
A Semantic Web Based Ontology Mapping and

Instance Transformation Framework

Borna Jafarpour

NICHE Research group

Computer Science Department, Dalhousie University

Halifax, Canada

borna@cs.dal.ca

Syed Sibte Raza Abidi

NICHE Research group

Computer Science Department, Dalhousie University

Halifax, Canada

Sraza@gmail.com

We present a semantic-based ontology mapping framework

that offers instance transformation and discovery of new

mapping using reasoning. Our framework comprises an

expressive OWL-Full Mapping Representation Ontology (MRO)

and a mapping translation method. Ontology mappings are

represented in terms of an instantiation of the MRO. We define

formal semantics for our ontology mapping representation by

translating the ontology mappings in OWL-Full to OWL and

SWRL in order to derive new ontology mappings and perform

instance transformation using reasoning. We have evaluated the

workings of our ontology mapping framework by mapping three

ontologies each representing a disease specific Clinical Practice

Guideline (CPG) to a general CPG representation ontology. The

intent of the mapping is to provide knowledge-driven decision
support for the management of patients with multiple diseases.

Keywords—Ontology; Semantic Web; Ontology mapping;

Instance Transformation; SWRL, OWL

I. INTRODUCTION

Complex knowledge-centric systems demand the
integration of multiple knowledge objects in order to achieve a
comprehensive knowledge model. Given the open nature of
semantic web, several heterogeneous knowledge models exist
for representing the knowledge in any domain area. For
instance, in healthcare, there exist variety of knowledge models
to model and computerize clinical practice guidelines (CPG)—
these models share a range of concepts but differ in the
interpretation and specification of these concepts. To develop a
holistic knowledge model based on multiple heterogeneous
knowledge models, therefore demands the establishment of
standardized interoperability specifications and criterion, at
both the structural and semantic levels, to achieve the
integration of multiple heterogeneous knowledge models.

Lately, ontologies have emerged as expressive knowledge
representation formalisms, together with methods to reason
over the knowledge. An ontology typically represents a
specific aspect of knowledge with varying levels of abstraction
and description. To formulate a broader and holistic knowledge
model, researchers aim to integrate multiple existing ontologies
that demand an interoperability solution that aligns
heterogeneous ontologies in keeping with the domain-specific
interpretations and constraints surrounding knowledge
consistency. A semantic interoperability framework aims to
establish explicit and well-defined mapping between two

ontologies. In practice, ontology mappings methods map the
ontology elements between two ontologies based on the
similarity of their names, their relations and their shared
instances using name-based, structure-based and instance-
based approaches respectively [10].

An alternative mapping approach is called semantic-based
ontology mapping. This approach has two steps [10]: (i)
anchoring step in which a number of initial mappings or
anchors are created between two ontologies using name,
instance or structure based ontology mapping approaches; (ii)
reasoning step in which a reasoner performs reasoning on the
mappings and the mapped ontologies to (a) transform instances
between the two ontologies; and (b) improve the existing
mappings by discovering new ones based on the formal
semantics of the mappings and the mapped ontologies.
Typically, proprietary reasoning algorithms [1][4][14],
propositional logic [11][12] and Description Logic (DL)
[5][6][7][8][9] are used in the reasoning step.

The quality of ontology mapping based on a semantic-
based approach is contingent on the ontology mapping
representation language’s level of expressivity and formal
semantics—reasoning over a more expressive ontology can
yield more new mappings as opposed to reasoning over a less
expressive ontology. Our review of the existing mapping
representation languages [1][2][3][4][9][11][12][13][15] and
an existing surveys [13] reveal that most of the current
ontology mapping languages suffer from lack of expressivity
and formal semantics. Lack of formal semantics stops us from
using the mappings in a semantic-based ontology mapping
approach.

To address the lack of expressivity and formal semantics in
ontology mapping languages, in this paper we use semantic
web technologies to present a semantic-based ontology
mapping approach that entails: (a) a general purpose OWL-Full
based Mapping Representation Ontology (MRO) that serves as
an expressive ontology mapping language that can represent
complex mappings such as predefined mapping patterns,
conditions, condition satisfaction criteria, variables, structural
modifications and mathematical operators. An instance of the
MRO represents the mappings between a source and a target
ontology; and (b) translation algorithm to translate the
instantiations of the MRO (which are in OWL-Full and hence
undecidable) to OWL-DL or OWL 2 RL + SWRL which is a
decidable combination. The translated mappings and the

mapped ontologies are reasoned over to achieve both instance
transformation and to discover new mappings. Please note that
our approach is not problem-specific and can be used for
mapping any two ontologies as long as they are represented in
OWL.

