

According to Figure 5(c), even IT experts who know GSN can save time by
using CASCoM up to 88%. Specially, time taken for defining the VSD and VS
class have been significantly reduced. Both files can be generated by CASCoM
autonomously within a second even for complex scenarios. However, the time
taken to find data processing components and sensors (and wrappers) depends on
the size of the semantic data model. Figure 5(d) shows how total processing time
would vary depending on the size of the semantic data model. Approximately,
a semantic model with 10,000 sensor descriptions and 10,000 data processing
components can be processed in order to find solutions for a given user request
in less than a minute. However, most of the time is taken to read the data model.

255

Usecase (1) Usecase (2) Usecase (3)

Non-IT Expert without GSN Skills (without CASCoM)
IT Expert without GSN Skills (without CASCoM)
IT Expert with GSN Skills (without CASCoM)
Everyone with CASCoM (Average)

Different ScenariosT
im

e
to

 c
om

pl
et

e
th

e
co

nf
ig

ur
at

io
n

(s
ec

)

(a)

(L
og

ar
ith

m
ic

 S
ca

le
)

(1) (5) (10)
0

5

10

15

20

25

30

35

Execution (Native)

Execution (Reflection)

Component Initiation (Native)

Component Initiation (Reflection)

Number of Components

(b)

T
im

e
Ta

ke
n

to
 P

ro
ce

ss
 6

0
d

at
a

ro
w

s
(m

ill
is

ec
on

ds
)

15%

20%

14%

51%

(c)
3%1%7%

1%

88%

Search Wrappers Define VSD
Search Programming Components Write VS Class
Time Saved 0 2500 5000 7500 10000

0

10

20

30

40

50

60

70
Total Processing
Total Processing (excluding Model Reading)

Number of records modelled
T

im
e

ta
ke

 f
or

 c
on

fig
ur

at
io

n
(s

ec
) (d)

Fig. 5. Evaluation of CASCoM

The actual configuration process other than reading the data model takes only
4 seconds and it slightly increases when the model size increases.

5 Conclusion

We have shown that it is possible to offer a sophisticated configuration model to
support non-IT experts. Semantic technologies are used extensively to support
this model. Using our proof of concept implementation, both IT and non-IT
experts were able to configure the GSN in significantly less time. In future,
we plan to extend our configuration model into sensor-level. To achieve this, we
will develop a model that can be used to configure sensors autonomously without
human intervention in highly dynamic smart environments in the IoT paradigm.

References

1. F. E. Castillo-Barrera, R. C. M. Ramı́rez, and H. A. Duran-Limon. Knowledge
capitalization in a component-based software factory: a semantic viewpoint. In
LA-NMR, pages 105–114, 2011.

2. C. Perera, A. Zaslavsky, P. Christen, M. Compton, and D. Georgakopoulos. Context-
aware sensor search, selection and ranking model for internet of things middleware.
In IEEE 14th International Conference on Mobile Data Management (MDM), Mi-
lan, Italy, June 2013.

3. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Ca4iot: Context
awareness for internet of things. In IEEE International Conference on Conference
on Internet of Things (iThing), pages 775–782, Besanon, France, November 2012.

4. A. Zaslavsky, C. Perera, and D. Georgakopoulos. Sensing as a service and big data.
In International Conference on Advances in Cloud Computing (ACC-2012), pages
21–29, Bangalore, India, July 2012.

256

Explaining Clusters with Inductive Logic
Programming and Linked Data

Ilaria Tiddi, Mathieu d’Aquin, Enrico Motta

Knowledge Media Institute, The Open University, United Kingdom
{ilaria.tiddi,mathieu.daquin,enrico.motta}@open.ac.uk

Abstract. Knowledge Discovery consists in discovering hidden regular-
ities in large amounts of data using data mining techniques. The ob-
tained patterns require an interpretation that is usually achieved using
some background knowledge given by experts from several domains. On
the other hand, the rise of Linked Data has increased the number of con-
nected cross-disciplinary knowledge, in the form of RDF datasets, classes
and relationships. Here we show how Linked Data can be used in an
Inductive Logic Programming process, where they provide background
knowledge for finding hypotheses regarding the unrevealed connections
between items of a cluster. By using an example with clusters of books,
we show how different Linked Data sources can be used to automatically
generate rules giving an underlying explanation to such clusters.

1 Introduction

Knowledge Discovery in Databases (KDD) is the process of detecting hidden
patterns in large amounts of data [2]. In many real-world contexts, the explana-
tion of such patterns is provided by experts, whose work is to analyse, visualise
and interpret the results obtained out of a data mining process in order to reuse
them. For instance, in Business Intelligence, the analyst uses such interpreta-
tion for decision making; in Learning Analytics, the detected patterns are used
to assists people’s learning; in Medical Informatics, trends can be useful for
anomalies detection. This production of explanation becomes an intensive and
time-consuming process, particularly when the background knowledge needs to
be gathered from different domains and sources.

In a practical example, the university of Huddersfield provides books recom-
mendations within its library catalogues1, where records of books transactions
over a decade can be used for stock management and students recommendation
systems. Here, we are interested in explaining why groups of books, obtained
from a clustering process, have been borrowed by the same students. Consider-
ing one such cluster, the question is: “why these books have been borrowed by
those particular students?” and “where and how to find this information?”.

Our hypothesis is that this answer can be given with Linked Data2, which
provide the required background knowledge (in our example, a trivial explana-
tion for a pattern can be that authors of the books borrowed by the students
enrolled in English Literature are from England). While works into data prepa-
ration and data mining using Linked Data have already been presented (see

1 http://library.hud.ac.uk/data/usagedata/ readme.html
2 http://linkeddata.org/

257

the ones of [4, 6, 8]), few works have considered Linked Data for results inter-
pretation (some preliminary attempts are to be found in [1, 7]). However, the
former uses Linked Data only to support the user’s navigation, and the latter
does not take into account the whole knowledge discovery process and focuses
on the interpretation of statistical data. For this reason, we aim to exploit the
interconnected knowledge from Linked Data to explain patterns resulting from a
clustering process, by combining the existing semantic technologies with a Ma-
chine Learning technique, i.e. Inductive Logic Programming [3], to automatically
produce underlying explanations for the formation of such patterns.

2 Approach

2.1 On Inductive Logic Programming

Inductive Logic Programming (ILP) is a research field at the intersection of Ma-
chine Learning and Logic Programming, investigating the inductive construction
of first-order clausal theories starting from a set of examples E = E+ ∪ E− [3].
While E+ represents the relation to be learnt, E− are the facts where the relation
does not hold. The distinguished feature of ILP is the use of some additional
background knowledge B about the examples in E . Believing B, and faced with
the facts in E , the induction process derives an hypotheses space H. The success
of the induction requires that H covers all the positive examples (H is complete)
and none of the negative ones (H is consistent), with respect to B (i.e., there is
no contradiction with the facts written in B).

2.2 Proposed approach

Assuming that we have retrieved some clusters, our approach is articulated as
follows (see Fig. 1):
1. Linked Data Selection. We retrieve information about the data contained
in each cluster from the Linked Data cloud, across several datasets.
2. Hypotheses Generation. We generate some hypotheses using ILP. A hy-
pothesis is an explanation (“why those items are part of that particular cluster”).
3. Hypotheses Evaluation. We validate the hypotheses using two rules eval-
uation measures: the Weighted Relative Accuracy (WRacc, as described in [5]),
providing a trade-off between coverage and relative accuracy, that we exploit to
obtain explanations for small clusters, and the very well known and Information
Retrieval F-measure (F).

Fig. 1. Structure of the ILP approach for clusters explanation.

258

3 Experiments

We ran our experiments on the Huddersfield’s books usage dataset introduced
in the first section. Our target problem is defined as: considering some clustered
books borrowed by students from the Humanities faculty, explain what those books
have in common and why they belong to a particular cluster. The manual analysis
of each cluster’s centroid shows that each cluster represents the books borrowed
by students from the same course, such as Music Technologies, Politics or English
Literature.

For each book, we retrieve some information from the Linked Data cloud. We
first use bibo:isbn10 as an equivalence property to navigate from the Hudder-
sfield dataset to the British National Bibliography one3. From there, we retrieve
information about the book using the existing Linked Data vocabularies: Dublin
Core4 for topic and author, the Event Ontology5 for the publication time, place
and publisher. Finally, we exploit the owl:sameAs property to navigate to the
Library of Congress Subject headings6 and retrieve the broader concepts of each
topic using the skos:broader property.

Clusters and the Linked Data extracted knowledge are encoded as Prolog
clauses as follows:

E+

clusters
clMT (‘book 1’).

E− clMT (‘book 4’). clMT (‘book 5’).

B RDF predicates subject(‘book 1’,‘electronic music’).

RDF is-a relations book(‘book 1’). topic(‘electronic music’).

Here we search the hypothesis space H specific to the Music Technologies
cluster (clMT). E+ is composed by books in clMT (as book 1), while books
in other clusters (such as book 4 and book 5) form E−. The process is re-
peated for each cluster. Both the RDF binary relations (hud:book 1 dc:subject

‘electronic music’) and the unary ones (hud:book 1 a bibo:book) are also
transformed into Prolog clauses and then added to B.

We ran several experiments combining different properties (in different Bs),
in order to see the properties impact on the hypotheses generation. These are
shown in Table 1. Other hypotheses demonstrated the relations between different
predicates, such as the relation between a publisher and a specific topic (see
Table 2).

4 Conclusion and future work

We showed how ILP can be good in generating hypotheses to explain patterns,
e.g. “books borrowed by students of Music Technologies are clustered together be-
cause they talk about music”. Although it is a trivial example, the automation of
such a process is not an easy task. We demonstrated how the use of Linked Data
is important to generate such hypotheses, and how combining different sources

3 http://bnb.data.bl.uk/
4 http://dublincore.org/documents/dcmi-terms/
5 http://motools.sourceforge.net/event/event.html
6 http://id.loc.gov/authorities/subjects.html

259

Table 1. Expanding B1 with the LCSH knowledge (B2) improves the hypotheses.
Those are read as follows: the item A belongs to the cluster cl because it has some
properties, which appear in the body (“A’s topic is mass media” or “A’s broader topic
is publicity”).

