
 
 

 

SSQSA Ontology Metrics Front-End 1 
MILOŠ SAVIĆ, ZORAN BUDIMAC, GORDANA RAKIĆ AND MIRJANA IVANOVIĆ, University of Novi Sad 
MARJAN HERIČKO, University of Maribor  

SSQSA is a set of language independent tools whose main purpose is to analyze source code of software systems in order to evaluate 
their quality attributes. The aim of this paper is to present how a formal language that is not a programming language can be 
integrated into the front-end of the SSQSA framework. Namely, it is explained how the SSQSA front-end is extended to support 
OWL2 which is a domain-specific language for the description of ontological systems. Such extension of the SSQSA front-end 
represents a step towards the realization of a SSQSA back-end which will be able to compute a hybrid set of metrics that reflect 
different aspects of complexity of ontological descriptions. 
Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics – Complexity measures; I.2.4 [Artificial 
Intelligence]: Knowledge Representation Formalisms and Methods – Representation languages  
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1. INTRODUCTION 

With the rise of the semantic web, ontologies have become a key technology to provide formal description 
of shared and reusable knowledge. Viewed as “explicit specification of conceptualization” [Gruber 1993], 
ontologies are used to define concepts and relations present in a domain in order to support reasoning, 
integration, and aggregation of data by autonomous software agents. Since real-world ontologies rapidly 
increase in size, it has become highly important to measure, evaluate and understand their complexity, in 
order to be able to control their maintenance and evolution. 

SSQSA is a set of language-independent tools that statically analyze software systems in order to 
evaluate their quality attributes [Budimac et al. 2012]. The whole framework is organized around the 
enriched Concrete Syntax Tree (eCST) representation of source code [Rakić and Budimac 2011b]. The 
motivation for this work was to explore the possibility to use the eCST representation to compute metrics 
which reflect the complexity of ontological descriptions. In order to obtain the eCST representation of 
ontology, the SSQSA front-end has to be extended to support a language for the description of ontological 
systems. The aim of this paper is to explain how the SSQSA front-end is extended to support OWL2 
language in functional-style syntax. 

The rest of the paper is structured as follows. The next section presents the related work. Section 3 
covers the integration of OWL2 into the SSQSA framework. In the next section are discussed the benefits 
of the eCST representation of ontology. The last section concludes the paper and gives directions for 
future work. 
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2. RELATED WORK  

2.1 Ontology metrics 
In recent years, various metrics for measuring the complexity of ontological descriptions were proposed. 
Inspired by Chidamber and Kemerer [1994] metrics suite, Yao et al. [2005] proposed three cohesion 
metrics which are defined on a graph that represent subsumtion dependencies between ontological 
concepts. Orme at al. [2006] introduced three coupling metrics which are defined on the graph 
representation of ontology. Tartir et al. [2005] introduced OntoQA metric suite that contains 12 structural 
metrics also defined on ontological graph. Zhang et al. [2010] also proposed several new graph-based 
structural metrics for ontology evaluation. Their metrics suite, among others, contains metrics adopted 
from the Chidamber-Kemerer suite (NOC, DIT, CBO). Žontar and Heričko [2012] analyzed software 
metrics from the Lorenz-Kidd, Chidamber-Kemerer and Abreu metric suites in order to determine which 
of them can be adopted for ontologies. The results of their study show that graph-based software metrics 
can be adopted for ontology evaluation.  

2.2 SSQSA Framework 
The SSQSA framework consists of two parts, SSQSA front-end also known as eCST Generator, and the 
set of SSQSA back-ends, individual tools that operate on the eCST representation of source code. The 
main characteristic of eCST representation is that it contains so called universal nodes, language-
independent markers that denote the meaning of concrete language constructs. The architecture of 
SSQSA is presented in Figure I. Also, it is shown how the architecture is planned to be extended with a 
new back-end in order support the analysis and evaluation of ontological systems. 
 

