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ABSTRACT 
Social Networks are becoming increasingly popular in our daily 
communication and rapid developments in data gathering 
technology have led to large amounts of data that are available 
from users’ interactions. On the other side, the complexity of 
analyzing social interactions is not related only to the size of the 
network to be analyzed, but also to the nature of the interactions. 
One of the most important tasks in analyzing social networks is 
the user profiling (or clustering) which makes possible to design 
customized marketing strategies based on the type of the user. A 
user falling under a certain profile could then target with the same 
products used for other users in the same group. In this context, it 
is important to develop approaches that are able to efficiently and 
effectively profile users based on their interactions with other 
users. Machine learning methods have shown the capability to 
automatically discover patterns from data even in scenarios where 
complex relationships holds. In this paper, we show through 
experiments how machine learning algorithms can be effectively 
used to produce accurate profiling of real-world social network 
users. We show that users can be clustered in groups and that 
interesting patterns can be discovered among users not directly 
linked with decision tree learning. 
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1. INTRODUCTION 
Social Network Mining (SNM) is a rapidly growing field that is 
increasingly receiving much attention in both the communities of 
data mining and in marketing and business strategies [1]. The 
main goal of this scientific area is the study of relationships 
between individuals regarding their social position, the analysis of 
their roles, the discovery of social structures and many other 
issues related to social behavior. The relationships between 
individuals have been cast as links in huge networks and these 
have been traditionally constructed based on interviews and 
responses given by social actors. However this has always led to 
limited scalability of the analysis due to the lack of an 
infrastructure where interaction logs could be produced and 

saved. After this an automated approach could then be used for 
data collection from the interactions between individuals. 

Recently, SNM has intensively evolved into an outstanding 
area not only in social sciences but also in computer science, due 
to the success of online social networking and media-sharing 
sites, and moreover, due to the availability of large repositories of 
social network data. With the rapid development of Internet and 
Web 2.0, SNM has gained even more importance which is mainly 
due to the combination between social media sites and social 
networks. The more these two combine and merge with each 
other, the more individuals have additional alternative ways to 
connect and build online relationships among them. Online social 
networks have boosted the capability to collect data as shown by 
the growing number of individuals interacting in large scale 
online social network platforms such as Facebook, LinkedIn, 
Flickr, Instant Messenger, etc. With the amount of data coming 
from these platforms, SNM is even more powerful because large 
scale networks of social entities can yield patterns that are 
normally not observed in small networks. With millions or even 
more actors in a network, it is now possible to discover patterns 
that can have a valuable business usage. 

Machine Learning and Data Mining have long dealt with the 
problem of inferring models for classification in many application 
domains [16, 17]. With the fast growing amount of available data, 
however, the capability of traditional approaches to learn useful 
models has reached the limit. Large environments are 
continuously posing new challenges to learning algorithms which 
have now to take into consideration the presence of many entities 
distributed in large systems. The possibility to involve in the 
learning process huge collections of documents and large 
databases, has led to new opportunities for discovering important 
relationships among apparently distant entities, but at the same 
time, has raised performance issues that the current machine 
learning methods have to deal with. 

On the other side, the advantage of large amounts of data that 
can help to perform a thorough analysis comes together with a 
cost, which is the incapability of classical traditional machine 
learning and data mining methods to deal with this new scenario. 
This has given rise to challenges that are not only related to 
computational complexity, but also to the core methodological 
approaches of the learning and mining algorithms. These have to 
be redesigned under the new perspective of the online social 
networking data. With the algorithmic solutions developed in the 
machine learning and data mining areas, it is strongly related a set 
applications in online social networks. For this reason, it is 
essential for practitioners in the field of SNM, to understand the 
computational challenges that lie behind the analysis of social 
networks. 

One of the applications in online social networks is the 
precise targeting of users based on their relationships with other 
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users. This process can be cast as a profiling process where users 
are partitioned into profiles. Each of these profiles identifies a 
certain category of users sharing common features. From a 
marketing point of view, this outcome can be used to design 
campaigns that can benefit from knowing which users fall in the 
same group. Based on this, products chosen by a user may 
probably be chosen by users belonging to the same group. In 
machine learning this task can be seen as clustering of instances 
where every instance is a user. In this paper, we show how 
clustering can be useful in large online social networks, by 
experimenting clustering algorithms such as the Expectation-
Maximization algorithm on real world data extracted from the hi5 
social network. We show that users apparently not related to each 
other, fall under the same group based on links with other 
common users. 

