
CONTEXT AWARE SERVICE DISCOVERY AND
SERVICE ENABLED WORKFLOW

Altaf Hussain, Wendy MacCaull
Centre for Logic and Information, Dept. of Mathematics, Statistics, and Computer Science

St. Francis Xavier University
Antigonish, Nova Scotia, Canada

ahussain@stfx.ca, wmaccaul@stfx.ca

Abstract—We provide a conceptual model for context aware
Semantic Web Service (SWS) discovery, which can utilize real-
time legacy data from external systems and support user context-
based service discovery and selection. This model offers
advantages over current SWS technology which cannot be easily
applied to different domains or be integrated with legacy systems.
Using this conceptualization we propose an intelligent decision
support system, which offers Service Enabled Workflow.

Keywords—Semantic Web Service, Context Aware Service
Discovery, Service Enabled Workflow, Service Metadata, Ontology

I. INTRODUCTION
A service is an entity that offers an intended value to its

consumer; in today’s society, people are dependent on service
paradigms. A service consumer may need to pay an exchange
value to consume a service but does not have to be concerned
with how the service is developed or delivered. The service
model design, development, and delivery are the concern of,
and are handled by, the service providers: e.g., the Postal
Service. Web Service (WS) is the technology that makes
services available as consumable entities accessed and
consumed through computers, via the Web: e.g., the Email
Service. WS technology, backed by Service Oriented
Computing and Service Oriented Architecture (SOA) has
gained attention and popularity in the commercial computing
sector as an enabling technology for the most enduring service
planning, development, delivery and management
methodology. As a result, a new spectrum of web applications
has emerged supporting Business-to-Business integration, e-
commerce, and industry wide collaboration. These applications

are empowered by the WS technology, which provides a
platform supporting independent communication and machine-
to-machine interaction framework. However, WS technologies
need extensive human involvement for service discovery,
composition, invocation, etc.

In the recent years, a new paradigm has evolved, called the
Semantic Web (SW), supporting machine-readability, and
automated trusted interaction between computers with minimal
human intervention. The markup language of the SW is based
on the Web Ontology Language (OWL), which can be used to
express logical relations among entities on the web, and leads
to a new class of WS called Semantic Web Service (SWS). A
Semantic Webservice is a standalone piece of functionality that
is self-descriptive, machine-readable, and can be automatically
discovered and executed via the web. The SWS, inheriting the
properties of the SW and the WS has achieved many desirable
properties, namely: a) machine independent communication
and machine readability b) easy and widely acceptable
collaboration methodologies c) exploitation of SW and
reasoning techniques. Effort has been made in the areas of
SWS, for example: semantic description of WS, semantic
reasoning based WS discovery and SWS delivery thorough
ontology based concepts and frameworks e.g., Web Ontology
Language–Services (OWL-S) [1], and Web Service Modeling
Ontology (WSMO) [8].

As SWS becomes more popular, users expect it to be easier
to integrate with different domains and legacy systems.
Existing SWS approaches do not provide any easy
methodology to integrate domain data (often housed in
traditional databases) in the service discovery process to

Figure 1: Interconnection of legacy systems and SWS system
Copyright notice: Copyright is held by the authors

TABLE I. RELATED SERVICES AND THEIR DESCRIPTION

Service Name Service Quality Property: Cost, Relocation Duration Dependent Services Related Domain Data
Helicopter Service $2000, 1 hour Paramedic Service, Oxygen Supply Service, …

Patient Condition,
Patient Respiratory
Status, …….

Ambulance Service $1000, 3 hours Paramedic Service, Oxygen Supply Service, …
Bus Service $100, 4 hours Paramedic Service …
……… ………….. ……………..

support context aware service discovery. However, users
frequently need to select services based on domain situations.
To support automatic interoperation of the SWS discovery
process with traditional systems, SWS discovery should be
able to utilize real-time data from external systems and
domains, providing automatic discovery and selection services
based on domain situations and conditions. See figure 1.

