
Know Thy Source Code

Is it mostly dead or alive?

Vladimir Markovets
Institute of Informatics
University of Warsaw

v.markovets@uw.edu.pl

Robert Dąbrowski
Institute of Informatics
University of Warsaw

r.dabrowski@mimuw.edu.pl

Grzegorz Timoszuk
Institute of Informatics
University of Warsaw

g.timoszuk@mimuw.edu.pl

Krzysztof Stencel
Institute of Informatics
University of Warsaw

stencel@mimuw.edu.pl

ABSTRACT
Nowadays, even small systems contain numerous compo-
nents with complex dependencies. These components differ
in importance and quality. Some of them get deprecated
over time and can be removed from the project. This leads
to the question relevant for all architects: which parts of
my source code are still alive? To answer this question we
harness the graph-based model of software. We perform a
dynamic analysis of internal behaviour of components by
eardropping the control flow. We then augment the graph
model of the system with the results of this analysis and
visualize it. We render execution paths over the nodes and
their connections. The vividness of colours reflects the fre-
quency of calls. This visualization helps judging at a glance
which parts of software remained unvisited during software
execution. Probably those parts are actually dead, thus
should absorb little further maintenance, if any. In this pa-
per we describe proof-of-concept tools to support this ap-
proach and report results of analysis of selected open-source
Java projects of various sizes.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.7 [Software Engineering]: Maintainability—mainte-
nance management,measurement

Keywords
architecture, run-time analysis, execution

1. INTRODUCTION
The complexity of software systems and their development
processes has rapidly grown in recent years. For many sys-
tems their architectures have actually become hardly man-
ageable. On the other hand development is performed by

teams that change over time, work under pressure, with in-
complete documentation and continually changing require-
ments. Multiple development technologies, programming
languages, coding standards, partial releases make this sit-
uation even more severe. To ensure that this environment
remains predictable, the role of software architects has been
introduced. They are obliged to control the whole source
code. One of the missions of software engineering is to help
them in their efforts.

In our research we focus on assessment, comprehension and
analysis of software architectures. As one of the research
tasks we address the question frequently asked by architects:
which parts of my source code are still alive? In this paper
we demonstrate our vision of how to address this question. It
can be summarized as follows. All software system artefacts
and all software engineering process artefacts created during
a software project are explicitly organized in an architecture
warehouse [3] as vertices of a graph connected by multiple
edges that represent numerous kinds of dependencies among
those artefacts.

Graphs can be visualised using well-known drawing tech-
niques and algorithms. We employ those techniques and
extend them to visualise relative importance of components
by the size of nodes, quality of components by colours and
the coupling of components by the density of the connections
[4, 5, 6]. In particular, a more important node is rendered
as a bigger dot. Currently, we measure importance of com-
ponents using PageRank. However, it can be substituted
by any other metric. We use green to mark components
of good quality, while red indicates poor quality. We mea-
sure quality using CodePro Analytix toolset [10]. As with
importance, also the quality measure can be arbitrarily cho-
sen. We depict complexity of the source code by explicitly
showing static dependencies among the components. We
also eardrop software execution and collect information on
dynamic dependencies among the components. We portray
runtime calls using yellow edges. Their thickness represents
the frequency of calls. We capture logs of software execution
using Kieker [20]. Nevertheless, we can use any other run-
time monitoring framework that is aware of software internal
representation.

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

128

The paper is organised as follows. In Section 2 we address
the related work. In Section 3 we recall the graph-based
model for representing architectural knowledge. In Section
4 we present results and possible extensions. Section 5 con-
cludes.

2. MOTIVATION AND RELATED WORK
The idea described in this paper has been contributed to by
several existing approaches and practices.

Multiple graph-based models have been proposed to reflect
architectural facets, e.g. to represent architectural decisions
and changes [21], to discover implicit knowledge from archi-
tecture change logs [19] or support architecture analysis and
tracing [2]. Graph-based models have also become helpful
in UML model transformations, especially in model driven
development (MDD) [7]. Automated transition (e.g. from
use cases to activity diagrams) have been considered [13],
along with additional traceabilities that could be established
through automated transformation, e.g. relate requirements
to design decisions and test cases. An approach to automat-
ically generate activity diagrams from use cases while es-
tablishing traceability links has already been implemented
(RAVEN).

