
Collaborative Creativity: From Hand

Drawn Sketches to Formal Domain

Specific Models and Back Again

Christian Bartelt, Martin Vogel, Tim Warnecke
Software Systems Engineering - Department for Computer Science

University of Clausthal, Germany

{christian.bartelt, m.vogel, tim.warnecke}@tu-clausthal.de

Abstract. Most of the time developers make extensive use of software tools in a software
development process to support them in their day-to-day work. One of the first and most
important phases is the design phase. Here tools are missing which support the creative
and collaborative workflow (parallel/distributed). At the moment software designers uses
classic whiteboards in team meetings to express their ideas. Subsequently a coworker
uses a mobile phone or a camera to take photos of the work and remodel the picture with
a modeling tool. That process is very inconvenient, error-prone and hinders a creative
modeling cycle. For overcoming this ineffective process this paper shows a new
approach to use digital whiteboards to transform free hand sketches in formal models
and back again while modeling in a distributed team. The approach is completely
independent from a pre-defined modeling language. It provides an interactive training
mode to learn new graphical syntax elements and map these elements to formal meta-
model entities. Based on the approach a collaborative sketch and modeling infrastructure
was implemented.

Video: https://www.youtube.com/watch?v=0i3M9djPrRM
[Mirror: http://sse-world.de/index.php?cID=3611]

Motivation and State-of-the-Art

Nowadays, software development is a creative and distributed team process. The

early and creative design phase is very important for successful software projects.

In: Nolte, A., Prilla, M., Rittgen, P. and Oppl, S.: Proceedings of the International Workshop
on Models and their Role in Collaboration at the ECSCW 2013 (MoRoCo 2013)

25

Normally software designers do not use modeling tools like MagicDraw UML

(MagicDraw 2013) in this early phase because of their inconvenient operation.

Modeling tools are made for precise model design, but not for creative sketching.

That is the reason why software designers using whiteboards in team meetings to

visualize and communicate their ideas within the group (Cherubini et al. 2007).

Nevertheless, after a successful team meeting, one of the designers has to

transform the drawn sketches in formal models using the previously rejected

modeling tools. Those transformations are error-prone because for e.g. the

designer tries to optimize the diagram or forgets some elements. Thus it is

possible that the new formal diagram cannot be recognized by the other team

members in a later meeting because of its changed appearance.

Another widely known problem in this domain describes that everybody has to

be present to accomplish such a creative meeting. If a team is spread all over the

country or worse over the world it needs a lot of effort, money, and time to get

them all to one place. One possible solution is to use Screen Sharing Software

like TeamViewer (TeamViewer 2013) to share some kind of drawing software

and additionally utilize a telephone conference system. An issue here is that two

or more software applications are used together and none of them is particular

conceptualized for software designers.

Figure 1: Use cases

In Figure 1 three typical modeling use cases in the creative engineering phase

are depicted. The first use case (UC 1) describes two distributed teams are

working parallel on the same sketch model. UC 2 shows how a sketched model,

which was drawn by a team of designers and transformed to a formal domain

specific model. This transformed model is based on Ecore, which is now usable

with a corresponding EMF- or GMF-Editor (whereas the whole history of origins

of the sketch is preserved). This allows a single user to extend and change the

model based on the results and feedback of the previous team meeting. UC 3

illustrates how such a modified model is transformed back to a sketched model.

In: Nolte, A., Prilla, M., Rittgen, P. and Oppl, S.: Proceedings of the International Workshop
on Models and their Role in Collaboration at the ECSCW 2013 (MoRoCo 2013)

26

Because Scribbler knows how the sketched model looked before all changes

made in the GMF-Editor can be visualized, e.g. an element was deleted or added.

The last both use cases make it possible to establish a creative life cycle which

starts with a onetime configuration. This configuration consists of a knowledge

base, which contains of previously learned sketches for the chosen DSL, and a

mapping between those sketches and elements of the DSL meta model (Ecore). It

should be noted, that this configuration can also be done after drawing sketches.

After the team drew some sketches the sketch model is transformed, with help of

the configuration, to a formal model (UC 2) which is suitable for a GMF-editor.

