
Using CQRS Pattern for Improving Performances in
Medical Information Systems

Petar Rajković
University of Niš,

Faculty of Electronic Engineering
Aleksandra Medvedeva 14

+381 18 588448

petar.rajkovic@elfak.ni.ac.rs

Dragan Janković
University of Niš,

Faculty of Electronic Engineering
Aleksandra Medvedeva 14

+381 18 529101

dragan.jankovic@elfak.ni.ac.rs

Aleksandar Milenković
University of Niš,

Faculty of Electronic Engineering
Aleksandra Medvedeva 14

+381 18 588448

amilenkovic@elfak.ni.ac.rs

ABSTRACT

During exploitation of a medical information system dedicated to

primary care facilities, we realized that significant amount of

often used, but rarely changed data is scattered in large number

of data tables requiring many join operations when need to be

retrieved. Additionally, in many cases, many data fields are

retrieved by select queries and later neither displayed on user

interface, nor used in any other way. This situation could be a

cause for some performance issues as well as unnecessary

increase of data traffic. For this reason we decided to improve

our system by applying command-query responsibility

segregation (CQRS) pattern with de-normalized read database in

order to reduce time and data amount needed for some often

executed queries. In read database design process we applied

model driven approach and used our existing data modeling,

mapping and code generating tools. Also, we developed a

synchronization component responsible for migrating data from

main to read database based on the existing data replicator. In

this paper we present the results on applying this approach

mainly on demographic, administrative and partly on medical

data. In the near future we plan to extend this approach in our

medical information system as much as possible.

Categories and Subject Descriptors

H.4.0 [Information Systems Applications] Information system

applications - General.

General Terms
Performance, Design, Human Factors

Keywords

Medical Information Systems, command-query responsibility

segregation, model driven development.

1. INTRODUCTION AND MOTIVATION

During last four years we worked on the development of medical

information system (MIS) called Medis.NET which is dedicated

for the use in primary and ambulatory care medical facilities in

the Republic of Serbia [1]. Since it became fully operative, the

MIS developed by our research group is deployed in more than

20 different medical institutions, and after more than two years

of full-scale use we identified the system weak spots and start

working on possible architectural improvements. In this paper we

will describe the problem related by slower system response as a

result of data traffic rate higher than really needed.

We realize that we have several queries that are executed very

often and which load much larger amount of data, scattered in

several tables, than displayed on the user interface. We examined

two different approaches – defining reduced data classes in the

data object model and to generate separate database that will be

used only for reading the data.

We choose the second approach, since generated read database

could be used later for personal health Web site and reduce the

load on our main database. For implementing the concept with

read database we decided to use command-query responsibility

segregation CQRS architectural pattern [2] and experiment

initially with a limited set of data stored in read database. The

results we get encourage us to continue with this approach and to

support more data access processes within read database.

In this paper we present our results on applying separate read

database for some often used queries. In section 2 the brief

description of CQRS architectural pattern is given. Section 3

contains description of CQRS supporting component, while the

structure of our initial read database along with experimental

results are given in the section 4. Section 5 contains brief

overview on related work. In the last section we present

guidelines for our future work and a conclusion.

2. ABOUT CQRS PATTERN

The main idea with CQRS pattern is to divide data store and

have one that serves only for performing insert, update and

delete, by one word commands and another that serves only for

select queries. The connection between two data stores is done

through synchronization component that is responsible for

ensuring data consistency. Usually those two data stores are

called main database and read database.

Unlike the standard multitier architecture that request strict

separation between layers, CQRS introduces separation within

components of the same layer [2]. One possible approach to

CQRS is given on the Figure 1. Presentation layer will remain

unique, while business logic layer is separated on two parts

where one (called command logic on Figure 1) supports

insert/update/delete commands and another handles read

requests.

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

86

Data storage layer consists of two databases – main and read.

