
Implementing the CROP Reference Architecture: The
CROP Learning Object Editor

Maria Tsiakmaki
PHD Student

Department of Computer Science &
Telecommunications
TEI Larissa, Greece
2410626338, 0030

tsiakmaki@teilar.gr

Chrysafis Hartonas
Professor

Department of Computer Science &
Telecommunications
TEI Larissa, Greece
2410684575, 0030

hartonas@teilar.gr

ABSTRACT
Concept, Resource, Order, Product (CROP) is a reference
architecture for adaptive Learning Objects owned by Semantic
Learning Services developed by the second author. According to
CROP, composite Objects are essentially recursive, and
adaptively is an emergent property of Learning Service
communication and collaboration. CROP is formally represented
as an OWL ontology consisting of the framework's concepts and
its definitions. In this paper we present a free, open-source, java-
based graphical editor that populates CROP ontology with
instances of Learning Objects at runtime through a (guided)
graph-like interface. While developing this tool we proceeded to
some adjustments on CROP ontology and further clarifications on
the architecture. Our ultimate vision is to design Semantic
Learning Domains where repositories of such ontologies exist and
Services collaborate for delivering adaptive Objects to custom
Learners’ needs.

Categories and Subject Descriptors
J.1 [Computer Applications]: Administrative Data Processing –
Education

General Terms
Design, Experimentation, Standardization.

Keywords
CROP learning objects, learning services, semantic web.

1. INTRODUCTION
The domain of our discourse is Learning Services in the Semantic
Web that offer adaptive Learning Objects to Learners. Some
major issues on this field are (a) the architecture for Learning
Objects, (b) the architecture of the Learning Service, e.g. the
Participants, the discrete Roles that Participants can play, and the
interactions that take places among the Participants, (c) the
architecture of the Learning Domains, i.e. the environment that
these Services live and collaborate, (d) the strategies that Services
use in order to adapt their Objects according to Learner's needs
throughout their collaboration with other Learning Services.

Concentrating on the first issue, we need an architecture on
Learning Objects that enables us to: (a) describe atomic
(unstructured, free-standing) or compound (involving other
Learning Objects) Learning Objects, (b) describe static (structured
at design time) or dynamic (restructured at run time, e.g. when
learning difficulties are detected), (c) reuse them, (e) make them
discoverable in a Learning Domain (search-able), and (d) tailor
them to Learners' needs (adaptation).

We further argue that adaptively is not a requirement to be met by
an individual Learning Object. On the contrary, we consider
Learning Objects as part of a Learning Domain offered by
Learning Services. We also adopt the Role Modeling approach
[8], for modeling the reciprocal actions that take place within a
Learning Domain.

In this report we present the implementation of an editor of CROP
Learning Objects based on our on-going research on adaptive
Learning Services. This paper is structured as follows: in section
2, we present the CROP Reference Architecture. Section 3
presents the editor of CROP Objects. Finally, we present the
current open issues and future work.

2. INTRODUCING THE CROP
REFERENCE ARCHITECTURE

2.1 The main idea
The CROP reference architecture [3] [1] is designed to model the
structure of adaptive Learning Objects owned by Semantic
Learning Services in a Learning Domain. The architecture
supports the composition of Objects that suit to Learner's
requirements, and the dynamic modifications of Objects during
the learning process, through the collaboration of Learning
Services [13]. An adaptive response is the result of reasoning on
information available from the Learner Profile, the Learning
Objects, and the learning process.

In CROP four notions take part: Concept, Resource, Order, and
Product. A Learning Object is atomic (Resource), or composite
(Product) that recursively contains other Learning Objects. Each
Learning Object has one target Concept, i.e. a term that describes
the educational objective of the Learning Object, and some
prerequisite Concepts, i.e. Concepts that are required in order to
use this resource. The whole learning process is monitored by
Order, a process that is enabled for every Learner – Learning
Object pair. Its main purpose is to help the Learner execute a
learning process with success by providing the necessary
information to the Learning Service that owns the Learning
Object.