We chose to represent mappings in OWL-Full and then
translate them to OWL+SWRL instead of using OWL+SWRL
directly because of the following reason: (a) The expressivity
of MRO being OWL-Full—i.e. using properties and classes as
instances—makes the ontology mappings more readable and
less verbose—i.e. with fewer triples compared to OWL-DL; (b)
It enables us to support conditional mappings and complex
condition satisfaction criteria, meta modelling, Boolean
operators and converting ontology elements and creating new
ones which are not directly supported by either OWL or
SWRL. These aspects of ontology mapping are supported by
automatic generation of several OWL axioms and SWRL rules
that simulate the lacking feature during the translation process;
(c) SWRL rules are difficult to write and can easily become
undecidable if not written correctly. In our translation
algorithm, DL-Safe SWRL rules are generated automatically
thus relieving the user about decidability concerns.

In order to evaluate the efficacy of our ontology mapping
framework, we instantiated MRO to map three disease-specific
CPG ontologies to a general CPG ontology. We then
successfully transformed instantiations of the source ontologies
to instantiations of the target ontology. The problem being
pursued here is to handle comorbidities by integrating two or
more disease-specific CPG to manage a patient with multiple
simultaneous diseases.

II. RELATED WORK

In this section, we review the existing semantic-based

ontology mapping approaches and the existing mapping

representation languages.

A. Semantic-Based Ontology Mapping Approaches

These approaches can be categorized based on the
reasoning techniques that they use. Literature reports on using
proprietary reasoning algorithms [1][4][14], propositional
satisfiability solvers [11][12] and description logic reasoners
[5][6][7][8][9].

Methodologies that use proprietary reasoning algorithms
such as [1][4][14] are not desirable because of the following
disadvantages: (a) Because of their proprietary algorithms, they
can’t benefit from the existing reasoners and a special
reasoning engine should be developed in order to perform the
reasoning step; (b) Since these engines can only perform
reasoning on the mappings and not the ontology representation
languages they cannot exploit the internal structure
(knowledge) of the ontologies to draw new mappings based on
them.

There are semantic-based algorithms that use propositional
logic to perform reasoning. In these approaches, a theory is
built by conjunction of the axioms from the mapped ontologies.
This theory can be constructed by using one of the name,
instance or structure based approaches. Then, a matching
formula is made for each pair of classes from the mapped

ontologies. Afterwards, the validity of the formula is checked
by using a propositional satisfiability solver. BerkMin [11] and
GRASP [12] are two examples to name. None of these
approaches goes beyond finding equivalence, subclass, and
complement relationship between classes. We believe that this
is due to lack of expressivity in propositional logic for the task
of ontology mapping.

Description logic reasoners have also been used in the
reasoning step of semantic-based ontology mapping
approaches. Two approaches that use description logic to find
disjointness, overlap, inclusion and equivalence relations
between concepts are reported in [5][7]. Meilicke and
colleagues [6] used description logic to debug the mappings by
detecting inconsistencies. In a theoretical work [8] it is
suggested that description logic can be used for reasoning
about the mapping themselves to find containment, minimality,
consistency and embedding attributes in them. Therefore, DL
has been used for reasoning about the mappings, debugging
them and deriving simple mappings (class equivalence, etc.)
but no attempt has been made to represent more complex
mappings such as value transfer mappings or mathematical
computations. We believe that lack of an expressive mapping
representation language that formally defines the mapping
semantics in DL is limiting the capabilities of DL-based
semantic-based mapping methodologies.

There are also approaches such as [1] and [3] that translate
the mappings to OWL and SWRL to use OWL reasoners.
These methodologies transform the mapping to either OWL or
SWRL but not a combination of them. However, we believe
that OWL or SWRL cannot be used separately for mapping
ontologies unless we need very low levels of expressivity.
Therefore, we can conclude that complex mappings are not
possible to be transformed using these approaches. Moreover,
no explanation or details of the translation process have been
provided in this regard.

