
Web Design for the Semantic Web

Peter Plessers*, Olga De Troyer
Vrije Universiteit Brussel, Department of Computer Science, WISE, Pleinlaan 2, 1050

Brussel, Belgium
{Peter.Plessers, Olga.DeTroyer}@vub.ac.be

* This research is partially performed in the context of the e-VRT Advanced Media project (funded by the Flemish government) which consists of a joint
collaboration between VRT, VUB, UG, and IMEC.

Abstract

To be able to realize the vision of the semantic web an
important bottleneck that needs to be solved is an easy
and intuitive approach for the annotation of websites with
semantic information. Annotating websites defines the
containing data in a form which is suitable for
interpretation by machines. In this paper, we present a
new approach to annotate websites by taking the
annotation process to a conceptual level and by
integrating it into an existing website design method. By
this means, we are able to solve some of the problems
current annotation solutions have.

1. Introduction

The importance of being able to express the semantics
of the presented information on the Word Wide Web
(WWW) was neglected for a long time. It was the vision
of the Semantic Web [1] that brought this issue to the
foreground. The idea of the Semantic Web states that the
information available on the WWW should be defined
such that it remains usable for human interpretation, but
also becomes usable for machines. Realizing this vision,
some limitations of the current WWW (e.g. its restricted
query possibilities) can be solved. Although a lot of work
has been done in recent years in the research domain of
the Semantic Web, an easy and intuitive approach for
authoring websites with semantic markup still remains an
important bottleneck. As mentioned in [13], the
generation of such semantic markup should be a by-
product of normal computer use.

A step towards this goal has been taken in recent years
by annotation approaches such as SHOE [11] [12],
MindSwap [7] and CREAM [9]. The earliest annotation
systems were based on a manual editing of the HTML
pages to add the needed semantic information. Already
soon, this process of manual editing proved to be a
cumbersome and erroneous task and the necessity of
supporting tools became undisputable. The most well-
known annotation tool is the SHOE Knowledge
Annotator [12] of the SHOE project which allows the

user to annotate existing web pages using a graphical user
interface. While such tools solve a number of issues like
syntactic mistakes or inconsistencies with the used
ontology, a number of fundamental problems still remain.

The main reason for these problems is that current
tools define a linkage between an ontology and the actual
data of the website on an implementation level resulting
in a strong weaving of semantics and implementation. We
list some of the problems we encounter in current
annotation approaches:
• Despite the introduction of supporting tools, the

annotation process remains a very heavy and time
consuming task. In addition, in most current
approaches this process is an additional activity and
the ones that will benefit from the annotations are
usually not the ones that should accomplish the job.
Therefore, the motivation for performing the
annotation process is low.

• It is usually assumed that the granularity of the
concepts defined in the ontology matches exactly the
granularity of the data on the website, although this
assumption cannot be taken for granted. It must
therefore be possible to define a link between
semantically equivalent concepts but with a different
level of granularity.

• Most of the supporting tools only allow annotating
static websites, page by page on an implementation
level. Even approaches that support the annotation of
dynamically generated websites (by annotating the
database) create a direct link between the
implementation structure of the database (i.e. tables
and columns for a relational database) and concepts in
the ontology. For static web pages this has as a
consequence that the work done for one page needs to
be repeated for similar structured web pages and that
the maintenance of the metadata becomes a heavy task
with a huge cost. Also note that for both static and
dynamic websites, every time one changes the
implementation of the website or database, even
though nothing has changed to the semantics of the
presented data, the defined linkage between the web
pages or database and the ontologies can be affected.

In this paper we show that elevating the annotation

process to a conceptual level, provides an answer to the
problems mentioned before. It is also our belief that
(whenever possible) the annotation is best performed
while designing the website, not after it is implemented.
In this way we can take advantage of the information
available during the website design process to ease and
improve the annotation process. Therefore, we propose to
integrate the annotation process into an existing website
design method. Several website design methods have
already been proposed in literature. We will use WSDM
(Web Site Design Method) [3] [4] in our approach as this
method is well suited for our purpose. It uses an explicit
information-modeling step at a conceptual level. In fact,
we propose an approach that bridges classical website
design methods and annotation techniques developed for
the Semantic Web. Using website design methods in the
context of the Semantic Web can provide great value and
benefits for the annotation process.