CROP Learning Objects are described by a set of metadata. The
IEEE LOM standard [5] is adopted for that purpose.

Moreover, each CROP Object is associated to one or more
Learning Style Designators [2]. The Designators indicate
cognitive and learning style characteristics of Learners for whom
this object is (more) appropriate.

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

72

2.2 Ontological representation of CROP
architecture
According to CROP, all Concepts are part of the Content
Ontology, an ontology that disambiguates all the educational
objectives related to the Learning Object. Learning Objects, as we
envision them, are contained in the Learning Object Repository of
the Domain, and their Content Ontologies are also sub-ontologies
of a Global Domain Ontology. Classes in the Content Ontology
also populate the instances of Educational Objective class in
CROP ontology (Figure 1).

Figure 1: (a) Content Ontology example (b) CROP Ontology
sample, (c) Content Ontology’ s Classes as instances of
Concept class
CROP objects have one Concept Graph, a graph that is formed by
connecting the instances of educational objectives with the is-
prerequisite-of relation.

CROP also builds one KRC (Knowledge Requirements Chart)
Graph on top of the Concept Graph, where on each KRC Node a
set of Learning Objects is associated. Each Learning Object in the
set must have target Concept equivalent with the target concept
associated to the KRC Node, and prerequisite Concepts among the
prerequisite Concepts of the Learning Object and the prerequisites
of the current Node. In case of a Learning Resource, KRC
contains one KRC Node that is associated to the Physical
Location of the actual learning material (e.g. a document, an
image, a quiz...). Concept Graph Nodes that are not contained in
the KRC Graph represent the prerequisite Concepts of the
Learning Object. Later, the successful execution of all the
Learning Objects contained in a KRC Node results in the
acquisition of the associated Concept by the Learner.

To achieve an executable object, CROP specifies pairs of
Execution Model (XModel) and Execution Graph (XGraph). The
XGraph is built on top of KRC, keeping the set of Learning
Objects that are associated on a KRC Node as set of Learning Act
Nodes. In case of a Learning Resource, it contains one Learning
Act Node that points to the Physical Location. The Physical
Location is the escape condition of the execution loops that are
necessarily contained in composite Learning Objects (Products).
The XGraph also enables Authors to add edges between Learning
Acts, so as to impose their execution sequence, and two types of
Nodes: Dialogue and Control Nodes. Dialogues are static
conversations with the Learner that enable the later to decide the
next available Learning Act. Controls are associated with a
threshold, in order to prevent or allow a Learner from the next
Learning Act (e.g. a minimum average on the Assessment
Resources that Learner should achieve in order to obtain a
Concept). Figure 2 depicts the layers of CROP.

The XModel determines the sequence of the available Learning
Acts wherever it is unspecified, respecting the prerequisite-of
relations and XGraph Edges. It may be designed to implement
specific instructional strategies. Thus each XModel provides a

different learning experience to the Learners. Each XGraph may
be associated to one or more XModels, but not vice versa.

Figure 2: CROP Object layers

Three processes monitor the execution of a Learning Object
namely Execution Node Managers, Execution Manager and
Order. An Execution Node Manager (XNodeManager) is
responsible for applying the sequencing rules of the XModel on
an XGraph Group of Nodes that is associated to a KRC Node.
Likewise an Execution Manager (XManager) is responsible for
applying the sequence rules of an XModel on an XGraph.

Order process monitors the interaction between the Learner and
the Learning Service and issues relevant reports to the Service that
owns the Learning Object. Order notifies the Service for fail or
successful execution of Learning Objects. Execution failures
trigger adaptation procedures on the Learning Service, where the
later provide alternative Learning Objects during the execution.
These resources might be owned by the Learning Services or
acquired after the communication and collaboration with other
Services of the Learning Domain.

Figure 3 presents the main structure of CROP architecture.

