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Abstract. Eye tracking studies lead to spatio-temporal data in the form
of gaze trajectories that show the behavior of gaze positions over time.
Such data can be modeled as a dynamic graph that expresses the transi-
tions of gaze positions between Areas of Interest (AOIs) by time-varying
weighted relations. Moreover, a hierarchical organization of the AOIs
may be of interest, resulting in a dynamic compound AOI digraph. Tra-
ditionally, this kind of time-based relational data is represented by ani-
mated node-link diagrams that are laid out with respect to a list of aes-
thetic graph drawing criteria. In our work, we propose a visual metaphor
for displaying relational data that uses space-filling circle sectors to en-
code dynamic relations between hierarchy elements. The idea benefits
from the fact that dynamic compound digraphs can be visualized with
reduced visual clutter compared to node-link diagrams for dense graphs.
Finally, we illustrate how interaction methods can be used to explore a
dataset for trends, countertrends, and/or anomalies.

1 Introduction

Information hierarchies are present in many application domains such as in the
hierarchical organization of software and river systems. Also, Areas of Interest
(AOIs) are useful when exploring spatio-temporal eye tracking gaze trajectories,
which can be hierarchically organized. Moreover, the eye movement behavior of
study participants has a spatio-temporal nature. By using the AOI information
and the gaze trajectories this data can be modeled as a dynamic weighted com-
pound AOI digraph. Consequently, this kind of relational data can be visually
explored with the general concept proposed in this paper.

The efficient representation of hierarchical data has been in focus of informa-
tion visualization research ever since. Hierarchies are, for example, displayed by
traditional node-link diagrams [13], Treemaps [8], indented plots [5], or layered
icicles [9].

General graphs—if they do not belong to the class of planar graphs—suffer
from visual clutter [14] when depicted graphically by a naive layout technique.
Consequently, over the years many sophisticated graph drawing algorithms were
developed to make graphs aesthetically pleasing [10–12, 16]. Apart from reducing
edge crossings—which is the major criterion in graph drawing—reducing edge
lengths, maximizing orthogonality and symmetries, or minimizing display space
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are other aesthetic criteria among a larger set. Typically, graph data does not
stay static but changes over time, leading to much research in this domain [2, 3,
6, 7].

In this paper, we propose an interactive visualization tool for representing and
manipulating this kind of dynamic graph data. Our approach uses a radial visual
metaphor and is based on the visualization principles proposed by Burch and
Diehl in their TimeRadarTrees technique [3]. In particular, eye tracking data is of
spatio-temporal nature and is visualized by heatmaps or gaze plots as traditional
concepts. Heatmaps are time-aggregated representations only showing the hot
spots, whereas gaze plots suffer from visual clutter. Also, AOI rivers [4] produce
many crossings in the display but better show the temporal evolution of eye gaze
frequencies between AOIs in displayed stimuli.

The work of Blaschek and Ertl [1] describes an approach that is useful for
supporting researchers working in the field of information visualization when
deriving insights from eye tracking experiments. The proposed framework uses
visual analysis methods to evaluate eye tracking data. Our proposed method
transforming eye movement data to dynamic graphs might be used as one can-
didate of such an analysis method among others.

We illustrate the visualization tool in a stepwise manner and follow the visual
information-seeking mantra [15] that summarizes many visual design guidelines
and provides an excellent framework for designing information visualization ap-
plications. The visual information-seeking mantra divides the visual exploration
process into the following three stages: Overview first, zoom and filter, then
details-on-demand.

2 Dynamic Graph Visualization

The main focus of our visualization tool is the visualization of dynamic relational
data in information hierarchies as static pictures that can be manipulated and
analyzed interactively. This representation stands in contrast to animation-based
techniques for displaying dynamic data. The other visualization views presented
here support users when they want to obtain an overview of the dataset or zoom
in and apply filtering functions to the dataset.

2.1 Data Model

We model an information hierarchy as a cycle-free and connected graph H =
(V,E), where V is the set of nodes and E � V × V expresses the set of directed
edges—the link information in the hierarchy. L � V is the set of leaf nodes in the
containment hierarchy. All other nodes V \ L are containers that hierarchically
bundle this information. The leaf nodes can be related to some extent and actu-
ally form a directed graph with edge weights G = (L,EG), where EG ⊆ L × L
and wG(u, v) ∈ R+

0 denotes the weight function for u, v ∈ L.
A sequence of graphs can be modeled by Gi = (Li, EGi) where EGi ⊆ Li×Li.

wGi
(u, v) ∈ R+

0 is the weight function for u, v ∈ Gi. If the context is clear, we
omit the graph G and use wi(u, v) instead of wGi

(u, v).
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A set of gaze trajectories as generated during eye tracking experiments can
be transformed into dynamic weighted directed graphs by subdividing the time
into subintervals each corresponding to one graph in the sequence. The AOI
information can be modeled as graph vertices and the number of eye movements
between pairs of AOIs as directed weighted edges. If a hierarchical organization
among the AOIs exists or one can be computed by a hierarchical clustering
algorithm, then this spatio-temporal eye tracking data can be transformed into
a dynamic weighted compound AOI digraph.

