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ABSTRACT
This paper describes the TUM approach for the MediaEval
Emotion in Music task which consists of non-prototypical
music retrieved from the web, annotated by crowdsourcing.
We use Support Vector Machines and BLSTM recurrent
neural networks for static and dynamic arousal and valence
regression. A generic set of acoustic features is used that
has been proven effective for affect prediction across multiple
domains. In the result, the best models explain 64 and 48 %
of the annotations’ variance for arousal and valence in the
static case, and an average Kendall’s tau with the songs’
emotion contour of .18 and .12 is achieved in the dynamic
case.

1. INTRODUCTION
The 2013 MediaEval ‘Emotion in Music’ task is to provide con-

tinuous valued arousal and valence estimates both for whole songs
(static) and sequences of one second long segments (dynamic). For
details on the task, we refer to the paper describing the task [1]. In
the following we describe our approach.

2. METHOD
Our approach is based on supra-segmental features calculated

by applying statistical functionals, such as mean and moments, to
the contours of frame-wise low-level descriptors (LLDs), such as
MFCCs or energy, over either fixed length segments (one second,
corresponding to the annotated intervals in the corpus) or whole
songs. In particular, we use the set of affective features developed
as baseline for the 2013 Computational Paralinguistics Evaluation
(ComParE) campaign [2]. It has been shown in [3] that this set
provides robust cross-domain assessment of emotion (continuous
arousal and valence) in speech, music, and acoustic events. Despite
its rather ‘brute-force’ nature, it has been shown to outperform a
more hand-crafted set of musically motivated features for the task
of music mood regression.

The ComParE feature set contains 6 373 features. LLDs include
auditory weighted frequency bands, their sum (corresponding to
loudness), spectral measures such as centroid, roll-of point, skew-
ness, sharpness, and spectral flux. Furthermore, voicing related
LLDs such as fundamental frequency (corresponding to ‘main melody’)
and harmonics-to-noise ratio (corresponding to ‘percussiveness’)
are added. Delta regression coefficients (weighted discrete deriva-
tives) are added to capture time dynamics. Statistical functionals
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include mean, moments, quartiles, 1- and 99-percentiles, as well as
contour related measurements such as (relative) rise and fall times,
amplitudes and standard deviations of local maxima (‘peaks’), and
linear and quadratic regression coefficients. An exhaustive list of
the LLDs and functionals along with a detailed analysis of feature
relevance for music mood regression is found in [3]. Extraction
of acoustic features is done with our open-source toolkit openS-
MILE [4] which can be used ‘out-of-the-box’ to extract the Com-
ParE set, so that our features can be reproduced by the interested
reader. Prior to feature extraction, songs are normalized to -3 dB
maximum amplitude using ‘sox’. This is done to remove noise in
energy-related features and improve generalization.

As regressors, we use Support Vector Regression (SVR) for song-
level regression and bidirectional Long Short-Term Memory re-
current neural networks (BLSTM-RNNs) for dynamic regression.
Both use the same input features, normalized to the range [−1,+1]
for SVR and standardized to zero mean and unit variance (on the
training data) for BLSTM-RNNs. Separate SVR models are trained
for arousal and valence regression while BLSTM-RNNs learn both
arousal and valence prediction in a multi-task learning fashion. For
BLSTM-RNNs, the regression targets are standardized as well. In
addition, we investigate adding delta regression coefficients of the
arousal and valence targets as additional regression tasks, in or-
der to improve modeling of the dynamic emotion profile. The
complexity constant for SVR training was varied from 10−4 to
10−1. BLSTM-RNNs with two hidden layers (128 LSTM units per
layer and direction) are used; thus, the first layer performs infor-
mation reduction to a 128-dimensional feature set. The segments
of each song are processed in order, forming sequences. Gradi-
ent descent with 25 sequences per weight update is used for train-
ing. An early stopping strategy is used, using a held out valida-
tion set in each fold. Training is stopped after a maximum of 100
iterations or after 20 iterations without improving the validation
set error (sum of squared errors). To alleviate over-fitting to the
high dimensional input feature set, Gaussian noise with zero mean
and standard deviation 0.6 is added to the input activations, and
sequences are presented in random order during training. SVR
models are trained with Weka [5] using Sequential Minimal Opti-
mization (SMO). BLSTM-RNNs are trained with our open-source
CUda RecuRrent Neural Network Toolkit (CURRENNT)1 for fur-
ther reproducibility. All hyper-parameters not mentioned in the
above are left at the toolkits’ defaults.