	

Figure 3: CROP Architecture Class Diagram

2.3 Glimpses of adaptation
We regard adaptation as an emergent property for Learning
Service composition and collaboration rather than an inherent
property for stand-alone Learning Objects. Under this premise,
apart from the unaffected and simple customization through
Dialogues and Controls, and the different learning experience that
various XModels imply, adaptation is triggered by diagnosed
Learner needs during the search and the execution of Learning
Objects.
In Learning Domains, search is enabled for Learners and
Learning Services. Learners submit a request for a Learning
Object that honors a specific target Concept. Services submit a
request for a Learning Object either when they are trying to

73

respond to a request that initially could not satisfy by adapting an
Object that they own, or during an execution after a notification
from the Order. For instance, suppose the Learner's target is
"Complex Number System". One Service owns an Object that
requires the previews knowledge of "Real Number System".
According to Learners' Model, Learner does not know about
"Real Number System". Service tries to mutate the current Object
by including Objects that teaches the prerequisites that are
unknown by the Learner in the corresponding KRC Nodes and
consequently to the XGraph as Teaching Acts. In case the Service
does not own such Objects, it will start a new search to the
Domain in order to find this type of Objects by other Services
(service collaboration).

Also adaptation can happen during the execution of a Learning
Object. For instance, when a Learner fails to achieve the required
threshold of an Assessment Resource the Order process notifies
sends a failure notification to the Learning Service. The later tries
to find alternative Objects to enhance Learner’s experience on the
subject. Consequently, the KRC Node is updated with more
Objects, and XGraph with more Learning Acts.

3. IMPLEMENTING CROP
The outcome of CROP architecture is an ontology that describes
all its concepts and the relations among them. During this research
we have created a proof of concept editor for such Objects. The
editor guides Authors across the steps of creating CROP Objects.
Its final output is the CROP ontology populated with instances
that depicts the designed Object.

3.1 Design principles
The CROP Editor is designed to simplify the creation of CROP
Learning Objects, respecting the Leaners' goals. The following
checklist identifies some core principles and practices to assist
Authors to produce Objects that are appropriate in particular set of
circumstances and prompt to changes.

• The use of one educational objective. CROP Objects have a
specific and well-defined purpose, i.e. their target Concept.
Having one target Concept encourages the construction of
relatively small and self-contained Objects rather than large
and cumbersome Objects. Cohesive Objects can easily be
changed without affecting the rest composite Object, can
easily be sequenced and reused across a Domain.

• The use of some prerequisite-of Concepts. In Concept Graph
of composite Objects, each Concept has some prerequisite-of
dependencies with other Concepts. Consequently, each
Object is a set of cooperating Objects, each of which
implements functionality independent of the others.
Redundant associations can be avoided when Authors
consider keeping low the number of Objects that will be
affected when one Object change its content.

• The Content ontology should match both domain and
learning task. Content ontology should describe courses'
entities and their relation given the purpose of teaching and
of interoperability across a Learning Domain.

• The KRC Node is a self-contained teaching action targeting a
single Concept. Learners that successfully execute all the
contained Objects eventually acquire the target Concept.
Objects contained in the set should avoid repeat the same
content. A Concept in the Concept Ontology can be defined
as equivalent of a disjunction of a set of Concepts, e.g.
ComplexNumber Operation can be a disjunction of
Conjuration ⋁ Division ⋁ Addition ⋁ Multiplication ⋁

Substruction. Thus a KRC Node that is associated to
Operation can contain Objects with target Concept
Operation or Conjuration, or Division or Addition or
Multiplication or Substruction.

• The use of some Execution Models. Each Object is
associated to one or more Execution Model that ultimate on a
different learning experience. It provides one type of
adaptation based on Dialogues, Controls and the ordering of
Learning Acts. The XModel can implement specific
instructional strategies that later can be combined with
Learner Model.

Generally, there is no one correct way to model a Learning
Object. There are always viable alternatives. The most appropriate
solution depends on the type of Learner that Authors have in mind
and the extensions that they anticipate. Also, Learning Object
development is an iterative process.