In addition to clustering, marketing in social networks can 
benefit from predicting which user may be indirectly connected 
with another user from the point of view of social relationships 
even though there is no direct friendship among these users. In 
this case, we may apply machine learning algorithms that extract 
rules that express relationships among users. Since decision trees 
have been a successful machine learning algorithm applied to 
many tasks, we decided to apply this algorithm to data coming 
from the real world social network Hi5 to see whether interesting 
rules can be discovered regarding the relationship among users. 
We found that through this strategy, interesting patterns can be 
discovered that can later be used for marketing purposes. 

The paper is organized as follows: Section 2 discusses social 
network mining and related work with interesting applications of 
machine learning and data mining algorithms to the task of 
analyzing these networks; Section 3 discusses clustering as a 
machine learning technique, and in particular it introduces the EM 
algorithm which is the one used in the experiments; Section 4 
presents a brief introduction to decision tree learning; Section 5 
presents the experimental setting and the results; Section 6 
presents the experimental evaluation and we conclude in Section 
7. 
 

2. SOCIAL NETWORK MINING 
Recently, a growing amount of effort in the data mining 
community has been dedicated to analyzing social networks. We 
review here some main approaches that have been developed 
recently. 

One of the main problems in social network mining is 
community structure discovery. Targeting customers in an 
appropriate and customized approach has a long history in 
economics, statistics and marketing. In a business intelligence 
effort towards solving this problem, an important problem has 
been grouping or clustering of customers. In the context of social 
networks, actors in a social network form groups and the task of 
community structure discovery is to identify these communities 
through the study of network structures and topology. In other 
words, the challenge is to find groups of users for which, the set 
of edges is dense within the group and sparse outside the group. 
Social networks are usually characterized by a strong community 
effect. This means that in a group of people, these tend to interact 
with each other more than with people outside the group. A 
quantitative measure of the community effect is transitivity, that 
simplified, takes the form that friends of a friend are very likely to 
be also friends. An interesting coefficient is the proposed 

approach to measure the transitivity as the probability of 
connections between one vertex's neighboring friends [3].  

For real social networks, computing the global clustering 
coefficient can become computationally intractable if we rely on 
exact counting. The exact counting of triangles has been shown to 
be computationally very expensive [4, 5]. Other approaches base 
the counting on approximations such as the work presented in [6]. 
Recently in [7] the authors presented a label propagation 
approach to community structure discovery. They introduce a 
semi–synchronous version of label propagation algorithms which 
aims to combine the advantages of both synchronous and 
asynchronous models. The authors prove that the proposed 
models always converge to a stable labeling. Moreover, the 
authors experimentally investigate the effectiveness of the 
proposed strategy comparing its performance with the 
asynchronous model both in terms of quality, efficiency and 
stability. Tests show that the proposed protocol does not harm the 
quality of the partitioning. Moreover it is quite efficient; each 
propagation step is extremely parallelizable and it is more stable 
than the asynchronous model, thanks to the fact that only a small 
amount of randomization is used by the proposed approach. 

Another interesting problem is social network evolution 
which is an interesting and challenging task in machine learning. 
This task is mainly concerned with modeling and often 
discovering the dynamics of the social graph. An interesting work 
in this direction is the one presented in [8] where the authors 
present a detailed study of network evolution by analyzing four 
large online social networks. They exploit the full temporal 
information about node and edge arrivals. This study performed 
for the first time at a large scale, involves the analysis of 
individual node arrival and edge creation processes that jointly 
lead to macroscopic properties of networks. The authors, using a 
methodology based on maximum-likelihood, perform a thorough 
investigation of a wide variety of network formation strategies, 
and showed that edge locality plays a critical role in evolution of 
networks. The discovered patterns supplement earlier network 
models based on the inherently non-local preferential attachment. 
In addition, based on their observations, the authors develop a 
complete model of network evolution, where nodes arrive at a 
prespecified rate and select their lifetimes. The authors also show 
analytically that the combination of the gap distribution with the 
node lifetime leads to a power law out-degree distribution that 
accurately reflects the true network in all four cases. 