Architectural knowledge can also be extended by data gath-
ered during software executions [20]. Aspects of tracing ar-
chitectural decision to requirements has been thoroughly in-
vestigated in [1, 18, 8]. Analysis on gathering, managing
and verifying architectural knowledge has been conducted
and presented in [12]. Changes made in architecture man-
agement during last twenty years has been summarised in
the survey [9].

Visualization of software architecture has been a research
goal for years. Tools like Bauhaus [11], Source Viewer 3D
[15], JIVE [17], code smarm [16] and StarGate [14] are in-
teresting attempts in visualization. However none of them
simultaneously supports aggregation (e.g. package views),
drill-down, picturing the code quality and dependencies. More-
over, all of them are significantly more complex when com-
pared to our proposal.

3. GRAPH MODEL
We recall the theoretical model [4] for unified representation
of architectural knowledge. Definition of the model is based
on directed labelled multigraph. According to the model,
the software architecture graph is an ordered triple (V,L, E)
where V is the set of vertices that reflect all artifacts created
during a software project, E ⊆ V × L × V is the set of di-
rected edges that represent dependencies (relations) among
those artifacts, and L is the set of labels which qualify the
artifacts and their dependencies. There can be more than
one edge from one vertex to another vertex (multigraph), as
artifacts can be in more than one relation. The relations are
typically not reflexive (the graph is directed). Vertices of the
project graph are created when artifacts are produced during
software development process. By default vertices represent
parts of the source code, like: modules, classes, methods,
tests (e.g. unit tests, integration tests, stress tests). Other
examples of vertices are: documents (e.g. requirements, use
cases, change requests), coding guidelines, source codes in
higher level languages (e.g. yacc grammars), configuration

files, make files or build recipes, tickets in issue tracking
systems etc.

Our graph model is general and scalable, fits both small and
huge projects, and has been tested in practice [5]. The tests
proved that in case of a large project it becomes too complex
to be human-tractable as a whole. This has confirmed that
some rules for graph transformation are a must, since soft-
ware architects are interested both in an overall (top-level)
picture and in particular (low-level) details, e.g. in details
that satisfy some additional restrictions.

Intuitions for such transformations are e.g.: return the sub-
graph including only methods that call the given method;
return the subgraph of all public methods for the given class
(either including or excluding inherited ones). Obviously, in
the graph model the queries that compute such transforma-
tions are computationally inexpensive, as usually they only
need to traverse the graph (or even its small fraction).

4. MAIN RESULT
In this Section we describe two possible scenarios of dynamic
analysis to identify dead code. We discuss experimental re-
sults gathered for two projects: JUnit and JLoxim. JUnit
is a well known Java library. JLoxim is an experimental
semi-structured database system.

We focus on dynamic analysis of software conducted in two
types of scenarios: (1) running software tests (test suites
for unit tests, integration tests, etc.); (2) observing produc-
tion execution of a software system. Data gathered during
different scenarios vary and have different purpose.

4.1 Software testing
Dynamically gathered information during tests helps under-
standing how the control is passed among software artefacts.
We can assess method coverage, not only metrics of coverage
in terms of lines of code. The method coverage is impor-
tant especially in case of integration testing. Our approach
works well in case of properly defined testing scenarios. The
method coverage empowered by statically gathered infor-
mation (including artefact’s importance and quality) helps
architects judging if the most important (big dots) or vulner-
able (red dots) artefacts are properly tested. Dynamically
gathered data also reveals connections of artefacts that are
impossible or extremely hard to discover during static analy-
sis. In particular, for software systems relying on reflection,
inversion of control or aspect oriented programming dynamic
analysis is crucial for proper assessment of software architec-
ture. The dynamic analysis of control flow may also reveal
prohibited actions e.g. references to forbidden modules in-
troduced by reflection mechanism.