In this editor a single user modifies the model based on the feedback of the

meeting before. After he finished his modifications, the model is transformed

back to a sketch model and given back to the team (UC 3). All modifications done

in the GMF-Editor are visualized and the remaining, but unchanged, sketches

look like in the first meeting. Thus the team is able to better recognize what

happened in the last meeting. To improve the process of recognizing a sketch,

which is made some days or weeks before, the designer can also use the

implemented history viewer which recorded every stroke made on the canvas.

With similarities to these use cases in the last few years several research

initiatives are started with the topic intuitive modeling respectively model

sketching. In (Sangiorgi & Barbosa 2010) a recognition mechanism for sketched

model elements was presented. This mechanism uses a similarity calculation

between drawing traces based on the Levenshtein distance (Levenshtein 1966)

and is also a foundation for the research here explained. Some innovative research

results about sketch recognition in the area of requirements modeling was

described in (Wüest, Seyff, and Glinz 2013). Some further recognition techniques

based on vector comparison between sketches and GEF/GMF model elements

were published in (Scharf 2013).

Scribbler – The Collaborative Sketching/Modeling

Infrastructure for Domain Specific Models

The developed sketching/modeling platform Scribbler picks up the upon

explained use cases. Therefore, it must overcome several challenges like sketch

recognition, formal model synthesis from recognized sketches, sketch synthesis

from formal model, and an efficient mechanism to allow distributed parallel

sketching. Furthermore, the approach should be easy/user friendly adaptable for

sketching any kind of domain specific syntax.

In: Nolte, A., Prilla, M., Rittgen, P. and Oppl, S.: Proceedings of the International Workshop
on Models and their Role in Collaboration at the ECSCW 2013 (MoRoCo 2013)

27

Sketch Recognition and Knowledgebase

A sketch is per definition a freehand drawing, consisting of some individual

elements, which is not yet finished and tries to transport some kind of idea

(Davies 1990). Following from this a sketch and its elements has meanings for the

people who work with it, but for computers sketch elements are only a set of x-

and y-coordinates and maybe colours. These coordinates must be interpreted in a

way such the computer knows what the drawing person had in mind. Aggravated

by the fact that every human being sketches figures a little bit different, four main

problems must be taken into account when recognizing a figure. First the drawing

order of a figure alters between different users, second the size of a figure changes

with attempt, third a figure can be inclined to the right or left side and last users

often don’t draw solid lines.

To solve these problems, Scribbler uses an extended and modified version of

an algorithm described by (Coyette et al. 2007). In a first step of the procedure a

sequence of numbers based on the intersections with a predefined grid is

produced. In the example in Figure 2 the sequence of the circle is 1 1 2 3 4 5 8 9

12 13 14 15 because two intersections are detected in field 1, one additional

intersection in field 2, one additional intersection in field 3 and so on.

Figure 2: Sketch Recognition

This is pretty straight forward, but not every drawn object has a unique

numerical sequence. A circle could have the same sequence as a square because

they have the same intersections with the used grid. In a second step the incline

for every intersection of the drawn line is measured and mapped to a number

corresponding to the scheme shown on the right side of Figure 2. This generates a

second numerical sequence for both sketches, which is now completely different.

After constructing such a pair of sequences a knowledgebase of previously

drawn figures is needed to compare them with new drawn sketches and finding a

match using Levenshtein distance (Levenshtein 1966). Building such a

knowledgebase needs some kind of learning environment, which is done in

Scribbler with an own dialog.

In: Nolte, A., Prilla, M., Rittgen, P. and Oppl, S.: Proceedings of the International Workshop
on Models and their Role in Collaboration at the ECSCW 2013 (MoRoCo 2013)

28

Figure 3: Learning environment

This dialog is shown in Figure 3 and consists of a training canvas (1) and a list

of elements (2) which were already learned. The user is also able to add new

versions of a sketch by redrawing it over and over (leads to better recognition

results) again and to create new sketches by adding them to the list. Every drawn

sketch will be automatically added to the knowledgebase. The knowledgebase is

stored in a file, which can be exchanged with other users. For collaborative work

recognizing of sketches is important, because the team gets a visual feedback of

what happened. If the feedback is not that result which they actually discussed,

the team can react immediately and change the type of the sketch to the desired

one.

