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ABSTRACT
We are presenting a method verifying programs based on ex-
tended control-state Abstract State Machines (ASM). Pro-
grams are special initial states in ASM’s. The aim is to prove
that every run holds an algebraic specification of functions.
The proof of different functions could be made by indepen-
dent steps.

1. INTRODUCTION
Abstract State Machines (ASM) are well-suited to specify
the behavior of real machines. They are able to describe
the semantic of processors and programming languages [2,
1]. In reality the behavior of processors can be defined by
a fixed control-state ASM. Programming language applica-
tions define a fixed semantic [6, 11]. The concrete behavior
of a running computer is specified on a base on static de-
scription (the program). The program is static because it
does not change while the processor operates or the compiler
translates a fixed source-code.

The aim of a program is to realize a new function, new in
a sense that processor or language can’t do it elementary.
The functions are realized by a sequence of steps of a ma-
chine. Functions are only realized on demand. There is a
start-condition and there is an other end-condition defined
when the function is complete executed. The start-condition
and the end-condition are defined as an abstract data type.
In higher programing languages we can use Hoare-calculus
to prove the correctness of programs. The behavior of pro-
cessors can’t be proved by original Hoare-calculus. In [4]
we show an application to use Hoare-triplets to prove the
correctness of control-state ASMs, right now we are proving
the correctness of a program on a given machine executed
as a part of a run. The proof of correctness is showing that
this part of each run respects the axioms of the function in
the abstract data type.

To guarantee that a machine is realizing a function it re-
quires a program. The program is fixed, never changing

while executed. The algebraic definition is a simple set of
formulas (normally equations), defining assignments in stor-
age. The aim of a program is to realize a complex function.
This function is algebraic defined. In many applications this
function is too complex to prove. Complex function are nor-
mally based on many more simple functions. Our method is
able to make the proof step by step, from simple functions
to complex ones.

Based on the method in [4] to show the correctness of the be-
havior of control-state ASMs realize a function by respecting
axiomatic definition of a function. The control-state ASM is
separated in two parts. The first one is a graph defining the
states in nodes. The second part defines the state transition.
The proof is done by checking the labeling of the states by
Hoare like triples [7].

2. CONTROL-STATE ASMS AND VERIFI-
CATION

An ASM is defined [2] as (Σ,ΦInit,R0 ) where Σ is a signa-
ture, ΦInit is a set of Σ-formulas (the initial conditions), and
R0 is a transition rule.

In it’s special form as control-state ASM the transition rule
R0 is recursively defined as:

Rk ::=


f(t1, ..., tn) := t0 (1)

Ri;Rj (2)

if cs = i then Rn ; cs := j endif (3)

if cs = i ∧ ϕ then cs := j endif (4)

The machine starts with a state (an algebra) q0 ∈ ΦInit.

The first part (1) is called an update. It’s semantic is to
change the interpretation of f(t1, ..., tn) to t0. ti are basic
terms defining a fixed value. If we do the update we get
a new state (algebra). First we are collecting the updates
only.

The second part (2) defines a sequence of rules. All updates
of Ri and Rj are united to one set of updates.

The third part (3) is an condition for updates (Rn). The
updates in Rn are only united if cs = i holds in the state
qi |= cs = i. The control-state cs has also to change (cs :=
j).

The fourth part (4) has an additional condition ϕ for the
collection of the only update cs := j.
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The transition rule R0 is used to generate a set of updates.
This set contains all collected updates. If the whole rule R0

is evaluatet than the generatet set is compleat. The changes
of the interpretations are done in one step. We get a new
interpretation of functions, a new algebra, the next state.

The ASM starts with a concrete algebra as state q0 ∈ ΦInit.
Based on this state the formulas in the if-clausels holds or
hold not. So we get a set of updates in this state. Next we
use the updates to change the interpretations of functions.
We get a new state and so on.

If the set of updates is empty the machine stops.

Especially control state ASM’s are isomorph to a graph,
where all constants used in cs = i on the right side are
the nodes. All updates of cs := j are the edges from the old
interpretation of cs was i to node j. Based of ruletype (3)
the edges from i to j can be labeled by a fixed set of updates
U(i, j) because the conditions (cs = i) defines node i. Based
on ruletype (4) we label the edges by ϕ.