We present a small example from healthcare describing
problems users face to discover a service that depends on
domain context, and motivating features to be supported.
Suppose a patient is in a hospital in Antigonish and a medical
professional determines that he should be relocated to Halifax
for care that is more specialized. The user submits Query 1 (see

Textbox 1 below) to a SWS discovery engine, which will
match the query with a service repository and provide a list of
relocation services. However, this query does not incorporate
other inputs such as patient condition, or patient disease history
and the user later may need to select a service depending on
such patient properties (examples of such selection strategies
are Selection Strategy 1 and Selection Strategy 2). If none of
the discovered services fits patient properties, the user must
initiate another discovery request and lose precious time.

Query 1 can be answered by state-of-the-art SWS
approaches like OWL-S or WSMO. However, Selection
Strategies 1 and 2 show how a user’s decision may change
based on patient properties. To support strategies representing
domain awareness, the user must inspect the patient medical
record and then make a decision based on the quality properties
of the list of services discovered. The selection strategies can
be articulated using domain object properties called facts

stating the real-time patient data properties and values, rules
stating the action required to be taken by the user based on the
facts and services, and the queries. We can model Selection
Strategy 2 by the listed Fact 1, Rule 1 and Query 1.

In addition, the patient’s condition may also force the user
to select several other services that should accompany the
selected service (the primary service). In such a case, the user

must know which services can be provided to the patient along
with a primary service. To support such features, the user has
to consider the services enabled by one service and with regard
to patient’s medical service consumption history and current
condition. For example in Table 1, an Oxygen Supply Service
is enabled by the Helicopter Service which means, if a user
chooses Helicopter Service, he can also choose Oxygen Supply
Service. However, for the Bus Service, he cannot choose the
Oxygen Supply Service. The user has to manually interface
different system components, namely: the patient data system,
the service dependability knowledge and SWS discovery
engine. Hence, the user faces a great deal of difficulties while
trying to provide more than one service at a time to the patient.

In addition, while the user tries to select services for a patient
the user might need facts and rules in relation to selection
strategies (e.g., facts and rules are Facts 1 and 2, Rules 1, 2
and 3 in Textbox 1). This situation requires the user to check
the database, and do additional steps. Also, based on the
service dependencies, the user may have to restart the process
from the beginning if the selected service cannot provide all of
the required services. A typical scenario is given below.

The domain facts and rules lead the user to do several more
queries (Query 2 and Query 3) (see Textbox 2) and manually
select services that are returned by traditional SWS discovery
processes. However, one can see that from Query 1, Facts 1
and 2 and Rules 1, 2, and 3, we are really interested in getting

Query 1:“Get a Relocation Service that can relocate Patient P from
Antigonish to Halifax.”
Selection Strategy 1: If the Patient’s Condition is Normal, Select the
Low Cost Service for relocating the Patient from Antigonish to Halifax.
Selection Strategy 2: If the Patient’s Condition is Critical, select the
Fastest service for relocating a Patient from Antigonish to Halifax.
Fact 1: The condition of the Patient P is Critical.
Rule 1: If the patient’s condition is Critical, use fastest mode of
Relocation Service.
Fact 2: The Patient P has a Respiratory Problem.
Rule 2: If the patient has a Respiratory Problems, there should be an
Oxygen Sservice supplied while relocating.
Rule 3: If the Patient’s Condition is Critical, a Paramedic should
accompany the Patient while relocating.
IQ 1: “Get the fastest Relocation Service to relocate Patient P from
Antigonish to Halifax (uses Query 1, Fact 1, and Rule 1).”
IQ 2:“Get the fastest Relocation Service that supports Oxygen Supply
Service while relocating Patient P from Antigonish to Halifax (uses
Query 1, Fact 1, Fact 2, Rule 1, and 2).”
IQ 3: “Get the fastest Relocation Service that can support Oxygen
Supply Service and Paramedic Sservice while relocating Patient P from
Antigonish to Halifax (uses Query 1, Fact 1, Fact 2, Rule 1, 2 and 3).”