The rest of the paper is organized as follows. In
section 2 we give a short overview of existing annotation
approaches. We present an overview of our approach in
section 3. In section 4 and 5, more details on the
important aspects of the method are given, making use of
a small example. The next section lists the advantages of
our approach and the paper is concluded with future work
and conclusions.

2. Related work

Current annotation approaches in use are fully
decoupled from existing web design methods. The most
well-known approach is the SHOE Knowledge Annotator
[12] of the SHOE project. It provides the user a form-
based graphical user interface to markup existing web
pages using SHOE ontologies without having to worry
about syntax. This tool only supports the annotation of
static web pages, no support for dynamic pages is
provided. The annotation process also remains an
additional task that needs to be performed after the
website is completed. Furthermore, it doesn’t give any
support to solve the granularity problem between the data
on a website and the concepts of an ontology (as
mentioned earlier in the introduction).

Another system is the SMORE (Semantic Markup,
Ontology and RDF Editor) application [15] of the
MindSwap project which is based on the same principles
as the SHOE Knowledge Annotator, but provides a more
advanced user interface. It contains an embedded HTML
editor, web – and ontology browser which allow the user
by means of drag and drop to create web page elements as
instances of ontology concepts. The Ont-0-Mat tool [10]
of the CREAM project uses a similar graphical user
interface. Both tools allow annotating web pages by

markup and by authoring. SMORE has also the
possibility to create a new ontology borrowing concepts
of existing web ontologies.

CREAM is, as far as we know, the only approach that
supports the annotation of dynamically generated
websites. Opposite to the annotation tools previously
mentioned, the database is annotated instead of the
HTML page. The following information is published to a
web page to be able to link concepts of a given ontology
to tables and columns of a data source: 1) which database
is used and how the database can be accessed; 2) which
query is used to retrieve data from the database; and 3)
which elements of the query result are used to create the
dynamic web page. Using this information it can be
defined which data on the web page is originated from
which column of which table. By defining a linkage
between the database columns and concepts of an
ontology, semantic meaning is added to the data stored in
the columns.

Nevertheless the linkage between the database and the
ontology is defined at a somewhat higher level than is
done between static HTML pages and ontologies, the
linkage is still done in an implementation-dependent way.
As can be seen in the case of CREAM which supports
dynamic pages, the direct linkage between the database
columns and the concepts in the ontology can be easily
broken by a change in the structure of the database. This
shows that an annotation approach on a higher level - a
conceptual level - is necessary.

3. Overview of the approach

Figure 1 gives an overview of the global architecture
of our annotation approach. The different phases of
WSDM that are relevant for our annotation approach are
at the left: Task Modeling, Navigational Design, Page &
Presentation Design, Database Design and finally the
Implementation. Our approach is integrated into the
original phases of the WSDM design method. A short
overview of each step of the WSDM method, together
with the enhancements (if any) we made for our
annotation approach, is given below.

• Mission Statement Specification: Specifies the subject

and goal of the website and declares the target
audience. No enhancements are needed in this step.

• Audience Modeling: In this phase the different types of
users are identified and classified into audience
classes. For each audience class, the different
requirements and characterizations are formulated.
Also in this step, nothing additional is needed.

• Task Modeling: A task model is defined for each
requirement of each audience class. Each task defined
in the task model is elaborated into elementary tasks.
For each elementary task a data model (called ‘object

chunk’) is created, which models the necessary
information and/or functionality needed to fulfill the
requirement of that elementary task. ORM (Object
Role Modeling) [8] is used as the representation
language for the object chunks. For our purpose, we
added an annotation process to the Task Modeling
phase. This results in the creation of a linkage between
the object types and roles of the different object
chunks and the concepts of one or more ontologies.
This annotation is called the conceptual annotation
(arrow A in Figure 1) because it is performed on a
conceptual level. In this way we define the semantic
meaning of the object types and roles used in the
object chunks. This conceptual annotation is
performed for static as well as dynamic websites.