B. Ontology mapping representation languages

In this section, we review the expressivity levels of the
mapping representation languages with formal semantics. We
reviewed the literature trying to define the requirements of the
mapping representation languages [13][15]. The support for
mathematical, Boolean, string and structural modification
operators, frequently used mapping patterns, predefined set of
relations between ontology elements, variables and the ability
to express conditions and condition satisfaction criteria are the
most important expressivity requirements identified in these
publications.

Many of the existing mapping representation languages
such as MAFRA [4], C-OWL [9] and many others
[1][4][5][6][8][9][11][12] are only capable of expressing
simple relations such as equivalent, disjoint, subclass and super
class between ontology classes. A review of 13 of these
languages in [13] shows that 61% of all of them are only
capable of expressing the equivalence relationship. Only C-
OWL has formal semantics that can be used by reasoners in the
semantic-based ontology mapping. Even though authors of
MARFA claim that they have formal semantics no details are
provided in that regard. OWL is more expressive than these

languages as it supports a wide range of predefined relations
between classes, properties and instances. It also supports a
large number of class and property manipulation operators that
can be used towards structural modification. The rest of the
desired features described earlier are not supported by OWL.
Having formal semantics makes it possible to use OWL in the
reasoning step of a semantic-based ontology mapping
approach.

An important requirement of these languages is the ability
to support variables and to express mathematical, Boolean,
date, string computation and comparison and structural
modification operators. SWRL is the only language that is able
to express a wide list of the necessary functions for mappings
that are supported by the concept of built-ins. This language
however cannot support Boolean operators, mapping patterns,
conditions, qualified cardinality restrictions and some of the
property relations and structure modifications operators that are
expressible in OWL such as union operator. SWRL also has
formal semantics and can be used in semantic-based ontology
mapping approaches.

Two expressive mapping languages are discussed in [2] and
[3]. The language in [2] supports a wide range of mappings
patterns, conditions and variables. However, this language does
not support representation of complex condition satisfaction
criteria, and mathematical, Boolean, string and date operators.
The language in [3] supports a large number predefined set of
relations between ontology elements, mapping patterns, ability
to express conditions and structural modification operators.
Even though some descriptions of the formal semantics of
these languages are discussed, enough details for a practical
implementation of a semantic-based ontology mapping
approach are not provided.

III. OUR ONTOLOGY MAPPING APPROACH

Our ontology mapping approach entails the following two
components: A Mapping Representation Ontology (MRO) in
OWL-Full to represent the ontology mapping; and a translation
algorithm that transforms an instantiation of the MRO to OWL
+ SWRL. Our ontology mapping approach is pursued by
performing the following three steps:

1. Anchoring (MRO Instantiation): In the first step,
initial inter-ontology mappings are created by establishing
semantic relations between classes, properties and instances of
the mapped ontologies. These mappings can be either created
using existing automatic discovery algorithms such as methods
based on similarity of names or by a domain expert. Due to
complexity of the mappings between ontologies of our domain
area, we opted to create the initial mappings manually.
Therefore, a mapping between two ontologies is an
instantiation of the MRO created by the domain expert. For
instance, by instantiating MRO we may indicate that classes
Person and Human from source and target ontologies are
equivalent classes. Source and target ontologies are represented
by o1: and o2: name spaces in the rest of the paper.

2. Translation to OWL-DL + SWRL: In the next step, we
transform the instantiation of MRO to a combination of OWL-
DL or OWL2 RL + SWRL depending on the expressivity
needs of the mappings. To avoid the possible undecidability as

the result of using SWRL rules, only DL-Safe rules [17] are
added in the translation process. As an example, the
instantiation of MRO that expresses Human and Person classes
are equivalent is translated to:

o1:Human owl:equivalentClass o2:Person.

3. Reasoning: Finally, we use OWL reasoners to perform
reasoning on the translated mappings and the mapped
ontologies to improve the mapping by discovering new ones
and to perform instance transformation. As an example, The
following SWRL rule which is the result of the translation of
an instantiation of MRO to SWRL, calculates the Body Mass
Index (BMI) of an instance of the class o1:Person and assigns
it to the class o2:ObesePerson if the value of the BMI is
greater than 30 and the condition c1 is satisfied.

o1:Person(?InstVar), o1:hasHeight(?InstVar,

?HeightVar), o1:hasWeight(?InstVar,

?weightVar),swrlb:divide(?BMIVarVar,

?func1SWRLVar,?HeightVarVar),swrlb:divide(?fun

c1Var,?weightVar,?HeightVar),swrlb:greaterThan

(?BMIVar, 30),SatisfiedCondition(c1)->

o2:ObesePerson(?o1InstVar),

o2:hasBMI(?o1InstVar, ?BMIVar)