Social interactions that occur regularly will typically 
correspond to significant yet often infrequent and hard to detect 
interaction patterns. To identify such regular behavior, the authors 
in [9] propose a new mining problem of finding periodic or near 
periodic subgraphs in dynamic social networks where scalability 
is also a major issue. They propose a practical, efficient and 
scalable algorithm to find such subgraphs that takes imperfect 
periodicity into account and demonstrate the applicability of their 
approach on several real-world networks and extract meaningful 
and interesting periodic interaction patterns. 

Social networks often involve multiple relations 
simultaneously. People usually construct an explicit social 
network by adding each other as friends, but they can also build 
implicit social networks through daily actions like commenting on 
posts, or tagging photos. In [10] it is addressed this problem: 
given a real social networking system which changes over time, 
do daily interactions follow any pattern? The authors model the 
formation and co-evolution of multi-modal networks proposing an 
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approach that discovers temporal patterns in social interactions. 
They show the effectiveness of the approach on two real datasets 
(Nokia FriendView and Flickr) with 100,000 and 50,000,000 
records respectively, each of which corresponds to a different 
social service, and spans up to two years of activity. 

A very challenging task in dynamic social networks is link 
prediction. Interesting recent research has been dedicated to the 
link prediction task which is complex due to the inherent 
skewness of network data. Link prediction methods can be 
categorized as either local or global. Local methods consider the 
link structure in the immediate neighborhood of a node pair, 
whereas global methods utilize information from the whole 
network. An interesting approach is community (cluster) level link 
prediction method without the need to explicitly identify the 
communities in a network. This approach is presented in [11] 
where the authors define a variable-cost loss function to address 
the data skewness problem. They provide theoretical proof that 
shows the equivalence between maximizing the well-known 
modularity measure used in community detection and minimizing 
a special case of the proposed loss function. They design a 
boosting algorithm to minimize the loss function and present an 
approach to scale-up the algorithm by decomposing the network 
into smaller partitions and aggregating the weak learners 
constructed from each partition. The authors empirically evaluate 
the proposed algorithm by evaluating it on 4 real-world network 
datasets. 

In a recent approach [12], the authors proposed a new 
method for characterizing the dynamics of complex networks with 
an application to the link prediction problem. The approach 
proposed is based on the discovery of network sub graphs (triads 
of nodes) and measuring their transitions during network 
evolution. The authors define the Triad Transition Matrix (TTM) 
containing the probabilities of transitions between triads found in 
the network, then they show how it can help to discover and 
quantify the dynamic patterns of network evolution. They also 
propose the application of TTM to link prediction with an 
algorithm (called TTM-predictor) which shows good 
performance, especially for sparse networks analyzed in short time 
scales. 

Modeling event propagation is another important challenge 
in social networks. Handling this task appropriately leads to 
interesting applications for viral marketing. In [13], the authors 
propose a scalable framework for modeling competitive diffusion 
in social networks. In social networks, multiple phenomena often 
diffuse in competition with one another. Applications of this kind 
include, for instance, eventual results from multiple competing 
diffusion models (e.g. what is the likely number of sales of a given 
product). The authors in [13] define the most probable 
interpretation (MPI) problem which technically formalizes this 
need. They develop algorithms to efficiently solve MPI and show 
experimentally that their algorithms work on graphs with millions 
of vertices. 

A very challenging task in online social networks is the 
discovery of the diffusion paths and the evolutionary process of a 
topic. Unlike explicit user behavior (e.g., buying a book) both 
these are implicit. An interesting approach has been recently 
proposed in [14] where the authors track the evolution of an 
arbitrary topic and reveal the latent diffusion paths of that topic in 
a social community. The proposed approach is based on a novel 
and principled probabilistic model which casts the task as a joint 
inference problem that considers textual documents, social 
influences, and topic evolution in a unified way. A Gaussian 
Markov Random Field is introduced to model the whole diffusion 

process. Experiments on both synthetic data and real world data 
show that the discovery of topic diffusion and evolution benefits 
from this joint inference, and the probabilistic model proposed 
performs significantly better than existing methods. 