Centroid B Hypothesis F(%) WRacc

Media& B1 cl(A):-subject(A,‘mass media,social aspects’) 10.8 0.004
Journalism B2 cl(A):-broader(A,‘publicity’) 16.4 0.007

Humanities
B1 cl(A):-subject(A,‘criminology’) 11.3 0.003
B2 cl(A):-broader(A,‘social sciences’)∧broader(A,‘auxiliary sciences’) 15.5 0.003

B1 cl(A):-subject(A,‘sound, recording and reproducing’) 10.6 0.003
Music B2 cl(A):-broader(A,‘digital electronics’) 18.8 0.006

Technologies B1 cl(A):-subject(A,‘popular music, history and criticism’) 14.5 0.005
B2 cl(A):-broader(A,‘music’) 21.2 0.008

English& B1 cl(A):-subject(A,‘language acquisition’) 11.6 0.005
Media B2 cl(A):-broader(A,‘child development’)∧broader(A,‘philology’) 13.7 0.006

Table 2. Hypotheses revealing hidden connections between properties.

Centroid Hypothesis F(%) WRacc

Media cl(A):-broader(A,‘psychology’)∧pubPlace(A,‘oxford’) 10.3 0.004

English cl(A):-publisher(A,‘routledge’)∧broader(A,‘literature’)
11.1 0.003

Literature ∧broader(A,‘philology’)

Politics
cl(A):-publisher(A,‘macmillan’)∧broader(A,‘political science’)

4.3 0.001
∧broader(A,‘social sciences’)

of background knowledge (i.e., different datasets) produces better explanations
of patterns of data. The future work concerns the automatic selection of the
datasets from Linked Data, the use of a more appropriate evaluation measure
and the generalisation of the approach to other data mining techniques.

References
1. d’Aquin, M., & Jay, N. (2013). Interpreting Data Mining Results with Linked Data

for Learning Analytics: Motivation, Case Study and Directions. In Third Conference
in Learning Analytics and Knowledge (LAK), Leuven, Belgium.

2. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowl-
edge discovery in databases. AI magazine, 17(3), 37.

3. Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and
methods. The Journal of Logic Programming, 19, 629-679.

4. Narasimha, V., Kappara, P., Ichise, R., & Vyas, O. P. (2011). LiDDM: A Data
Mining System for Linked Data.

5. Lavrač N., Flach P., and Zupan B. (1999). Rule Evaluation Measures: A Unify-
ing View. In Proceedings of the 9th International Workshop on Inductive Logic
Programming (ILP ’99). Springer-Verlag, London, UK, 174-185. .

6. Paulheim, H., & Fümkranz, J. (2012, June). Unsupervised generation of data mining
features from linked open data. In Proceedings of the 2nd International Conference
on Web Intelligence, Mining and Semantics (p. 31). ACM.

7. Paulheim, H. (2012). Generating possible interpretations for statistics from Linked
Open Data. In The Semantic Web: Research and Applications. Springer, pp. 560574.

8. Verborgh, R., Van Deursen, D., Mannens, E., & Van de Walle, R. (2010). Enabling
advanced context-based multimedia interpretation using linked data.

260

D-SPARQ: Distributed, Scalable and Efficient
RDF Query Engine

Raghava Mutharaju1, Sherif Sakr2, Alessandra Sala3, and Pascal Hitzler1

1 Kno.e.sis Center, Wright State University, Dayton, OH, USA.
{mutharaju.2, pascal.hitzler}@wright.edu

2 College of Computer Science and Information Technology,
University of Dammam, Saudi Arabia.

University of New South Wales, High Street, Kensington, NSW, Australia 2052.
ssakr@cse.unsw.edu.au

3 Alcatel-Lucent Bell Labs, Blanchardstown Industrial Park, Dublin, Ireland.
alessandra.sala@alcatel-lucent.com

Abstract. We present D-SPARQ, a distributed RDF query engine that
combines the MapReduce processing framework with a NoSQL distributed
data store, MongoDB. The performance of processing SPARQL queries
mainly depends on the efficiency of handling the join operations between
the RDF triple patterns. Our system features two unique characteristics
that enable efficiently tackling this challenge: 1) Identifying specific pat-
terns of the input queries that enable improving the performance by
running different parts of the query in a parallel mode. 2) Using the
triple selectivity information for reordering the individual triples of the
input query within the identified query patterns. The preliminary results
demonstrate the scalability and efficiency of our distributed RDF query
engine.

1 Introduction

With the recent surge in the amount of RDF data, there is an increasing need
for scalable RDF query engines. In SPARQL, even a simple query may translate
to multiple triple patterns which have to be joined. In practice, centralized RDF
engines lack scalability and query performance is abridged as they are highly
dependent on main memory constraints in order to efficiently process these join
operations. MapReduce-based processing platforms are becoming the de facto
standard for distributed processing of large scale datasets.

We present D-SPARQ, a distributed and scalable RDF query engine that
combines the MapReduce processing framework with a NoSQL distributed data
store, MongoDB. In particular, we make the following contributions:
– We describe how RDF data can be partitioned, stored and indexed in a

horizontally scalable NoSQL store, MongoDB.
– We describe a number of distributed query optimization techniques which

consider the patterns of the input query together with selectivity informa-
tion to minimize the processing time by efficiently parallelizing the query
execution.

– A comparative performance evaluation of our approach with the state-of-
the-art in distributed RDF query processing.

261

Graph
Partitioner Triple Placer

Data Partitioner

MongoDB

Query
Analyzer and

Processor

MongoDB

Query
Analyzer and

Processor

MongoDB

Query
Analyzer and

Processor

Query
Coordinator

Fig. 1. System architecture

2 Approach

Figure 1 illustrates an overview of D-SPARQ’s architecture. The system receives
RDF triple datasets that are imported into MongoDB using a single MapReduce
job which also captures all the required statistical information needed by our join
reordering module in the query optimization process. A graph is constructed
from the given RDF triples and using a graph partitioner [2], triples are spread
across the machines in the cluster where the number of partitions is equal to the
number of machines in the cluster. ‘rdf:type’ triples are removed from the data
before partitioning the graph in order to make the graph more connected and
reduce the quality of partitions. After partitioning, all the triples whose subject
matches a vertex, are placed in the same partition as the vertex. A partial data
replication is then applied where some of the triples are replicated across different
partitions to enable the parallelization of query execution. In particular, in each
partition, for all the vertices that are already assigned to that partition, vertices
along a path of length n (in either direction) are added to that partition [1].

Triples assigned to each partition (machine) are stored in MongoDB4, a
NoSQL document database. In general, each RDF triple has three parts, subject,
predicate and object. In a general key-value store, even if two parts of the triple
are compressed into one, it would be less efficient to index them. Therefore, we
used a document store, MongoDB, that has a good read and write speed along
with good indexing, querying and sharding mechanisms. For example, in Mon-
goDB, all triples with the same subject can be grouped in to one document.
While many SPARQL queries in their basic graph patterns have a “star” pat-
tern [3], these the patterns can share (joined on) either the same subject or ob-
ject. By grouping the triples with the same subject, we would be able to retrieve

4 http://www.mongodb.org

262

triples which satisfy subject-based star patterns in one read call. In addition,
MongoDB supports indexing on any attribute of a document. It also supports
single and compound indexes. We create compound indexes involving both of
subject-predicate and predicate-object pairs. In MongoDB, a compound index
handles queries on any prefixes of the index. For example, queries on predicate
alone can be handled by the compound index predicate-object.

We tackle query processing by identifying the following patterns in the input
query:
1. Triple patterns which are independent of each other and can be run in par-

allel.
2. Star patterns, i.e., triple patterns which need to be joined on the same subject

or object.
3. Pipeline patterns, i.e., dependency among the triple patterns such as object

of one triple pattern is same as the subject of another triple pattern (object-
subject, subject-object, object-object joins).
Identifying these patterns enable us to run different parts of the query in

parallel. In order to identify these patterns, an undirected labelled graph is con-
structed. In this graph, we find articulation points and biconnected components.
In particular, articulation points provide the triples involved in pipeline pattern.
A star pattern is treated as a block or a component here i.e., a star pattern
cannot be split further. In general, a star pattern would have at least one artic-
ulation point and would be split up into smaller pieces if a regular biconnected
component algorithm is run on it. With this tweak (keeping the star pattern as
an indivisible block), all the independent star patterns can be obtained from the
query graph.

In a star pattern, selectivity of each triple pattern plays an important role
in reducing the query runtime. Therefore, for each predicate, we keep a count
of the number of triples involving that particular predicate. For a star pat-
tern, this information is used to reorder the individual triple patterns within a
star pattern. After identifying the patterns from the query graph, processing of
queries becomes a straightforward task of using querying capabilities provided
by MongoDB, which automatically makes use of the appropriate indices while
retrieving the records from the database. If pipeline patterns are involved in the
query, care is taken to share the output of the dependent variable among all the
triple patterns involved in the pipeline.

3 Evaluation

For our experimental evaluation, we used RDF datasets which are generated

using SP2Bench benchmark [5]. The benchmark generates DBLP data in the
form of RDF triples. Our cluster consists of 3 nodes where each node has a
quad-core AMD Opteron Processor with 16GB RAM and 2300MHz processor
speed. MongoDB version 2.2.0 is used as a backend for our query engine. We
compared our approach with the approach of [1], a distributed RDF query engine
that uses RDF-3X [4] query processor as its backend. RDF-3X5 Version 0.3.7

5 http://www.mpi-inf.mpg.de/~neumann/rdf3x

263

#Triples
Query2 Query3 Query4

RDF-3X D-SPARQ RDF-3X D-SPARQ RDF-3X D-SPARQ
77 million 217s 192.5s 80s 69.43s OutOfMemory 319.87s
163 million 1537s 398s 434s 166s OutOfMemory 671s

Table 1. Query runtimes (in seconds) for RDF-3X and D-SPARQ

has been used in our experiments. In particular, RDF-3X have been running on
each node of the cluster and the same number of triples which are handled by
our implementation are also loaded into RDF-3X on each node.