3.2 Discrete steps for creating CROP Objects
using the editor
The Crop Editor builds Learning Objects according to CROP
reference architecture. Initially, Authors create a new project. A
project contains Learning Objects (Resources and Products),
information about the Domain Ontology, the CROP Ontology that
will be kept synchronized during the Authors manipulation and
graph images.

The editor (Figure 4) contains 6 main panels (docks). On the left
there is the Learning Objects explorer, where all the project’s
Learning Objects are listed, grouped by their target Concept.
Below, the Content Ontology panel shows the ontology classes
and tools for simple ontology editing. The main panel contains the
active’s Object graphs. Transfer handlers enable Authors to drag
end drop concepts to Concept Graph panel. Below, the Problems
and Console panels contain error and warning messages to the
Authors during their working with a project. On the right, Palette
contains the extra transferable nodes to Graphs. Below, the
Properties panel is associated with the active graph and concept
Author’s selections, and contains the information and actions
related with the selected state.

Figure 4: The CROP Editor
While describing the discrete steps for creating CROP Objects,
some parts of example screenshots will be given, hopefully, for a
better understanding. The example is about a Learning Object that
teaches the “Complex Number System” to beginners.

Step 1 – Specify the Content Ontology

The Content Ontology is used to capture knowledge about some
Learning Object. It describes the Concepts in the Object like the

74

target and the prerequisite Concepts and also the relationships
between those Concepts (Figure 5). In the editor, Authors can
import a predefined ontology, edit it, or create a simple hierarchy
of classes from scratch.

Figure 5: Content Ontology Example
Step 2 – Creating the Concept Graph

The Concept Graph relates Concepts with the is-prerequisite-of
relation. Authors can drag & drop classes from Content Ontology
to Concept Graph and create edges among them. During building
the Concept Graph, Authors will discover the coexistence of many
conceptualizations that one educational objective can have.

In Figure 6 Complex Number System Concept requires the
knowledge of Properties of Conjugates and Absolute Value. The
later, requires Operation. Operation Concept needs Complex
Number Definition, and Definition about Real Number System
Concept.

Figure 6: Concept Graph example

Step 3 – Creating the KRC Graph

The KRC Graph is built on top of Concept Graph. Editor
duplicates Concept Graph Nodes and edges as KRC components.
Only prerequisite Nodes are not contained. Authors can associate
Learning Objects on each KRC Node. Objects may be contained
in the project, or may be created as new (Resource or Product).
The selected Node illustrates its target Concept and from the
Content Ontology are inferred all the equivalent Concepts, if any.

The Editor prompts notices in a problem panel when Authors add
Objects with prerequisite Concepts that do not exist in the active
Object. In the example (Figure 7), Operation Concept is acquired
after the successful execution of Resources of Conjuration (con),
Addition (add), Division (div), Subtraction (sub) and
Multiplication (mul). Notice that Real Number System Concept is

not included in KRC (it won’t be taught). Thus it is a prerequisite
Concept of this Learning Object.

Figure 7: KRC Graph example
Step 4 – Creating the Execution Graph

The X Graph is built on top of the KRC. Each Object that is
associated with a KRC Node becomes an X Graph Node. An X
Graph Node is defined as a Learning Act (a Learning Act is
associated with one CROP Object or with a Physical Location of a
Resource Object), Control, or Dialogue Node. Learning Acts are
grouped by their target Concept, a property that the associated
KRC Node implied, defining X sub-Graphs. Authors can further
group X Nodes and X sub-Graphs defining sequence and parallel
groups. Edges of X Graph impose the sequence of the execution
of Objects. X Graph Edges connect X Nodes, X sub-Graphs or
groups. KRC edges are not transferred to XGraph, as they connect
unit concepts, not groups or sub-graphs, but their prerequisite-of
restrictions still stand. E.g. by default the XModel cannot execute
Addition Object if Learner does not know about Complex Number
Definition, and Authors do not need to explicitly state it again.
Authors are allowed to add further edges, Controls and Dialogues
in order to restrict the learning process.

