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Abstract

We show how the Mona tool for reasoning in the monadic second order theories
WS1S and WS2S can be used to obtain decision procedures for description logics.
The performance of this approach is evaluated and compared to the dedicated
DL reasoners FaCT and RACER.

1 Motivation

The weak monadic second order theories of one and two successors, commonly called
WS1S and WS2S, are among the most powerful decidable logics known today [10].
This is witnessed by the fact that a large number of description logics, modal logics,
and dynamic logics can be translated into them (see, e.g., [3]), and also by their
impressive non-elementary complexity: there exists no positive integer n such that
satisfiability of WS1S or WS2S formulas can be decided in n-EXPTIME [9]. Despite
their powerful expressivity and immense computational complexity, with the Mona
tool there exists an efficient implementation of both WS1S and WS2S [4]. As the
Mona manual puts it, “efficient here means that the tool is fast enough to have been
used in a variety of non-trivial settings”. Indeed, an impressive list of successful
applications can be found on the Mona homepage [1].

Since it is common knowledge that many DLs can be translated into WS2S, it
is a natural idea to use Mona for DL reasoning. Thus, the purpose of the current
paper is to translate the basic description logic ALC into formulas digestible by Mona,
and to evaluate Mona’s performance for DL reasoning. More precisely, we use a well-
known translation of ALC into WS2S using a Rabin-style encoding of non-binary trees
into binary trees, and exhibit a novel reduction of ALC into WSIS that is inspired
by Pratt’s “type elimination” technique for deciding the satisfiability of modal logic
formulas. We then compare the performance of Mona with that of the dedicated
DL reasoners FaCT and RACER [8, 5|. There are at least two reasons why such a
comparison is interesting: first, it contrasts the performance of DL reasoners with
the performance of more general reasoners, thus being in the line of [12] where the
performance of the FaCT system is compared to that of the first order theorem prover
Vampire. Second, Mona implements an automata-based decision procedure, while the
two DL reasoners are tableau-based and thus a comparison may contribute to the
understanding of the advantages and disadvantages of the two approaches.

The outcome of our investigation is as follows: if no TBoxes are involved, then
Mona’s performance is reasonable, though it cannot reach the performance of FaCT



and RACER. In the presence of TBoxes, Mona’s performance is extremely poor, ren-
dering the Mona approach to DL reasoning virtually useless. However, we believe
that using Mona for DL reasoning without TBoxes can be useful at least for prototyp-
ing purposes: WS1S and WS2S are powerful enough to accomodate many expressive
description logics such as SHZ Q or DLs involving transitive closure of roles, and im-
plementing a translator is considerably less difficult than implementing an optimized,
dedicated reasoner. Developing translations for more complex DLs, however, is outside
the scope of this paper.

2 Translations to WS1S and WS2S

We assume familarity with the description logic ALC, see, e.g., [2] for details. In
TBoxes, we admit concept equations C = D with both C' and D possibly complex.
These TBoxes are interpreted according to the usual descriptive semantics. Due to
space limitations, we cannot give a full description of the monadic weak second-order
theories WS1S and WS2S. Intuitively, the syntax of our monadic second-order (MSO)
language is obtained from the familiar first-order (FO) language without function
symbols and constants (but with equality) by

1. restricting predicates to be unary;

2. adding second-order quantifiers “¥” and “3” that can be used to quantify over
unary predicates, which are in this context called second-order variables;

3. in the case of WSI1S, adding an ordering predicate “<” and a successor func-
tion s(-);

4. in the case of WS2S, adding an ordering predicate “<” and two successor func-
tions sy(-) and s,(-).

As for the semantics, formulas of WS1S are interpreted in the structure of one successor
function, i.e. in one-side infinite words. The built-in ordering predicate “<” has the
obvious interpretation on positions in such w-words, and the successor function can
be used for going to the successive position. In the case of WS2S, formulas are
interpreted in the structure of two successor functions, i.e. in infinite binary trees. The
ordering predicate “<” describes the “offspring” relation in such trees, and the two
successor functions sy(-) and s, () can be used for going to the left and right successor,
respectively. For both WS1S and WS2S, the “W” stands for “weak” indicating that
quantification is on finite sets rather than on arbitrary ones as in the closely related
theories S1S and S2S.