As a result of reasoning on this rule and source and target
ontologies all together, the reasoner infers that an instance of
the Person class in the source ontology with the weight of 97kg
and height of 179cm belongs to the class o2:ObesePerson in
the target ontology and has the value 32.2 for the property
o2:hasBMI. In this way, instances of the o1:Person class in the
source ontology are transformed to instances of the
o2:ObesePerson class in the target ontology. We have used
Pellet as our reasoner since it supports both OWL and SWRL.
Any other reasoners with support for OWL and SWRL can be
used for this purpose.

IV. MAPPING REPRESENTATION ONTOLOGY

In this section, we describe MRO, its classes, properties and
instances. In order to easily identify classes, properties and
instances in the text, class names are italicized and their first
letter are Capitalized (e.g. ClassNameExample), property
names are italicized (e.g. propertyExample) and instance
names are underlined (e.g. instanceExample).

A. Mappings and Relations

In order to represent mappings between instances,
properties and classes of source and target ontologies we have
created the Mapping class. Three types of mappings have been
modeled in MRO using the following classes:
RelationalMapping, TransformationMapping and
ValueTransferMapping.

RelationalMappings express a relation between two

ontology elements. hasSource and hasTarget properties with

the domain of Mapping and range of OWL:thing are used

assign the source and the target elements to a mapping. The

hasRelation Property with the domain of RelationalMapping

and the range of MappingRelation defines the relation in a

relational mapping. Depending if the relation is between two

instances, properties or classes, one of the instances of the

InstanceRelation, PropertyRelation or ClassRelation classes is

used. In the following example we have used

subClassRelation an instance of the ClassRelation to map the

o1:Father class as a subclass to the o2:MalePerson class:

:m1 a:RelationalMapping;

 :hasSource o1:Father;

 :hasTarget o2:MalePerson;

 :hasRelation :subClassRelation

TransformationMapping specifies how the source ontology
elements need be structurally modified and transformed to
elements of the target ontology. Two types of transformation
mapping have been modeled: (i) Property to class mapping
represented by PropToClassTransMapping class. As an
example, a property to class transformation mapping
transforms the OWL triple o1:john o1:isMarriedTo

o1:jane to

o2:john_jane_marriage a o2:Marriage;

 o2:hasMalePartner o1:john;

 o2:hasFemalePartner o1:merry.

As you can see, an instance of the class o2:Marriage for
each pair of instances connected by the property
o1:isMarriedTo should be created. The following instantiation
of the mapping class represents this mapping from o1 to o2.

:m a :PropToClassTransMapping;

 :hasSourceProperty o1:isMarriedTo

 :hasTargetClass o2:Marriage;

 :hasTargetProperty1 o2:hasMalePartner;

 :hasTargetProperty2 o2:hasFemalePartner.

Please note the hasSourceProperty, hasTargetClass,
hasTargetProperty1 and hasTargetProperty2 properties in this
mapping and their purposes.

 (ii) Class to property mapping which is the exact opposite

of the property to class mapping. This mapping is represented

by the ClassToPropertyTransMapping class. The following

instantiation of the mapping ontology performs the exact

opposite transformation in the abovementioned example from

o2 to o1:

:m a :ClassToPropertyTransMapping;

 :hasTargetProperty o1:isMarriedTo

 :hasSourceClass o2:Marriage;

 :hasSourceProperty1 o2:hasMalePartner;

 :hasSourceProperty2 o2:hasFemalePartner.

Please note the hasTargetProperty, hasSourceClass,
hasSourceProperty1 and hasSourceProperty2 properties in this
mapping and their purposes.

ValueTransferMappings perform mathematical, string and
date computation and comparison to find the new value in the
target ontology based on the value of the source ontology. An
instance of this mapping would be computing the Body Mass
Index in the target ontology based on the weight and the height
of a person in the source ontology. No relation is assigned to
this type of mapping. The hasFunction property with the range
of Function is used to assign the participating functions in data
transformation to a mapping.

B. Variables

Variables that are represented by the Variable class can be
used to represent values or a fragment of the ontology and be
used as the source or target of the mappings. Fig. 1 shows
subclasses of the Variable class. It has two subclasses:
ClassVariable, InstanceDataVariable.