From Sketches to Formal Models and Back Again

Transforming a hand drawn sketch to a formal Ecore (EMF 2013) based model

describes a process of mapping sketches to elements of the given meta model. At

first glance this sounds easy but a lot of information, like for example position,

size and the history of origins, is lost if hand drawn model elements are just

mapped to their corresponding EMF counterparts. Transforming the EMF model

back to a hand drawn sketch is not possible any more without theses information.

Due to this problem a new file type was needed. In this file three types of

information are stored at the same time for every element. The first is the

meaning of an element defined by the corresponding meta model. The second is

the graphical representation given by the Graphical Modeling Framework (GMF

2013) such as, for example a UML class is a rectangle with an additional

horizontal stroke. The last type of information stored the coordinates of the hand

drawn strokes and the history of origins logged by Scribbler. This new file type

sets Scribbler in the position to transform hand drawn sketches to ECore based

models and back again without loss of information.

Collaboration: Drawing together and saving the history of origins

Another problem with hand drawn sketches is that the incurrence of its elements

is not traceable anymore. This is especially problematic if a sketch was drawn

some days or weeks ago and someone tries to remember what happened in the

In: Nolte, A., Prilla, M., Rittgen, P. and Oppl, S.: Proceedings of the International Workshop
on Models and their Role in Collaboration at the ECSCW 2013 (MoRoCo 2013)

29

meeting (Cherubini et al. 2007). Scribbler solves the problem by saving all

drawing actions which happened on the canvas in a file for later use. The core of

it fires for every user action an event, e.g. drawing or moving. Events are stored

in a queue for the plugins. This queue is stored in a file with the whole sketch

model. Thus, the history of origins still remains. For the transformation from

sketches in formal models, the history is also stored in the new model file. After

this step it is possible to review the whole drawing process of the sketch in a user

defined speed and to stop and restart it whenever the user wants to.

Figure 4: History viewer

Figure 4 shows the user interface of the history viewer. It looks like an

audio/video tool with a play button and a slider for the timeline. Thus, the history

of origins of the model can play back. This feature is important for collaborative

modeling, because if a new member joins the team, he can comprehend how the

model is originated in the team. He can jump to every position in the origination

process. Further the history viewer might be used in future for contextual

modeling. This means that the team navigates to the position, which they want to

modify and change the information in the sketch. After the modification they

navigate to the end of the timeline and continue the work at the model. The

modification saved in the history of origins.

Another component of Scribbler is the collaboration platform. Since Scribbler

is an intuitive modelling tool, which is inspired by a standard whiteboard, it is

necessary to construct a collaborative lock-free environment in which everyone

immediately sees if a user starts a new sketch, how he draws it and the name of

the user. Implementing such a collaborative environment is a challenge because

every client doesn’t use necessarily the same hardware and software. This fact

leads to two new problems. Different devices have different screen resolutions

and bandwidths.

Solving problem number one, Scribbler scales up every drawn sketch to a

fictional resolution and scales them down to the actual resolution of the

corresponding device. This procedure ensures that every screen size is supported

no matter how big or small it is. Problem number two is solved by transferring

only mouse movements/events and the coordinates, so no screen sharing is

necessary. Furthermore, the server saves every draw session. This feature allows

sending all transmitted data to a new connecting client and pushing him to the

current stage of work. Additionally the server has the ability to save the cached

data of a session in a local file. Thus it is possible to load and continue such an

older session or view it in the history viewer. Thereby every member of a team

can prepare for the next meeting or evaluate the session afterwards.

In: Nolte, A., Prilla, M., Rittgen, P. and Oppl, S.: Proceedings of the International Workshop
on Models and their Role in Collaboration at the ECSCW 2013 (MoRoCo 2013)

30

Tool Implementation

Scribbler is just a simple paint program which supports only basic operations like

draw, move, scale, delete, save and load. Every drawn sketch consists of a series

of raw dates, like, for example, coordinates and mouse movements. Scribbler

gains its sketch recognition and collaboration skills through plugins.

Figure 5: Tool Scribbler

A screenshot of the tool is shown in Figure 5. At the top of it (1) all current

loaded plugins are represented with an icon. In the center (2) is the canvas and

last but not least the toolbar is located at the bottom (3), which consists of four

colors, an edit button and a rubber.