To WS1S and the Monadic Theory of Infinite Sets

We first present a translation of ALC concepts and TBoxes to WS1S, or rather to the
MSO theory of infinite sets since we will not use WS1S’s built-in ordering predicates
and successor functions. The translation is inspired by the Pratt-style “type elimi-
nation” procedure for deciding the satisfiability of modal formuas [11]. Intuitively,



type elimination is based on the following simple observation: if a domain element
in an ALC interpretation satisfies a set of concepts I containing an existential value
restriction IR.C, then there must exist another domain element satisfying C' and all
D with VR.D € I'. This observation also constitutes the core of the WS1S reduction.

Let C be an ALC-concept and T a TBox. We use sub(C') to denote the set of
subconcepts of C' and set

sub(C,7) :=sub(C)U | J sub(D)Usub(E).
D=EeT

Moreover, we use cnam(C,7T) and rnam(C,7T) to denote the sets of concept names
and role names occurring in C' and T, respectively. To translate C and 7 into a
corresponding second order formula, we introduce a unary FO-predicate P4 for each
A € cnam(C, T), and a unary FO-predicate Qp for each D € sub(C,T) of the form
JR.E or VR.E. Then, for each concept D € sub(C, 7T ) and each first-order variable z,
we define a formula D!(z) by replacing

1. concept names A with Py (x);
2. M with A and U with V;
3. dR.D with QgR.D(x) and VR.D with QVR.D(IL‘).

Concerning the last item, we only replace existential and universal value restrictions
that are not contained inside another value restriction. For example, taking

C =AMN-VYR.(VS.(AMN —=B))
and the FO variable x, we obtain

CH(z) = Pa(x) A ~Qur.(vs.(An-p))(T)-

Next, for each role name R € rnam(C,T) we define a formula

dp = vx.HW.[ A (sz.c(x)—>(Vy-W(y)—>cﬂ(y)))
VR.Cesub(X,T)

A /\ (QaR.C(fE) — (Fy.W(y) A Cu(y)))}

3R.Cesub(X,T)

where z is a first order variable and W is a second order variable (the same variables
may be used for every R € rnam(C,7)). Finally, we can define the WS1S formula
(,010,7-, which is the translation of C and T

oo =w.Cl o)AV [\ (D'z) o B')]A N\ Or
D=EcT Rernam(C,T)

Some remarks on this translation, which is called T1 in the remainder of this paper,
are in order. First, it is linear and may even result in an exponential compression of



the input concept and TBox. Second, the formula ‘Pé‘,T does not refer to any successor
functions and ordering predicates, and can hence be interpreted both in WS1S and in
the MSO theory of infinite sets. And third, it is interesting to note that description
logic roles are not explicitly represented on the second-order side. This is so because we
have only a single relation available in WS1S: the successor function, which does not
seem suitable for representing the in general non-functional role relationships. Thus
we resort to a type elimination perspective as initially sketched: the existentially
quantified variable W in 9 comprises those domain elements that are needed to
satisfy all the existential value restrictions of .

Theorem 1. A concept C is satisfiable w.r.t. o TBox T iff (plcﬂ- is satisfiable in the
MSO-theory of infinite sets iff (plcﬂ- is WS1S-satisfiable.

It is interesting to note that we can even eliminate the second-order quantifier in the
previous translation by defining the formula 9 in a different way. Here, the relation
to type elimination is even more visible:

Ri=Vo. \ [QHR.C(fE) — (39'(Cﬂ(y) AN\ @@ — Dﬁ(y)))ﬂ

VR.Cesub(X,T) VR.Desub(X,T)

With this modification, we could use our translation together with a first-order theo-
rem prover rather than together with Mona—a path that we are not going to explore
in the current paper. Note that the modified translation is quadratic rather than
linear.