Figure 8: X Graph example
Keep in mind that Objects that are associated to a KRC Node do
not have any sequence restriction. If strong restrictions need to be
applied, it may imply that Authors should consider refactoring
Content Ontology and Concept Graph by splitting or merging
Concepts. Every Product can have one or more XGraphs.
Resources' XGraphs are simple: by default they contain only one
Learning Act that directs to the Physical Location of the actual
resource.

75

In Figure 8 XGraph only specifies the order of the Resources in
the Operation group of Nodes: first Learners learn about
Conjuration, then Addition, then Subtraction, then Multiplication
and finally about Division.

Step 5 – Creating the XModels

Finally, Authors can define the Execution Models (XModel). One
XGraph can be associated to one or more XModels. Learner's goal
is to conquer the root Node of the XGraph. To succeed that,
Learner has to previously attain every node that is connected to.
Apart from having to succeed on prerequisite Concepts, the
sequencing rules, the Dialogues and the Controls, no other
restrictions take place on the way of how a Learner will walk on
the XGraph. On the one hand, Discrete Mathematics literature
lists several well-structured algorithms for traversing a graph, e.g
Depth First, or Breadth First. On the other hand, further priorities
can be set, in case the next x step is still ambiguous. E.g. the
preference of executing an assessment resource over a support
resource, or the preference of executing a Learning Object that is
associated to a video resource, over a text resource.

To support the above CROP associates an XModel with an
execution algorithm, a priority list and a verbose level. Verbose
level controls how detailed or general the information messages
are going to be, i.e. whether the XManager will inform the reason
of the next given Learning Object versus another to the Learner.

Generally, Authors can revise the initial Learning Object. The
editor will synchronize the changes made on graphs and on the
ontology through action listeners. E.g. if Author deletes a Concept
Graph Node, the editor will delete the associated KRC Node and
edges and subsequently the associated execution nodes and edges
on X Graph.

3.3 More supported tools
The editor also supports further related functionalities, such as:

a. the export of owl comments and axioms of Concepts from
Content Ontology in text files for creating learning material
(text),

b. a simple LOM viewer of the Object, that is partially populated
given the current CROP Object state,

c. a simple quiz editor for creating Assessment Resources,
d. a simple text editor for editing Support Resources,
e. image, video, pdf Viewers for Support Resources,
f. a sample execution simulator (under development).

3.4 Implementation details and source code
CROP Editor is written in Java and uses Swing GUI widget
toolkit [10] to create its user interface. Also parts of our
application rely on the following tools and source code: Docking
Frames [11], for organizing the editor's panels such that the user
can drag & drop them, mxGraph Java Graph Visualization Library
[7], OWL API for working with OWL 2 CROP ontologies [4],
HermiT reasoner [9], Apache log4j logging library [12].

The source code of the editor, binaries and examples can be found
on GitHub [14].

4. Execution Details
Both XManager and XNodeManager processes are responsible for
the execution of a CROP Object. Every CROP Object has one or
more X Models and with the given Learner Profile the XManager

selects the most appropriate Model. Each XModel is associated to
one XGraph.

The XGraph contains restriction produced by the XEdges that the
Author explicitly has inserted during the creation of XGraph and
the prerequisite-of relations that are implied by the KRC Graph.
The XManager given the XModel and the XGraph decides the
next Execution Step (XStep), i.e. a Dialogue Node, a Control, or
an X Parallel or a Sequence Group.

For the execution of a Group the XNodeManager process takes
turn and every Group has its own Manager and each
XNodeManager adheres to the XManager. XNodeManager
decides the next XStep among Control Nodes, Dialogue Nodes,
Learning Act Nodes and recursively XGroups.

For instance, on the Complex Number System CROP Object of our
example, XManager will firstly execute the Complex Number
Definition Group XStep. The XNodeManager calculates the next
Step, which is the execution of 'cnd' Learning Act Support
Resource associated to a document concerning the definition of
Complex Numbers. The Operation Group is the next to follow.
The corresponding XNodeManager will execute the sequence of
Learning Acts as the edges impose: first with the Conjuration,
followed by the Addition, the Substation, the Multiplication and
finally with the Division Support Resources. Afterwards, the
XNodeManager of the Properties of Conjuration and the Absolute
Value parallel Group selects randomly the next XStep (suppose
that further metadata leaves them still ambiguous e.g. they are
both documents with the same execution time, level, density, etc.).
The final step, which is the Complex Number System Group,
contains two parallel Assessment Resources, and once again
(suppose) the choice is done randomly.

