
Formal Concept Analysis as a Framework for
Business Intelligence Technologies II

Juraj Macko

Division of Applied computer science
Dept. Computer Science

Palacky University, Olomouc
17. listopadu 12, CZ-77146 Olomouc

Czech Republic
email: {juraj.macko}@upol.cz

Abstract. Formal concept analysis (FCA) with measures can be seen
as a framework for Business Intelligence technologies. In this paper we
introduce new ideas about an OLAP cube. We take a focus on a high-
dimensional OLAP cube reduction and on a hierarchy of attributes in
an OLAP cube.

1 Introduction

This paper continues with results proposed in [9] and for more details we will re-
fer on it. The paper is structured as follows: In ”Preliminaries” the fundamentals
of FCA with measures are described, the formal definition of the OLAP cube
is shown. ”Compressing High-Dimensional OLAP Cube Using FCA With Mea-
sures” shows an efficient reduction of an OLAP space using FCA with measures.
In ”Attribute Hierarchy In OLAP And In FCA With Measures” we discuss
different types of hierarchies in OLAP. This paper is supplemented with com-
prehensive examples. The final part summarizes the results.

2 Preliminaries

An input dataset for FCA is a formal context, which is a relation between the set
of objects X and the set of attributes Y , is denoted by 〈X,Y, I〉 where I ⊆ X×Y .
The concept forming operators ()↑ and ()↓ are defined as A↑ = {y ∈ Y | for each
x ∈ X : 〈x, y〉 ∈ I} and B↓ = {x ∈ X | for each y ∈ Y : 〈x, y〉 ∈ I}. A formal
concept of the formal context 〈X,Y, I〉 is denoted by 〈A,B〉, where A ⊆ X and
B ⊆ Y . 〈A,B〉 is a formal concept iff A↑ = B and B↓ = A. The set A is called
an extent and the set B an intent. A set of all formal concepts of 〈X,Y, I〉 is de-
noted by B(X,Y, I) and equipped with a partial order ≤ forms a concept lattice
of 〈X,Y, I〉.



Definition 1 (Measure of Object and Attribute [9] ). A Measure of the
object is mapping Φ : X → R+ and a Measure of the attribute is mapping
Ψ : Y → R+.

Definition 2 (Value of Extent and Intent [9] ). The Value of extent is
mapping v : AB(X,Y,I) → R+defined as v (A) = �

x∈A
Φ (x), where � is either

the symbol for the sum Σ (the ”sum” operation) or the symbol for cardinal-
ity |A| or the arbitrary aggregation function Θ. A is an extent of the formal
concept 〈A,B〉 ∈ B (X,Y, I). Similarly, the value of the intent is mapping w :
BB(X,Y,I) → R+ defined as w (B) = �

y∈B
Ψ (y), where B is an intent of the formal

concept 〈A,B〉 ∈ B (X,Y, I)

The Database table is a relation r on the relation schemeR = {A1, A2 . . . , An}
defined as a set of mappings {t1, t2 . . . , tm} from R to D where D is a set of all D
- domains of attributes A, n is the number of the columns and m the number of
rows in a database table (see [4]). Domains in D are divided into the two groups:
Hk ∈ H- dimensions and Ms ∈ M - measures, where k ∈ [1; |H|], s ∈ [1; |M|]
and Ms ⊆ R+).

Definition 3 (OLAP Cube space, OLAP Cube [9]). The space for the
OLAP cube is a cartesian product C = LH1 × · · · × LHk × · · · × LH|H| , where
L = {0, 1}. The OLAP cube is a mapping σ : C → R+ and is defined as

σ(h1, . . . , hn) =
m
�
i=1
ti(Ms) such that {ti(Aj)} ⊇ hj for all j ∈ [1; |H|], where the

symbol � stands for the sum operator Σ, the cardinality operator || or the arbi-
trary aggregation operator Θ and |H| is the number of OLAP cube dimensions.