We picked three queries of the benchmark for our experiments (Query2,
Query3 and Query4). In particular, we have not considered the queries which
uses the OPTIONAL, FILTER, ORDER features of the SPARQL query lan-
guage as they are out of the scope of this paper where we are mainly focusing on
the efficient execution of the join operations between the RDF triple patterns.
The numbers of triples of our experimental datasets which are illustrated in Ta-
ble 1 are the average number of triples loaded into RDF-3X, MongoDB of each
node. So the total number of triples across all three nodes in the first case (with
average of 77 million) is around 230 million and for the second case (163 million)
is around 490 million triples. Each query has been executed five times and aver-
age of the runtime across all these runs has been collected. The results of Table 1
show that the query runtimes of our implementation are significantly better than
that of RDF-3X, especially for larger number of triples. We observed that the
performance of RDF-3X decreases with increase in the number of triples. This
is a clear advantage for our query optimization techniques and the scalability of
our data storage backend that relies on a NoSQL store, MongoDB.

4 Conclusion

We presented a distributed RDF query engine that combines a scalable data
processing framework, MapReduce, with a NoSQL distributed data store, Mon-
goDB. A comparative performance evaluation show that our approach can out-
perform the state-of-the-art in distributed RDF query processing. We are plan-
ning to continue evaluating our approach using different and bigger datasets and
extend our approach to support other features of the SPARQL query language.

References

1. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF Graphs.
PVLDB 4(11), 1123–1134 (2011)

2. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (Dec 1998)

3. Kim, H., Ravindra, P., Anyanwu, K.: From SPARQL to MapReduce: The Journey
Using a Nested TripleGroup Algebra. PVLDB 4(12), 1426–1429 (2011)

4. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB J. 19(1), 91–113 (2010)

5. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-
mance Benchmark. In: ICDE. pp. 222–233 (2009)

264

Efficient Computation of Relationship-Centrality
in Large Entity-Relationship Graphs

Stephan Seufert1, Srikanta J. Bedathur2, Johannes Hoffart1, Andrey Gubichev3, and
Klaus Berberich1

1 Max Planck Institute for Informatics, Germany
{sseufert,jhoffart,kberberi}@mpi-inf.mpg.de

2 IIIT Delhi, India
bedathur@iiitd.ac.in

3 Technische Universität München, Germany
andrey.gubichev@in.tum.de

Abstract. Given two sets of entities – potentially the results of two queries on a
knowledge-graph like YAGO or DBpedia– characterizing the relationship between
these sets in the form of important people, events and organizations is an analytics
task useful in many domains. In this paper, we present an intuitive and efficiently
computable vertex centrality measure that captures the importance of a node
with respect to the explanation of the relationship between the pair of query sets.
Using a weighted link graph of entities contained in the English Wikipedia, we
demonstrate the usefulness of the proposed measure.

1 Introduction

Consider a journalist researching the political relations between France and Germany.
In order to gain insight into the underlying relationship, it is an important task to identify
entities (e. g. events, organizations, etc.) that play an important role in the interactions
between these countries. This task can be greatly simplified if the journalist could simply
input two sets of entities – corresponding to the classes “French Politicians” and “Ger-
man Politicians” – and the system automatically generates a ranking of entities in the
knowledge base, reflecting their potential for characterizing the relationship between the
two entity-sets. Variants of this relationship characterization problem can be found in
settings ranging from political studies to analysis of relationships in computational biol-
ogy and economics. With the availability of massive entity-relationship networks such as
Wikipedia, DBLP, and BioCyc networks as well as large Semantic Web ontologies like
YAGO2 [5], solutions not only need to be effective, but also scalable. State-of-the-art
approaches for identifying important nodes in networks include various centrality mea-
sures (e.g., closeness- and betweenness-centrality) which operate on the entire network,
without any specific input entity sets.

In this paper, we develop a novel centrality measure called relationship centrality,
that assesses the ‘strength’ of a node in the relationship path between the given two
sets of nodes. These scores can be computed exactly, or can be well-approximated to
scale to networks as large as the entire Wikipedia graph, comprising tens of millions of
edges. The resulting rankings can further be restricted to entities of certain types (e.g,
Organization or Location etc.), leveraging semantic knowledge-bases such as
YAGO2 [5] or DBPedia [1]. In the following section, we formally introduce our novel
centrality measure.

265

2 Relationship Centrality

Graph centrality measures, which assign to every node a score reflecting its importance in
the graph structure, are a valuable tool for analyzing different kinds of graphs. Although
they have been studied extensively in the scope of social networks, the use of centrality
measures in the context of Semantic Web is gaining importance only recently. The
classical measures proposed in past include closeness [3] and betweenness centrality [2].
However, these measures become computationally expensive when we consider large
networks. Also, their utility in ranking nodes with respect to an input set of entities is
rather limited.

In contrast, the measure we introduce in this work, called relationship centrality, is
easier to compute since it is designed to assign scores that reflect the centrality only with
respect to the two input entity sets, rather than on a global scale. Formally, given two
query entity sets S and T from the network, we define the relationship centrality of a
node v as follows:

cR(v) =
∑
s∈S

∑
t∈T

1

ρ(s, v, t)
,

where ρ(s, v, t) is a penalty function for a path connecting a node s ∈ S and t ∈ T
passing through v, given by: ρ(s, v, t) = (1+d(s, v)) · (1+d(v, t)). The distance d(·, ·)
between two nodes connected by an edge can be customized based on the underlying
network to measure the semantic distance between the corresponding entities. The
corresponding edge-weighting schemes we envision can be based on the graph structure
(Milne-Witten inlink overlap measure [6]) or textual representations of the entities
(keyphrase overlap measure [4]), among others.

Relationship centrality takes into account different paths than betweenness centrality
(which regards the shortest paths between all pairs of vertices). For every vertex in the
graph and every pair (s, t) ∈ S × T , the shortest path from s to t passing through v
contributes to the centrality score of v.

The corresponding paths are computed as follows: For every vertex s ∈ S and
t ∈ T , the shortest distances to each vertex v ∈ V are computed using Dijkstra’s
algorithm. Then, the centrality scores for every vertex can be computed from the resulting
distance vectors. While the O(m+ n log(n)) time complexity induced by each of the
|S|+ |T | required shortest path computations is rather lightweight, for very large graphs
the corresponding computation time can be too demanding, especially for interactive
applications. For this purpose, we have experimented with an alternative scoring scheme
which only considers shortest path distances up to a value ∆ ∈ R. Then, the distance
from a query node q to a vertex v is approximated in the following way:

d̃(q, v) =

{
d(q, v) for d(q, v) ≤ ∆,
diam(G) else,

where diam(G) denotes the diameter of the (weighted) graph. In our experimental
evaluation in Section 4, we evaluate the quality of computed scores based on different
choices of the cutoff parameter, ∆.

266

Rank Entity

1 2009 G-20 Pittsburgh sum.
2 2010 G-20 Toronto summit
3 37th G8 summit
4 Iraq War
5 35th G8 summit
6 2009 G-20 London Summit
7 36th G8 summit
8 2010 G-20 Seoul summit
9 Presidency of G. W. Bush

10 2009 Nobel Peace Prize

(a) Q1

Rank Entity

1 The Expendables (2010 film)
2 Crouching Tiger, Hidden Dragon
3 The Forbidden Kingdom
4 Rush Hour 2
5 Police Story (1985 film)
6 Once Upon a Time in China II
7 Fist of Fury
8 Romeo Must Die
9 Kung Fu Hustle
10 Fearless (2006 film)

(b) Q2

Rank Entity

1 Iraq War
2 War in Afghanistan
3 Gulf War
4 Op. Enduring Freedom
5 Yom Kippur War
6 War on Terror
7 Battle of Karameh
8 Palestinian diaspora
9 Operation Opera

10 Suez Crisis

(c) Q3
Table 1. Top ranked entities for example queries

3 Application

In this section, we briefly present the application scenarios we envision. We target
analytical tasks at the downstream of Semantic Web applications. In particular, we
consider a large knowledge-base (such as YAGO or DBPedia), over which S and T sets
are derived as results of SPARQL queries.
Example: As a concrete scenario, the following two queries retrieve all organizations
conducting research on (variants of) lung cancer, and all tobacco companies respectively:

SELECT ?p WHERE { ?p <rdf:type> <Organization> . ?p <worksOn> <Lung Cancer> }

SELECT ?c WHERE { ?c <rdf:type> <American Tobacco Company> }

An analytics task could be to identify legal cases that played an important role in the
relationship between the entity sets corresponding to the query results. We can utilize
the relationship centrality measure developed above, and then use a type hierarchy, e. g.
Wikipedia categories or the WordNet lexical database, to retain only the relevant entity
types in the generated ranking.

4 Experimental Evaluation

In this section, we provide an overview over our experimental evaluation of the rela-
tionship centrality measure. In order to empirically validate the assigned scores, we
have compiled several example queries over an edge-weighted entity-relationship graph
obtained from Wikipedia: The vertices of the graph correspond to Wikipedia pages
that represent an entity contained in the YAGO knowledge base. Two vertices u, v are
connected via a weighted, undirected edge if there exists an internal Wikipedia link in
either direction between the corresponding articles, A(u), A(v). The weight we assign
to the edge (u, v) should capture the semantic relatedness of the respective concepts. For
this purpose, we employ the inlink overlap measure originally proposed by Milne and
Witten [6]. For nodes u, v the weight (inverse semantic relatedness) is given by

d(u, v) =
log(max{|Iu|, |Iv|})− log(|Iu ∩ Iv|)

log(n)− log(min{|Iu|, |Iv|})
,

where Iu and Iv denote the set of pages linking to A(u) and A(v), respectively and n
corresponds to the overall number of pages. The resulting weights lie in the interval
[0,∞]. Using this measure, vertices u and v exhibit a high semantic relatedness if the
weight of the edge (u, v) is close to zero. Finally, we discard all edges with d(u, v) ≥ 1.

267

Query ∆ = ∞ ∆ = 1 ∆ = 0.5
Time Time τ Time τ

Q1 41,960.40 ms 18,629.80 ms 1.0 4,616.05 ms 0.55
Q2 48,174.80 ms 15,002.70 ms 1.0 5,117.02 ms 0.60
Q3 71,162.50 ms 32,028.50 ms 1.0 7,858.39 ms 0.87

Table 2. Computation time and ranking quality
The resulting graph structure contains around 2.5 million vertices (entities) and roughly
37 million edges.

In order to empirically evaluate our ranking, we use three example queries where the
sets of entities correspond to a collection of

Q1: Events between European politicians (S) and US American politicians (T)4

Q2: Movies between US action movie stars (S) and Asian action movie stars (T)5

Q3: Events between countries from the Middle East/Central Asia (S) and Western
countries (T)6

In Table 1 we present the top-10 ranked results by relationship centrality for each of the
queries. The resulting rankings suggest that our measure is useful for the explanation of
the relationship between the sets of query entities. Regarding the computation time, we
give an overview over the effect of pruning the shortest path computation using different
cutoff parameters ∆, as well as the resulting rank correlation (measured by Kendall’s τ)
for the top 10 entities in Table 2.