Fig. 1. A sequence of five compound directed graphs in a TimeRadarTrees represen-
tation with color-coded edge weights.

2.2 Visual Encoding

For displaying the dynamics of relations in information hierarchies, we use a
TimeRadarTrees [3] visualization. Figure 1 shows a sequence of five directed
and weighted graphs in this visual metaphor. The visualization is an integration
of three views into one.
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– Hierarchy View: The hierarchy of the selected elements is represented as
a radial node-link diagram with the root node in the circle center and the
node sizes and colors depending on the size and depth of their subtrees.

– Time Radar View: The large circle in the center is used to represent the
sequence of graphs. Each circle slice encodes a single graph and each circle
sector one specific node in this sequence. A weighted edge is represented
by a color-coded circle sector. The circle is divided into as many sectors as
different nodes are present in the graph sequence. The time axis starts in
the circle center and heads radially to the circumference.

– Thumbnail View: Thumbnails—the miniature representations outside the
larger circle in the middle—can be used to derive start and destination nodes
of a weighted edge. By inspecting the color, the shape, the curvature, the
direction, and/or orientation of a small circle sector and comparing it to the
larger one in the center circle, one can derive a relation between two nodes.

For the example in Figure 1, one can detect that the hierarchy consists of five
leaf nodes, namely h11, h12, h21, h22, and h23. These are organized into two
subhierarchies, H1 and H2, which are again direct children of the root node.
Five graphs are represented, which can be inferred from the fact that each circle
is divided into five color-coded slices. The color coding in use is a vegetation
color scale that maps lower values to blue and higher ones to red. Values in
between are colored from green to yellow. The outer smaller slice encodes the
aggregation of edge weights over the whole graph sequence and can be explored
for each node pair separately.

The upper left green-colored sector in the thumbnail of node h21 represents
a self-edge—an edge that starts and ends at the same node. The permanently
green-colored sectors in the thumbnail of node h22 show that this relation to
node h11 always exists in the whole sequence and moreover, has a constant
weight. The thumbnail of node h23 on the right hand side has an alternating
relation to node h11. This phenomenon can be examined by the alternating color
coding between blue and yellow. A trend and a countertrend are visible in the
thumbnail of node h11, where the strength of the relation to node h23 decreases
at a constant level. The same is true for the relation to node h12, but here
we can detect an increase of the weight. An outlier may be the green sector in
the thumbnail of node h12 that points to node h21 and hence into a different
hierarchy level. It goes without saying that this kind of graph representation
also allows multi-edges—two or more edges between the same two nodes in a
graph. There are actually three edges in the first graph starting at node h12 and
targeting to node h23.

3 Working with the Tool

Figure 2 shows the graphical user interface of the visualization tool, which is
divided into several components. The upper left frame shows the overview by
a scrollable pixel map. Below it, the selected part of the pixel map is shown
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Fig. 2. The graphical user interface of the visualization tool is divided into several
views. The TimeRadarTrees view in the center shows the evolution of relations in
information hierarchies of the selected hierarchies and time period.

as a three-dimensional bar chart as some kind of zooming function. The filter
functions are located in the bottom view on the left hand side. The three views
at the right hand side are used for applying a special color coding, selecting an
aggregation type or logarithmic scale, and a details-on-demand view. The main
view in the center represents the TimeRadarTrees visualization for the selected
nodes and time periods. In the following, we explain the single visualization
components and interaction techniques to manipulate the data.

3.1 Overview: Pixel Map

As we follow the information seeking-mantra, we first give an overview of the
whole relational dataset. To this end, we aggregate the graph sequence to one
aggregated graph that we represent as a pixel map—a color-coded adjacency
matrix. The color coding depends on the aggregation type that can be:

– Weighted sum: All weights in the graph sequence are summed up:

wagg(u, v) :=
�

1≤i≤n

wi(u, v) ∀u, v ∈ Ei

– Average weight: The weights are summed up and divided by the number
of occurrences of this edge in the sequence:

wagg(u, v) :=

�
1≤i≤n wi(u, v)

| {(u, v) | (u, v) ∈ Ei} | ∀u, v ∈ Ei
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If the number of edges is zero, the weight is defined by

wagg(u, v) := 0.