3 Compressing High-Dimensional OLAP Cube Using
FCA With Measures

In the previous paper [9] we have shown, that FCA with measures can be seen
as a generalized OLAP. OLAP uses data which are organized in dimensions.
As a direct consequence is, that the scaled attributes (using a nominal scale [1])
from one domain are mutually exclusive. FCA with values enables to analyze the
data which are not organized in dimensions, thus those which are independent
(see the example with cars and components taken from [9] shown in Table 4).
This fact means, that we can work with a relational (binary) data as well. When
the attributes with a binary domain are used, usually there is a relatively big
amount of such attributes. It implies a high-dimensional OLAP cube. Recall
from [9], that the size of an OLAP cube is (|H1| + 1) × · · · × (|H|H|| + 1). The
expression ”+1” means, that using the domain H1 = {BMW,SKODA,FIAT}
we consider such situation, when no attribute is selected. In a binary case we
have two possibilities only (an attribute is selected or not), so a space of such
cube will be 2|H|, where |H| is a number of domains (all domains are binary
in this case). Hence, the space of the OLAP cube is exponential wrt. number



of attributes. FCA with measures enables to compress such exponential space.
Consider Y as a set of attributes in FCA. Number of formal concepts (which
contains intents, closed sets of attributes) is usually significantly lower than a
powerset 2Y , because a real dataset is usually sparse. Using FCA with measures
we can replace OLAP cube with a concept lattice with values and we do not
loose any information comparing to OLAP. This compression can be used also
for the attributes with a many-valued domain. In Figure 1 the example of such
compression is show. From the database table (i), OLAP cube is computed with
the space (3 + 1) × (2 + 1) = 12 cells (ii). In (iii) the formal context (using the
nominal scaling) is shown and finally in (iv) the concept lattice is depicted. The
concept lattice has only 10 concepts with the values (1 trivial concept is just
technical, with no value). Two OLAP cube cells (in (ii) are highlighted using
gray color) are missing in the compressed concept lattice. Consider the well
known dataset ”Mushroom”, which contains 23 original attributes (22 + 1 class
considered as an attribute) where a cardinality of the domains is between 2 and
12. Using a formula for the OLAP space we get 7, 36×1016 of cells in the OLAP
cube. Comparing to the amount of the formal concepts, which is 2, 39 × 1005

we get the space reduced approximately by 1012. In the Table 1 we can see
the original OLAP spaces comparing to the reduced ones using five well-known
datasets (see the highlighted items with a significant space compression).

TradeMark Country Price in 000 EUR

BMW Germany 30
BMW France 35

SKODA Germany 20
SKODA France 25
FIAT France 13

All countries France Germany

All trademarks 123 73 50
FIAT 13 13 0

SKODA 45 25 20
BMW 65 35 30

(i) Database (ii) OLAP Cube
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Price in 000 EUR

1 × × 30
2 × × 35
3 × × 20
4 × × 25
5 × × 13

(iii) Formal context with measures (iv) Concept lattice with extent values

Fig. 1. OLAP space compression - example



Dataset
Mushrooms Adults Cars Wine Tic-tac-toe

Nr. of original attributes
23 14 6 13 29

(before scaling)
Nr. of formal attributes

119 124 25 68 29
(after scaling)

Nr. of objects 8 124 32 561 1 728 178 958

original OLAP space
7,36E+16 7,64E+10 4,00E+04 5,22E+10 7,86E+05

(nr. of cells in OLAP cube)
compressed OLAP space

2,39E+05 1,06E+06 1,26E+04 2,54E+04 5,95E+04
(nr. of formal concepts)
compression ratio

3,25E-12 1,39E-05 3,16E-01 4,86E-07 7,57E-02
(compressed / original)

Table 1. OLAP space compression, source of datasets: http://fcarepository.com

Remark 1: Not the whole OLAP cube is presented to a user and also not
the whole lattice with values is presented to user. The data are stored using
the different way, but the presentation to user can be the same (e.g. using pivot
tables, pivot charts or other repost).

Remark 2: Not the whole OLAP cube is materialized in a real application.
However a compression ratio is calculated from the whole OLAP cube comparing
to compressed one (e.g. see [13]).