Another approach is presented in [15], where the authors 
develop techniques for identifying and modeling the interactions 
between social influence and selection, using data from online 
communities where both social interaction and changes in 
behavior over time can be measured. They find clear feedback 
effects between the two factors and there is a rising similarity 
between two individuals serving, in aggregate, as an indicator of 
future interaction. The results show that similarity continues to 
increase steadily, although at a slower rate, for long periods after 
initial interactions. The authors also consider the relative value of 
similarity and social influence in modeling future behavior. For 
instance, to predict the activities that an individual is likely to 
perform in the future, it is interesting to know whether it is more 
useful to know the current activities of their friends, or of the 
people most similar to them. 

On large-scale networks, there is a need to perform 
aggregation operations. Unfortunately the existing implementation 
of aggregation operations on relational databases does not 
guarantee superior performance in network space, especially when 
it involves edge traversals and joins of gigantic tables. In [22], the 
authors investigate the neighborhood aggregation queries: Find 
nodes that have top-k highest aggregate values over their h-hop 
neighbors. While these basic queries are common in a wide range 
of search and recommendation tasks, surprisingly they have not 
been dedicated much attention. The work in [22] proposes a Local 
Neighborhood Aggregation framework, to answer these queries 
efficiently. The approach exploits two properties unique in 
network space: First, the aggregate value for the neighboring 
nodes should be similar in most cases; 
Second, given the distribution of attribute values, it is possible to 
estimate the upper-bound value of aggregates. These two 
properties inspire the development of novel pruning techniques, 
forward pruning using differential index and backward pruning 
using partial distribution. Empirical results show that the 
proposed approach could outperform the baseline algorithm up to 
10 times in real-life large networks. 

In this paper, we exploit the potential of machine learning 
algorithms to perform clustering and that of decision trees models 
which can capture interesting relationships among social network 
users. 
 

3. CLUSTERING 

3.1 Clustering in Machine Learning 
Clustering is an old problem in computer science and statistics in 
general, and in the field of data mining and machine learning it is 
an approach that has been intensively developed. Clustering 
techniques apply when there is no class to be predicted but rather 
when the instances are to be divided into natural groups [16, 17]. 
The generated clusters reflect a certain degree of relationship or 
similarity among the instances falling in the same cluster, while at 
the same time these groups bear some distinguishing features that 
give the possibility to discriminate between different clusters. 

As mentioned in [16] there are different alternatives in 
expressing the result of clustering. The groups that are identified 
may be exclusive so that any instance belongs to only one group. 
Or they may be overlapping so that an instance may fall into 
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several groups. In addition, the clusters may also be probabilistic, 
whereby an instance belongs to each group with a certain 
probability. Or they may be hierarchical, such that there is a crude 
division of instances into groups at the top level, and each of these 
groups is refined further all the way down to individual instances.  
 

3.2 Iterative distance-based clustering 
The most well-known clustering approach is called k-means. This 
technique works by first you specifying in advance the number of 
clusters that are going to be generated: this is called the parameter 
k. At this point, the k points are chosen at random as cluster 
centers and for all the instances it is calculated the ordinary 
Euclidean distance metric to the closest cluster center. After this 
step, we compute the centroid or mean of the instances in each 
cluster, which is called “means”. These centroids are taken to be 
new center values for their respective clusters. All these steps are 
repeated with the new cluster centers until the same points are 
assigned to each cluster in consecutive rounds, at which stage the 
cluster centers are stabilized and will continue to remain the same 
[16]. 
 

3.3 Probabilistic clustering 
A principled approach to the clustering problem comes from 
statistics. From a probabilistic point of view, the goal of clustering 
is to find the most likely set of clusters given the data and any 
prior expectations. Since in many cases the evidence is not 
enough to place categorically the instances in one cluster or the 
other, it is often convenient to have a certain probability of an 
instance to belong to each cluster. This helps to eliminate the non-
flexibility that is often associated with methods that make hard 
judgments. 

The basis for statistical clustering is a statistical model called 
finite mixtures. A mixture is a set of k probability distributions, 
representing k clusters, that govern the attribute values for 
members of that cluster. Each of these distributions gives the 
probability that a particular instance would have a certain 
set of attribute values if it were known to be a member of that 
cluster. Any particular instance belongs to one and only one of the 
clusters, but it is not known which one. In addition, the clusters 
are not equally likely: there is some probability distribution that 
reflects their populations. The simplest finite mixture situation 
occurs when there is only one numeric attribute, which has a 
Gaussian or normal distribution for each cluster but with different 
means and variances. The clustering problem is to take a set of 
instances and a prespecified number of clusters, and work out 
each cluster’s mean and variance and the population distribution 
between the clusters [16]. 
 