To WS2S

The translation to WS2S is much more standard than our WS1S translation. Since we
have two successor functions available in WS2S, we can now explicitly represent the
relational structure on the second-order side: ALC is known to have the tree-model
property, and an old trick of Rabin [10] can be used to transform ALC’s tree models,
which are not necessarily binary trees, into the binary tree structure of WS2S.

Let C' be an ALC concept and 7 a TBox. For the new translation, we fix an
enumeration of the roles in C and T, and use #R to denote the position of a role R in
this enumeration. We introduce a unary FO-predicate P4 for each A € cnam(C,T),
and another unary FO-predicate M. Then, we inductively define two translation
functions -* and Y, where z and y are first-order variables. Here is the -* translation:

AT = A(x)
(=C)* = =C*
(cnD)y* = C*AND*
(CUD) = C*VD*
(FR.C)* = Fy.(y <¢si(x) NCY AN M(y)) where n := #R
(VR.C)* = Vy.((y <¢sp(z) ANM(y)) = CY) where n:=#R

In this translation, s,(-) is the “right” successor function, and sP(-) stands for going
to the right successor n times. Moreover, <, is the ordering over left successors only.



Since this is not available in Mona, we simulate y <, x by writing

EIQ.[wEQ/\‘V’z.(zEQ—)(z:stz(z) EQ))}

Note that this formula only works since, in WS2S, quantification is over finite sets.
The Y translation is defined symmetrically to -*, details are omitted. Given a concept
C and a TBox 7T, we now define their translation to WS2S as follows:

oo =3w.(M@)AC)A N\ Vz.(D" <+ E).
D=FEcT

The intuition behind this translation, which is called T2, is as follows: there is a one-
to-one correspondence between domain elements of ALC interpretations and nodes in
the WS2S tree structure that are in the extension of the predicate M. Let z be a
node in the WS2S tree that is in M. To find the R-successors of x for a role name
R € rnam(C,T) with §R = n, we start at z and follow the right successor function
exactly n times to the node y. Then the R-successors of x are y, its left successor,
its left successor’s left successor, and so forth. This also explains the use of the M
predicate: since we do not want to have infinitely many successors for each domain
element and each role name, we mark the “existing ones” with M.

Theorem 2. A concept C' is satisfiable w.r.t. a TBox T iff 9020,7- 1s WS2S-satisfiable.

There are some interesting variations of this translation. For example, we can modify
the translation -* as follows (and -¥ analogously):

(R.C)* = M(s}(z)) A Jy.(y <¢ se(s](z)) ANCY) where n 1= #R
(VR.C)* = M(s}(z)) = Yy.(y <¢ se(sf(z)) — CY) where n:= #R

Here, the intuition of the M predicate is a different one since M is only used to state
whether a node x has successors for a role name R at all: this is the case if and only
if sI'(x) is in M, with n = §R. This second variant of the S2S translation is denoted
with T2b.

3 Evaluation

To evaluate the performance of Mona when used for deciding the satisfiability of ALC
concepts without reference to TBoxes, we employed two different classes of concepts.
Firstly, we tested our approach on the Tableaux’98 (henceforth T98) benchmark suite
that is frequently used to evaluate DL reasoners, see, e.g., [8, 12]. The T98 suite
consists of 18 sequences of concepts, each sequence comprised of 21 concepts with
increasing difficulty. Since the T98 concepts are artificial in the sense that they have
been designed with the only purpose of making reasoning difficult [6], we secondly
used concepts that were extracted from the real world knowledge bases Galen and
Platt—see [7] for more information on both of them.