5 Conclusions & Outlook
In this work we have presented the relationship centrality measure, a vertex centrality
score that reflects the potential of an individual vertex for the explanation of the rela-
tionship between two sets of query nodes. Our preliminary experimental results over
the edge-weighted Wikipedia entity-relationship graph indicate that our measure can
provide valuable insights into the relationship between sets of real-world entities. In
future work, we plan to conduct a large-scale evaluation of our result ranking in a user
study. In addition, we plan to use our centrality measure as a building block for extracting
interesting subgraphs between the query entities.

References
1. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann. Dbpedia

- a crystallization point for the web of data. J. Web Sem., 7(3):154–165, 2009.
2. L. C. Freeman. A set of measures of centrality based upon betweenness. Sociometry, 40:35–41,

1977.
3. L. C. Freeman. Centrality in social networks: Conceptual clarification. Social Networks,

1(3):215–239, 1979.
4. J. Hoffart, S. Seufert, D. B. Nguyen, M. Theobald, and G. Weikum. KORE: Keyphrase

Overlap Relatedness for Entity Disambiguation. In CIKM’12: Proceedings of the 21th ACM
International Conference on Information and Knowledge Management, pages 545–555. ACM,
2012.

5. J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A Spatially and Temporally
Enhanced Knowledge Base from Wikipedia. Artificial Intelligence, 2013.

6. D. Milne and I. H. Witten. An Effective, Low-Cost Measure of Semantic Relatedness Obtained
from Wikipedia Links. In WIKIAI’08: Proceedings of the 2008 AAAI Workshop on Wikipedia
and Artificial Intelligence. AAAI, 2008.

4
S = {Angela Merkel, Nicolas Sarkozy, David Cameron, Silvio Berlusconi},T = {Barack Obama, Hillary Clinton}

5
S = {Chuck Norris, A. Schwarzenegger, Sylvester Stallone,Bruce Willis},T = {Jet Li, Jackie Chan, Chow Yun-Fat}

6
S = {Iraq, Iran, Israel, Palestine, Afghanistan, Pakistan},T = {Germany, France, Spain, Italy, Netherlands, Portugal}

268

A Hybrid Natural Language Approach to
Manage Semantic Interoperability for Public

Health Analytics

Maxime Lavigne, Arash Shaban-Nejad, Anya Okhmatovskaia, Luke Mondor,
David L. Buckeridge

McGill Clinical & Health Informatics, Department of Epidemiology and Biostatistics,
McGill University, Montreal, Quebec, H3A 1A3, Canada

maxime.lavigne@mail.mcgill.ca

(arash.shaban-nejad|anya.okhmatovskaia|luke.mondor|david.buckeridge)@mcgill.ca

Abstract. This paper discusses the integration of an ontology with a
natural language query engine to calculate and interpret epidemiological
indicators for population health assessment. In this paper, we discuss the
application of this approach to one type of possible query, which retrieves
health determinants, causally associated with diabetes mellitus.

Keywords: Ontology, Natural language interface, Causal inference, Epi-
demiology

1 Introduction

The Population Health Record (PopHR) platform [1][2] aims to improve popu-
lation health decision-making. It calculates and presents measures or indicators
of health determinants and health outcomes in a manner that, unlike most cur-
rent web portals, is intuitive to access and provides up-to-date indicators that
are contextualized by public health knowledge. In this paper, we describe our
approach to querying the PopHR knowledge base using an natural language
interface (NLI).

Early in its development, it became apparent that even though we were
restraining the language of recognized queries, the breadth of pre- and post-
conditions made implementation difficult. We therefore partitioned the space of
possible queries and called these, query types. By partitioning intents of user
inputs into collectively exhaustive and mutually exclusive query types, we were
able to overcome the difficulty of designing a single data processing pathway for
all queries. Linking a query’s concepts with our domain ontology is simplified and
it allows us, for example, to disambiguate concepts, which could have different
interpretation in different query types.Partitioning restricts the software contract
of our system when processing a query. Finally, this approach allows us to make
assumptions about the domains of concepts, such as statistics and geography,
which are relevant in our context.

269

In this paper, we use a representative query as an example: What determi-
nants increase the risk of diabetes? The following sections introduce the relevant
parts of our domain ontology and then describe the strategy used to answer the
query.

2 Ontological Representation

PopHR uses its own domain ontology representing knowledge relevant to popu-
lation health, including a taxonomy of human diseases, various groups of health
determinants and public health interventions, measures of disease occurrence
and other epidemiological concepts. In addition to the hierarchy of concepts,
the ontology encodes associative relations to allow for meaningful inference. One
specific type of associative relation represents a causal link between two entities
(i.e., cause and effect). For example, body mass index (BMI) has a positive ef-
fect on an individual’s disposition towards developing type 2 diabetes mellitus
(see Figure 1). More generally, this relationship is an example of a probabilistic
causal link from a health determinant to a process of developing a disease. We
can also describe a causal relation between a health determinant and a process
that modifies another health determinant.

Fig. 1. Example of encoding BMI in the ontology, as seen with the Protégé editor.

3 Processing Pipeline

In PopHR, the natural language interface is the preferred method for querying
information. All queries must respect a proper subset of the English language
that is formally defined to be context free. The subset is built around question
answering and was conceived with the intent to provide all the expressivity
needed. This design decision implied that we needed an intuitive, consistent user
experience. For the system to succeed at providing proper guidance, it needed
to suit both the needs of the inexperienced users and experts.

3.1 Lexical and Syntactic Analysis

We used our formally defined grammar in conjunction with the ANTLR frame-
work[3] for langage processing. The first step of the process is to break the input
down into lexemes. The token stream produced by this step from the example
input is:

270

QUESTION, ID, VERB, ARTICLE, ID, QUALIFIER_START, ID, QUESTION_MARK

Once the individual components of the question are separated, an LL(*)
parser uses production rules to generate a syntactic tree. If the creation of such
a tree is impossible, then we know that the input text was not part of our
language and proper guidance will be given on how to correct the issue. This
syntactic tree (Figure 2) is the artifact that will be used by the rest of the
system.

Fig. 2. Syntactic Tree Produced by our Example

A formal representation of the question is a necessary but not a sufficient
step to understand the intent of the user. Although it is trivial for a human,
performing this step programmatically requires the ability to match the query
to some known patterns. This role is played by the oracle: all known patterns
are manually entered in the system and take the general form: What (To Be)
ID? is a description query. With this mapping, we are making the assumption
that a question that starts with the question word What and uses a derivate of
the verb To Be that has a final concept ID is asking the system for a descrip-
tion of this concept. Applying the Oracle to our example would classify it as
a CausalityEnumerationQueryWithConcept. We can intuitively concur that we
did want an enumeration of all determinants that have some causal relationship
to diabetes mellitus.

3.2 Semantics

At this point in the process, we have gathered information regarding the domain
and general intent of the query. Nevertheless, we still have no information on
which concepts are used and what they mean. It is at this point that we query the
ontology for concept such as determinants, increase, risk, and diabetes. Fetching
these concepts by their textual representation, searching labels, synonyms and
other annotations, we obtain the following:

Table 1. Association Between Query Terms and Ontology

Input Concept or Relation in Ontology

determinants health determinants
increase ‘has positive effect on’ some
risk ‘is disposition of’ only (Process and ‘results in’ only)
diabetes diabetes mellitus

271

It is noteworthy that misspelings, difference in case and such are handled
outside of the ontology. We then check for special markings that define processing
triggers to activate. In our example, ‘has positive effect on’ requires transitively
walking upstream to identify additional causal factors. At this point, all of the
information needed to understand what the user requested has been gathered.
We would then reformulate the question into a format that can be answered by a
description logic (DL) reasoner, such as Fact++[4]. From our example, we need
SubClassOf+ of ‘Health Determinants’ that are described by: “ ‘has positive
effect on’ some (‘is disposition to’ only (results in some ‘diabetes mellitus’) ”

The results, will be a list of health determinants that directly influence the
risk of the event in a positive way. From our processing trigger associated with
‘has positive effect on’, we know that the answer should also include any health
determinants that positively affects health determinant having a direct influence
on the risk event. We know, for example, that BMI is one of those direct factors
and that it is a measurable property. Therefore, we look for other health deter-
minants that have a positive effect on a disposition to increase the level of BMI.
If the result is a measurable property we would repeat the same step.

4 Discussion

Developing a system that is accessible via a natural language interface is chal-
lenging. To address this challenge, we make use of all the contextual information
we can learn about the intent of the query, we restrict ourselves to a proper
context-free subset of the English language, and we use a domain ontology. The
resulting system gives useful and correct answers to practical questions. We
are looking forward validating our solution in user testing. It will enable us to
broaden our scope from a prototype state to that of day to day use.

Acknowledgments

The Canadian Foundation for Innovation (CFI) and the Canadian Institutes of
Health Research (CIHR) provide funding for this research.

References

1. Buckeridge DL, Izadi MT, Shaban-Nejad A, Mondor L, Jauvin C, Dubé L, Jang Y,
and Tamblyn R. An infrastructure for real-time population health assessment and
monitoring. IBM Journal of Research and Development, 2012, 56(5): 2

2. Izadi M, Shaban-Nejad A, Okhmatovskaia A, Mondor L, Buckeridge DL (2013).
Population Health Record: An Informatics Infrastructure for Management, Integra-
tion, and Analysis of Large Scale Population Health Data. In Proc. of AAAI (HIAI
2013), Belleveue, Washington, USA July 14-18.

3. Parr T., Fisher KS, LL(*): The Foundation of the ANTLR Parser Generator, PLDI
2011

4. Tsarkov, D, and Horrocks, I. FaCT++ description logic reasoner: system descrip-
tion. In proc. of IJCAR 2006, Springer, pp. 292-297.

272

Towards the Natural Ontology of Wikipedia

Andrea Giovanni Nuzzolese1,2, Aldo Gangemi1,3,
Valentina Presutti1, and Paolo Ciancarini1,2

1 STLab-ISTC, National Research Council, Rome, Italy.
2 Dept. of Computer Science and Engineering, University of Bologna, Italy.