In a last step we have to label the nodes by formulas ψi
by using Hoare in ruletype (3) for all edges from i to j the
nodes and updates has to be a valid Hoare-triplet.
ψi U(i, j) ψj (5)
For all edges based on ruletyp (4) the defined condition ϕ is
additionally correct in the aim state j.
ψi ϕ ψj = φi ∧ ϕ (6)
The labels holdng in all reachable states (algebras) qi if the
abpropeate control state cs = i holds in node i. If all triples
are correct in (5) and (6) than the whole labeling holds for
all algebras of every run of the machine. The prove was
shown in [4].

3. EXTENDED CONTROL-STATE ASMS
To check programs we have to extend control-state ASMs
definition by a classification of states. A class of states
can be defined by an algebraic equation. This equation de-
fines a homomorph picture of the states. Using a constant-
operation befk as an ambassador of the class. defined by
ct(csi) = ct(csj). We are using a term depending on cs to
update the control-state. Everything else is the same. All
proves shown in [4] are correct. The rules form is now:

Rk ::=


f(t1, ..., tn) := t0 (7)

Ri;Rj (8)

if ct(cs) = befx then Rn ; cs := tj(cs) endif (9)

if ct(cs) = befx ∧ ϕthen cs := ti(cs) endif (10)

The state graphs nodes are defined by cs and the edges can
be labeled like before.

In reality labeling large systems is very difficult, therefore
we try to build it step by step.

4. SEPARATING CONTROL-STATE ASMS
To describe a part of a run we add a formula σ(cs) defining
a subset of control-states. The aim is to terminate all states
in a run where σ(cs) = true. The formula should define an
abstraction of the given machine. For all initial and final
states formula σ(cs) should be false.

If the ASM is defined as:

A = (Σ,ΦInit,R0 ) (11)

The ASM separated by σ(cs) is:
A = (Σ,ΦInit,Rσ;R¬σ)
where Rσ ::= if σ(cs) then R0; (12)
and R¬σ ::= if ¬σ(cs) then R0; (13)

This machine generates the same runs because all generated
updates are the same. All runs starts based on updates gen-
erated from (13) because of the definition of σ(cs) (false in
initial states). As long as σ(cs) is false only the rule R¬σ(cs)
controls the states transitions until σ(cs) evaluates to true.
Now Rσ(cs) controls the transitions until σ(cs) evaluates to
false. etc.

The aim is to terminate all states where σ(cs) evaluates to
true. If σ(cs) evaluates to true in rulepart (13) there must be
an update cs := k¬σ. The same happens if σ(cs) is evaluated
to false in rulepart (12) there has to be an cs := kσ. We
assume that there is exactly one state kσ for one k¬σ.

The idea is to change the transition rule where cs := k¬σ is
updated by an update of cs := kσ and an additional update
y := newfnc(x) in form (3). The same can be done in form
(4) by adding a new state.

The change is a correct abstraction of (11) iff the control-
state ASM
Aσ = (Σ,Ψkσ ,Rσ) (14)
stopps in state k¬σ and the machine
A∗σ = (Σ,Ψkσ , if cs = kσ then y := newfnk(x); cs := k¬σ)
(15)
is an abstraction of Aσ for all assignments of x allowed in
Ψkσ and
Ψkσ y := newfnk(x) Ψk¬σ (16)
is a correct Hoare triple in Aσ.

To show this we use the method discribed in [4] and in a
short form in section 2. A starts in a state labeled Ψkσ and
if we are able to label Ψk¬σ as a substitution of
Ψkσ [newfnc(y)/x] = Ψk¬σ the prove of abstraction is done.

If there exists only one state k¬σ the rulepart (12) never
generate updates. It can be eleminated from the transition
rules. If there is an other state k¬σ the same can be done
to eleminate the connection to state in σ(cs). If all are
terminated no state in σ(cs) is reachable.