All tests were perfomed five times: once for each of the three translations T1, T2,
and T2b, and once using the well-known DL reasoners FaCT and RACER [8, 5]. The



T1 T2 T2b RACER | FaCT
k_branch_n 0 2 1 14 6
k_branch_p 0 2 1 20 8
k_d4_n 0 2 4 21 21
k_d4_p 0 3 6 21 21
k_dum_n 0 2 3 21 21
k_-dum_p 0 6 7 21 21
k_grz_n 0 3 ) 21 21
k_grz_p 0 4 5 21 21
k_lin_n 1 1 21 21 21
k_lin_p 1 7 10 21 21
k_path_n 0 3 16 21 8
k_path_p 0 4 17 21 10
k_ph_n 2 4 11 21 9
k_ph_p 2 4 11 9 8
k_poly_n 0 1 2 21 21
k_poly_p 0 1 1 21 21
k_t4p_n 0 0 6 21 21
k_tdp_p 0 1 10 21 21
Total: 6 50 137 358 301
Galen-kris-1,% | 97.34 | 93.13 | 91.07 | 100.00 | 100.00
Galen-kris-2,% | 99.54 | 98.66 | 97.83 | 100.00 | 100.00
Platt,% 100.00 | 100.00 | 100.00 | 100.00 | 100.00

Figure 1: Experimental Results

results are summarized in Figure 1. In the table, the names k_x_x denote the concept
sequences of T98. The entries are to be read as follows: the reasoners had 100 seconds
to decide the satisfiability of each concept in a sequence. The number given in the
table is then the number of the last concept that a reasoner was able to solve within
this time. Thus, the entry “21” means that all concepts in a given sequence have
been solved. For the “real world” concepts, for which the results can be found in the
last three lines, we use a different scheme: there are again 100 seconds available for
reasoning on each concept, but since these concepts are not ordered w.r.t. increasing
difficulty, we simply give the percentage of concept that the reasoner was able to solve
within the given time. Note that, in total, there were 1165 concepts for Galen-kris-1,
1936 concepts for Galen-kris-2, and 262 concepts for Platt

There are several interesting observations to be made in Figure 1. First, it is ob-
vious that the dedicated DL reasoners RACER and FaCT outperform Mona in most
cases, except for the translation T2b used on the sequences k_lin_n, k_path_p, k_path_n,
k_ph_n, and k_ph_p—in the last case, Mona even beats FaCT and RACER. Second, on
the T98 concepts the translation T2b performs much better than the other two trans-
lations, and T1 is worst solving only 6 concepts out of 378. Surprisingly, the situation
is reversed for the real world concepts: here T1 outperforms both other translations
and T2b is worst. And third, there is a surprising difference in the performance of the
almost identical T2 and T2b translations (at least on the T98 concepts). Thus, Mona
is apparently quite sensitive to small changes in the translation.



How should these results be judged? Let us start with saying that the better
performance of FaCT and RACER is perhaps not too surprising: both Mona and the
involved DL reasoners are highly optimized, but Mona is capable of dealing with
a much more powerful logic. This is witnessed by the fact that the complexity of
WS1S and WS2S is non-elementary [9], while FaCT and RACER implement EXPTIME-
complete logics. Still, we believe that the performance of our translations is reasonable.
In particular, it should be taken into account that, compared to the implementation
of a full-fledged DL reasoner, the implementation of our translations is a piece of
cake. Since many different description logics can be translated to WS1S and WS2S,
we believe that such translations can be useful at least for prototyping purposes.

To analyze why the three translations exhibit a different performance, we need
to introduce some of Mona’s implementation details. To decide the satisfiability of a
formula, Mona constructs a finite automaton that accepts the empty language if and
only if the input formula is unsatisfiable, and then performs an emptyness test on this
automaton. The construction of the automaton, which works on w-words in the case of
WSI1S and on infinite trees in the WS2S case, involves a number of automata-theoretic
operations: complementation for dealing with logical negation, union for disjunction,
product for conjunction, and projection for quantifiers. Since Mona always works with
determinstic automata, the most “dangerous” operation in this list is projection as
it involves the determinization of a non-deterministic automaton. As is well-known,
this may produce an exponential blowup in automaton size, in contrast to constant
blowup produced by complementation and union, and quadratic blowup produced
by the product. This is closely related to the fact that WS1S and WS2S are non-
elementary: a separate projection cannot be avoided for each alternation of logical
quantifiers, thus resulting in repeated exponential blowups.