Evaluation

During the project duration three industry partners from different domains used

the Scribbler for their daily work – with customers and for architectural and

structure meetings - for about four weeks. Every team had an experimental setup

composed of a digital whiteboard and some tablet pcs and a catalogue of

questions to evaluate the Scribbler. The results of the evaluation as described

below. The three teams used the Scribbler only for collaborative work –

especially the history viewer and the server sessions - to prepare the next meeting.

The teams assessed this functionality as valuable and it is very helpful for their

daily work. Furthermore, they used the learning environment to insert their own

elements for their own domain languages. Scribbler was able to learn all of these

elements and the recognition rate was very good. Concerning the usability and the

training period every participant rated the Scribbler as good.

In: Nolte, A., Prilla, M., Rittgen, P. and Oppl, S.: Proceedings of the International Workshop
on Models and their Role in Collaboration at the ECSCW 2013 (MoRoCo 2013)

31

Conclusion

Ensuing from the requirements regarding an intuitive modeling infrastructure that

does not hinders the creative engineering process the sketching/modeling

platform Scribbler was developed. Scribblers allows a distributed, parallel

(collaborative) sketching of engineering models on digital whiteboards, the

transformation of sketches in (semi-)formal domain specific models and back

again, an easy and interactive learning of new domain specific syntax elements,

and a recording/playback of the modeling/sketching history. The fundamental

concepts of all these features are explained in this paper. Furthermore the

implemented software infrastructure is presented. For future work the recording

of further context information during the sketching modeling process (e.g. voices

of modelers within the history of model evolution etc.) is planned.

This research work was supported by “German Federal Ministry of Education

and Research” (BMBF) within the Project “KoMo – From Sketch to Model:

Cooperative Modeling with Domain Specific Languages” (2011-2013).

References

Cherubini, Mauro et al. 2007. «Let’s go to the whiteboard: how and why software developers use

drawings» in . Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, 557–566. CHI ’07. New York, NY, USA: ACM.

doi:10.1145/1240624.1240714. http://doi.acm.org/10.1145/1240624.1240714.

Coyette, Adrien et al. 2007. «Trainable sketch recognizer for graphical user interface design» in .

Proceedings of the 11th IFIP TC 13 international conference on Human-computer

interaction, 124–135. INTERACT’07. Berlin, Heidelberg: Springer-Verlag.

http://dl.acm.org/citation.cfm?id=1776994.1777013.

Davies, Diana. 1990. Harrap’s Illustrated Dictionary of Art and Artists. Chambers.

EMF. 2013. «EMF». www.eclipse.org/modeling/emf/.

GMF. 2013. «GMF». www.eclipse.org/modeling/gmp/.

Levenshtein, Vladimir I. 1966. «Binary Codes Capable of Correcting Deletions, Insertions and

Reversals» in . Soviet Physics Doklady, 10:707 – 710.

MagicDraw. 2013. «NoMagic - MagicDraw». www.nomagic.com/products/magicdraw.html.

Sangiorgi, Ugo Braga & Barbosa, Simone D. J. 2010. «SKETCH: Modeling Using Freehand

Drawing in Eclipse Graphical Editors» in . Proc. FlexiTools Workshop.

doi:http://www.ics.uci.edu/ tproenca/icse2010/flexitools/papers/10.pdf.

Scharf, Andreas. 2013. «Scribble - A Framework for Integrating Intelligent Input Methods into

Graphical Diagram Editors» in . Software Engineering 2013 Workshopband (inkl.

Doktorandensymposium), 591–596. http://www.se2013.rwth-

aachen.de/downloads/proceedings/SE2013WS.pdf.

TeamViewer. 2013. «TeamViewer». www.teamviewer.com.

Wüest, Dustin; Seyff, Norbert & Glinz, Martin. 2013. «FlexiSketch: A Mobile Sketching Tool for

Software Modeling» in Uhler, David et al. (arg.). Mobile Computing, Applications, and

Services, 225–244. Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering 110. Springer Berlin Heidelberg.

http://link.springer.com/chapter/10.1007/978-3-642-36632-1_13.

In: Nolte, A., Prilla, M., Rittgen, P. and Oppl, S.: Proceedings of the International Workshop
on Models and their Role in Collaboration at the ECSCW 2013 (MoRoCo 2013)

32