In [13] there were presented another solution how to compress OLAP cube,
thus using a Dwarf Cube. The authors of [13] claim, that a Petabyte 25-dimensional
cube was shrunk this way to a 2.3GB Dwarf Cube. For a detailed description
of Dwarf cube we refer to [13]. Here we only compare our approach using a toy
example from [13]. In Table 2 data for OLAP are shown and in Table 3 a com-
parison of tuples is shown for two OLAP representations (Dwarf and FCA with
measures). In Table 3 we can see, that Dwarf Cube contains more tuples than

Store Customer Product Price

S1 C2 P2 70
S1 C3 P1 40
S2 C1 P1 90
S2 C1 P2 50

Table 2. Data for OLAP

concept lattice. But this is only a toy example. Our hypothesis is, that FCA with
measures contains a minimal possible amount of all non-redundant tuples for the
OLAP cube compression. A formal proof as well as an experimental study will
be part of our future research.



Tuple in the Dwarf Cube Tuple derived from an intent

1 〈S1, C2, P2〉 〈S1, C2, P2〉
2 〈S1, C2, ALL〉
3 〈S1, C3, P1〉 〈S1, C3, P1〉
4 〈S1, C3, ALL〉
5 〈S1, ALL, P1〉
6 〈S1, ALL, P2〉
7 〈S1, ALL,ALL〉 〈S1, ALL,ALL〉
8 〈S2, C1, P1〉 〈S2, C1, P1〉
9 〈S2, C1, P2〉 〈S2, C1, P2〉
10 〈S2, C1, ALL〉 〈S2, C1, ALL〉
11 〈ALL,ALL, P1〉 〈ALL,ALL, P1〉
12 〈ALL,ALL, P2〉 〈ALL,ALL, P2〉
13 〈ALL,ALL,ALL〉 〈ALL,ALL,ALL〉

Table 3. Dwarf Cube vs. FCA with measures

4 Attribute Hierarchy In OLAP And In FCA With
Measures

In the paper [9] we claim, that FCA with measures is a generalization of OLAP
cube. This claim however excludes the case, when a hierarchy of attributes in
OLAP is defined. Attributes in a dimension can be split into smaller parts, e.g. in
the dimension Date we can consider the hierarchy Y ear > Month. In FCA with
measures we can consider the dimension ”Date” and it can be nominally scaled
into attributes Y ear and Month as well. Consider the following Figure 2. When
the original table (i) is scaled (ii) and formal concepts are computed, we get the
concepts with the intent {Jan} and {Feb}. Such intents can generally be used
e.g. for analyzing the seasonality, however using the hierarchy Y ear > Month
such intent is not interesting (in this case it is a total amount of all cars sold
in January regardless of the year). All other formal concepts are reasonable (i.e.
total amount in one year or total amount in one month of the particular year).
There are two possibilities how to deal with such problem. The first approach

Obj. Date

1 Jan, 2011
2 Feb, 2011
3 Jan, 2012
4 Feb, 2012

Obj. 2011 2012 Jan Feb

1 × ×
2 × ×
3 × ×
4 × ×

Obj. 2011 2012 2011 2011 2012 2012
Jan Feb Jan Feb

1 × ×
2 × ×
3 × ×
4 × ×

(i) (ii) (iii)
Original data Nominal scaling Hierarchical scaling

Fig. 2. Hirerarchy of attributes

is just to scale the original data from (i) using a hierarchy (iii). Such scaling
directly enables to avoid undesired formal concepts with intents such as {Jan}
and {Feb} (Note: The undesired formal concept with the intent all attributes
technically remains just to form a lattice).