3.4 The Expectation-Maximization Algorithm 
The problem in probabilistic clustering is that it is not known the 
distribution that each training instance comes from and the 
parameters of the mixture model. One way to proceed is that of 
adopting the procedure used for the k-means clustering algorithm 
and iterate. Initially start with guesses for the parameters, use 
them to calculate the cluster probabilities for each instance, use 
these probabilities to reestimate the parameters, and repeat.  
This is called the EM algorithm, for expectation–maximization 
[18]. The first step, calculation of the cluster probabilities (which 

are the “expected” class values) is “expectation”; the second, 
calculation of the distribution parameters, is “maximization” of 
the likelihood of the distributions given the data. 
In this paper we use the EM-algorithm in order to generate 
clusters of social network users. 
 

4. DECISION TREES 
One of the most successful models in machine learning are 
decision trees. Decision tree learning is a method for 
approximating discrete-valued target functions, in which the 
learned function is represented by a decision tree. Learned trees 
can also be re-represented as sets of if-then rules to improve 
human readability [17]. In this model, it is followed a “divide-
and-conquer” approach to the problem of learning from a set of 
independent instances. Nodes in a decision tree involve testing an 
attribute of the instances. Usually, the test at a node compares an 
attribute value with a constant. However, some trees compare two 
attributes with each other, or use some function of one or more 
attributes. Leaf nodes provide a classification that applies to all 
instances that reach the leaf. To classify an unknown instance, it is 
routed down the tree according to the values of the attributes 
tested in successive nodes, and when a leaf is reached the instance 
is classified according to the class assigned to the leaf [16]. 
A decision tree is presented in Fig. 1, where the tree has been 
generated from contact lenses data in order to help in prescribing 
the correct contact lense for a patient. As we can see, the 
classification is performed starting from the top at the root of the 
tree and testing an attribute at every node in the tree. 
 

 
Figure 1. Decision tree for contact lense [16]. 

 
As mentioned in [17], appropriate problems for decision tree 
learning are those that present features such as: Instances are 
represented by attribute-value pairs; the target function has 
discrete output values; disjunctive descriptions may be required; 
the training data may contain errors; and the training data may 
contain missing attribute values. 

Most algorithms that have been developed for learning 
decision trees are variations on a core algorithm that employs a 
top-down, greedy search through the space of possible decision 
trees. This approach is exemplified by the ID3 algorithm [18] and 
its successor C4.5 [19]. ID3 learns decision trees by constructing 
them top-down, beginning at the root of the tree and deciding 
which attribute should be tested. To perform this decision, each 
instance attribute is evaluated using a statistical test to determine 
how well it alone classifies the training examples. The best 
attribute is selected and used as the test at the root node of the 
tree. The test is based on a measure called information gain which 
expresses the expected reduction in entropy caused by knowing 
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the value of an attribute. Put another way, the measure gives the 
information provided about the target function value, given the 
value of some other attribute.  

In this paper we will use the decision trees in a different 
setting. We would like to discover rules that govern the 
relationships among users in the online social network. We are 
not interested in classifying the single user but in extracting 
decision trees from the data that can lead to interesting patterns 
among the users. 

 

5. EXPERIMENTS 

5.1 Experimental Setting 
The experiments performed here, have the goal of answering these 
two questions: 

Q1. Are there any commonalities between the 20 friends 
of a certain friend? 
Q2. Is there any pattern or relationship among the 20 
friends that can be discovered from the data? 

To answer question Q1, we perform clustering on the users’ data 
and check whether users not directly related to each other (but 
indirectly through other users) fall under the same cluster. For 
example, if user U1 has as friends the users U2 and U3, but these 
two users are not connected together, is there any common feature 
between U2 and U3 that makes them fall in the same group? 
To answer question Q2, we perform decision tree learning and 
check whether there are interesting patterns among the users who, 
based on the data are not related to each other but have in 
common other users. 
 

5.2 Preprocessing and input engineering 
The data used in our experiment have been extracted from the 
online social network Hi51 and first presented in [21]. This dataset 
is composed of 4928 users where for every user there are 20 other 
users considered as his closest links. In Figure 2 it is shown the 
table of users where every user is in a row and the friends are in 
columns. 
 