 
Figure I. Extended SSQSA architecture 
 
SSQSA originated from a language-independent software metrics tool SMIILE [Rakić and Budimac 

2011a]. SMIILE uses the eCST representation to calculate metrics reflecting internal complexity of 
software entities such as LOC and Cyclomatic complexity [McCabe 1976]. It is also integrated with 
Testovid, a semi-automated assessment system for students’ programs, in order to provide metric-based 
qualification of programming assignments [Pribela et al. 2012]. SSCA was the first SSQSA back-end 
which extended the applicability of the eCST representation [Gerlec et al. 2012]. This tool tracks and 
analyzes changes in the hierarchical structure of software entities and stores its results in a repository 
that also contain metric values obtained using SMIILE. The last realized SSQSA back-end is SNEIPL 
[Savić et al. 2012]. This tool extracts dependency networks formed by software entities that can be used to 
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analyze the design complexity of software systems under the framework of complex network theory. 
Obtained networks can be also viewed as fact-bases required for reverse engineering activities and used to 
calculate metrics related to software design.  

Currently SSQSA supports six general-purpose, imperative programming languages: Java, C#, Delphi, 
Modula-2, Pascal and Cobol. Therefore, this work is the first attempt to extend the SSQSA front end to 
produce the eCST representation of a declarative, domain-specific language.  

3. INTEGRATION OF OWL2 LANGUAGE INTO THE SSQSA FRONT-END 

eCST Generator uses parsers generated by the ANTLR [Parr and Quong 1995] parser generator to 
produce the eCST representation of source code that is provided as input. The advantage of using ANTLR 
to describe languages supported by SSQSA is the ANTLR grammar notation itself. This notation enables 
modification of syntax trees through tree rewrite rules that are attached to grammar productions. 
Therefore, in order to integrate OWL2 into the SSQSA front-end the following steps have to be made: 

1. Realization of ANTLR grammar which describes OWL2 FSS, 
2. Identification of OWL2 language constructs that corresponds to existing eCST universal nodes, 
3. Incorporation of eCST universal nodes into tree-rewrite rules of the grammar in order to obtain 

eCST representation of parsed text. 

3.1 Step 1 – ANTLR grammar for OWL2 FSS 
The formal specification of OWL2 FSS in Extended Backus-Naur form (EBNF) can be found in the official 
W3C OWL2 language specification [Motik et al. 2012]. The ANTLR grammar notation closely follows 
EBNF, thus the grammar in [Motik et al. 2012] can be easily adopted for ANTLR. At this stage of the 
integration, the realized grammar is tested using ten ontologies from TONES2 repository which are 
previously converted into OWL2 FSS using Protégé3. The results are summarized in Table I. It can be 
seen that the parser generated from the grammar successfully parsed more than 1.4 millions of lines of 
real-world ontological axioms in less than three minutes. 
 

Table I.  Results of testing of ANTLR grammar for OWL2 FSS using ontologies from TONES repository. 
ONTOLOGY NAME LOC Parse time [s] 
CTON (Cell Type Ontology) 144252 23 
FMA (Foundational Model of Anatomy)  316101 41 
Gene Ontology Edit 233608 22 
Human Disease 476111 59 
Teleost Taxonomy 182656 17 
GEO Skills 20506 2 
Matr Mineral 46 0.04 
OBO Relation Ontology 25412 2 
SC Ontology 23707 2 
Software Ontology 5931 0.5 

 

3.2 Step 2 – Universal nodes 
OWL2 FSS language contains four types of tokens: keywords, separators, identifiers and constants. For 
each of mentioned lexical categories there are already introduced eCST universal nodes. Ontological 
axioms are marked with STMT universal node which is used to mark individual statements in imperative 

                                            
2 http://owl.cs.manchester.ac.uk/repository/ 
3 http://protege.stanford.edu/ 
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programming languages. Elements of an axiom are also marked with existing universal nodes (TYPE, 
ARGUMENT_LIST, and ARGUMENT). The PACKAGE_DECL universal node denotes that entities 
declared in an eCST sub-tree rooted at this node are mutually visible. Therefore, PACKAGE_DECL 
corresponds to the declaration of ontology. Declarations of ontological entities (concepts, roles and 
individuals) are marked with ATTRIBUTE_DECL universal node which is used to denote declarations of 
global variables in imperative programming languages. Ontological expressions that can be nested (class 
and data range expressions) are marked with the EXPR universal node. 