• Navigational Design: In this phase of WSDM the
navigational structure of the website is described by
defining components, connecting object chunks to
those components and linking components to one
another.

• Page Design: During Page Design, the components of
the navigational structure and their associated object
chunks are mapped onto a Page structure defining the
pages that will be implemented for the website. We
determine which object chunks will be placed on a
certain page. Using this step as well as the previous
one (the navigational design) we can identify which
object chunks will be placed on a page. This is
necessary to know for the actual implementation which
annotations we have to add to a page.

• Presentation Design: For each page defined in the
Page Design a page template is created defining the
layout of the page. This layout is defined in an
implementation independent way. To implement the
actual web pages making use of a chosen
implementation language (e.g. HTML, XML, …), an
instantiation of these page templates can be generated.
For this, the templates are filled using the proper data
to obtain the actual pages.

• Data Design: As explained in [6] we can derive an
integrated conceptual schema from the object chunks
made during Task Modeling. This integrated object
schema is called the Business Information Model
(BIM) and can be used as the basis for a database
schema from which an underlying database can be
created. The Data Design is only done when we deal
with dynamically generated websites querying a
database. For static web pages the data design step is
omitted as the actual data will not originate from a
database, but will be supplied by the designer during
implementation. For our approach, we need to keep
track of two mappings: 1) the mapping from the object
types and relationships of the different object chunks
to their correspondence in the integrated BIM (called
object chunk mapping) (B in Figure 2); and 2) the

mapping between the BIM, used as the conceptual
database schema, and the actual implementation (called
database mapping) (C in Figure 2). In this way we are
able to determine the mapping between the queries
specified at the (conceptual) level of the object chunks,
and the actual database.

Implementation: In this phase of WSDM the actual
implementation of a website, based on the models created
in the previous phases, is generated. To this step we
added the generation of the actual annotation of the
website (called the page annotation) (D in Figure 2).
Here we have to distinguish between static websites and
dynamically generated websites. For static websites only
the conceptual annotation is needed. For dynamic
websites also the chunk integration and the database
mapping have to be taken into consideration. A more
detailed explanation is given in section 5.

Figure 1 - Architectural overview

4. Conceptual Annotation

To explain the different steps in our approach, we
introduce a simple example situated in the domain of
universities. Assume the following two requirements for a
university website:

1. We want to be able retrieve a list of all the labs
with their associated research domain(s) and the
name of the professor who is the head of the lab.

2. It must be possible to see some detailed
information of all employees (professors,
assistants, technical personnel, …) working for a
certain department.

These requirements are formulated during the Audience
Modeling phase of the WSDM method. The information
needed to fulfill these requirements is expressed by means
of two object chunks given respectively in Figure 2 and

Figure 3. These object chunks are constructed during
Task Modeling.

Figure 2 – Object Chunk LabOverview

Figure 3 - Object Chunk EmployeeOverview

As already explained, while creating an object chunk,
the designer performs the conceptual annotation. The
designer will create associations between the concepts
used in the object chunk (the object types, e.g.
‘Professor’, ‘Lab’, ‘research domain’, … and the roles
e.g. ‘works for’, ‘has name’, …) and semantically
equivalent concepts defined in one or more ontologies. In
this way, we allow designers to define the meaning of the
different object types and roles they introduce during
conceptual modeling. As already indicated, this
conceptual annotation is used to generate automatically
the actual page annotation for the website
implementation.

The conceptual annotation is defined as a mapping
from the different object chunk entities (object types and
roles) onto the different ontology entities (concepts and
relationships). We distinguish between three different
cases:
• One-to-one mapping: an object chunk entity can be

mapped in a one-to-one way onto an ontology entity;
• One-to-many mapping: an object chunk entity cannot

be mapped onto one single ontology entity but on a
combination of ontology entities;

• Many-to-one mapping: an object chunk entity cannot
be mapped onto one single ontology entity but a

combination of object chunk entities can be mapped on
a single ontology entity;
The conceptual annotation is illustrated for the

‘LabOverview’ object chunk (see Figure 2) in Table 1.
The left column contains the different object chunk
entities; the right column lists the corresponding ontology
concepts and relationships. The used ontology itself is
omitted in this paper due to space limitations. Note that
for the entities ‘first_name’ and ‘surname’, we define the
conceptual annotation as a many-to-one mapping between
the tuple <first name, surname> and the ontology concept
‘name’. It would be incorrect to define a direct annotation
between the object type ‘first name’ and the ontology
concept ‘name’ or/and the object type ‘surname’ and the
ontology concept ‘name’. The other conceptual
annotations are all defined as one-to-one mappings.