Fig. 1. Subclasses of the Variable Class

1) ClassVariable: This class and its associated properties

can be used to represent a class of instances. It has two

subclasses: ClassPropertyHasValue and

ClassPropertyQualifiedCardinality. ClassPropertyHasValue

can be used to create a variable which represents a class whose

instances have a specific value for a specific property. For

instance, the following class variable represents the students

who have taken course math101 for the summer:

:cv1 a :ClassPropertyHasValue;

 :classVariableHasClass o1:Student;

 :classVariableHasProperty o1:hasSummerCourse;

 :classPropertyRestrictionHasValue o1:math101.

An instance of the ClassPropertyQualifiedCardinality class
represents instances that have a restriction on the number and
type of values that a specific property can have. For instance,
we can create a class that represents students who have
registered for at least two elective courses:

:cv2 a: ClassPropertyQualifiedCardinality;
 :classVariableHasClass o1:Student;

 :classVariableHasProperty o1:hasCourse;

 :classPropertyQCROnClass o1:ElectiveCourse

 :hasCardinalityType :min;

 :hasNumericValueForCardinality “2”^^xsd:int.

hasCardinalityType with the range of Cardinality
represents the cardinality type. Instance of the Cardinality class
are any, all, min and max.

2) InstanceDataVaraible: They have a similar purpose to

data varible in programming languages. They can hold a

string, numeric, boolean values or represent an instance of the

ontology using sublcasses StringVariable, NumericVariable,

BooleanVariable and InstanceVariable respectively. In the

following example, we create an instance variable which

represents all the instances of the Student class in the source

ontology and a data variable which represents the weight of

the student represented by the instance variable:

:studentVar a :InstanceVariable.

:weightVar a :NumericVariable.

:cv1 a :ClassPropertyHasValue;

 :hasInstanceVariable :studentVar;

 :classVariableHasClass o1:Student;

 :classVariableHasProperty o1:hasWeight;

 :classPropertyRestrictionHasValue :weightVar.

The value of the weightVar variable can be compared with
a predefined number and the result can be used to make the
decision whether the instance variable studentVar belongs to
the class o2:ThinStudent or o2:NormalWeightStudent in the
target ontology. In order to perform such a mapping we need to
be able to define mathematical functions.

C. Functions and Operators

Expressivity of a mapping representation language is highly
dependent on its support for representation of Boolean,
mathematical, string, date and instance comparison and
computations.

The Function class is the smallest entity that can be used
for computation in our mapping ontology. Each function
accepts an operator, a set of input variables and generates an
output. A function has at most two inputs that are assigned to it
by hasInput1 and hasInput2 properties with the domain of
Function and range of Variable. Outputs of functions are
assigned to them by the object property hasOutput with the
range of Variable class. The operator of a function is assigned
to it by the hasOperator property with the range of Operator.
The Operator class represents all the possible operators that
can be applied to ontology elements during the mappings. Fig.
2 shows the subclasses of the Operator class.

Fig. 2. Subclasses of the Operator class

Other than Boolean, mathematical and string operators, we
have created the following operators to help with the
mappings: 1. SetOperator: They are used to create intersection,
unions and complements of classes. 2. ConvertOperator:
Instances of the ConvertOperator that are convertToClass,
convertToInstance and convertToProperty are used to convert
any element of the source ontology to a class, instance or
property respectively in the target ontology. 3.
CraeteOperator: class is used for creating new elements in the
target ontology during the mapping. 4.
ClassComparatorOperator: Class comparators are used in the
functions that compare classes to find sub-class, super-class
and equivalence relations. 5. InstanceOperator: Instances of
this class are equalInstance and notEqualInstance. The output
of a function comparing two instances using equalInstnace is a

Boolean variablewith the value “true” if they are equivalent
classes or with the value “false” otherwise. notEqualInstance
works the opposite way.

D. Conditions

Mappings may be conditional. Property hasCondition with
the domain of Mapping and range of Condition assigns
conditions to a mapping. Condition class represents the
conditions. hasCardinalityType with the domain of Mapping
and the range Cardinality represents the cardinality type.
Instance of the Cardinality are any, all, min and max. Data type
property hasNumericValueForCardinality with the domain of
Mapping shows the number of conditions that should be
satisfied. A mapping whose condition satisfaction criterion is
met is considered for mapping and instance transformation
otherwise it is ignored. Using the abovementioned properties,
one is able to express that at least three conditions of a
mapping should be satisfied in order to participate in the
mapping process.