OWL2 is a declarative, domain-specific language. Before the integration of OWL2, SSQSA supported 
several programming languages none of them being declarative or domain-specific. OWL2 axioms 
represent explicitly stated relations among ontological entities. Therefore, we introduced three new 
universal nodes that denote different categories of explicitly stated relations in general:  

1. BINARY_RELATION (BR) marks binary relations  
2. SYMMETRIC_RELATION (SR) marks symmetric n-ary relations 
3. PARTIALLY_KNOWN_BINARY_RELATION (PKBR) marks binary relations in which one of the 

arguments is not known at the moment.  
With BINARY_RELATION are marked all OWL2 relations that denote subsumptions and assertions. The 
SYMMETRIC_RELATION universal node is associated with relations indicating the equivalent and 
disjoints classes, same and different individuals, and equivalent and disjoint object properties. The 
PARTIALLY_KNOWN_BINARY_RELATION universal node marks object property domain and object 
property range relations. The newly introduced universal nodes are currently used only in the eCST 
representation of ontological descriptions. However, they can be used to mark explicitly stated binary and 
symmetric relations in other descriptive languages as well. Explicitly stated relations among entities in 
already supported imperative programming languages are marked with specific, more concrete universal 
nodes, such as EXTENDS and IMPLEMENTS. Those universal nodes can be viewed as sub-concepts of 
the BINARY_RELATION universal node.  

3.3 Step 3 – Tree-rewrite rules 
Once the correspondence between constructs of a concrete language and eCST universal nodes is 
identified, it is pretty straightforward to incorporate universal nodes into tree rewrite rules of the 
grammar. For example, it has been identified that ontology declarations correspond to the 
PACKAGE_DECL universal node. Therefore, PACKAGE_DECL universal node will be incorporated in 
the tree rewrite rule of the production that describe ontology declaration as the following excerpt from the 
OWL2 FSS grammar shows: 

ontology : 'Ontology'  '(' (ontologyIRI versionIRI?)? importo* annotation* axiom* ')' 
  -> ^(PACKAGE_DECL 
        ^(KEYWORD 'Ontology')  
                  ^(SEPARATOR '(')  
                  (ontologyIRI versionIRI?)? 
    importo* annotation* axiom*  
                 ^(SEPARATOR ')') 
                ); 
 

Besides the PACKAGE_DECL universal node, two other universal nodes are also incorporated in the rule: 
KEYWORD and SEPARATOR to mark keywords and separators in ontology declaration, respectively.  

Figure II shows how a simple ontology named “PL” looks in the eCST representation. The complete 
description of the ontology in the functional-style syntax is as follows: 

Ontology (:PL 
     SubClassOf(:C :CPP) 
) 

The SubClassOf axiom states that each program written in the programming language C is at the same 
time valid C++ program.  
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Figure II. eCST representation of a simple ontology. 

4. BENEFITS OF OWL2 INTEGRATION INTO SSQSA 

Metrics that reflect complexity of a description written in a programming or formal language can be 
classified as follows: 

1. Metrics of internal complexity reflect lexical and syntactical complexity of the description or some 
of its parts. Lexical complexity measures are derived from the lexical elements of a language and 
reflect the complexity that is related to the volume of the description. Representative metrics 
which belong to this category are LOC family of metrics and Halstead [1977] complexity 
measures. Syntactical complexity is related to the compositional (structural) complexity of 
concrete language constructs. Cyclomatic complexity is an example of widely used measure of 
syntactical complexity.  

2. Metrics of design complexity reflect the complexity of dependency structures among identifiers 
introduced in the description. Those metrics quantify inheritance, coupling and cohesion 
relationships among entities represented by the identifiers. Representative examples are CBO, 
NOC, DIT and LCOM metrics from the Chidamber-Kemerer metrics suite. 

3. Hybrid metrics combine metrics of internal and design complexity. Examples are WMC and RFC 
from the Chidamber-Kemerer metrics suite, and the Henry-Kafura complexity [Henry and Kafura 
1981]. 

