
Which of the following SPARQL Queries are
Similar? Why?

Renata Dividino and Gerd Gröner

WeST, University of Koblenz-Landau, Germany

Abstract. Linked data on the Web can be accessed by SPARQL queries.
Previously executed queries to SPARQL endpoints are valuable infor-
mation sources about the underlying data structure and schema of data
sources. These queries reveal how resources are related to each other
and they reflect the user interests on the data. Therefore, methods for
query logs analysis provides a basis for extracting relevant and qualita-
tive data from the LOD cloud. These query logs analysis rely on sim-
ilarity measures for SPARQL queries in order to determine whether a
query is related to another query. However, there is no commonly agreed
notion of similarity for SPARQL queries. Instead, there are several mea-
sures that not only vary computational complexity and output values,
but also on their purpose. In this paper, we present a comparison and a
discussion of the existing similarity measures for SPARQL queries in the
literature. Our results are guidelines designed to provide guidance on the
application of similarity measures for comparing SPARQL queries.

1 Introduction

Information extraction (IE) methods that rely on linked data information have
to deal with various interconnected domains, highly heterogeneous vocabularies,
and missing information about the used data schema. Thus, IE applications face
difficulties when exploring linked data since they may not have the necessary
knowledge about the underlying data source, its content and the used vocabulary,
which make it difficult to select and optimize training seeds.

Apart from direct requests, linked data sources can be accessed by SPARQL
requests, either directly by users or indirectly by applications. When querying
the LOD cloud, agents need to be familiar with the data, their links and their
vocabularies. We argue that previously executed queries to SPARQL endpoints
are valuable information sources about the underlying data structure and schema
of data sources. These queries reveal how resources are related to other resources
and they reflect the user interests on resources and their relationships. Therefore,
methods for query logs analysis provide a basis for the extraction of relevant and
qualitative data (from the user’s point of view) from the LOD cloud to be used,
for instance, in learning methods or even to improve crawling.

Several techniques are based on the analysis of SPARQL requests to the LOD
cloud such as methods for query completion [1], approximation [2,3] and relax-
ation [4,5], which aims to help users in formulating SPARQL queries. Further-
more, techniques for analyzing and mining of query logs of SPARQL endpoint

(a) It returns the email of the persons named
John Doen and Peter Doen

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?email
FROM <http://dig.csail.mit.edu/timbl/foaf.rdf>
WHERE {
{?person foaf:name "John Doen".}
UNION
{?person foaf:name "Sarah Carey"}
?person foaf:mbox ?email.
}LIMIT 50

(b) It returns the email of the persons named
John Doen and Sarah Carey

Fig. 1. Similar SPARQL Queries

also provide a valuable knowledge to enhance a range of semantic applications,
e.g., to investigate user behavior [6], or even to extract frequent query pattern to
be used as benchmarking [7] or as templates for data pre-fetching [8]. All these
techniques rely on similarity measures for SPARQL queries in order to determine
whether two SPARQL query are similar and to which degree. However, it is not
always obvious to determine the similarity degree of SPARQL queries. Queries
can be similar and dissimilar with respect to different dimensions. For example,
queries can be similar encoded such as the query presented in Fig. 1(a) and the
query presented in Fig. 1(b), but lead to very different results. Further, queries
can be written in different ways using various alternative constructs, such as the
query presented in Fig. 1(a) and the query presented in Fig. 2 but still leading
to the same or to a similar result.

In the literature, there are several measures for SPARQL query similarity.
For instance, the Levenshtein edit distance is often used [9,8,4]. Either the entire
query is considered as a string or just parts of the query (e.g. the triple patterns).
These measures are simple and have low computation complexity, but they do
not explore the properties of SPARQL query. Also popular are graph-based sim-
ilarity. Basically, these metrics exploit the structure of a SPARQL query (rep-
resented as a graph) and it is basically defined on graph isomorphism [10]. The
definition of query containment and equivalence [11] is often adopted to measure
the degree of similarity between queries. Graph-based metrics are computation-
ally expensive, and thus highly avoided in real-time applications.

Often it is, a priori, hard to say which measure is best to be used when
comparing SPARQL queries. This directly leads to the question “What is a good
similarity measure for SPARQL queries?”. We show that this answer depends
on the application context in which the similarity measure is used.

In order to assess the applicability of a similarity metric, a thorough investi-
gation of SPARQL query foundations and the different kinds of similarity mea-
sures is needed. The analysis of query similarity measures and metrics has several
facets like the investigation of similarity assessment dimensions, as well as the
computation complexity of a measure. A thorough analysis requires a common
formalization of query similarity and an abstraction of implementation-oriented
aspects of existing similarity measures in order to allow for a proper comparison
under a uniform umbrella.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?email
FROM <http://dig.csail.mit.edu/timbl/foaf.rdf>
WHERE {
 {?person foaf:mbox ?email.
 ?person foaf:name "John Doen"}
 UNION
 {?person foaf:mbox ?email.
 ?person foaf:name "Peter Doen".}
}LIMIT 50

Fig. 2. Equivalent to the query in Fig. 1(a)

In this paper, we present a foundational study of similarity measures for
SPARQL queries. We compare different metrics regarding their assessment, the
computational complexity, the intended purpose and usage of a certain measure
and its practical applicability. An analysis shows which similarity measures are
intuitive with the user’s expectations and how measures are related to other
ones. Our results serve as guidelines to provide support when applying similarity
measures for SPARQL queries.