Main is connected to command logic, while read sends data to

query logic. Link between main and read data stores is

synchronization/de-normalization component responsible for

ensuring data consistency. When CQRS pattern is fully

implemented, main database accepts no select queries from any

part of the business logic layer while read database serves only

for read operations.

CQRS approach is more suitable for the systems where number

of select queries is far bigger than number of commands, such is

a case with online shopping services, but it is applicable on

standard information systems too.

Figure 1 Relation of extension service components and major

components of base system

3. INTRODUCING CQRS CONCEPTS

As we have running medical information system, we decided to

introduce CQRS approach incrementally in order to initially test

performances on an insulated set of functionality. Eventually, all

read requests will end up in read/query logic component (Figure

1). Until that point, main database will not serve only commands,

but some read requests too.

During design phase we decided that we should left possibility

that our system could work both with (CQRS working mode) and

without read database (standard working mode). This requests a

design update that will be explained later. Also, we decided that

initial set of data that will be moved to read database would be

chosen by the rule “often used – rarely changed”.

As it has been mentioned before, we ensure that our system

could operate equally in a standard mode (with only main data

store installed) and in a mode where dedicated read data base is

present. Since all read operations will pass through same part of

the business logic, we support hot-swap on reading operations

target database that can be used if read database went offline.

Thanks to that feature, we can disconnect read database, update

its structure, synchronize data and bring it back online.

Visual components, as a part of a presentation layer of

Medis.NET information system, communicate with a standard

business logic layer and data access process is a transparent

process looking from their perspective. They always send equally

formatted request and expect the same response from the

business logic layer.

The business logic layer passes request to a data model layer that

encapsulates data access objects and operations. For read

operations that are envisioned to work with both databases, the

set of interfaces is defined. In further text we will refer them as

read operation interfaces. Read operation interfaces are by

default implemented in an object model that supports main

database and they represent an extension point of the system.

Classes responsible for reading data from main database already

implements these interfaces. The result of this approach is that

system will use main database both for read and write if read

database is missing.

The classes within read/query logic component must implement

same read interfaces that can be used. If some interface is not yet

implemented in read/query logic, it will be used from existing

command logic. With this approach, we will make our system

running and not much dependent on the progress in development

process.

Looking from the implementation process perspective, to make

read database integrated in a system, assemblies containing its

logic and data object model must be generated and loaded by the

business logic layer. Since our information system is developed

in the .NET technology, assembly reloading in a run-time is a

secure and not complicated to implement operation.

Read logic, which interacts with read database object model,

have to include read operation interfaces and implement those

that have to be supported. The read component can support either

all read interfaces or just a sub-set. Using this approach we tried

to identify the best possible subsets of read interfaces that should

be supported by read logic, and in the same time check what is

the optimal solution for a structure in the read database.

3.1 Defining Read Database
Both for defining read database and corresponding data object

model we used a slightly modified MEDIS.NET modeling and

mapping tool [3]. Initially, modeling tool was intended for users

having domain specific knowledge in order to design parts of the

system. Based on that model, our generation tool is able to

automatically generate several different software components

from data tables to GUI components. The mapping tool was used

then for defining field-level relations between classes or data

tables.

For this application we used functionality of the mapping tool

that loads the structure of main database along with all defined

read interfaces and offer to user a possibility to define tables for

read database and to establish a mapping between them. Tables

for read database cannot be defined absolutely deliberately but

only in conjunction to selected read interfaces.

Before start defining the mapping, user has to choose one of the

read interfaces. By selecting single interface, the list of the fields

from main database tables used in default read operation will

appear. Then, user can start with defining tables for read

database and to create a mapping. This mapping is used then for

synchronization/de-normalization component, SDC in further

87

text, as well as for the automatic code generation for the classes

that will implement selected read interface. On this way, user

can move query processes incrementally to read database

ensuring overall data consistency.

At the end, generator tool will create data model component for

read database, classes containing necessary read logic and

triggers requested for the SDC.