 
Figure 2. Dataset of users from Hi5 

 
In order for this table to be processed in Weka, we should 
translate the matrix in the .arff format which is compatible with 
the requirements of the Weka program input. In this context we 
need one single record for each user, whose attributes are all the 
remaining users (4928 in total) and each attribute has a value of 
“yes” in case there is a link between the two users and “no” in 
case there is not. For this reason we have developed a program in 
the Java language that translates the data into the required format 
of Weka. 
 

                                                                 
1 http://www.hi5.com 

 
Figure 3. Part of the attributes section on the .arff file 

 

The content of the .arff file’s data regarding the record of one 
single user is shown in Figure 4. Each value matches the attributes 
listed in Figure 3. The overall content of the .arff file contains the 
data regarding 4928 users. 

 
Figure 4. User record in the .arff format 

 

5.3 Models generated 
The clustering algorithm used is expectation-maximization (EM) 
clustering as implemented in Weka [16, 18]. We performed two 
experiments: one where the algorithm is left to find the number of 
clusters automatically and one other where the number of clusters 
is given as input parameter to the algorithm. In the second 
experiment we used as number of clusters k=10, while in the first 
case the algorithm was run with default parameters and found the 
optimal k=8. Figure 5 shows the clusters generated in the second 
experiment. Due to the memory limitations we took 1000 users 
(rows) and for each of these users we took links with 500 other 
users. In addition we also used values {1, 0} instead of {yes, no}. 

 

 
Figure 5. The clusters found automatically, with k selected with 

cross-validation 

 

Regarding the decision tree learning, we followed this approach: 
we selected for each case the class attribute to be one user, and 
use all the other users as normal attributes. Figure 6 shows the 
decision tree learned for user 16 and Figure 7 shows the decision 
tree learned for user 6. 
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Figure 6. Decision tree generated for user 16 

 

 

Figure 7. Decision tree generated for user 6 

 

 

6. EVALUATION OF RESULTS 
The generated clusters give insight into interesting grouping of 
apparently unrelated users. We discovered that many users 
apparently not related to each other through direct common 
shared friends, fall under the same cluster. This result shows that 
it is not sufficient to consider only the direct friends of users in 
order to group them, but we need to consider the whole dataset. In 
this case a user record is composed of 4928 attributes each 
expressing the presence or not among the twenty friends of a user. 
The investigation of the clusters can be interesting under a 
marketing point of view where users that were never considered to 
be target of a certain campaign, may now be clustered together 
with other users who have been targeted normally. The potential 
of clustering is therefore important from a business point of view. 
In the decision tree learning experiments, we discovered some 
interesting patterns. For example, as can be seen in Figure 6, the 
model generated for user 6 leads to some useful patters regarding 
other users. In this case, users 4430, 383, 399 and 4391 are never 
present altogether in the dataset jointly with user 6. This means 
that among 4928 users there is no single user where among the 
twenty closest links we can find the above users. On the other 
side, we can see that whenever user 6 is present as a link, 4430 is 
present also. However, among the twenty links of user 6 we do 
not find the user 4430. The fact that user 6 is associated in the 
decision tree always with user 4430 is a strong evidence that these 

two might probably be recommended to each other for adding the 
link. The second case is that of user 383 whose presence implies 
the exclusion of user 4430. If user 383 is present, then the 
presence also of user 259, will also exclude user 6. In other 
words, users 4430, 383 and 259 should not be recommended to 
each other. In Figure 7 it is shown the decision tree learned for 
user 6. An interesting pattern here is that users 1240, 102 and 
1104 in relation with user 6, will always appear in lists as 
excluding each other. In other words, these users should not be 
recommended to each other as potential links. 

7. CONCLUSION 
Social Networks are becoming increasingly popular and it is 
important to investigate whether well-established fields such as 
machine learning and data mining can help in automatically 
processing large amounts of data that are being gathered every 
day. In this paper, we investigated how machine learning 
algorithms can be effectively used to produce accurate profiling of 
real-world social network users. We showed through experiments 
on real-world data that users can be clustered in groups and that 
with decision tree learning, interesting patterns can be discovered 
among users not directly linked. As future work we intend to 
apply association rule mining that due to high memory and 
computational demand, requires a more powerful computing 
infrastructure than the currently available for the authors. 
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