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Université Claude Bernard Lyon 1, France

{samir.amir,hassan.ait-kaci}@univ-lyon1.fr

Abstract. Taxonomy classification and query answering are the core
reasoning services provided by most of the Semantic Web (SW) rea-
soners. However, the algorithms used by those reasoners are based on
Tableau method or Rules. These well-known methods in the literature
have already shown their limitations for large-scale reasoning. In this
demonstration, we shall present the CEDAR system for classifying and
reasoning on very large taxonomies using a technique based on lattice
operations. This technique makes the CEDAR reasoner perform on par
with the best systems for concept classification and several orders-of-
magnitude more efficiently in terms of response time for query-answering.
The experiments were carried out using very large taxonomies (Wikipedia:
111599 sorts, MESH: 286381 sorts, NCBI: 903617 sorts and Biomodels:
182651 sorts).1 The results achieved by CEDAR were compared to those
obtained by well-known Semantic Web reasoners, namely FaCT++, Pel-
let, HermiT, TrOWL, SnoRocket and RacerPro.
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1 Introduction

The demo will demonstrate how an implementation of a system based on lattice
operations can be used for taxonomic reasoning in a robust and scalable way.
Indeed, this challenge was defined on the frame of CEDAR project. 2 CEDAR
system is a Boolean reasoner that can support a huge amount of sorts with-
out any noticeable degradation of query evaluation performance. The essential
technique we used for implementing the CEDAR reasoner is based on bit-vector
encoding. This method was proposed over 20 years ago for implementing efficient
lattice operations [1]. Since the common aspect of all Semantic Web reasoning
systems is the representation and processing of taxonomic data, we implemented
a taxonomic concept classification and Boolean query-answering system based

1 We use “sort” as a synonym of atomic “class” or “concept.” In other words, sorts
are partially ordered symbols.

2 Constraint Event-Driven Automated Reasoning—http://cedar.liris.cnrs.fr



on the method described above. We made measurements over several very large
taxonomies under the exact same conditions for so-called TBox reasoning. A
comparative evaluation was conducted to assess the performance of CEDAR over
the mentioned systems which have been implemented by using OWL-API. 3 In
terms of query-answering response time, CEDAR is several orders-of-magnitude
more efficient than that of the best existing SW reasoning systems.

2 Lattice Operations for Taxonomic Reasoning

The CEDAR reasoner is an implementation in Java of the technique described
as bottom-up transitive-closure encoding in [1]. This technique consists in rep-
resenting the elements of a taxonomy (an arbitrary poset) as bit vectors. Thus,
each element has a code (a bit vector) carrying a “1” in the position correspond-
ing to the index of any other elements that it subsumes. In this manner, the
three Boolean operations on sorts are readily and efficiently performed as their
corresponding operations on bit-vectors. This is possible if the bit-vectors encod-
ing the sorts comprising a taxonomy are obtained by computing the reflexive-
transitive closure of the ”is-a” relation derived from the subsort declarations.

3 Demonstration

The demo will show how CEDAR differs from existing and known reasoners in
terms of classification (Figures 1 and 2) and query answering (Figures 3 and
4) where it is several orders-of-magnitude more efficient than other reasoners.
Developed software integrates six other reasoners to provide a comparison with
CEDAR (HermiT [4], FaCT++ [7], RacerPro [2], TrOWL [6], Pellet [5] and
SnoRocket [3] all of which use the OWL-API interface). The proposed structure
of the demonstration is the following:

– Classification performance using very large taxonomies as Wikipedia4 (111599
sorts), NCBI5(903617 sorts), MESH6 (286381 sorts) and Biomodels7 (182651
sorts). The demo will show the results illustrated in Figures 1 and 2 where
CEDAR is always among the best three out of six reasoners.

– Query Answering using boolean queries (and, or and not) involving a large
number of concepts (up to 100 concepts). The obtained results will be com-
pared with those of traditional reasoners as shown in Figures 3 and 4.

– Saving and reusing an encoded taxonomy. With CEDAR, there is no need to
perform a classification each time. A classified taxonomy can be saved and
reused.

– Detecting Cycles: We will show how to detect cycles in taxonomies, which
are a particular case of inconsistency resulting from modeling errors.

3 http://owlapi.sourceforge.net
4 http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php
5 http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
6 http://www.nlm.nih.gov/mesh/meshhome.html
7 https://code.google.com/p/sbmlharvester/
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Fig. 1. Classification time per reasoner for the Wikipedia and MeSH taxonomies
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Fig. 2. Classification time per reasoner for the Biomodels and NCBI taxonomies
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Fig. 3. Query response time per reasoner for the Wikipedia taxonomy
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Fig. 4. Query response time per reasoner for the MESH taxonomy
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The authors wish to thank Mohand-Säıd Hacid for his comments. This work was car-

ried out as part of the CEDAR Project (Constraint Event-Driven Automated Reason-

ing) under the Agence Nationale de la Recherche (ANR) Chair of Excellence grant

No ANR-12-CHEX-0003-01 at the Université Claude Bernard Lyon 1.
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