3.2 Synchronization/De-normalization

Component
The SDC has two main tasks – data synchronization and update-

upon-action. The mappings created in read database definition

process are used by SDC as a data copying rules, both during

synchronization and triggering (update-upon-action) processes.

The data synchronization is a process when the SDC checks the

differences between main and read database and perform the

update on read. The data synchronization process is based on our

existing platform independent database replication solution [4]

and can work in invalidate-insert, delete-insert or clean-up mode.

Invalidate-insert mode works on the way that identifies edited

and removed data rows from main database, marks

corresponding data in read database as invalid, and copy to read

database only newly created rows. This mode is used in case

when database used for reading operations was offline and when

need to be re-synchronized, but for some reason, old data has not

to be removed.

Unlike invalidate-insert, the delete-insert mode removes from

read database copies of updated and deleted rows and copy only

newly added. Clean-up mode is used then to remove all

invalidated rows from read database. This mode is also used

mainly for data synchronization, and it usually is configured to

run once daily in order to clean up read database form non actual

data.

Update-upon-action is the main working mode of the SDC. In

this mode, SDC is constantly active, listening data changes in the

main database, captures them, perform reformatting and de-

normalization and stores data in read database. Listening data

changes in the main database is done through different trigger

processes that react on changes in main and copy affected data to

read database. The triggers are implemented within SDC and

will react on any of insert, update and delete operation within its

scope and initiate changes in the read database.

No matter in which mode SDC works, it is the only component

that can insert, update or delete data from the read database. All

the other components are used only to query data.

4. Example of Defined Read Database
The main database of the Medis.NET contains 348 different data

tables and the instance we used as an example collected for one

year of usage 5.5 GB of data, which is enough to perform

different analysis. The database instance we used for analysis is

installed in Primary Medical Care Center in Nis, Republic of

Serbia. Mentioned medical institution serves as central primary

care facility for a population of 430000 people. During one year,

it has been 2.25 million of patient visits registered, along with

total 3.4 million different medical examinations, laboratory

analysis and therapeutic treatments.

It is interesting to note that the highest number of visits per a

single patient during last year was fantastic 748. In the same

time, around 230000 people have not visited doctor during last

year. During every visit, the user of the medical information

system passes through relatively same set of forms where the

data from many tables are collected, joined and displayed.

Doctors initially access the admission form. From the admission

form they can either immediately start new visit, or, which is

much more frequent, open patient’s medical record overview

containing wide variety of different, but rarely changed data. Our

intention was to move these data, as much as possible, in read

database and store in tables created by de-normalizing structure

from the main database. Looking at the current database

structure and activities we decided to start with demographic and

administrative data since its change rate is very low (Table 1).

Table 1. Statistics for data table most used in select queries

Table Row count
Added/Updated/Deleted

row count (percent)

Patient 431567 17335 (4%)

MedicalRecord 360234 10170 (2.8%)

ScheduledVisit 1885030 78434 (4.1%)

Insurance 460333 55635 (12%)

Figure 2 The overview of the admission form – 1: selected

patient’s personal data, 2: list of patient that are currently

waiting, 3: list of scheduled visits, 4: list of already examined

patient

Figure 2 shows the admission form. After patient has been

selected, the admission form is displayed. In zone 1 of Figure 2

basic patient related data are displayed – name, address, date of

birth, unique identifying number, type of insurance and insurance

expiration date. These pieces of information are scattered in five

different tables, and very rarely changed. This fact qualified them

to move them in first table in our read database, table named

ReadPatientData containing 13 different columns. These columns

are copied from initial 7 different tables, where original tables

were connected by 6 relations and contained total 72 columns.

The underlying business process connected with visual

component marked with the number 1 (PatientBasicDataDisplay)

on the Figure 2 is designed to use one of the mentioned read

interfaces. To enable using the data from ReadPatientData table,

the new class implementing mentioned interface is created.

Thanks to that, PatientBasicDataDisplay will each time connect

to read database and get the data. Since PatientBasicDataDisplay

appears in 26 different forms and controls, it will affect general

data traffic reduction. This paper will not present these results

but only those related to admission and medical record form.