The ASM
A = (Σ,ΦInit, if cs = kσ then y := newfnk(x ); cs := k¬σ else R∗0 )
(17)
is an abstraction of
A = (Σ,ΦInit,Rσ;xxxxR¬σ) (18)

5. EXAMPLE
We will verify a simple part of a program. We use the same
example like in [4], the computation of the greatest common
divider (gcd) of two numbers. Next we will show that a
program running on a fixed machine is correct. We need a
machine, a program and an algebraic definition of gcd.
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A simple basic machine:

sorts OPC , INT ,BOOL (defines the sorts)
ops . . . ,−1, 0, 1, . . . : → INT

+,− : INT × INT → INT
true, false → BOOL
>,==: INT × INT → BOOL
ld, st, sub, br, brlt, call, ret : → OPC
bef : OPC × INT → INT
adr : INT → INT
mem : INT → INT
pc : → INT

trans (defines the transition rules)
ifop(mem(pc)) = ld then

ac := mem(stk + adr(mem(pc)))); pc := pc + 1
ifop(mem(pc)) = st then

mem(stk + adr(mem(pc)))) := ac; pc := pc + 1
ifop(mem(pc)) = sub then

ac := ac −mem(stk + adr(mem(pc))));
zero := ac == mem(stk + adr(mem(pc))));
lt := ac < mem(stk + adr(mem(pc)))); pc := pc + 1

ifop(mem(pc)) = br then
pc := adr(mem(pc)))

ifop(mem(pc)) = breq ∧ zero = true then
pc : adr(mem(pc))elsepc := pc + 1

ifop(mem(pc)) = brlt ∧ lt = true then
pc : adr(mem(pc))elsepc := pc + 1

ifop(mem(pc)) = call then
pc := adr(mem(pc)); stk := stk − 1 ;mem(stk) = pc + 1

ifop(mem(pc)) = ret then
pc := mem(stk + 1); stk := stk + 1

Figure 1: Abstract state machine

Specification of the greatest common divider:

ops gcd : INT × INT → INT
axiom gcd ( n , n ) = n

n>m → gcd ( n-m , m ) = gcd ( n , m )
n<m → gcd ( n , m-n ) = gcd ( n , m )

Figure 2: Algebraic specification of the static function gcd.

ops gcd : INT × INT → INT
axiom mem(gcd+0) = bef ( ld , 2 )

mem(gcd+1) = bef ( sub , 3 )
mem(gcd+2) = bef ( breq , gcd+9 )
mem(gcd+3) = bef ( brlt , gcd+6 )
mem(gcd+4) = bef ( st , 2 )
mem(gcd+5) = bef ( br , gcd )
mem(gcd+6) = bef ( neg , 0 )
mem(gcd+7) = bef ( st , 3 )
mem(gcd+8) = bef ( br , gcd )
mem(gcd+9) = bef ( ret , 0 )

Figure 3: A program to verify its bebavior on the machine figure 1

pre top(stack) = n, top(pop(stack)) = m,n > 0,m > 0
call gcd

post top(stack) = gcd(n,m)

Figure 4: The behavior to prove (dashed line in figure 5).
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Figure 5: Control-state-graph
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The machine in figure 1 defines only the instructions we need
in the example. We use a simple one address machine with
accumulator ac. Each instruction is defined by one code and
an address. It is defined by function bef : OPC × INT →
INT . The function op : INT → OPC and adr : INT →
INT are the inverse to bef . The stack is placed in memory
and stk points to the appropriate address. All load and store
instructions are relative to the stack pointer stk. We have
two flags lt and zero, set by sub-instruction. It is easy to
extend this machine to a real processor. All important types
of operations are in this example.

The abstract data type is defined in figure 2. Other specifi-
cations like NAT are not shown.

The program is shown in figure 3. We have to prove that
is it correct. To show this we define an Hoare triple like
shown in figure 4. The parameters are on the top of the
stack and they are greather than zero. Additionally we have
to show the correct handling of the stackpointer and we have
to guarantee the existence of the program in memory.

At the end we need the separator σ to define the parts of
runs we need to terminate. This is the execution of gcd,
σ = pc ≥ gcd ∧ pc ≤ gcd+ 9. (19)
We have to start by bef(CALL, gcd) this instruction oc-
curs at any time on any address (named xxx). The opcode
op(mem(ic)) is CALL and the ASM generates the updates
{pc:=adr(mem(pc));stk:=stk-1;mem(stk):=pc+1}.
Next state is adr(mem(xxx)) = gcd and there is an edge from
xxx to gcd. The edge is labeled by the updates {stk:=stk-
1;mem(stk):=pc+1}. The first pc := adr(mem(pc)) is not
necessary because it is defined by the graph.