3 LIPN, University Paris 13, Sorbone Cité, UMR CNRS, France

Abstract. In this paper we present preliminary results on the extraction
of ORA: the Natural Ontology of Wikipedia. ORA4 is obtained through
an automatic process that analyses the natural language definitions of
DBpedia entities provided by their Wikipedia pages. Hence, this ontology
reflects the richness of terms used and agreed by the crowds, and can be
updated periodically according to the evolution of Wikipedia.

1 An ontology for Wikipedia

The DBpedia Ontology 5 (DBPO) and Yago [7] are the two reference ontologies
for DBpedia. Both of them provide only partial extensional and intensional cov-
erage of DBpedia entities because they rely on Wikipedia categories (Yago) and
infoboxes (DBpedia), which induce an intrinsic limit of domain coverage [3].
T̀ıpalo [3] is a tool that automatically produces a RDF taxonomy of types
(aligned with WordNet and Dolce) for a DBpedia entity by analysing its natu-
ral language definition in Wikipedia. This approach is aimed at identifying the
most natural types for an entity as they are expressed by the crowds. By run-
ning T̀ıpalo on the whole DBpedia we aimed at deriving a natural ontology for
Wikipedia and approximating as much as possible a complete domain coverage.
In this paper, we show the results obtained so far from this process: the first
version of the Natural Ontology of Wikipedia (ORA)6, and we discuss emerg-
ing issues and possible solutions for its refinement. This article is organized as
follows: (i) in section 2, we introduce the main related work; (ii) in section 3
we describe the material and the method used for generating the ontology; (iii)
finally in section 4 we describe the results obtained so far, and discuss ongoing
work and future research directions.

2 Related work

The DBpedia project [4] and YAGO [7] are the most relevant approaches at
generating an ontology from semi-structured information in Wikipedia. DBpe-

4 ORA is the italian translation of NOW
5 http://dbpedia.org/ontology
6 http://isotta.cs.unibo.it:8080/sparql - select the graph now

273

h

dia provides an ontology extracted from Wikipedia infoboxes based on hand-
generated mappings of infoboxes to the DBpedia ontology (DBPO). DBPO
counts 359 concepts (version 3.8) but only 2.3M entities over more than 4M
are classified with respect to this ontology. YAGO types are extracted from
Wikipedia categories and aligned to a subset of WordNet. The YAGO ontology
is larger that DBPO and counts ∼290K concepts. YAGO has a larger (although
still incomplete, 2.7M typed entities) coverage of DBpedia entities. ORA intro-
duces a third dimension: the terminology of the crowds; furthermore, it provides
a larger coverage (currently 3.0M typed entities). Recently, the Schema.org 7

initiative has provided alignments to the DBPO. However, such effort does not
add value from the perspective of the intensional and extensional coverage is-
sues. Other relevant work related to our method includes Ontology Learning and
Population (OL&P) techniques [1]. Typically OL&P is implemented on top of
machine learning methods, hence it requires large corpora, sometimes manually
annotated, in order to induce a set of probabilistic rules. Such rules are defined
through a training phase that can take a long time. The method used for ORA
and implemented by T̀ıpalo [3] differs from existing approaches as it is mainly
rule-based, hence it does not require a training phase and it is faster than the
other approaches.

3 Automatic extraction of an ontology for Wikipedia:
materials and methods

T̀ıpalo is implemented as a pipeline of components and data sources. Each com-
ponent in the pipeline implements a step of the computation: (i) extraction of
an entity’s natural language definition from its Wikipedia abstract; (ii) natural
language deep parsing (provided by FRED [6]) whose output is a RDF/OWL
representation of the entity definition; (iii) selection of candidate types (based
on graph-pattern-based heuristics applied to FRED output); (iv) word-sense dis-
ambiguation of candidate types; and (v) type alignment to OntoWordNet [2],
WordNet supersenses and to a subset of and DUL+DnS Ultralite. We refer to
[3] for details about the design and the implementation of T̀ıpalo. In [3] we
evaluated T̀ıpalo by extracting the types for a sample of 627 resources, while in
this work we want to extract the ontology of Wikipedia by running T̀ıpalo on
3,769,926 DBpedia entities taken from the dbpedia long abstracts en dataset
of DBpedia, which include only entities having a Wikipedia abstract: this is a
main constrain for applying our method.

4 The Natural Ontology of Wikipedia (ORA): results
and discussion

The process described above has been run on a Mac Pro Quad Core Intel Xeon
2.8Ghz with 10Gb RAM and took 15 days (which can be easily reduced by par-
allelizing the activity on a cluster of machines with similar or more powerful

7 http:schema.org

274

characteristics). The process resulted in 3,023,890 typed entities and associated
taxonomies of types. Most of the missing results are due to the lack of matching
T̀ıpalo heuristics, which means that by improving T̀ıpalo we will improve cov-
erage (this is part of our current work). The resulting ontology includes 585,474
distinct classes organized in a taxonomy with 396,375 rdfs:subClassOf ax-
ioms; 25,480 if these classes are aligned through owl:equivalentClass axioms
to 20,662 OntoWordNet synsets by means of a word-sense disambiguation pro-
cess. The difference between the number of disambiguated classes (25,480) and
the number of identified synsets (20,662) means that there are at least 4,818
synonym classes in the ontology. We expect the number of actual synonyms to
be greater. Hence, we are planning to investigate some sense-similarity-based
metric in order to reduce the number of distinct classes in the ontology by merg-
ing synonyms or at least providing explicit similarity relations with confidence
scores between classes.

In order to prevent polysemy deriving from merging classes with same names
but aligned to different synsets, it has been adopted a criterion of uniqueness
for the generation of the URIs of these classes. For example, let us consider
the entity dbpedia:The Marriage of Heaven and Hell8. For this entity T̀ıpalo
generates the following RDF:

dbpedia:The_Marriage_of_Heaven_and_Hell
a fred:Book .

fred:Book
owl:equivalentClass wn30-instance:synset-book-noun-2 .

Similarly, for the entity dbpedia:Book of Revelation9 T̀ıpalo generates the
following RDF:

dbpedia:Book_of_Revelation
a fred:CanonicalBook .

fred:CanonicalBook
rdfs:subClassOf fred:Book .

fred:Book
owl:equivalentClass wn30-instance:synset-book-noun-10 .

The two fred:Book classes refers to two distinct concepts. Hence, they cannot
be merged during the generation of the ontology. We solve this by appending
the ID of the closest synset in the taxonomy to the URI of the new generated
classes: this approach guarantees to prevent polysemy and to identify synonymity
at the same time. Finally, all the classes aligned to OntoWordNet have been also
aligned to WordNet supersenses and a subset of DOLCE+DnS Ultra Lite classes
by means of rdfs:subClassOf axioms. The following example shows a sample of
the ontology which has been derived by typing the two entities used as examples
previously:

8 The definition of dbpedia:The Marriage of Heaven and Hell is: “The Marriage of
Heaven and Hell is one of William Blake’s books.”

9 The definition of dbpedia:Book of Revelation is: textit“The Book of Revelation is
the last canonical book of the New Testament in the Christian Bible.”

275

dbpedia:The_Marriage_of_Heaven_and_Hell
a fred:Book_102870092 .

dbpedia:Book_of_Revelation
a fred:CanonicalBook_106394865 .

fred:CanonicalBook_106394865
rdfs:subClassOf fred:Book_106394865 ;
rdfs:label "Canonical Book"@en-US .

fred:Book_102870092
owl:equivalentClass wn30-instance:synset-book-noun-2 ;
rdfs:label "Book"@en-US .

fred:Book_106394865
owl:equivalentClass wn30-instance:synset-book-noun-10 ;
rdfs:subClassOf wn30-instance:supersense-noun_communication ,

d0:InformationEntity ;
rdfs:label "Book"@en-US .

Conclusion. The main result of this work is the Natural Ontology of Wikipedia
(ORA): an ontology that reflects the richness of terms used and agreed by the
crowds for defining entities in Wikipedia. All produced datasets are available for
download10. We claim that this ontology provides an important resource that
can be used as alternative or complement for YAGO and DBPO, and that it
can enable more accurate usage of DBpedia in Semantic Web based applications
such as: mash-up tools, recommendation systems, and exploratory search tools
(see for example Aemoo [5]), etc. Currently, we are working at refining ORA and
to align it to DBPO and YAGO.

References

1. P. Cimiano. Ontology Learning and Population from Text: Algorithms, Evaluation
and Applications. Springer, 2006.

2. A. Gangemi, R. Navigli, and P. Velardi. The OntoWordNet Project: extension and
axiomatization of conceptual relations in WordNet. In in WordNet, Meersman,
pages 3–7. Springer, 2003.

3. A. Gangemi, A. G. Nuzzolese, V. Presutti, F. Draicchio, A. Musetti, and P. Cian-
carini. Automatic Typing of DBpedia Entities. In International Semantic Web
Conference (1), volume 7649 of Lecture Notes in Computer Science, pages 65–81.
Springer, 2012.

4. J. Lehmann, C. Bizer, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia - A Crystallization Point for the Web of Data. Journal of Web
Semantics, 7(3):154–165, 2009.

5. A. G. Nuzzolese, V. Presutti, A. Gangemi, A. Musetti, and P. Ciancarini. Aemoo:
Exploring knowledge on the web. In Proceedings of the 5th Annual ACM Web
Science Conference, pages 272–275. ACM, 2013.

6. V. Presutti, F. Draicchio, and A. Gangemi. Knowledge extraction based on dis-
course representation theory and linguistic frames. In Knowledge Engineering and
Knowledge Management (EKAW 2012), pages 114–129. Springer, 2012.

7. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowledge.
In 16th international World Wide Web conference (WWW 2007), pages 697–706,
New York, NY, USA, 2007. ACM Press.