Another option is to use AD formulas proposed in [11, 12]. An AD formula
over a set Y of attributes is an expression A v B, where A,B ⊆ Y . A v B is true
in K ⊆ Y if whenever A∩K 6= ∅, then B∩K 6= ∅. For a given set T of AD formu-
las over Y and a formal context 〈X,Y, I〉 we get the concept lattice constrained
by T , which is denoted by BT (X,Y, I). Such lattice consists of formal concepts
of 〈X,Y, I〉 in which all AD formulas from T are true. For more details we refer
to [11, 12]. In our example we can use AD formula {Jan, Feb} v {2011, 2012},
which means: whenever we have a month in an intent of a formal concept (here
Jan or Feb), we need also to have a year in intent (here 2011 and 2012). In
other words, a year is hierarchically higher than a month. Constraining the orig-
inal concept lattice by AD formula, undesired formal concepts will be avoided.
A formal concept analysis with measures using AD formula can be seen as a
generalization of OLAP with hierarchies.

In [14] there were presented some types of a hierarchy used in OLAP cube,
but not all types of a hierarchy can be defined using AD formula. In this paper
a preliminary results are presented (all examples of hierarchies are taken from
[14]) :

1. simple hierarchies (represented by a tree)
(a) symmetric hierarchy:
{Department A} w {Category 1} , {Department A} w {Category 2},
{Category 1} w {Product 1}, {Category 1} w {Product 2}, {Category 2} w
{Product 3}, {Category 2} w {Product 4}

(b) asymmetric hierarchy:
{bank X} w {branch 1} , {bank X} w {branch 2}, {bank X} w
{branch 3}, {branch 1} w {agency 11}, {branch 1} w {agency 12},
{branch 3} w {agency 31}, {branch 3} w {agency 32}, {agency 11} w
{ATM 111}, {agency 11} w {ATM 112}

(c) generalized hierarchy:
{area A} w {branch 1}, {area A} w {branch 2}, {branch 1} w {class 1},
{class 1} w {profession A}, {class 1} w {profession B} ,{profession B} w
{customer X}, {profession B} w {customer Y }, {branch 1} w {sector 1},
{sector 1} w {type A}, {sector 1} w {type B}, {type B} w {customer Z},
{type B} w {customer K}

2. non-strict hierarchy:
{division A} w {Section 1, Section 2, Section 3}, {Section 1, Section 2, Section 3} w
{employee X}

This approach we can use also on for attributes which are not organized in di-
mensions by telling which group of independent attributes is more important
than other group. In the example with cars (see the Tables 4 and 5) there
are attributes Air Conditioning (AC), Airbag (AB), Antilock Braking System
(ABS), Tempomat (TMP ), Extra Guarantee (EG) and Automatic Transmis-
sion (AT ).We can say, that {AB,ABS} are more important (because of security)
than {AC, TMP,EG,AT} (which are used just for a higher comfort). AD for-
mula in this case is {AB,ABS} v {AC, TMP,EG,AT}, which means, that we



will care about values of formal concepts (e.g. the Total Price) only for such
cars, which posses at least one of the security attributes AB or ABS (in the
Table 5 labeled by ∗). ).

1
.
A
C

2
.
A
B

3
.
A
B
S

4
.
T
M
P

5
.
E
G

6
.
A
T

Φ(X) = Price in EUR

Car1 × × 16 000

Car2 × × × 12 000

Car3 × × × × 14 000

Car4 × × × 16 000

Car5 × × 12 000

Car6 × × × 12 000

Car7 × × × 12 000

Car8 × 14 000

Car9 16 000

Car10 × 12 000

Car11 × × 12 000

Car12 × × × × × × 14 000

Car13 × × 16 000

Car14 × × × × × 16 000

Car15 × × 14 000

Car16 × × 12 000

Car17 × × 12 000

Car18 × × × 16 000

Car19 × 16 000

Car20 × × × × 14 000

Ψ(Y ) = Price in EUR 1
0
0
0

5
0
0

8
0
0

6
0
0

2
5
0

1
0
0

Table 4. The formal context of the cars, the additional components, the price of the
car and the price of the component [9]

5 Conclusion

FCA with measures as a new area is just on the beginning. Based on our pre-
liminary research it appears, that FCA with measures can significantly reduce a
space of OLAP cube. FCA with measures can also be used as a generalization of
OLAP even different hierarchy of attributes is included. In the future research
we will focus on the detailed experimental research, where we will compare other
reducing techniques of an OLAP cube space with our approach.
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