Step 1: Determine if the Patient’s Condition isCritical or not. If yes, then
Step 2: Select the fastest service manually from the list of services
returned by the service discovery engine for Query 1.
Step 3: Find out if the Patient has a Respiratory Problem. If yes, then
Query 2: “Get an Oxygen SupplySservice that can be provided while
Patient is transferring using fastest Relocation Service selected by
Query1.”
Step 4: If there is an Oxygen Supply Service that can be provided with
the selected Relocation Service then continue to the next fact. If there is
no such Oxygen Supply Service selected from Query 1, go back, reissue
Query 1, and select the next fastest service. Repeat until an Oxygen
Supply Service is found.
Step 5: If the Patient’s Condition is Critical then,
Query 3: “Get Paramedic Service that can be provided while the Patient
is relocating with the service selected by Query 1.”
Step 6: If there is a Paramedic Service returned by the service discovery
engine, the user could select that one. If there is no such service, the user
has to select next fastest service from Query 1.

Textbox 2: A scenerio of user interfacting different systems manually

Textbox 1: Examples of Queries, Facts and Rules

the results of the possible inferred queries IQ1, IQ2 or IQ3 (see
Textbox1), where IQ3 is the optimal query. For time critical
applications, taking such service dependencies into the
discovery process makes it more efficient and user friendly.

We describe a framework for intelligent SWS description,
discovery, and delivery that extends existing frameworks to:
improve service discovery performance, facilitate integration of
domain-based information, and interface with legacy systems
such as workflow management systems. A workflow is a
collection of interconnected Tasks with a specific control flow.
Each Task has a specification representing the action needed to
be carried out. We propose the notion of Service Enabled
Workflow (SEW) which will allow us to discover services
using the task specification as a query to the SWS discovery
engine which will determine services that can carry out the
action required by the task. SEW can provide desirable features
such as: a) distributed workflow execution utilizing the
standalone nature of the services; b) service collaboration
among various service providers as SEW can support the
choice and execution of services from different providers,
using them in a single workflow; c) decentralization of the
workflow design, execution, and low coupling among
workflow design and execution environment.

II. PROPOSED MODEL AND ARCHITECTURE
Our framework focuses on the easy integration of SWS

with a domain context and facilitates the interfacing with
systems developed using traditional approaches. The basic
approach of service discovery traditionally contains a Service
Discovery Engine, a Service Repository, and a Domain Service
Ontology; we add a data and context integration component
and a service metadata ontology. We can incorporate the data
and context of legacy system by facts and rules that can be
utilized by SWS discovery for context and real-time data
service discovery and selection. The model supports context
dependent service discovery using two ontologies which
provide the logic for a given service selection: 1) Service
Metadata Ontology which contains the service relationships
with legacy system data and context; 2) Domain Facts and
Rules Ontology. The Service Metadata Ontology consists of a)
Service Domain Data Dependencies and b) Inter-Service
Dependencies. These ontologies allow us to do reasoning over
service metadata, can be specified using OWL-2, and, can be
accommodated in both the OWL-S and in WSML-DL versions
of WSMO approaches. We now discuss desirable features of a
hybrid SWS based decision support systems.

Domain Integration and Context Aware Service
Discovery: The “Relevant Domain Data” model articulates the
association of a service with the relevant domain data; in Table
1 it includes column 1 and column 4. Based on the relevant
domain data stated, we fetch data from the legacy system and
assert them as facts in the Domain Facts and Rule Ontology.
We can then use these facts asserted based on real-time data in
the SWS discovery process. Asserting a fact about a domain at
runtime, such as Fact 1, depends on the availability of the
Patient P’s property “Patient Condition” and the availability of
property value “Critical” which is gathered in real-time from a
database. Rules depending on the system’s situation and data
context that express the decision strategy related to a fact are

also asserted in the domain ontology. At runtime, these rules
will change the result of the discovery query to that of an
inferred query due to a more refined search and discovery of
services. Applying the facts and rules during discovery, the
answer to an inferred query can will obtained by applying
reasoning. This will reduce the need of user inspection and
interaction to get a service that best suits the user’s need.