88

Next candidate for moving to read database was table containing

information on scheduled exams terms. It contains only 16

columns, but 8 constraints. In the admission form, data related to

a scheduled term appears in zones 2, 3 and 4 of Figure 2. For

display purpose only time and status are needed, as well as

references to a doctor and patient. In total, the number of fields is

reduced from 16 to 5. New table was named

ReadScheduledTerm and appropriate object model and business

logic classes are generated.

The admission form is of top importance since it is used not only

for selecting the patient for the exam, but also as a display in

waiting rooms, where it refreshes it content periodically.

As it has been mentioned, the users usually open patient record

overview first. Figure 3 displays start page of full electronic

patient record. This page contains data from ReadPatientData

(zones assigned with the number 1), overall medical warnings

and notices (2), insurance data (3) and data about patient’s

employment or, if the patient is a child, their parents

employment and health risk factors (4). The most of doctors take

a look initially on the data displayed here before start visit. From

the admission form, doctors can immediately start new medical

examination (only 7% of interviewed do this), open list with

active medical treatments (29%) or open the form with full

medical record (64%).

Figure 3 Patient's medical record - overview on demographic

data, insurance, and medical warnings – 1: data taken

ReadPatientData, 2: overall medical warnings, 3: insurance

related data, 4: family members’ employment data

Medical warnings are taken from base medical record table and

this table containing 19 columns is entirely copied into read

database and named as ReadElectronicPatientRecord having total

17 columns. Some constraint columns are removed, but one

additional is introduced used when our class models some

specialist medical record. This field contains a digest of the data

contained in the specialist record and is defined as a long text.

Our system generally supports several types of specialist medical

records, such are dental, gynecological, ophthalmological etc.,

but general medical warnings and notices are stored in

mentioned base medical record that acts as a parent entity for all

specialist records.

Insurance related data displayed as items in the table in zone 3

are read from 3 different tables containing total 28 columns.

They are replaced by single de-normalized table (ReadInsurance)

containing 6 columns. In similar manner employment related

data (from zone 4) are reduced from 6 tables with total 43

columns to a single table (ReadEmployment) with 11 columns.

Figure 4 Initial structure of read database

On the described way, we created simple initial read database

(Figure 4) containing total 5 tables having in total 54 columns

and 4 constraints only instead of 17 tables with 178 columns.

This is a somehow new approach since we have not moved

complete query logic to new component and have not migrate all

data used for read operations in new database. Also, our system

support hot-swap for changing the source for read operations.

Our read database currently supports just few read operation, but

their share in total number of select operations is significant

since they fill with data two forms that are in most frequently

open forms by the users.

Table 2. Effects of using read database tables on admission

form – 1: ReadPatientData, 2: ReadScheduledTerm

Read tables

in use

Average

response time

(in seconds)

Average amount of

raw data loaded

from database (in

KB)

None 1.243 32.296

1 0.961 21.553

1, 2 0.774 11.658

Table 3. Effects of using read database tables on electronic

patient record form – 1: ReadPatientData, 2:

ReadElectronicPatientRecord, 3: ReadInsurance, 4:

ReadEmployment

Read tables

in use

Average

response time

(in seconds)

Average amount of

raw data loaded

from database (in

KB)

None 1.927 12.858

1 1.675 11.026

1, 2 1.674 11.027

1,2,3 1.509 7.182

1,2,3,4 1.416 4.971

Mentioned response time is total time needed from the point

when data retrieval is requested until the visual windows form

appeared. This time is used on data retrieving, processing and

displaying graphic user interface. Our update is applied mainly

89

on data retrieving level, partially on data processing, but it does

not affect processes related to the user interface. Mentioned data

amounts are related to raw data retrieved directly from data base

without any further formatting.

Introducing read database in our system, even in such a small

scale, we got improved initial system response and reduced data

traffic. Looking on a global level, all processes that use visual

components which corresponding business and data object model

classes are replaced by those connected to read database will get

some improvement.