4.2 Software execution
Data gathered during dynamic analysis of program runtime
helps identifying artefacts and flows heavily used in real-life
program execution. Although certain scenarios are theoret-
ically possible and worth considering, they may never occur
in practice. Dynamic data combined with information about
importance and quality precisely points the parts of the soft-
ware that are most crucial. For example, frequently used im-
portant modules of poor quality require immediate attention

129

Figure 1: The visualisations of data on JUnit col-
lected by static analysis only and by both static and
dynamic analyses

of the software architect. It may also help new developers
understanding the system they begin to work with. More-
over, regular snapshots of dynamic analyses may be helpful
during identification of software usage schemata that change
over time. For example, they can help understanding system
performance degradation or identifying bottlenecks.

4.3 Results of experiments
In this Section we describe the results of experiments. We
analysed two systems statically and dynamically. We gener-
ated software visualisations that helped quickly finding the
dead code. We present two cases: (1) JUnit with dynamic
analysis gathered during software testing, and (2) JLoxim
with dynamic analysis gathered during software execution.
We visualise packages and classes with relations between
them. Red edges present containment of packages. Grey
edges are import relations. Yellow edges correspond to calls
between artefacts. Thick lines mark places where heavy
communication takes place.

4.3.1 JUnit
Figure 1 presents two states of the architecture warehouse
on JUnit. The picture on the left contains data discovered
during static analysis only. The picture on the right is the
result of adding data from dynamic analysis of a run of the
internal Junit test suite. The data from dynamic analysis
reveals new dependencies. This is in line with the conclusion
that can be drawn after careful analysis of the source code—
JUnit relies strongly on reflection. Moreover, the project
as a whole has good quality (no big red dots). There is a
medium size red dot in the centre-right part of the right
picture in Figure 1. This artefact should be analysed in
detail by the software architect as it is frequently used. On
the other hand, there are red dots in left part of the picture
that are practically never used during systematic tests. They
are suspects of being dead. Finally we see that most of
packages use each other. In case of a small project like JUnit
this is not a severe problem. However, in case of a big project
this property should draw attention of the software architect.

4.3.2 JLoxim
Figure 2 presents the data gathered using static analysis of
JLoxim. Figure 3 shows the same data augmented by data
collected during a sample production execution of JLoxim.
There is significantly less connections between modules in

Figure 2: The visualisation of data on JLoxim col-
lected by static analysis only

Figure 3: The visualisation of data on JLoxim col-
lected by both static and dynamic analyses

130

comparison with JUnit. This leads to a conclusion that
JLoxim is properly modularised. On the other hand, Fig-
ure 3 shows that the query execution relies on packages hav-
ing poor quality. Additionally, there are many connections
in a small part of the system (observe the central part of
Figure 3). There are multiple yellow lines there that indi-
cate many calls. This should be a clear hint for the software
architect that the query processing module needs more at-
tention and probably requires refactorisation. Moreover, we
notice that poor quality packages frequently use one another.

5. CONCLUSION
In this paper we focused on evaluating how data gathered
during dynamic analysis of a software system influences the
assessment of its architecture. In our methodology we em-
ploy the architecture warehouse that contains knowledge on
artefacts and their relationships gathered during static anal-
ysis of the source code. We augment that data by including
information about calls that actually took place during run-
time. More precisely, we record the number of observed
calls between artefacts. This has proven helpful in further
analysis. Eventually, we visualize the data collected in the
software architecture warehouse. This allows architects and
developers quickly assessing and comprehending the soft-
ware architecture.

In particular, such information and visualisations facilitate
quick assessment of unused parts of the source code. It may
concern both the test execution and the production exe-
cution. In general, our method of visualisation becomes
especially handy in case of a software that performs mul-
tiple actions as side effects, and in case of a large software
system. For such architectures, clear presentation of infor-
mation about dynamics of calls becomes a must. We use
sizes of nodes to depict importance, the colour of nodes to
show quality, and the thickness of connections to render the
frequency of calls observed at the runtime.

Experiments conducted using this approach are promising.
We plan to perform additional evaluation using different
projects, both with respect to test coverage and productive
execution. As the result of such experiments new features
useful for architects will certainly arise.