Service Metadata Based Reasoning and Discovery: The
Inter-Service Dependency Relationships model can enable us
to do on the fly service orchestration which can also save the
number of queries required. The model expresses the
relationships between services in the service spectrum. A list of
interdependent services are provided in the service description
which then can be used in the discovery process and reasoning.
E.g., in Table 1, if the user selected a Relocation Service like
BusService, the user cannot select OxygenSupplyService
because it is not supported but can select ParamedicService.
So, depending on the need of the patient and service
relationship, a service selection decision can be made.

Aggregation Query Support during Discovery: It is hard
to support some special queries like “Get the fastest relocation
service” using existing SWS discovery techniques. This
requires that we incorporate procedural programming
capability in a service discovery query. Procedural
programming operation will be used along with DL based
ontology query languages e.g. SPARQL Protocol and RDF
Query Language (SPARQL) [4] and Semantic Query-
Enhanced Web Rule Language (SQWRL) [14]. This will allow
users to express complex aggregation and procedural
operations easily and intuitively in a discovery query.

Service Enabled Workflow: SEW imagines workflow as a
collection of tasks with control flows where tasks are carried
out as services. A workflow task has defined specifications,
which can be imagined as a user query for the discovery of a
service and the workflow engine can ask the service discovery
engine to discover services according to these task
specifications. The workflow user may select a service to
execute from the discovered list of services. Continuing in this
fashion, we can provide dynamic composition of services: the
overall result is SEW. SEW is a desirable feature that can
easily provide workflow collaboration support with minimum
efforts thorough service discovery and runtime composition.

We propose a SOA based architecture shown in figure 2,
which supports integration of different domains; it consists of
the following components:

Figure 2: System Architecture

Workflow Engine: works as a user query generator and
execution engine that enables Service Enabled Workflow.

Service Discovery Engine: serves as a central
communication hub. It also carries out several decision-
making tasks about service dependency reasoning, and carries
out rules resulting in procedural steps.

Service Execution Environment: a server environment
providing service runtime requirements and run services.

Patient Data Broker (Object Data Broker): works as a
broker to get data from external systems.

Ontology Processor: is responsible for managing the
ontologies and querying the ontologies.

Service Repository: is responsible for holding information
about services provided by the service providers.

Domain and Data Context Plugin Manager: is
responsible for the facts and rules related processing and
domain based plugin management.

III. RELATED WORK
The prominent conceptualizations of the SWS are OWL-S

[1][11] and WSMO [3][15]. OWL-S helps software agents to
discover web services that satisfy some specified quality
constraints also provide a minimal set of composition
templates. However, these abstract definitions can only be
applied in a static service composition and can only be
arranged as a predefined combination of services in the
ontology. In [6], several types of inter-process dependencies
are modeled using UML including Enabling, Cancelling,
Triggering, and Disabling dependencies. WSMO also provides
a concept vocabulary to express service description in terms of
IOPEs but it currently only supports syntactical matching of a
user’s goal against service descriptions. OWLS-MX [9] and
WSMX [7] are the SWS execution and testing environments
for the SWS developed using OWL-S and WSMO approaches,
respectively. OWLS-MX implemented the hybrid service
discovery matchmaking using the OWL-2 reasoner Pellet.
OWLS-MX and WSMX both support SW query languages
SQWRL or SPARQL to perform semantic discovery of
services but do not use domain data dependent facts and rules
to discover services. SADI [16] provides a design pattern for
publication of services, interoperability with traditional WS,
and, semantic discovery and workflow generation based on
service input/output transition metadata. SADI does not
support domain data and context based service discovery and
selction via integration and interoperation with legacy systems
and data. Presently, there are a variety of approaches to
improve the accuracy of a service discovery process, including
collecting and integrating user feedback [2] and the addition of
contextual information by defining design time semantic based
user context [12]. In our approach, the service description
enables us to foresee the services dependencies and reason
about them to discover services that best suit the system and
context conditions based on described facts and rules. In [5] a
conceptual model of task-based workflow is provided that
motivates our proposed Service Enabled Workflow. We extend
the approach of [5] to support closer relationships with systems
and contexts, and improve the state-of-the-art of such
workflow systems. The Nova Workflow Workbench [10] is a
task based workflow engine equipped with a high-level