5. RELATED WORK

The basis of the CQRS pattern is command-query segregation

principle defined in Bertrand Meyers’s book on object oriented

software construction from 1988 [5]. With this time distance, we

cannot say that this concept is new, but it is not often used as an

architectural solution and there is not much of academic

literature covering this topic.

From the other side, many online articles could be found arguing

in favor of CQRS usage. Nevertheless, Microsoft included lately

the CQRS pattern in their pattern library and published useful

CQRS guide [6]. The guide [6] itself was a result of CQRS

Journey [7] project conducted by Microsoft and was, as they said,

“focused on building highly scalable, highly available, and

maintainable applications with the Command & Query

Responsibility Segregation and the Event Sourcing patterns”.

The articles written by Greg Young [2], Udi Dahan [8] and

Martin Fowler [9] are considered as the major sources for the

CQRS pattern. The most important definitions along with

recommendations and best practice are given here. We used

[2][6][7][8] and [9] as a starting point in our research.

Also, we have found several interesting examples showing

different area where CQRS has been successfully used. In [10]

the CQRS pattern is a part of an approach for more efficient Web

application development. In the paper, the authors described the

solutions for eliminating fundamental challenges they have

“namely object-relational impedance mismatch and the

consequences of CAP theorem when scaling out” [10] by using

architectural patterns, including CQRS.

Thesis [11] was important to us since there we could found

detailed description of a process of “code generation within

CQRS framework”. The author gave also an overview on a visual

CQRS workbench used for defining model that used for later

code generation. Only parts of the code that should be written

manually in the system described in [11] are event handlers on

the query/read side. Another interesting thing in [11] was that

presented case study is related to demo software that would be

used in the hospital environment.

The article [12] was the closest reference to our work. The

authors described the potentials of using CQRS during

development of medical record based information system. The

authors describe potential good sides, but also claim that

“depending on the domain, segregation of command and query

activities may not yield a substantial benefit”.

Assuming all known pros and contras we found in the literature,

we started our research with the main aim to check upon which

level CQRS could be used and explore which potential benefits

we can get on which cost.

6. CURRENT AND FUTURE WORK
We are working on modeling the extension for our read database

that will cover the set of medical data, often used in the active

treatment overview tab on electronic health record form (Figure

5). Zones marked as 1, 2 and 3 represent active medication

processes. Each of these processes contains data collected during

patient visits and represented in a form of grid. User can see

there teaser information on identified diagnoses, prescribed

therapy, and created requests for further medical examinations

(Figure 6).

In total, 93% of doctors open this overview before start entering

the data about new patient’s visit. Another interesting fact is that

already stored visits are opened very rarely. By our preliminary

checks, only in 4.5% of all access to active treatment overview,

users opened some of old visits to check it in details.

Additionally, only 3.2% of already created visits are reopened in

order to update some of entered data.

Figure 5 Active treatments overview – zones 1, 2 and 3

represents three different active medications

Figure 6 Data displayed within a single medication overview

– 1: data collected during single patient visit, 2: identified

diagnoses, 3: teaser info on active prescriptions, 4: teaser info

on generated requests for further medical examinations

One patient visits contains information on given medical

services, identified diagnoses, prescribed therapies, created

requests for further medical examinations and data on created

medical documents. To get data displayed in a single 8-column

row in visit overview (Figure 6), data related to all mentioned

entities has to be joined, loaded and processed. Behind

mentioned 8 displayed rows lays the structure of 32 tables and

455 rows. The structure is filled with during different medical

examinations, and all of them are available in detailed visit

overview accessed in less than 5% of cases.

When we finish with this read database extension, we expect that

the amount of loaded raw data from database will be reduced to

90

less of 10% of its actual amount, while overall response time we

expect to be reduced to less than one half of currently needed.