6. REFERENCES
[1] P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and

I. Mistŕık, editors. Relating Software Requirements
and Architectures. Springer, 2011.

[2] H. P. Breivold, I. Crnkovic, and M. Larsson. Software
architecture evolution through evolvability analysis.
Journal of Systems and Software, 85(11):2574–2592,
2012.

[3] R. Dabrowski. On architecture warehouses and
software intelligence. In T.-H. Kim, Y.-H. Lee, and
W.-C. Fang, editors, FGIT, volume 7709 of Lecture
Notes in Computer Science, pages 251–262. Springer,
2012.

[4] R. Dabrowski, K. Stencel, and G. Timoszuk. Software
is a directed multigraph. In I. Crnkovic, V. Gruhn, and
M. Book, editors, ECSA, volume 6903 of Lecture Notes
in Computer Science, pages 360–369. Springer, 2011.

[5] R. Dabrowski, K. Stencel, and G. Timoszuk.

Improving software quality by improving architecture
management. In B. Rachev and A. Smrikarov, editors,
CompSysTech, pages 208–215. ACM, 2012.

[6] R. Dabrowski, K. Stencel, and G. Timoszuk. One
graph to rule them all - software measurment and
management. In L. Popova-Zeugmann, editor, CS&P,
volume 928 of CEUR Workshop Proceedings, pages
79–90. CEUR-WS.org, 2012.

[7] J. Derrick and H. Wehrheim. Model transformations
across views. Sci. Comput. Program., 75(3):192–210,
2010.

[8] A. Egyed and P. Grünbacher. Automating
requirements traceability: Beyond the record & replay
paradigm. In ASE, pages 163–171. IEEE Computer
Society, 2002.

[9] D. Garlan and M. Shaw. Software architecture:
reflections on an evolving discipline. In T. Gyimóthy
and A. Zeller, editors, SIGSOFT FSE, page 2. ACM,
2011.

[10] Google. CodePro Analytix. https://developers.
google.com/java-dev-tools/codepro/doc/.

[11] R. Koschke. Software visualization for reverse
engineering. In S. Diehl, editor, Software
Visualization, volume 2269 of Lecture Notes in
Computer Science, pages 138–150. Springer, 2001.

[12] P. Kruchten. Where did all this good architectural
knowledge go? In M. A. Babar and I. Gorton, editors,
ECSA, volume 6285 of Lecture Notes in Computer
Science, pages 5–6. Springer, 2010.

[13] T. Kühne, B. Selic, M.-P. Gervais, and F. Terrier,
editors. Modelling Foundations and Applications, 6th
European Conference, ECMFA 2010, Paris, France,
June 15-18, 2010. Proceedings, volume 6138 of Lecture
Notes in Computer Science. Springer, 2010.

[14] K.-L. Ma. Stargate: A unified, interactive
visualization of software projects. In PacificVis, pages
191–198. IEEE, 2008.

[15] J. I. Maletic, A. Marcus, and L. Feng. Source viewer
3d (sv3d) - a framework for software visualization. In
L. A. Clarke, L. Dillon, and W. F. Tichy, editors,
ICSE, pages 812–813. IEEE Computer Society, 2003.

[16] M. Ogawa and K.-L. Ma. code swarm: A design study
in organic software visualization. IEEE Trans. Vis.
Comput. Graph., 15(6):1097–1104, 2009.

[17] S. P. Reiss. Dynamic detection and visualization of
software phases. ACM SIGSOFT Software
Engineering Notes, 30(4):1–6, 2005.

[18] G. Spanoudakis and A. Zisman. Software traceability:
a roadmap. Handbook of Software Engineering and
Knowledge Engineering, 3:395–428, 2005.

[19] A. Tang, P. Liang, and H. van Vliet. Software
architecture documentation: The road ahead. In
WICSA, pages 252–255, 2011.

[20] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
a framework for application performance monitoring
and dynamic software analysis. In D. R. Kaeli,
J. Rolia, L. K. John, and D. Krishnamurthy, editors,
ICPE, pages 247–248. ACM, 2012.

[21] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A
graph based architectural (re)configuration language.
In ESEC / SIGSOFT FSE, pages 21–32, 2001.

131