language, T□, [13] which is used to write task specification
which include integration of data from a domain ontology. We
plan to integrate our service discovery process to accept the
task specification. The discovery process then can provide the
selected service to the Nova Workflow engine, which executes
the service to accomplish the task.

IV. REFERENCES
[1] Ankolekar, A. et al., 2002. “DAML-S: Web service description

for the semantic web.” In The Semantic Web—ISWC 2002,
Springer, p. 348–363.

[2] Averbakh, A., et al., 2009. “Exploiting user feedback to improve
semantic web service discovery.” In The Semantic Web-ISWC
2009, Springer, p. 33–48.

[3] Davies, J. et al., 2006. Semantic Web technologies: trends and
research in ontology-based systems. Wiley.

[4] Garc’ia, J. et al., 2012. “Improving semantic web services
discovery using SPARQL-based repository filtering.” Web
Semantics: Science, Services and Agents on the WWW.

[5] Grossmann, Georg et al., 2011. “Conceptual modelling
approaches for dynamic web service composition.” In The
evolution of conceptual modelling, Springer, p. 180–204.

[6] Grossmann, G. et al., 2008. “Modelling inter-process
dependencies with high-level business process modelling
languages.” In Proceedings of the fifth Asia-Pacific conference on
Conceptual Modelling-Volume 79, p. 89–102. Austrian Computer
Society, Inc.

 [7] Harold, M. 2008. “WSMX documentation.”
http://maczar.deri.ie/papers/wsmx-documentation.pdf.

 [8] Keller, U. et al., 2004. “Wsmo web service discovery.” WSML
Draft, http://www.wsmo.org/2004/d5/d5.1/v0.1/20041112.

[9] Klusch, M. et al., 2009. “OWLS-MX: A hybrid Semantic Web
service matchmaker for OWL-S services.” Web Semantics:
Science, Services and Agents on the World Wide Web 7(2): 121–
133.

[10] W. MacCaull and F. Rabbi, “NOVA Workflow: A Workflow
Management Tool Targeting Health Services Delivery,” in
FHIES’11, ser. LNCS, vol. 7151. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 75–92.

[11] Martin, D. et al., 2004. “OWL-S: Semantic mark-up for web
services.” W3C member submission 22: 2007–04.

[12] Merla, C. 2010. “Context-Aware Match-Making in Semantic
Web Service Discovery.” Int’l Journal of Advanced Engineering
Sciences and Technologies 9(2): 243–247.

 [13] F. Rabbi and W. MacCaull: "T-Square: A Domain Specific
Language for Rapid Workflow Development," in ACM/IEEE
15th Conf. on Model Driven Engineering Languages & Systems
(MODELS 2012), Innsbruck, Austria (September, 2012). Proc,
Lecture Notes in Computer Science, Volume 7590. pp. 36-52.

[14] Rodriguez, J. et al., 2010. “Improving Web Service descriptions
for effective service discovery.” Science of Computer
Programming 75(11): 1001–1021.

[15] Wang, H. et al., 2012. “A formal model of the Semantic Web
Service Ontology (WSMO).” Information Systems 37(1): 33–60.

[16] M. D. Wilkinson, et al., 2011. The semantic automated
discovery and integration (sadi) web service design-pattern, api
and reference implementation. Journal of biomedical
semantics, 2(1), 8.