10 http://stlab.istc.cnr.it/stlab/ORA

276

http://stlab.istc.cnr.it/stlab/ORA

The Empirical Robustness of Description Logic
Classification

Rafael S. Gonçalves, Nicolas Matentzoglu, Bijan Parsia, and Uli Sattler

School of Computer Science, University of Manchester, Manchester, United Kingdom

Abstract. In spite of the recent renaissance in lightweight description logics
(DLs), many prominent DLs, such as that underlying the Web Ontology Lan-
guage (OWL), have high worst case complexity for their key inference services.
Modern reasoners have a large array of optimization, tuned calculi, and imple-
mentation tricks that allow them to perform very well in a variety of application
scenarios, even though the complexity results ensure that they will perform poorly
for some inputs. For users, the key question is how often they will encounter those
pathological inputs in practice, that is, how robust are reasoners. We attempt to
determine this question for classification of existing ontologies as they are found
on the Web. It is a fairly common user task to examine ontologies published on
the Web as part of their development process. Thus, the robustness of reasoners in
this scenario is both directly interesting and provides some hints toward answer-
ing the broader question. From our experiments, we show that the current crop of
OWL reasoners, in collaboration, is very robust against the Web.

1 Motivation

A serious concern about both versions 1 [4] and 2 [3] of the Web Ontology Language
(OWL) is that the underlying description logics (SHOIQ and SROIQ) exhibit ex-
tremely bad worst case complexity (NEXPTIME and 2NEXPTIME) for their key in-
ference services. While since the mid-1990s, highly optimized description logic rea-
soners have been exhibiting rather good performance in real cases, even in those more
constrained cases there are ontologies (such as Galen) which have proved impossible to
process for over a decade. Indeed, concern with such pathology stimulated a renaissance
of research into tractable description logics with the EL family [1] and the DL Lite [2]
family being incorporated as special “profiles” of OWL 2. However, even though the
number of ontologies available on the Web has grown enormously since the standard-
ization of OWL, it is still unclear how robust modern, highly optimized reasoners are to
such input. Anecdotal evidence suggests that pathological cases are common enough to
cause problems, however, systematic evidence has been scarce.

In this paper we investigate the question of whether modern, highly-optimized de-
scription logic reasoners are robust over Web input. The general intuition of a robust
system is that it is resistant to failure in the face of a range of input. For any particular
robustness determination, one must decide: 1) the range of input, 2) the functional or
non-functional properties of interest, and 3) what counts as failure. The instantiation
of these parameters strongly influences robustness judgements, with the very same rea-
soner being highly robust under one scenario and very non-robust under another. For our

277

current purposes, the key scenario is that an ontology engineer, using a tool like Protégé
[6], is inspecting ontologies published on the Web with an eye to possible reuse, and,
as is common, they wish to classify the ontology using a standard OWL 2 DL reasoner
as part of their evaluation. This scenario yields the following constraints: 1) for input,
we examine Web-based corpora, 2) functional: acceptance (will the reasoner load and
process the ontology); non-functional: performance (i.e., will the reasoner complete
classification before the ontology engineer gives up), 3) w.r.t. acceptance, failure means
either rejecting the input or crashing while processing, and we might reasonably expect
an engineer to wait up to 2 hours if the ontology seems “worth it”. If a reasoner (or a set
of reasoners) is successful for 90% of a corpus, we count that reasoner as robust over
that corpus, with 95% and 99% indicating “strong” and “extreme” robustness. While
these levels are clearly arbitrary (as is the timeout), they provide a framework to set ex-
pectations. Robustness under these assumptions does not ensure robustness under other
assumptions (e.g., over subsets of these ontologies as experienced during development
or over a more stringent time constraint), yet they are challenging enough that it was
unclear to us ex ante whether any reasoner would be robust for any corpus.

In fact, we find that the reasoners are robust or near robust for most of the cases
we examine, including for lower timeouts. More significantly, if we take the best result
for each ontology (which represents a kind of “meta-reasoner”, where our test reason-
ers are run in parallel), then the set of reasoners is extremely robust over all corpora.
Thus, in a fairly precise, if limited, sense, we demonstrate that classification over OWL
ontologies (even those based on highly expressive description logics, such as SHOIQ
and SROIQ) is practical, even despite the worst case being intractable in some cases.

2 Results

Overall we have processed a total of 1,071 ontologies, the largest such reasoner bench-
mark (similar benchmarks typically use at most a few hundred ontologies, e.g., the
recent study in [5]), having found that amongst the 4 tested reasoners Pellet is the most
robust of all (see Table 1). Surprisingly, Pellet is followed by JFact on our robustness
test, due to having far less errors than FaCT++. HermiT and FaCT++ have the same
overall robustness, but FaCT++ has less errors and higher impatient robustness.

While Pellet is the most robust reasoner, we urge some caution in that reading. In
particular, this does not mean that Pellet will always do best or even perform reasonably.
In fact, it may timeout where other reasoners finish reasonably fast. The set of reasoners
(taken together and considering the best results) is extremely robust across the board
(for each reasoner’s contribution to the best case reasoner, see Figure 1). Thus, we have
strong empirical evidence that the ontologies on the Web do not supply any in principle
intractable cases, but only cases which are difficult for particular reasoners.

Note that FaCT++ and JFact fail to process several ontologies due to poor support
for OWL 2 datatypes. Both of these reasoners, as well as HermiT, seem to have little
support for OWL 1 datatypes. By removing the non OWL 2 datatype errors, we would
end up with FaCT++ being the most robust w.r.t. OWL 2, followed by HermiT and
Pellet. That is, if we restrict the test corpus to those ontologies that use only datatypes
from the OWL 2 datatype map, then FaCT++ would be the most robust reasoner.

278

Pellet HermiT JFact FaCT++ Best Combo Worst Combo
Very Easy 787 (73%) 706 (66%) 741 (69%) 784 (73%) 878 (82%) 645 (60.2%)

Easy 116 (11%) 112 (10%) 103 (10%) 55 (5%) 73 (7%) 102 (9.5%)
Medium 83 (8%) 65 (6%) 43 (4%) 94 (9%) 101 (9%) 45 (4.2%)

Hard 24 (2%) 53 (5%) 76 (7%) 7 (1%) 6 (1%) 75 (7.0%)
Very Hard 6 (1%) 4 (0%) 1 (0%) 4 (0%) 4 (0%) 3 (0.3%)
Timeout 29 (3%) 14 (1%) 16 (1%) 15 (1%) 9 (1%) 25 (2.3%)
Errors 26 (2%) 117 (11%) 91 (8%) 112 (10%) 0 (0%) 176 (16.4%)

Total (excl. Errors) 1016 940 964 944 1062 870
Total (incl. Errors) 1071 1071 1071 1071 1071 1071

Impatient Robustness 92% 82% [90%] 83% 87% [96%] 98% 74% [87%]
Overall Robustness 95% 88% [96%] 90% 88% [97%] 99% 81% [96%]

Table 1: Binning of all three corpora: BioPortal, NCIt (2013), and Web crawl. Under
robustness rows, values in square brackets indicate robustness w.r.t. OWL 2 alone.

0	
100	
200	
300	
400	
500	
600	
700	
800	
900	

1000	

Pellet	 HermiT	 JFact	 FaCT++	
Web	 Crawl	 203	 160	 193	 708	

NCIt	 2013	 2	 0	 0	 104	

BioPortal	 21	 18	 24	 94	

N
r.	
O
nt
ol
og
ie
s	

Fig. 1: Number of times each reasoner outperforms all other reasoners in each corpus.

From Figure 1 we see that FaCT++ outperforms other reasoners on many occasions,
but, due to the high number of errors thrown, its robustness w.r.t. our input data is not
as good as this figure might indicate. In Figure 2 we show the frequency with which
reasoners are the worst case in each corpus: Notice that FaCT++ is, overall, less often
the worst reasoner, followed by HermiT. However, HermiT and JFact both dominate the
worst cases in the NCIt corpus. Pellet, while being most often the worst case reasoner in
the Web Crawl corpus, is so (in many cases) by a mere fraction of a second; as pointed
out it is the most robust for that corpus.

It is clear that deriving a sensible ranking even simply using average or total time
is not straightforward. Our results have rather strong implications for reasoner experi-

279

0	

100	

200	

300	

400	

500	

600	

Pellet	 HermiT	 JFact	 FaCT++	
Web	 Crawl	 492	 272	 397	 235	

NCIt	 2013	 0	 47	 59	 0	

BioPortal	 82	 84	 138	 29	

N
r.	
O
nt
ol
og
ie
s	

Fig. 2: Number of times that each reasoner equals the worst case, for each corpus.

ments, especially those purporting to show the advantages of an optimisation or a tech-
nique or an implementation: The space is very complex and it is very easy to simul-
taneously generate a biased sample for one system and against another. Even simple,
seemingly innocuous things like timeouts and classification failures require tremendous
care in handling. If results are going to be meaningful across papers we need to converge
on experimental inputs, methods, and reporting forms.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI-05 (2005)
2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

3. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL
2: The next step for OWL. J. of Web Semantics (2008)

4. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The
making of a web ontology language. J. of Web Semantics 1(1), 7–26 (2003)

5. Kang, Y.B., Li, Y.F., Krishnaswamy, S.: Predicting reasoning performance using ontology
metrics. In: Proc. of ISWC-12 (2012)

6. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL plugin: An open
development environment for semantic web applications. In: Proc. of ISWC-04 (2004)

280

Network-Aware Workload Scheduling for
Scalable Linked Data Stream Processing

Lorenz Fischer, Thomas Scharrenbach, Abraham Bernstein

University of Zurich, Switzerland?

{lfischer,scharrenbach,bernstein}@ifi.uzh.ch

1 Introduction

In order to cope with the ever-increasing data volume, distributed stream pro-
cessing systems have been proposed. To ensure scalability most distributed sys-
tems partition the data and distribute the workload among multiple machines.
This approach does, however, raise the question how the data and the workload
should be partitioned and distributed. A uniform scheduling strategy—a uniform
distribution of computation load among available machines—typically used by
stream processing systems, disregards network-load as one of the major bottle-
necks for throughput resulting in an immense load in terms of inter-machine
communication.
We propose a graph-partitioning based approach for workload scheduling within
stream processing systems. We implemented a distributed triple-stream process-
ing engine on top of the Storm realtime computation framework and evaluate
its communication behavior using two real-world datasets. We show that the
application of graph partitioning algorithms can decrease inter-machine com-
munication substantially (by 40% to 99%) whilst maintaining an even workload
distribution, even using very limited data statistics. We also find that processing
RDF data as single triples at a time rather than graph fragments (containing
multiple triples), may decrease throughput indicating the usefulness of seman-
tics.