Figure 5 presents the control-graph and the labeling of all
edges. They are made in the same simple way like the first
call-instruction. If the way of the graph is splitting like in
node gcd+2 we get the conditions transferred by the machine
flags.

Now the labeling of the states by Hoare can be done. This is
like Hoare-proving in higher label languages. We only need
the assignment-rule.

6. INDEPENDENCE OF SEPARATORS
The separation of control-states are independent if the set of
states σi(cs) are disjunct for all i. There is no order in the
updates because they are handeled as a set. Each update in
all rules is selected by the if-constructs. Only the conditions
decide which updates are in the generated set of updates. If
there are two separators σ1(cs) and σ2(cs) and the defined
control-state-sets are disjunct than the separations produce
the same sets of updates. This applies because of the capa-
bilities of the if-condition:
if σ1(cs) then R1 else if σ2(cs) then R2 else R3 (20)
is the same like
if σ2(cs) then R2 else if σ1(cs) then R1 else R3 (21)
This behavior can be extended to any finite number of sep-
arators.

If there is a recursive use of generated functions and the
recursion stops after a limited depth of calls the deepest
call can be proven as correct (start of induction). So the

correctness of a call can be used as precondition to prove
the correctness of higher calls.

In this way the explosion of states in more complex func-
tions can be reduced. The only precondition is that the
sets σi(cs) are all disjunct and the recursition stops. In the
example σ(cs) are the locations in memory used by the pro-
gramcode. The only condition is that different programms
using different storage.

7. RELATED WORK
Winter uses a model-checking approach for verifying ASMs
[13, 3, 15, 16, 5]. The main idea is to abstract ASMs to fi-
nite state machines that can be checked automatically by a
model-checker such as e.g. SMV. The specification language
for the model-checkers is similar to the ASM transition rules.
This work only allows dynamic constants of a finite domain
and therefore may restrict the expressiveness of the asser-
tions. E.g. checking the greatest common divisor example
will become difficult if the pre- and postconditions consider
all natural numbers and not just a finite subset of it.

Stärk develops a verification calculus for general ASMs[12,
2] based on temporal logic. Therefore it is possible to ver-
ify general temporal behaviour. With his approach, it must
be proven that control-state invariants are always satisfied.
The approach in this paper enables to prove control-state in-
variants by Hoare-like prove rules individually for each edge
in the control-state graph – independent of the proof for the
other edges. This seems to be more simple than to prove
control-state invariants using temporal logic calculi.

Schellhorn provides a refinement-based approach for verifi-
cation of ASMs [10, 8, 9]. His approach is better suited
for a top-development of ASMs but it cannot be applied to
bottom-up or middle-out approaches that are also frequently
used in Software Engineering.

All of these calculues use concrete algebras. They require
the concrete interpretation of functions. The method pre-
sented here does not need any algebra. It shows the correct
implementation of an abstract data type on a given machine.
It is not the aim to show the correctnes of an ASM; the aim
is to prove the behavior of a machine in special initial states
(programs).

8. CONCLUSIONS
We have shown that a Hoare-style verification of programs
running on control state ASMs is possible. Verifying pro-
grams by Hoare is not limited to higher programming lan-
guages. Hoare is extended to all types of programs running
on a control-state ASM. So it is possible to use Hoare on
low level programs like assembler too.

At last we describe a method to transform a static definition
of storage assigments to functions. In a given basic machine
we define storage as fixed (the program), this part of stor-
age is unavailable for other usage. Based on this storage
we can show that the machine extends its behavior by new
functions.

The approach is surprisingly simple: find control-state in-
variants for each control-state cs, i.e., assertions that are
satisfied whenever the ASM is in control-state s, and verify
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individually the correctness of the state transitions for each
edge in the control-state graph. The method is used by an al-
gebraic specification of the ASM. No algebra is used to make
the proof. In this way we will extend the declared method
to check abstractions of ASM’s by defining new static oper-
ations by signature and axioms and prove that behavior of
the ASM respect the given axioms.
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