V. TRANSLATION OF MRO FROM OWL-FULL TO OWL-
DL + SWRL

In order to use an instantiation of MRO (representing an
ontology mapping) in the reasoning step of our semantic-based
ontology mapping approach, we translate it to a combination of
OWL-DL + SWRL or OWL2-RL + SWRL depending on the
level of expressivity needed to represent the mapping. In this
way, the translated mappings, the source and the target
ontologies all can be regarded as a single ontology and an
OWL reasoner can be used to improve the existing mappings
by discovering new ones and perform instance transformation.
Our translation algorithm performs the following steps on each
mapping:

(1) Put all the non-output class variables in list1. Put all the
output variables (Except for Boolean variables) in list2.
Put all input Boolean output variables in list3.

(2) Translate the variables in list1 until no further
transformation is possible.

(3) Translate the variables in list2 until no further
transformation is possible.

(4) If list1 and list2 are empty, go to 5 else go to 2.
(5) Translate all the Boolean variables in list3 and process

conditions.
(6) If all mappings are translated then go to 7 otherwise go to

the next mapping
(7) Prepare the translated mapping for reasoning according to

the translated variable.

Lists 1 and 2 are repeatedly swept for variables to be
translated until both of the lists are empty. The reason is that
translation of all of the output variables depends on the input
variables and the translation of some of the input variables may
depend on output variables. For example, an instance variable
may belong to a class using property classVariableHasClass
that is the output of a set function. In order to translate that
instance variable, the class variable that it belongs to should be
translated in list2 first. Steps 2, 3, 5 and 7 are further discussed
in the following sub-sections.

A. Step 2 translation of list1

These variables are either translated to OWL constraints or
SWRL axioms. If a variable has a value for one of the
properties hasInstanceVariable or classVariableHasValue, it is
translated to a SWRL axiom. In order to understand the
translation process we go through the following example:

:cv1 a :ClassVariable;

 :hasInstanceVariable :personVar;

 :classVariableHasClass o1:Student;

 :classVariableHasProperty :hasWeight;

 :classVariableHasValue o1:weightVar.

Firstly, two SWRL variables are made with the name of the
values of properties hasInstanceVariable and
classVariableHasValue +“SWRLVar”:

:personVarSWRLVar a swrl:Variable.
:weightVarSWRLVar a swrl:Variable.

Then a SWRL class atom is made to represent the class to
which the created instance variable belongs. This class which is
represented by the classVariableHasClass property is
o1:Student:

[a swrl:ClassAtom ;

 swrl:argument1 :personVarSWRLVar;

 swrl:classPredicate o1:Student].

Finally, another axiom is created to show that the created
SWRL variables are connected using the property indicated by
the classVariableHasProperty that is hasWeight here:

[a swrl:DatavaluedPropertyAtom ;

swrl:argument1 :personVarSWRLVar;

swrl:argument2 :weightVarSWRLVar;

swrl:propertyPredicate o1:hasWeight;]

Depending if the translated class variable belongs to the
source or the target of the mapping, these created SWRL
axioms are added to the body or the head of SWRL rule
representing this mapping respectively.

If a variable is not translated to SWRL rules, it is translated
to OWL axioms. Depending on the values of the properties
classPropertyQCROnClass, hasCardinalityType, and
hasNumericValueForCardinality a class variable is translated
to a cardinality restriction in OWL-DL or a qualified
cardinality restriction in OWL-2. In the following example, cv1
class variable represents instances that have maximum of two
different values from the SummerCource class for the
hasCourse property:

:cv1 a :ClassVariable

 :classPropertyQCROnClass o1:SummerCourse;

 :classVariableHasProperty o1:hasCourse;

 :hasCardinalityType :max;

 :hasNumericValueForCardinality “2”^^xsd:int.

The above example is translated to the following OWL
triples:

[a owl:Restriction;

 owl:onClass o1:SummerCourse;

 owl:onProperty o1:hasCourse

 owl:maxQualifiedCardinality “2”^^xsd:int]

B. Step 3 translation of list2

Output variables with different operators are translated
differently. For instance, set operators are translated to OWL
axioms that make use of owl:intersectionOf, owl:unionOf etc.
As an example, considering the following mapping function:

:func1 a :Function;

 :functionHasInputVariable1 o1:Male

 :functionHasInputVariable2 o1:Parent

 :functionHasOperator :intersectionSO

 :functionHasOutputVariable :func1OutVar.