5. OPEN PROBLEMS AND FUTURE
WORK
We are currently working on enhancing the implementation with
additional features, such as:

• The Gather feature that searches and collects Objects
contained on a physical location in order to populate KRC
Nodes.

• A simple IEEE LOM editor. Currently some elements can be
exported from the CROP Object, e.g. the relations,
classification, is part of… Other properties can be editable,
e.g. the Author name.

• An embedded rich document editor for editing the actual
Support Resources.

• The Import feature for importing IEEE LOM, or SCROM
Objects [6], wrapped CROP Objects (SCROM compliant)

• The support further rules for avoiding inconsistences in the
ontology and (regrettably) bugs fixes.

Our ultimate vision is to design a reference architecture of
Semantic Learning Domains where repositories of ontologies with
CROP Learning Objects exist and Services collaborate for
delivering adaptive Objects to custom Learners’ needs.

6. REFERENCES
[1] C. Hartonas. The CROP reference architecture for learning

objects in the semantic web. Technical Report, TEI Larissa,
Dept. Computer Science, 2010.

[2] C. Hartonas and E. Gana. Adaptivity for knowledge content
in the semantic web. Proceedings of KGCM, 2008.

76

[3] C. Hartonas and E. Gana. Learning objects and learning
services in the semantic web. In Advanced Learning
Technologies, 2008. ICALT’08. Eighth IEEE International
Conference on, pages 584–586. IEEE, 2008.

[4] M. Horridge and S. Bechhofer. The owl api: a java api for
working with owl 2 ontologies. Proc. of OWL Experiences
and Directions, 2009, 2009.

[5] IEEE, Learning Technology Standardization Committee
(LTSC) - Draft standard for Learning Object Metadata
(LOM), 2002. Last accessed Oct 2008.

[6] ADL Initiative. Sharable Content Object Reference Model
(SCORM) 2004 4th Edition Documentation, 2004.

[7] JGraph Ltd. JGraphX (JGraph 6) User Manual - Version
1.11.0.0. http://jgraph.github.com/
mxgraph/docs/manual_javavis.html, 2001. [Online; accessed
28-March-2013].

[8] A. Kritsimalis. Role modeling for cdl specifications of web
services. Master’s thesis, TEI Larissa Dept Computer
Science & Staffordshire University, 2010.

[9] B. Motik, R. Shearer, B. Glimm, G. Stoilos, and I. Horrocks.
Hermit OWL Reasoner. www.hermit-reasoner.com, 2007–
2013. [Online; accessed 28-March-2013].

[10] Oracle America Inc. Swing Java Foundation Classes.
http://docs.oracle.com/javase/7/docs/
technotes/guides/swing/index.html, 1993. [Online; accessed
28-March-2013].

[11] B. Sigg. DockingFrames 1.1.1 - Core. http://dock.
javaforge.com/dockingFrames_v1.1.1/core.pdf, 2012.
[Online; accessed 28-March-2013].

[12] The Apache Software Foundation. Apache Log4j 2.
http://logging.apache.org/log4j/2.x/, 1999–2013. [Online;
accessed 28-March-2013].

[13] M. Tsiakmaki, E. Gana, and C. Hartonas. Adaptation as an
emergent property of learning service composition in the
semantic web (in greek). Proceedings of the 2nd Conf on
Computer Assisted Education, Patras, Greece, pages 889–
898, 2011.

[14] M. Tsiakmaki and C. Hartonas. JCropEditor. - Source code,
binaries, examples.
https://github.com/tsiakmaki/jcropeditor.git. [Online;
accessed 28-March-2013].

77