Surprisingly, however, quantifier alternation is almost never the culprit of per-
formance problems in our translation-based appoach to DL reasoning: the reason
for non-termination is usually the more harmless looking product operation, i.e. the
treatment of logical conjunction. To understand this, we must know some more details
about Mona internals: the alphabet of the automaton constructed for a (sub)formula
¢ is comprised of 0/1-strings whose length is identical to the number of free vari-
ables in ¢—the intuition is that the domain element described by such a string is
contained in the extension of exactly those free variables for which we find a “1” value
in the string. Thus, the size of the alphabet is exponential in the length of the input
formula. To cope with this, Mona stores the transition table of automata in a com-
pressed way using binary decision diagrams (BDDs). Unfortunately, this compression
only works well if the underlying formula enforces many interdependencies among the
free variables.

Now consider our translation T1: each subformula Jp is a huge conjunction inside
a “Y3”7 quantifier pattern. Moreover, each conjunct involves a large number of free
variables: since first-order predicates are treated by Mona as free variables (which are
implicitly existentially quantified on the outermost level), this includes the predicates
P, introduced for concept names and the predicates Q)¢ introduced for subconcepts C
of the form dR.D and VR.D. Unfortunately, the interaction between these free vari-
ables turns out to be rather weak in general. Thus, the repeated product operations



performed when processing the huge conjunction in ¥ produce an automaton whose
BDD has an excessive number of nodes. The subsequent projection and determiniza-
tion that is performed to treat the second operator in the “V3” pattern is not able to
process this large automaton.

In contrast, the formulas produced by T2 and T2b reflect the structure of the
original concept, and are thus not just a big conjunction. This explains why T2b is
better on the T98 benchmark. But why, then, is T1 better on real world concepts?
There seem to be two reasons: first, the concepts extracted from real world knowledge
bases are much smaller than the T98 ones, which can be several megabytes in size.
Thus, conjunctions produced by T1 are less gigantic in the real world case. Second,
Mona can handle automata on w-words more efficiently than tree-automata, thus
giving T1 an advantage over T2 and T2b.

We have also used our translation for deciding the satisfiability of concepts w.r.t.
TBoxes, e.g. on the Platt knowledge base and on the two ALC versions of Galen.
Unfortunately, the results were discouraging: Mona terminated only for very small
TBoxes (< 10 concept equations) and was not able to classify any of the real world
KBs. The reason for this is again due to the generation of BDDs with a massive number
of nodes: in all our translations, TBoxes are translated into a huge conjunction inside
a “vY” quantifier. Hence, we can observe the same blowup pattern as with T1 on the
T98 concepts. Even a preceeding “absorption” of concept equations as known from
[7], and an elimination of “non-relevant” concept equations as proposed in [12] did
not allow us to classify real world KBs.

4 Discussion

We have shown how the Mona tool can be exploited for reasoning about description
logics. The outcome of our experiments suggests that, although Mona is outperformed
by dedicated DL reasoners, her performance is sufficient at least for prototyping pur-
poses. In this context, it should be noted that translations can be implemented rather
quickly, and that Mona is expressive enough to capture a large class of description
logics. For example, it should not be hard to come up with translations for more
powerful DLs such as SHZQ, and even to treat features that are very difficult for
tableau reasoners, such as the transitive closure of roles.

It would be very interesting to determine a class of concepts on which Mona
performs good, but the DL reasoners do not, and vice versa. A first idea is provided by
the discussion in Section 3: Mona is good on disjunction (the corresponding operation
“automata union” only yields a constant blowup in size), and bad on conjunction; for
tableau algorithms, this is the other way round. Still, we found it difficult to come
up with the desired class of concepts due to the intricate optimization techniques of
FaCT and RACER. The two reasoners even behave quite differently: we have found
two classes of formulas on which Mona performs good, but one of FaCT and RACER
performs bad. A class of such formulas on which both FaCT and RACER perform bad,
however, remains yet to be seen.

The translator and concepts used in the experiments can be downloaded from the



internet, c.f. http://lat.inf.tu-dresden.de/~clu/atom.tar.gz.
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