This example is translated to:

:func1OutVar :variableHasClassValue

[a owl:class;

owl:intersectionOf(:Parent :Male)].

Output variables of functions that make use of
mathematical operators are translated to SWRL rules that make
use of SWRL built-ins. For instance, in order to add up two
variables a and b and put the result in the variable c, we create
the following function:

:a a :NumericVariable. :b a :NumericVarable.

:addFunc a : Function;

 :hasInput1 :a; :hasInput2 :b; :hasOutput :c;

 :hasOperator :mathDivide.

This example is translated to:

[a swrl:BuiltinAtom ;

 swrl:arguments (:outputSWRLVar :bSWRLVar

 :aSWRLVar); swrl:builtin swrlb:divide].

C. Step 5 translation of list3 and processing Conditions

Since OWL and SWRL do not support Boolean operators,
mappings are first translated into a single mapping rule without
considering the Boolean functions in it. Then we iterate
through all the possible combination of values of the non-
output Boolean variables and compute the values of the
Boolean output variables in list3. As we iterate through the
values, we create a copy of the existing SWRL rule created for
the current mapping and add the SWRL axioms that represent
the current values of both input and output Boolean variables.
In this way, each rule is copied to several rules each
representing a combination of the Boolean input variables. In
this way, each created SWRL rule handles a specific
combination of input Boolean variables.

In order to handle conditions, we go through the created
rules in the previous step and discard the SWRL rules in which
the assigned Boolean variables do not meet the condition
satisfaction criteria. In this way, a great number of created
SWRL rules are discarded in this step.

D. Step 7 preperation of the mappings for reasoning

Mappings represented by SWRL rules are ready for
reasoning. However, relational mappings that are represented
by OWL axioms need the final translation from OWL-Full to
OWL-DL. During this translation, all the variables are replaced
by their translated values. For instance, consider the following
translated variable and mapping:

:func1OutVar :variableHasClassValue

 [a owl:class;

 owl:intersectionOf(o1:Parent o1:Male)].

:m1 a:RelationalMapping;

 :hasSource o1:func1OutVar;

 :hasTarget o2:Father;

 :hasRelation :subClassRelation

This example is translated to:

[a owl:class;

 owl:intersectionOf(o1:Parent o1:Male)

] rdfs:subClassOf o2:father.

VI. EVALUATION

Mapping health informatics related ontologies especially
CPG ontologies is usually a challenging task due to their high
levels of expressivity. In order to evaluate the efficacy of our
mapping representation language, we used it to map 3 CPG
ontologies with a total of 9 instantiations to a general CPG
representation ontology. During the mapping process, we did
not come across a mapping pattern or an operator that was not
supported by our mapping ontology. We translated the
mappings to OWL + SWRL and performed reasoning on them
in order to discover new mappings and to perform instance
transformation. We executed all the 9 transformed
instantiations using the execution engine developed in [16] for
executing our general CPG ontology. We also executed these
CPG in their original format using their own proprietary
execution engine. We compared the execution results generated
by our execution engine and the original execution engines for
three imaginary patient scenarios. In all 9 cases, both execution
engines generated the exact same recommendations. This
indicates that the mapping has been accurate and the instances
are transformed successfully. In all three mappings, the
translation algorithm translated the mappings to either to
OWL-DL or OWL 2-RL + SWRL. This is important to ensure
the decidability of the process of discovering new mappings
and instance transformation.

Comparison of our mapping ontology with the existing
mapping representation languages against a comprehensive set
of mapping patterns surveyed in [2] shows that our mapping
representation ontology supports the widest range of these
mapping patters. For instance, unlike most of these languages,
our mapping ontology supports variables, meta-modelling and
a wide range of operators that are needed for data manipulation
and structural modifications. We also introduced the possibility
of conditions and complex condition satisfaction criteria.

VII. CONCLUSION

In this paper, we introduced a new semantic-based ontology
mapping approach based on semantic web technologies. We
used our approach to map three CPG ontologies to a general
CPG ontology and to transform their instances. Execution
results showed that our approach represents the mapping
accurately and performs instance transformation correctly. Our
mapping approach has three advantages over existing mapping
approaches: (1) higher levels of expressivity; (2) better
shareability and acceptance due to support by several semantic
web tools developed for manipulation, visualization and
reasoning; (3) Formal semantics in OWL and SWRL that
enables us to improve the existing mappings and perform

instance transformation automatically in a semantic-based
ontology mapping approach. For future work, we are interested
in using the functions provided by either SQWRL or
SPARQLE query languages to improve the mapping
representation expressivity.