3. RESULTS
Table 1 shows the results on the development set (700 songs, 28 k

segments). We use 10-fold cross validation on the development

1https://sourceforge.net/p/currennt



(a) Song level, SVR

Arousal Valence
C R2 MLE R2 MLE

10−4 .593 .090 .346 .099
10−3 .656 .078 .419 .091
10−2 .611 .087 .343 .104
10−1 .580 .092 .323 .107

(b) Segment level, BLSTM

Arousal Valence
Tasks R2 MLE τ R2 MLE τ
A+V .627 .073 .140 .427 .078 .152
A+V+∆ .626 .072 .161 .415 .079 .146

(c) Song level, BLSTM (average segment
level predictions)

Arousal Valence
Tasks R2 MLE R2 MLE
A+V .682 .081 .495 .087
A+V+∆ .684 .080 .499 .088

Table 1: Development set results (10-fold cross-
validation). Best results per task (song / segment
level) are printed in bold face.

set. Evaluation measures are computed on the entire development
set (not by averaging across folds). The fold subdivision follows a
simple modulo based scheme (song ID modulo 10), and is thus eas-
ily reproducible and song independent (in the case of regression on
segments). We report the official challenge metrics, determination
coefficient (R2) for whole song regression and average Kendall’s
τ per song (τ ) for segment regression, along with mean linear er-
ror (MLE). MLE is calculated after scaling the annotations to the
range [−0.5,+0.5]. On segment level, we also report R2 (across
all segments) to assess the overall regression performance without
taking into account the modeling of the emotional profile of a song.

In short, we observe that (a) SVR performance is very sensitive
to the complexity parameter; (b) R2 on segment level is very high
compared to τ , indicating the difficulty of estimating the dynam-
ics of the annotation contour within a song instead of the overall
emotion; (c) adding deltas to the regression targets improves τ for
arousal, but not valence prediction; (d) best song level results in
terms of R2 are obtained by averaging BLSTM predictions, out-
performing SVR by a large margin for valence (.499 vs. .419). In
the following the configurations for our test set runs are summa-
rized.

• Static task (song level):

1. SVR: SVR with C = 10−3, trained on the entire devel-
opment set

2. BLSTM-PA-Song: BLSTM-RNNs trained on the 10
training folds of the development set; segment level
predictions averaged within songs and across networks

3. BLSTM-WA-Song: BLSTM-RNN trained on the 10
training folds of the development set by weight aver-
aging; segment level predictions averaged within songs

• Dynamic task (segment level):

1. BLSTM-PA-Seg: BLSTM-RNNs trained on the 10 train-
ing folds of the development set; predictions averaged
across networks

(a) Song level (‘Static task’)

Arousal Valence
Run name R2 MLE R2 MLE
SVR .646 .083 .421 .095
BLSTM-PA-Song .642 .085 .477 .090
BLSTM-WA-Song .643 .085 .473 .091

(b) Segment level (‘Dynamic task’)

Arousal Valence
Run name τ MLE τ MLE
BLSTM-PA-Seg .180 .072 .124 .075
BLSTM-WA-Seg .174 .073 .111 .076

Table 2: Test set results.

2. BLSTM-WA-Seg: BLSTM-RNNs trained on the 10 train-
ing folds of the development set by weight averaging

To deliver BLSTM predictions on the test set, we either average
the predictions of the 10 networks trained on the development set
(PA), or average their weights and run additional training iterations
on the entire development set (WA).

Table 2 shows that BLSTM-RNNs outperform SVR on the song
level for valence while being on par for arousal. This is consistent
with the development set results. On the segment level, the WA
strategy delivers slightly worse results in terms of τ than PA while
using a 10 times smaller model.

4. CONCLUSION
We have presented the TUM approach to the 2013 MediaEval

Emotion in Music task. Best results on the static (song level) task
were obtained by averaging time-varying predictions of a BLSTM-
RNN. BLSTM-RNNs also delivered consistent improvements over
the baseline in the dynamic task.
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