Object Chunk Entities Ontology Entities

Professor Professor
Lab Lab
<first name, surname> name
research domain researchField
has name hasName
name labName
… …

Table 1- Conceptual Annotation example

We conclude this section with a possible outline of
implementation of this Conceptual Annotation. For a one-
to-one mapping, the annotation is straightforward as we
can define a direct link between the entity in the object
chunk and the ontology entity. This is not possible for the
one-to-many and many-to-one mappings. To solve this,
we introduce an intermediate ontology, called Extended
Ontology. This ontology extends the ontologies used; it
contains new entities that are constructed from the
existing ones by applying some operators (e.g. the
concatenation) on these entities. We introduce this
intermediate ontology because it is not always allowed to
modify or extend an existing ontology (e.g. because of a
lack of sufficient permissions). For our example, the
Extended Ontology will contain three new concepts:
‘first_name’, ‘surname’ and ‘name’, where we define
‘name’ 1) equivalent to the concept ‘name’ in the original
ontology; and 2) as the concatenation of ‘first_name’ and
‘surname’ in the Extended Ontology. Then, a one-to-one
mapping from respectively the object type ‘first name’ to
the Extended Ontology concept ‘first_name’ and from the
object type ‘surname’ to the Extended Ontology concept
‘surname’ is possible.

5. Generating the page annotation

Starting from the conceptual annotation provided by
the designer(s), the actual page annotation can be
generated. Note that the conceptual annotation is the only
information that is requested from the designers
(concerning the annotation process), as the following
steps can be done automatically. For this generation
process a distinction has to be made between static and
dynamic websites. For static web pages, at this point of
the method, all necessary information is gathered.
Through the conceptual annotation we can trace which
ontology concepts are associated with the object chunk
entities and by the Page Design we know which object
chunk entities will be implemented on a page.

5.1 The object chunk mapping

In case of a website dynamically generated from the
content of a database a database design need to be done.
In WSDM, the database design is done during the Data
Design phase by integrating the different object chunks
into one integrated schema, called the Business
Information Model (BIM). The conceptual annotation can
be used to drive the integration process as it identifies
semantically equivalent and related object types (e.g. it
can be derived that the object type ‘Professor’ in the
‘LabOverview’ object chunk is a subtype of the object
type ‘Employee’ in the ‘EmployeeOverview’ object
chunk if the ontology concepts linked with these object
types are also involved in a subtype relationship). For a
more in depth overview of the object chunk integration
itself, we refer to [6]. We illustrate the chunk integration
with our example. Assume that the conceptual design
only consists of the two object chunks given in figure 2
and 3., Then, the integrated schema is shown in Figure 4.
During integration it was recognized that a ‘name’ (of an
employee) is equivalent with the concatenation of ‘first
name’ and ‘surname’ (of this employee) (this can e.g. be
derived from the conceptual annotation). Therefore, it
was decided to keep the ‘first_name’ and ‘surname” for
an employee and to drop the ‘name’. Therefore, the object
type ‘name’ (as an employee’s complete name) is not
included in the BIM because it would be superfluous.

It should be noted that it couldn’t be assured that there
always exists a one-to-one mapping between an object
chunk entity and an entity of the BIM. In general, an
entity of an object chunk is mapped onto a view of the
BIM. Let us illustrate this with our example. Take for
instance the role ‘has as first name’ defined between the
object types ‘Professor’ and ‘first name’ in our
‘LabOverview’ object chunk (see Figure 2). In the
integrated BIM this information is modeled by means of a
role that is more general, i.e. a role between ‘Employee’
and ‘first_name’ and the fact that ‘Professor’ is a subtype

of ‘Employee’. Then, the mapping of the role ‘has as first
name’ is as follows:

‘has as first name’ → ‘has as first
name’where <’Employee’ is ‘Professor’>

Note that ‘has as first name’

<‘Employee’ is a ‘Professor’> is the view
expressing that we only should consider the role ‘has as
first name’ for those ‘Employee’ instances which are also
instances of ‘Professor’.
If we consider the second object chunk (Figure 3) with
the object type ‘name’, the mapping of this object type
would be as follows (‘X’ s the operator to express the
Cartesian Product):

‘name’ → ‘first_name’ X ‘surname’

Figure 4 - BIM example

Figure 5 - Database schema

5.2 The database mapping

The next step is to generate an actual (relational)
database schema from the BIM. This can be done using
one of the known mapping algorithms for ORM like for
example RMap [8]. Which mapping algorithm is used is
not important, but the mapping has to be made explicit.
This is essential, because we need to know in which
database columns we can find the instances of a particular
object type or role. Again, we cannot assume that the
algorithm maps an object type or role to exactly one

column. In general, an entity of the BIM will be mapped
onto a (relational) view in the data schema.

We have applied the RMap algorithm to our example.
Figure 5 shows the resulting database schema. Note that
the column ‘function’ in the table ‘Employee’ is used to
check if an ‘Employee’ instance is an instance of
‘Professor’ (for professors, the value of ‘function’ will be
‘P’). If we take the object type ‘Professor’ (see Figure 4),
we see that this object type is mapped on a part of the
Employee table, expressible by a relational view:

‘Professor’ → Employee
where <function = ‘P’>

5.3 The page annotation

We conclude this section with the generation of the
actual page annotation for the chosen implementation.

As stated already during the overview of our approach
in section 3, a page template is created for each page
defined in the Page Design phase of WSDM. These
templates will be instantiated to construct the actual web
pages. Using the previously defined conceptual
annotation, these page templates can be extended
(automatically) with semantic annotations (the page
annotations). It is know which object chunk entities will
be instantiated by a template, and by the conceptual
annotation we know the ontology entities to which these
object chunk entities refer. This suffices to generate the
page annotation. Below, the HTML version of the page
template for the ‘LabOverview’ object chunk is given.
This page template will allow listing all labs ordered by
department, their associated research domain(s) and the
professor who is the head of the lab (given by his first
name and surname). By the definition of a template, the
actual data is absent and is substituted by comment fields
(v1, v2, …). Note that the template already defines the
semantic annotation of these data. Also note that although
several instances of e.g. ‘Lab’ can be listed on a page, we
only had to annotate the concept and not each instance (in
contrary to existing annotation approaches).

<!-- ontologies used -->
<html xmlns:u="http://.../university"
 xmlns:e="http://.../extended-ontology">
…
<body>
<table>
…
<h1><-- v1 --></h1>

 <h3><!-- v2 --></h3>
 <table width="60%" border="0">
 <tr>
 <td width="20%">Research domain:</td>
 <td width="80%">
 <!-- v3 -->
 </td>
 </tr>
 <tr>

 <td width="20%">Head:</td>
 <td width="80%">
 <!-- v4 -->
 <!-- v5 -->
 </td>
 </tr>
 </table>

…
</table>
</body>
</html>

<u:depName ID="1">
 <label><-- v1 --></label>
</u:depName>
<u:labName ID="2">
 <label><-- v2 --></label>
</u:labName>
<u:researchField ID="3">
 <label><-- v3 --></label>
</u:researchField>
<e:first_name ID="4">
 <label><-- v4 --></label>
</e:first_name>
<e:surname ID="5">
 <label><-- v5 --></label>
</e:surname>
<e:name ID="6">
 <collection>
 <rdf:li rdf:resource="#4" />
 <rdf:li rdf:resource="#5" />
 </collection>
</e:name>
<u:Department ID="7">
 <u:hasDepName rdf:resource="#1" />
</u:Department>
<u:Lab ID="8">
 <u:hasName rdf:resource="#2" />
 <u:hasAsDomain rdf:resource="#3" />
 <u:belongsTo rdf:resource="#7” />
</u:Lab>
<u:Professor ID="9">
 <u:hasName rdf:resource="#6" />
 <u:isHeadOf rdf:resource="#8" />
</u:Professor>