Acknowledgements: This research project is sponsored by a

research grant from Green Shield, Canada. The authors

acknowledge the support of Green Shield, Canada.

REFERENCES

[1] J. Euzenat. "An API for ontology alignment," in The Proceeding Of

Semantic Web ISWC 2004, S. McIlraith, D. Plexousakis and F.
Harmelen, Eds. Berlin Heidelberg: Springer, 2004, pp. 698-712.

[2] F. Scharffe, J. Bruijn, D. Foxvog. “D 4.3.2 ontology mediation patterns

Library V2,”Deliverable D4.3.2, EU-IST Integrated Project (IP) IST-
2003-506826 SEKT, 2006.

[3] F. Scharffe, A. Zimmermann, “D 2.2.10 Expressive alignmentlanguage

and implementation”, Deliverable D2.2.10 EU-IST Integrated Project
(IP) IST-2004-507482 SEKT, 2007.

[4] A. Maedche, B. Motik, N. Silva and R. Volz, "MAFRA - A MApping

FRAmework for distributed ontologies," in Proceedings of the 13th
International Conference on Knowledge Engineering and Knowledge

Management. Ontologies and the Semantic Web, 2002, pp. 235-250.

[5] A. Sotnykova, C. Vangenot, N. Cullot, N. Bennacer and M. Aufaure,
"Semantic mappings in description logics for spatio-teMROral database

schema integration," in Journal on Data Semantics III, S. Spaccapietra
and E. Zimányi, Eds. Berlin / Heidelberg: Springer, 2005, pp. 586-586.

[6] C. Meilicke, H. Stuckenschmidt and A. Tamilin, "Improving

automatically created mappings using logical reasoning." in Ontology
Mapping Workshop at ISWC, Athens, GA, USA, 2006, pp. 61-72.

[7] D. Calvanese, G. D. Giacomo and M. Lenzerini, "Ontology of
integration and integration of ontologies," Description Logics, vol. 49,

pp. 10-19, 2001.

[8] H. Stuckenschmidt, L. Serafini and H. Wache, "Reasoning about
ontology mappings," ITC-IRST, Trento, 2005.

[9] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini and H.

Stuckenschmidt, "C-OWL: Contextualizing ontologies." in International
Semantic Web Conference, 2003, pp. 164-179.

[10] J. Euzenat and P. Shvaiko, Ontology Matching. Springer-Verlag: New

York Inc, 2007.

[11] E. Goldberg and Y. Novikov, "BerkMin: A fast and robust SAT-solver,"

in Proceedings of Design, Automation and Test in Europe Conference

and Exhibition. 2002, pp. 142-149.

[12] J. P. Marques-Silva and K. A. Sakallah, "GRASP: a search algorithm for

propositional satisfiability," IEEE Trans. Comput., vol. 48, pp. 506-521,

1999.

[13] H. Thomas, D. Sullivan and R. Brennan, "Ontology Mapping

Representations: a Pragmatic Evaluation," Management, pp. 228-232,

2009.

[14] N. F. Noy and M. A. Musen, "Anchor-prompt: Using non-local context

for semantic matching," in Proceedings of the Workshop on Ontologies

and Information Sharing at the Seventeenth International Joint

Conference on Artificial Intelligence (IJCAI-2001), 2001, pp. 63-70.

[15] J. d. Bruijn and A. Polleres, "Towards an ontology mapping

specification language for the semantic web," DERI - DIGITAL

ENTERPRISE RESEARCH INSTITUTE, Tech. Rep. DERI-2004-06-

30, 2004.

[16] B. Jafarpour, S. Abidi and S. Abidi. "Exploiting OWL reasoning

services to execute ontologically-modeled clinical practice guidelines,"

in Proceedings of the 13th conference on Artificial intelligence in

Medicine, M. Peleg, N. LavraÄ and C. Combi, Eds. Berlin Heidelberg:

Springer-Verlag, 2011, pp. 307-311.

[17] B. Motik, U. Sattler and R. Studer, "Query Answering for OWL-DL
with rules," Web Semant. Sci. Serv. Agents World Wide Web, vol. 3,
pp. 41-60, 2005.