2 Problem Statement and Definitions

A linked data stream processing system essentially continuously ingests large
volumes of temporally annotated RDF triples and emits the results again as data
stream. Such systems usually implement a version of the SPARQL algebra that
has been modified for processing dynamic data. The processing model considered
is a directed graph, where the nodes are algebra operators and data is sent along
the edges. Hence, each query can be transformed to a query tree of algebra
expressions – the topology of the processing graph.

? The research leading to these results has received funding from the Europ. Union
7th Framework Programme FP7/2007-2011 under grant agreement no 296126 and
from the Dept. of the Navy under Grant NICOP N62909-11-1-7065 issued by Office
of Naval Research Global.

281

In order to scale the system horizontally (i.e., executing its parts on multi-
ple processing units concurrently) we may replicate parts (or the whole) of the
query’s topology and execute clones of the operators, i.e., tasks in parallel. The
workload of the system, can then be distributed across several machines in a
compute cluster. We refer to the assignment of tasks to machines as scheduling.

The goal of our approach is to find a schedule (i.e., assignment of tasks to
machines) for a given topology that minimizes the total number of data messages
transferred over the network, whilst maintaining an even workload distribution
across machines in terms of CPU cycles.

Many stream processing platforms attempt to uniformly distribute compute
loads possibly incurring high network traffic. Approaches like Borealis [1] sched-
ule the processors according to the structure of the query, where every operator
is is assigned to one machine. This approach has an upper limit in parallelization
equal to the number of operators and may incur high network traffic between
two machines containing active operators. As Aniello et al. in their recent work
[2], we propose to partition the data, to parallelize the operators, and then to
minimize network traffic allowing for more flexibility for distributing the work-
load. In contrast to previous work, we don’t try to implement a new scheduling
algorithm but much rather make use of existing graph partitioning algorithms to
optimize the amount of data sent between machines.

Hypothesis: Combining data partitioning between tasks with a scheduler
that employs graph partitioning to assign the resulting task instances outperforms
a uniform distribution of data and tasks to machines.

Our hypothesis assumes that different distribution strategies significantly
influence the number of messages sent between the machines.

3 Evaluation and Results
We evaluated our system using two example queries that are built around a real
world streaming use case: SRBench [5], (streams of weather measurements), and
an open government dataset (self-acquired from public sources), which combines
data on public spending in the US with stock ticker data.1 We devised a query
that would highlight (publicly traded) companies, that double their stock price
within 20 days and are/were awarded a government contract in the same time-
frame. The data for both use cases has been converted to and consumed as time
annoated n-triple records.

Procedure First, we partitioned each dataset and compiled the queries into
execution topologies. We then recorded the number of messages that were sent
between tasks at runtime. Second, to test our hypothesis, we needed to partition
the resulting communication graph based on the network load of each chan-
nel. Since the channel loads are not known before running the query we chose
two experimental scenarios. In the first scenario we assume an oracle optimizer
that would know the number of messages that would flow along every channel.
This scenario allows to establish a hypothetical upper bound of quality that our

1 http://www.usaspending.gov, https://wrds-web.wharton.upenn.edu/wrds

282

Fig. 1. Percentage of messages sent over the network for the uniform distribution and
the graph partitioned setup, using either the test data itself (oracle) or data from the
previous one to three time-slices as input for the graph partitioning algorithm.

method could attain, if it were to have an oracle. In a second scenario we assumed
a learning optimizer that first observes channel statistics for a period of time
and then partitions the graph accordingly. To that end we sliced the SRBench
data into daily and the OpenGov data into monthly slices. We then measured
the the performance of our approach based on learning during the preceding one
to three time-slice essentially providing a adaptively learning system.
Third, to partition the graph we employed METIS [3]. We used the gpmetis in its
standard configuration, which creates partitions of equal size, and only changed
the -objtype parameter to instruct METIS to optimize for total communication
volume when partitioning, rather than minimizing on total edgecut.

The Suitability of Graph Partitioning for Scheduling The critical ele-
ment for optimizing the scheduling using graph partitioning is that the operators
can be parallelized with an adequate data partitioning. The results show that us-
ing a graph partitioning algorithm to schedule task instances on machines does
indeed reduce the number of messages sent over the network (Fig 1). We graph
the number of network messages divided by the number of total messages as a
measure for the optimality of the distribution. The SRBench data can be op-
timally partitioned by the id of the reporting weather station even when using
only the data of the immediately preceeding time slice (left side, Prev.1). Once
this task has been achieved, which we got due to the pre-partitioned datasets,
all computation can be managed on a local machine, as no further joins are
necessary. This clearly indicates that some queries can be trivially distributed
when a good data partition is either known or can be learned.

For the OpenGov dataset (right side) the tested join operation requires a
significant redistribution of messages. First, we find that our approach clearly
outperforms the uniform distribution strategy by a factor of two to three. Second,
even longer learning periods, using two (Prev.2) and even three previous time
slices (Prev.3), do not necessarily improve the overall performance - maybe due
to over-fitting or concept drift [4]. We also found that this only leads to a slightly
less even load distribution.

For the SRBench query we observed a reduction in network usage by over
99%. For the OpenGov query, workload distribution using a graph partitioning
approach yields savings in terms of network bandwidth of over 40%.

Balancing Computation Load In order to make good use of the available
resources, a distributed system should assign equal workloads to all machines.

283

Fig. 2. Average computation load distribution for all time-slices of each dataset.
RSD = Relative Standard Deviation

For this reason we analyzed how many messages were processed by all tasks of
each partition for the two queries (Figure 2). The load distribution resulting
from the graph partitioned task assignment only differs slightly from the one
found by uniform task distribution (average relative standard deviation (RSD)
OpenGov : 7.04% for partitioning vs. 5.27% for uniform baseline; SRBench: 3.74%
for partitioning vs. 2.68% for uniform baseline).

The most important shortcomings of our study are its limitation to two
datasets and queries and the fixed setup of the distributed system. For the first we
intend to systematically extend our evaluation in the future in terms of number
of datasets and queries. For the latter, is it the interactions between number of
machines and cores available and the degree of parallelism that require further
research. Especially the impact of such interactions on throughput in terms of
messages ingested per second is of interest here. Future work will also investigate
whether the principle of finding the smallest possible data partition given the
desired degree of parallelism is as important as our experiments indicate.

We are confident that our findings help making DSFP systems more scalable
and ultimately enable reactive systems that are capable of processing billions of
triples or graph fragments per second with a negligible delay. It is our firm belief
that the key to addressing these challenges needs to and will have to be revealed
from the data itself.
Acknowledgements We would like to thank Thomas Hunziker, who wrote the
first prototype of the KATTS system during his master’s thesis in our group.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Hwang, J.h., Lindner, W., Maskey, A.S.,
Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design of the Borealis
Stream Processing Engine. In: Proc. CIDR2005. pp. 277–289 (2005),

2. Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in storm. In:
DEBS2013 (2013),

3. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM J. on Scientific Comp. 20(1), 359–392 (Jan 1998),

4. Vorburger, P., Bernstein, A.: Entropy-based Concept Shift Detection. In: Proc.
ICDM2006. pp. 1113–1118 (2006)

5. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.p.: SRBench : A Streaming RDF
/ SPARQL Benchmark. In: Proc. ISWC 2012 (2012)

284

Semantic Enrichment of Mobile Phone Data Records
Using Linked Open Data

Zolzaya Dashdorj, Luciano Serafini

SKILL, Telecom Italia and DKM, Fondazione Bruno Kessler
University of Trento, ICT International Doctoral School, Trento, Italy

{dashdorj@disi.unitn.it,serafini@fbk.eu}

1 Introduction
Users of mobile (smart) phones, generate an enormous amount of data every day. Most
of them are not accessible due to privacy reason, but anonimized metadata, such as for
instance, the location, the time and the duration of the interaction with the smartphone
are nowadays available for analysis. We address these data as “Call Data Records”
(CDR). CDR metadata constitute an important source of information for investigat-
ing on general human behavior, such as mobility [5, 3, 6], and communication patterns
[9, 2, 4, 1, 8]. Currently, most of the analyses provide a quantitative description of hu-
man behavior, which is presented via visual analytics techniques. The outcome of these
analysis are usually quantitative models estimating for instance, the number of peo-
ple present in a certain area at a certain time, the number of people who moves from
point a to point b within a certain period, and so on. Less interest has been dedicated to
the creation of model that describe human activity at qualitative/semantic level, i.e., in
terms of semantically rich concepts in order to estimate/predict for instance, the actions
performed by a group of people in a certain situation or the type of event is happening
around in a certain location, on the basis of the CDR.

The analyses presented in [11, 10, 1, 5, 3] need to be extended making use of a rel-
evant knowledge of the context of the user. User contextual information includes all
those information describing the objects present and the events happening in the place
and at the time that the user is interacting with his/her smartphone. Contextual informa-
tion includes information about the territory (e.g., points of interests - POIs), weather
conditions, public and private events (e.g., concerts, sport events, public spontaneous
meeting etc) and emergency events (accidents, strikes, etc.), transportation schedule,
energy or water consumption, etc.

In this paper, we propose a first step of investigation developing an ontological
and statistical model (HRBModel) capable to predict the possible human activities in a
certain place and on a certain time on the basis of the contextual information describing
the POI’s of the place and information about the time of the day at which certain actions
are usually performed. POI’s are taken from Openstreetmap1. The model enables early
identification of standard type of hetergenous human activities in various geographical
area profiles and at different times in which CDR occur.

2 Experimental Setup
We are interested in predicting the most probable human activity of a user when he/she
is in a specific geographical area at a given time. We develop our experiment consider-

1 http://www.openstreetmap.org/

285

ing the area of Trento - Italy, but the process and the software is a general enough to be
applicable to any geographical area.

Details about the experiment are described in the following.
We divide the geographical area of the city into sub-divisions in a way that POIs

are uniformly distributed over the subareas (see Figure 1(a)). In each sub area, POIs
are extracted using geographical tools like OSM2PGSQL. We do not consider the POIs
which don’t derive human activities, such as benches, towers, emergency phones, etc.
In total for this city, we extracted 333,809 POIs from the OSM map which cleaned to
159,314.