In the future we plan to improve our modeling tool that can

generate components that will use data not only from the

database but from the other sources, and in same time prepare

data not only for our GUI, but also and for specified Web

services. In the same time, we will try to develop a database

watcher that will monitor activities in the database and identify

the best possible structures that can be de-normalized and moved

to read database.

Also, we tend to use our modeling tools not only in the scope of

medical information system itself, but also as general purpose

software. We perform some initial tests in this direction, and use

our tools for generating parts of e-learning system dedicated to

medical students and clinical staff members.

7. CONCLUSION
The overall performance problem in information systems as a

result of loading large, but unnecessary amount of data is not a

new problem and there is variety of very different solutions

starting from definition views on the database, via intelligent

object models to applied architectural patterns such is CQRS.

All of these solutions have well known advantages and

drawbacks, and we wanted to focus in our research on a

relatively new approach that are not widely described in

scientific papers, but is generally well known at used up to some

point.

In our approach we tried to create a flexible business logic layer,

which parts can be overridden in the software component

connected to read database. This will gave flexibility to our

system which would be able to work both with and without

active read database. Additionally, we did not start with a

presumption that all data should be copied onto read database,

but only those that frequently used and rarely changed.

By using this approach we managed to reduce overall response

time in critical parts of the software by approximately 40%,

while average data traffic is reduced to about one third of its

original amount. By expanding the read database and increase

the number of supported business processes we expect to

improve overall system performance and increase customer

satisfaction level.

8. ACKNOWLEDGMENTS
This paper is a result on a project dedicated to a development of

collaborative e-learning tools (supported by the Ministry of

Education and Science of the Republic of Serbia).

9. REFERENCES
[1] Petar Rajković, Dragan Janković, Vladimir Tošić, A

Software Solution for Ambulatory Healthcare Facilities in

the Republic of Serbia, 11th International Conference on e-

Health Networking, Application & Services –

HealthCom2009, Proceedings ISBN, 978-1-4244-5014-5,

pp. 161-168, Sydney, Australia, December 2009

[2] Greg Young, CQRS Documents by Greg Young,

http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

[3] Rajkovic, P., Jankovic, D., Stankovic, T., Tosic, V.:

Software tools for rapid development and customization of

medical information systems, 12th IEEE International

Conference on e-Health Networking Applications and

Services (Healthcom 2010), 1-3 July 2010, Lyon, France,

119-126. (2010)

[4] Stankovic T., Pesic S., Jankovic D., Rajkovic P., Platform

Independent Database Replication Solution Applied to

Medical Information System, ADBIS 2010, published in

Springer-Verlag LNCS 6295,ISBN 978-3-642-15575-8, pp.

587-590

[5] Bertrand Meyer, Object-oriented Software Construction,

Prentice Hall 1988, ISBN 0-13-629049-3.

[6] Dominic Betts, Julián Domínguez, Grigori Melnik,

Fernando Simonazzi, Mani Subramanian, Foreword by Greg

Young: Exploring CQRS and Event Sourcing,

http://www.microsoft.com/en-

us/download/details.aspx?id=34774

[7] CQRS Journey, http://msdn.microsoft.com/en-

us/library/jj554200.aspx

[8] Udi Dahan, Clarified CQRS. Dec. 2009. url:

http://www.udidahan.com/2009/12/09/clarified-cqrs/

[9] Martin Fowler. CQRS,

http://martinfowler.com/bliki/CQRS.html.

[10] Hendrikse, Z. W., and K. Molkenboer, A radically different

approach to enterprise web application development, 2012,

http://www.codeboys.nl/white-paper.pdf

[11] Fitzgerald, Seán, A pattern for state machine persistence

using Event Sourcing, CQRS and a Visual Workbench,

2012.

[12] Arunava Chatterjee, Healthy Architectures - Using CQRS

and Event Sourcing for Electronic Medical Records,

http://www.infoq.com/articles/healthcare-emr-

ehr;jsessionid=2E1EE38911CC1632B2012A572455AC2C

91