The comment fields v1, v2, v3, v4 and v5 are
substitutes for the actual data that will be used to
instantiate the page template. The surrounding span tags
refer to instances of ontology entities defined at the
bottom of the page template. As one can see, v1 refers to
the instance with ID=”1” of a concept ‘depName’
(referring to the name of a Department). Note that v1 is
also used to instantiate the label property of the ontology
concepts. An instance of a Professor (see ID=”9”) has a
name (see ID=”6”), which is the collection of both his
first name and surname, and is the head of a Lab (see
ID=”8”) with a certain name (see ID=”2”), an associated
research domain (see ID=”3”) and belongs to a
Department (see ID=”7”).

To instantiate such a template, the comment fields are
being replaced with the actual data. We distinct two
different manners to instantiate these page templates
depending on whether we deal with static or dynamic web
pages. For static websites, it is the designer himself who
is responsible for instantiating the different page

templates. Note that the designer only has to add the data
to the template and doesn’t need to worry in any way
about the semantics of the data as this is already included
in the page template. For dynamic web pages, the content
is generated using the underlying database. Both the
object chunk mapping and the database mapping are used
to accomplish this task. The object chunk mapping
describes the mapping of the object chunk entities onto
the BIM, and the database mapping describes the
mapping of the BIM onto the database schema. If we
compose both mappings, we can derive the exact (SQL)
query needed to obtain the data from the (relational)
database using the conceptual query formulated at the
level of the object chunk. The output can be inserted into
the page templates where the value comment tags are
replaced with the actual data. Details about the query are
omitted due to space limitations. Whether the results of
the query are placed on either one or more, separated
pages is decided during the Page Design.

6. Advantages

The goal of our approach is to add semantic

knowledge to the web pages of a new to create website.
Opposed to current approaches, which perform the
annotation on the web page level or on the database level
(for dynamic websites), we define the annotation on a
conceptual level. Web designers will provide the
annotation during the conceptual design. Compared to
currently existing annotation methods, this approach has a
number of advantages:
• The annotation is implementation independent. Current

methods define the annotations directly in the
implementation of the website: in case of static
websites the annotation is unswervingly weaved with
the markup codes; for dynamic websites there is a
direct association defined between the ontology and
the database implementation. Changing for example a
web page, without altering the meaning of the content,
can needlessly require modifications to the
annotations. Using our approach, an implementation
will be generated (HTML, XML, …) and changes can
be generated without breaking the annotation, resulting
in a greater level of maintainability of the annotation.

• From the designer’s point of view, the annotation
process is uniform for static and dynamic websites. In
current approaches the annotation for static and
dynamic websites is done in a different way:
respectively annotating web pages or a database. In our
approach, the annotation step is done at the conceptual
design which is independent on whether the website
will be static or dynamic.

• Workload reduction. It is our belief that the best
moment to define the meaning of the content of a
website is when you are defining it. In most other

methods, the annotation process is executed only after
the website is completely implemented. In addition, in
our approach, each designer is only responsible for
defining the meaning of the object chunks he creates,
and not for the entire content of the website. For large
websites, developed by different persons, this can be a
serious reduction of the workload and reduces the need
for an overall domain expert.

• Reuse of the annotations. In current annotation
methods (for static websites), if a certain concept is
used on different pages, the annotation has to be
repeated for each page. In our approach, the annotation
has to be defined only once and the same concept can
be reused in different object chunks. Moreover, all
copies of an entity used over several object chunks will
be updated automatically if the annotation of one copy
has changed.

• Improvement of the design process. An important
aspect of integrating the annotation into the design
process is that it enables us to improve the consistency
during the website design process and to speed it up by
making use of the metadata already provided. It is for
example possible to make suggestions to the designer
about information to be included based on earlier
conceptual annotations made (possibly made by the co-
designers).