To annotate the POIs with the human activities, we propose a Human Behavioral
Ontology (HBOnto) that with the help of the OSMOnto ontology[7], associates POIs
with all the human activities that can be performed or hosted there or nearby. The human
activities are hierarchically organized from specific activities to 10 high level categories,
that around 220 human activities. For this association, we take day and time into account
as all the activitiies are connected to a day-time range of validity. A stochastic behavior
model (SBM) we propose that estimates the probability of human activities given the
location and time of an event, on the basis of the ontological model as follow:

P(a|t, l) = P (a|t) ∗ P (a|l) (t, l are independent) (1)

As an initial step, we manually created a fuzzy model for P (a|t) that performs
reasoning on the importance of activities given a time that is estimated as follow:

P(a|t) = FuzzyActivity(a, t)

FuzzyT ime(t)
(2)

P (a|l) is estimated based the importance of the activities given a location using
TF/IDF for the POIs importance that derives a weight to the activities as follow:

tf − idf(f, l) =
N(f, l)

argmax
w
{N(w, l) : w ∈ l}

∗ log |L|
|{l ∈ L : f ∈ l}|

(3)

To avoid the spatial gap, P (a|l) can be extended if we consider the nearby activities
in a given radius r of a circular area around the location.

P (a|l, r) =
argmax

a
{W (a, li) ∗ λi}∑

a∈r
argmax

a
{W (a, li) ∗ λi}

: r
n⋂

i=1

li (4)

We collected the user-data2 through the experiment application described above (
see Figure 1(b)) for one week with 32 partipants involved (see Table 1). It emerged
that most of the user feedback comes from the areas of (Trento-Povo and Trento-
Downtown).

Every user’s feedback is collected in a record containing: the latitude/longitude of
the location selected on the map, the radius of the area, the selected activity (among
top-5 or one freely chosen), the semantic day and time (e.g., weekday, saturday.., early
morning, mid morning.. etc), and the current time of the system.

2 http://dkmlab.fbk.eu:8080/BHRModelTest/data/semantic data BHRModel2013.csv

286

Number of feedback Participants Duration Feedback clusters Feedback in each cluster

481 32 1 week 5
Trento.Nord - 21, Downtown - 180,
Povo - 151, Santa Chiara - 60
Trento.Sud - 67

Feedback on Weekday morning 158, mid day 29, afternoon 59, evening 61, night 28
Feedback on Saturday morning 19, mid day 5, afternoon 33, evening 19, night 8
Feedback on Sunday morning 22, mid day 5, afternoon 25, evening 6, night 4

Table 1: Data collection by user feedback over different locations and times

(a) Geographical area divi-
sions by the density of POIs

(b) Visualization of demonstration app, at
Piazza Duomo on weekday mornings

Fig. 1: Application UI for High level Behavioral Representation Model

3 Preliminary results
Given the collected data, we measured the accuracy of the HRBModel considering the
correctly predicted activities w/regardless of the ranking position. We also analyzed the
divergence of the probability activities comparing to the probability from the feedback
in the areas with the highest number of feedback: Trento-Downtown and Trento-Povo.
The example of the results, Figure 2(a) and 2(b) describe the divergence of the proba-
bility activities that occur in those areas on weekday mornings and afternoons, in which
we propogated the probability activity to the child activities. In these figures, the activ-
ity indexing (x-axis) is different in each area, y-axis is the probability associated to the
activities. The figures show that the probability activities from the user feedback can
still follow the trend of the probability from our model.

4 Conclusion and Future works
Within the 481 users’ feedback collected, 341 activities have been correctly predicted,
corresponding to an overall accuracy of 70.89%. The overall accuracy of a correct activ-
ity prediction (among the top-5) corresponds to 61.95%. We have done the evaluation
considering the high level (parent) activities, the overall accuracy has been increased to
80.23%. We showed the divergence between the probability activities in our model com-
pared to the probability from the feedback by various locations and times that can be
further studied in order to understand the correlation between human activities and con-
texts. We will extend the evaluation of the model making use of mobile phone survey,

287

(a) Trento-Downtown area on weekday
mornings

(b) Trento-Povo area on weekday after-
noons

Fig. 2: Divergence of the activities probability from our model (blue) and from user
feedback (red).

crowd sourcing, and social networks (e.g., twitter, foursquare). The proposed model
will be a baseline to characterize geographical areas by activity of interests in the areas
where CDRs are occurred. This allows identification and prediction of human behav-
iors by various area profiles (e.g., business, shopping, or leisure areas etc) in certain
contextual conditions and detection of anomalous behavioral events.
References

1. B.Furletti, L.Gabrielli, C.Renso, and S.Rinzivillo. Identifying users profiles from mobile
calls habits. In the Proc. of the ACM SIGKDD Int.Workshop on Urban Computing, UrbComp
’12, pages 17–24. ACM, 2012.

2. C.Ratti, S.Sobolevsky, F.Calabrese, C.Andris, J.Reades, M.Martino, R.Claxton, and
S.H.Strogatz. Redrawing the map of great britain from a network of human interactions.
PLoS ONE, 5(12):e14248, 12 2010.

3. F.Calabrese, F.C.Pereira, G.Di Lorenzo, L.Liu, and C.Ratti. The geography of taste: ana-
lyzing cell-phone mobility and social events. In the Proc. of the 8th Intl.Conf. on Pervasive
Computing, Pervasive’10, pages 22–37, 2010.

4. J.Candia, M.C.González, P.Wang, T.Schoenharl, G.Madey, and A.Barabási. Uncovering in-
dividual and collective human dynamics from mobile phone records. Journal of Physics A:
Mathematical and Theoretical, 41(22):224015, June 2008.

5. J.P.Bagrow, D.Wang, and A.Barabási. Collective response of human populations to large-
scale emergencies. CoRR, abs/1106.0560, 2011.

6. M.C.Gonzalez, C.A.Hidalgo, and A.Barabasi. Understanding individual human mobility
patterns. Nature, 453(7196):779–782, June 2008.

7. M.Codescu, G.Horsinka, O.Kutz, T.Mossakowski, and R.Rau. Osmonto - an ontology of
openstreetmap tags. In State of the map Europe (SOTM-EU), 2011.

8. N.Eagle and (Sandy) A.Pentland. Reality mining: sensing complex social systems. Personal
Ubiquitous Comput., 10(4):255–268, March 2006.

9. J. P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, and A. L.
Barabási. Structure and tie strengths in mobile communication networks. Proceedings of the
National Academy of Sciences, 104(18):7332–7336, May 2007.

10. S.Phithakkitnukoon, T.Horanont, G.Di Lorenzo, R.Shibasaki, and C.Ratti. Activity-aware
map: identifying human daily activity pattern using mobile phone data. In the Proc. of the
1st Intl. Conf. Human Behavior Understanding, pages 14–25, 2010.

11. Z.Dashdorj and L.Serafini. Semantic interpretation of mobile phone records exploiting back-
ground knowledge. In Intl.Conf. Semantic Web Conference (ISWC 2013), Doctoral Consor-
tium, 2013.

288

	iswc2013_front
	iswc2013_toc
	partI
	iswc2013_all
	iswc_demo_1
	iswc_demo_2
	iswc_demo_3
	iswc_demo_4
	Demonstrating The Entity Registry System: Implementing 5-Star Linked Data Without the Web

	iswc_demo_5
	NoHR: Querying EL with Non-monotonic rules

	iswc_demo_6
	A Search Interface for Researchers to Explore Affinities in a Linked Data Knowledge Base
	Introduction
	Real-time Keyword Disambiguation
	Exploring Resources
	Visualizing Relations between Resources
	Conclusions
	Acknowledgement

	iswc_demo_7
	iswc_demo_8
	iswc_demo_9
	iswc_demo_10
	iswc_demo_11
	iswc_demo_12
	iswc_demo_13
	Comparing ontologies with ecco

	iswc_demo_14
	Linked Scientometrics: Designing Interactive Scientometrics with Linked Data and Semantic Web Reasoning

	iswc_demo_15
	iswc_demo_16
	Curating Semantic Linked Open Datasets for Software Engineering
	Introduction
	Creating the Semantic LOD on Information Technology: LOaD-IT
	Filtering Existing Datasets
	Extracting triples from technical documentation

	Kappa: The LOaD-IT Retrieval Engine
	Example Scenarios
	Conclusion and Future Work

	iswc_demo_17
	 Optique 1.0: Semantic Access to Big Data

	iswc_demo_18
	iswc_demo_19
	Demo: Swip, a Semantic Web Interface using Patterns

	iswc_demo_20
	iswc_demo_21
	Monitoring the Status of SPARQL Endpoints

	iswc_demo_22
	iswc_demo_23
	DRETa: Extracting RDF from Wikitables

	iswc_demo_24
	iswc_demo_25
	iswc_demo_26
	Editing R2RML Mappings Made Easy.

	iswc_demo_27
	iswc_demo_28
	iswc_demo_29
	iswc_demo_30
	iswc_demo_31
	iswc_demo_32
	iswc_demo_33
	iswc_demo_34
	iswc_demo_35
	iswc_demo_36
	iswc_demo_37
	iswc_demo_38
	A Machine Reader for the Semantic Web

	iswc_demo_39
	iswc_demo_40
	iswc_demo_41
	iswc_demo_42
	A user interface to build interactive visualizations for the semantic web

	iswc_demo_43
	iswc_demo_44
	iswc_demo_45
	SexTant: Visualizing Time-Evolving Linked Geospatial Data

	iswc_poster_1
	iswc_poster_2
	iswc_poster_3
	iswc_poster_4
	On the Semantics of R2RML and its Relationship with the Direct Mapping

	iswc_poster_5
	An FCA Framework for Knowledge Discovery in SPARQL Query Answers

	iswc_poster_6
	A Study on the Correspondence between FCA and ELI Ontologies

	iswc_poster_7
	iswc_poster_8
	iswc_poster_9
	iswc_poster_10
	Adding Time to Linked Data: A Generic Memento proxy through prov

	iswc_poster_11
	Distributed SPARQL Throughput Increase: On the effectiveness of Workload-driven RDF partitioning

	iswc_poster_12
	 Pay-as-you-go Matching of Relational Schemata to OWL Ontologies With IncMap

	iswc_poster_13
	iswc_poster_14
	iswc_poster_15
	iswc_poster_16
	iswc_poster_17
	iswc_poster_18
	iswc_poster_19
	iswc_poster_20
	iswc_poster_21
	iswc_poster_22
	iswc_poster_23
	iswc_poster_24
	Towards the Natural Ontology of Wikipedia

	iswc_poster_25
	The Empirical Robustness of Description Logic Classification

	iswc_poster_26
	iswc_poster_27