 
As it can be seen from the review of related works on ontology metrics, the complexity of an ontological 

description is viewed as some measure of complexity of underlying graph representation. In other words, 
already introduced ontology metrics belong to the category of design complexity metrics. The integration 
of OWL2 into the SSQSA front-end provides the eCST representation of ontology. This representation can 
be used to define (or adopt) and compute metrics of internal complexity, which is not possible in the 
graph-based representation of ontology. For example, Halstead complexity metrics adopted for ontologies 
can be calculated in the same way as for software systems: by counting eCST universal nodes 
representing lexical categories. Similarly, the statement and expression level universal nodes can be used 
to derive syntactical complexity measures.  Currently, it is possible to use the SMIILE back-end to obtain 
LOC and Halstead metrics for ontological descriptions. SMIILE also calculates cyclomatic complexity (CC) 
for software systems, but this metric cannot be adopted for ontology evaluation, since there are no OWL2 
language elements that correspond to branch and loop statements. However, the predicate counting 
procedure used for the computation of the CC metric in SMIILE can be adopted to derive the complexity 
of nested OWL2 class and data range expressions (by counting EXPR universal nodes in eCST). 

The ATTRIBUTE_DECL universal node can be used to recognize the declarations of ontologies, 
declarations of ontological concepts, roles and named individuals in represented ontological description.  
Relations among those entities can be identified by the analysis of eCST sub-trees rooted at BR, SR and 
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PKBR universal nodes (see Section 3.2). This means that the graph representation of ontology can be 
extracted from the eCST representation of ontology. Therefore, an ontology metrics tool that is based on 
the eCST representation also can be able to compute metrics of design complexity. Finally, metrics of 
internal and metrics of design complexity can be combined to obtain hybrid complexity metrics. The 
extraction of the graph representation of ontology is fundamentally different problem that the extraction 
of software networks due to the structural difference between ontological and software entities. The 
hierarchy tree representation of an ontological description can be obtained using the SNEIPL back-end, 
but SNEIPL cannot be used to identify horizontal dependencies (dependencies between entities of the 
same type) among ontological concepts and individuals. Those ontological entities are structurally atomic, 
i.e. they are not composed out of other ontological entities. To the contrary, software entities (classes, 
functions, etc.) are not structurally atomic: the definition of a software entity A associates the name of A 
with a body that contains the structure of A. Horizontal dependencies between software entity A and 
other entities are contained in the body of A, while horizontal dependencies between ontological entities 
are independent of ontological declarations. Since the SNEIPL back-end cannot be used to obtain the 
graph representation of ontology, a new SSQSA back-end that computes graph-based ontological metrics 
will be developed (see Figure I). This back-end will reuse and adopt modules from SMIILE to compute 
metrics of internal complexity, as well as modules from SNEIPL to form the hierarchy tree representation 
which is the first step in the extraction of ontological graph (identification of ontological entities and 
vertical dependencies). 

The SSCA back-end constructs and compares hierarchy trees of two consequent versions of a software 
system in order to determine changes in vertical dependencies (dependencies among entities at different 
levels of abstraction). The hierarchy tree representation of an ontological description can be obtained from 
the eCST representation in the same way as for software systems: it is entirely determined by the 
hierarchical structure of eCST universal nodes in concrete eCSTs. This means that this back-end can be 
applied for ontologies in order to identify which concepts and named individuals are added or removed in 
the next version of ontology, and to what extent. Finally, with the design and development of new SSQSA 
back-ends it will be investigated whether they can be applied to analyze both software and ontological 
systems.  

5. CONCLUSION AND FUTURE WORK 

In this paper we described how the SSQSA front-end is extended to support OWL2 language in functional-
style syntax. It is also shown that the eCST representation of ontologies can be used to compute metrics 
that reflect both internal and design complexity of ontological descriptions. Therefore, our future work 
will include the development of a SSQSA back-end, as shown in Figure I, that uses the eCST 
representation of ontology to compute metrics reflecting different aspects of complexity of ontological 
descriptions. In our future work we will also investigate whether recently introduced metrics of cognitive 
complexity of programs written in object-oriented languages [Misra et al. 2012] and metrics of complexity 
of web services descriptions [Basci and Misra 2012] can be adopted and used for ontology evaluation. 
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