– Number of edges: The number of edges depends on the weight filter that is
again defined by the minimum weight vmin and the maximum weight vmax.
Hence, we define in this case

wagg(u, v) :=| {(u, v) | vmin ≤ wi(u, v) ≤ vmax} |
The users can interactively change the type of aggregation until they obtain

interesting insights in the dataset. At this early stage, they can detect patterns
and anomalies by exploring the hierarchically ordered pixel map. If they find
interesting behaviors in the dataset, they may wish to filter the data for smaller
subsets and obtain a three-dimensional bar chart of the brushed elements. Fur-
ther examination of the selected part leads to more specific insights in the dataset
that was not possible in the overview visualization.

3.2 Zoom: 3D Bar Charts

Figure 3 shows three-dimensional bar charts for the selected area in the pixel
map. One big advantage of this representation is that we can encode two different
metrics at the same time—one in the height and one in the color coding. This
could help find out which relations occur very often and also have a very high
aggregated weight. We cannot obtain this insight in the overview-based pixel
map view apart from the fact that we may switch the aggregation type.

Fig. 3. Three-dimensional views of a selected subset can encode two metrics at the
same time—one in the height of the bars and one in the color coding.

A crosshair function supports selecting a bar in the three-dimensional view.
Selecting this bar can be difficult due to occlusion problems. The selected aggre-
gated relation is given as a details-on-demand information with its metric values
nearby.

3.3 Data Filtering

The tool is able to handle three different types of filtering functions that can be
applied separately.
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– Weight filter: First of all, one can apply a weight filter on the single values
of each relation. Only those values are counted as relations that lie between
the given thresholds. The aggregated values can be filtered for minimum and
maximum sum, minimum and maximum average value, and minimum and
maximum edge number.

– Hierarchy filter: The weight filter can be applied to the relations, another
type of filter can be used to select a group of nodes from the hierarchy. Only
those nodes are represented that belong to the selected group. This filtering
technique is very important for the TimeRadarTrees visualization because
it has a low scalability in this dimension.

– Time filter: Time is the third dimension where we can apply a filtering
function. The thresholds can be given as an interval where all graphs are
displayed that lie within this interval or single graphs can be selected and
deselected again.

3.4 TimeRadarTrees

The main part of the visualization tool is the TimeRadarTrees representation in
the center. It is used to display the dynamic graph data in information hierarchies
in a static picture. Figure 1 illustrates the important visual signatures that are
visible in the TimeRadarTrees representation for the example of a small dynamic
graph. User interaction can be applied to modify the TimeRadarTrees view and
to gain insights from the data on a dynamic level.

Interaction methods supported by the tool include filtering, adapting the
color coding, aggregation of relations, collapsing and expanding subhierarchies,
time warp, sector highlighting, textual search, changing of the hierarchy visual
metaphor, cushion effect on the circle sectors, stacking of radial bar charts, etc.

4 Conclusion and Future Work

In this paper, we proposed a visualization tool for exploring dynamic compound
digraphs in information hierarchies. Such datasets can be generated by taking
spatio-temporal eye movement data and corresponding areas of interests into
account. By doing this, a dynamic weighted digraph is produced that can then
be visually explored by our dynamic graph visualization tool. In general, the
difficulty is to first present the data in a pixel-based overview and allow the user
to zoom and filter the dataset in several dimensions, i.e., weight, hierarchy, and
time.

The TimeRadarTrees visualization technique is used to give insights in the
dynamic data. The strength of this technique is the static representation of
dynamic data that shows several dimensions in a single view—relation weights,
hierarchical organization, and time periods. Interaction techniques support the
user in obtaining insights in the dataset.

We plan to implement more interaction techniques such as a radial and a
sector distortion. To this end, the TimeRadarTrees visualization will be mapped
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to a circular shape. A sector distortion would allow unequal sized sectors, but
the whole structure would still be mapped on a circle. As an enhancement, we
could allow a distortion of the circular shape by dragging and dropping the
circumference, thus obtaining an irregular shape that may improve the visual
exploration when also applied to the thumbnail view in the same way.

The weakness of our approach—in contrast to node-link diagrams—is the
lack of support for solving path-related tasks. To address this problem, we plan
to implement an interaction method that highlights paths in the graph data
displayed as TimeRadarTrees.
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