7. Conclusion

In this paper, we presented an approach for the semi-
automatic annotation of static as well as dynamic
websites. The actual annotation process is performed
during the design phase of the website at a conceptual
level. We presented the proposed approach integrated into
an existing website design method, WSDM. This design
method provides us a conceptual model of the website
that can be used to annotate (at a type level) the
information that will be available on the website with
concepts from an ontology. This is done by annotating the
entities (object types and roles) used in the conceptual
model of the website. Next this “conceptual” annotation
can be used to generate the actual page annotation by
keeping track of the different transformations performed
during the development process to derive at an
implementation

To realize our approach, we only had to add a single
step to the already existing phases of the WSDM method:
the conceptual annotation, which defines the association
between the entities in the object chunks and concepts in
an ontology. The actual page annotation which defines
data on the website as instances of the associated
ontology concepts is generated automatically. Note that it
was needed to keep explicitly track of the object chunk
mapping and database mapping to be able to generate
this page annotation.

The current conceptual annotation is still limited: it
only provides limited support for multiple ontologies,
there is not yet any support for solving semantic conflicts,
and it still neglects the problem of domain- and structural
conflicts. A lot of improvement can and must be achieved
in this area. This will be the topic for further work.

References

[1] T. Berners Lee, J. Hendler, O. Lassila, “The semantic web:
A new form of web content that is meaningful to computers will
unleash a revolution of new possibilities”, Scientific American
2001: 5(1).

[2] S. Ceri, P. Fraternali, A. Bongio, “Web Modeling Language
(WebML) : a Modeling Language for Designing Web Sites”, In
proceedings of the 9th World Wide Web Conference
(WWW2000), Amsterdam, 2000.

[3] O. De Troyer, C. Leune, “WSDM: A User-Centered Design
Method for Web Sites”, Computer Networks and ISDN Systems,
proceedings of the 7th International World Wide Web
Conference, Brisbane Australia, 1998, pp. 85–94.

[4] O. De Troyer, “Audience-Driven Web Design”, Information
Modeling in the New Millennium, Eds. Matt Rosi & Keng Siau,
IDEA GroupPublishing, ISBN: 1-878289-77-2, 2001.

[5] O. De Troyer, S. Casteleyn, “Modeling Complex Processes
for Web Applications using WSDM”, Proceedings of the
IWWOST2003 workshop, Oviedo Spain, 2003.

[6] O. De Troyer, P. Plessers, S. Casteleyn, “Solving Semantic
Conflicts in Adience Driven Web Design”, Proceedings of the
WWW/Internet 2003 Conference, Algarve Portugal, 2003.

[7] J. Golbeck, M. Grove, B. Parsia, A. Kalyanpur, J. Hendler,
“New Tools for the Semantic Web”, Proceedings of EKAW
2002, LNCS 2473, Springer, 2002, pp. 392–400.

[8] T. Halpin, “Information Modeling and Relational
Databases”, 3rd edition, Morgan Kaufmann, 2001.

[9] S. Handschuh, S. Staab, A. Maedche, “CREAM – Creating
Relational Metadata with a Componentbased, Ontology Driven
Framework”, Proceedings of K-Cap, Victoria Canada, 2001.

[10] S. Handschuh, S. Staab, “Authoring and annotation of web
pages in CREAM”, The Eleventh International World Wide Web
Conference (WWW2002), Honolulu Hawaii USA, 2002.

[11] J. Heflin, J. Hendler, S. Luke, “SHOE: A knowledge
Representation Language for Internet Applications”, Technical
report CS-TR-4078 (UMIACS TR-99-71), 1999.

[12] J. Heflin, J. Hendler, “Searching the web with SHOE”,
Artificial Intelligence for Web Search, Papers from the AAAI
Workshop, WS-00-01, AAAI Press, 2000, pp. 35-40.

[13] J. Heflin, J. Hendler, “Agents and the Semantic Web”,
IEEE Intelligent Systems Journal, 16(2), 2001, pp. 30–37.
[14] D. Schwabe, G. Rossi, “An Object Oriented Approach to
Web-Based Application Design”, Theory and Abstraction of
Object Systems 4(4), Wiley and Sons New York, 1998.

[15] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A.
Stutt, F. Ciravegna, “MnM: Ontology Driven Semi-Automatic
and Automatic Support for Semantic Markup”, The 13th
International Conference on Knowledge Engineering and
Management, 2002.