2 Foundations

This section describes foundations of SPARQL, introduced in [12]. We will use
these notions later to describe a similarity measures for SPARQL queries.

We consider pairwise disjoint alphabets U , a set of URIs, L, a set of terminal
literals, and B, a set of blank nodes. An RDF statement is a triple (s, p, o)
∈ (U ∪B)×U × (U ∪ L ∪B). An RDF graph is a finite set of triples. SPARQL
is based on matching graph patterns against RDF graphs.

A SPARQL query is formally represented by a tuple defined as Q = (A, V,
G, P,M,R), where A is the set of prefix declarations (Line 1 in Fig 1(a)), V is
the output form (Line 2 in Fig 1(a)). The output of a SPARQL query can be of
different types: yes/no queries, selections of values of the variables, which match
the patterns, construction of new RDF graphs from these values, and descrip-
tions of resources. G is the RDF graph(s) being queried (Line 3 in Fig 1(a)),
P is a graph pattern (Lines 5-8 in Fig 1(a)), which includes features of pattern
matching of graphs, like optional parts, union of patterns, nesting, filtering val-
ues of possible matchings, and the possibility of choosing the data source to be
matched by a pattern, M are query modifiers, which allow to modify the results
by applying projection, order, limit, and offset options (Line 9 in Fig 1(a)) and
R is the set of variable bindings given by partial substitutions (mappings) of the
query variables by RDF terms (B ∪ L ∪ U).

Two graph pattern expressions P1 and P2 are equivalent, denoted by P1 ≡
P2, if [[P1]]DG = [[P2]]DG for every graph G and RDF dataset D.

3 State of the Art

Similarity measures serve for different purposes. Accordingly, the intention and
the way they are computed vary significantly. This section provides an overview
of existing similarity measures for SPARQL queries.

The first group of similarity measures are based on string metrics. Basically,
the main goal is to find strings in a query that (partially) match to the strings in
another query. The most popular string similarity is the Levenshtein distance.
Informally, the Levenshtein distance between two words is the minimum number
of single-character edits (insertion, deletion, substitution) needed to transform
one string into the other.

In [9], the authors use the Levenshtein distance in a performance benchmark
of different triple stores. Frequently executed queries extract from the query log
are clustered based on the Levenshtein distance. These clusters are subsequently
used to devise the query generation patterns used in the benchmark. In a follow-
up work [7], a combination of vector similarity and the Levenshtein distance is
used. A query is described by an additional 17-dimensional vector of SPARQL
features. This principle can be extended to SPARQL queries to incorporate the
comparison of SPARQL operators such as the UNION, OPTIONAL and FILTER
constructors, the DISTINCT solution modifier, operators like REG and STR.

Lorey at al. [8] group similar SPARQL queries in order to detect recurring
patterns in queries. They introduce the notion of query templates, which rep-
resent clusters of similar queries exhibiting these recurrences. A query is not
treated as one string, but as a set of strings, i.e., the set of individual elements
(subject, predicate and object) of triple patterns. Similarity between each pair
of query elements is defined based on the Levenshtein distance. Their aggre-
gated score gives the similarity score of the triple. This notion is extended to the
comparison of graph patterns.

Reddy et al. [2] make use of similarity of triples for the purpose of SPARQL
query relaxation. Subject, predicate and object of triples can be replaced by
super-classes and super-properties with respect to an RDFS ontology. A similar
principle is applied in [5]. SPARQL queries are extended by a relax clause to
describe triple patterns that can be relaxed regarding to an ontology. Instead of
an ontology, a pre-specified mapping that assigns pairs (URI or literal pairs) to
a value between 0 and 1 is applied in the so-called fuzzy relaxation [4]. The value
to which URI or literal pairs are mapped represent the similarity value between
these URIs or literals. Similarity of triples relies on matchers that exploit the
element structure. Similarity between numerical values is based on normalized
Euclidean distance, for string values on normalized Levenshtein edit distance,
and for categorical values based on a similarity table computed by a background
matching process.

Similarity measures based on graph matching are commonly used in query
optimization/rewriting applications. Basically, queries are represented as a graph
and the main goal is to find the isomorphic sub-graphs among the corresponding
query graphs, i.e., to find the maximum common sub-graph of two graphs. In [10],

the authors propose an efficient algorithm to address these challenges. They
exploit the fact that nodes and edges in query graphs have types.

Other approaches define similarity measures between two queries as a func-
tion that associates the similarity of their result sets to a similarity score in the
range [0; 1]. Result sets are similar if the values bound to their query variables
are similar. The RDF data query language iRDQL [13] and the SPARQL exten-
sion iSPARQL [3] offer constructs to write RDQL or SPARQL like queries with
additional constructs like the IMPRECISE clause in iRDQL to explicitly state for
which variables of a query an “imprecise” result binding. Both language exten-
sions implement TF-IDF and Levenshtein distance, as well as Jensen-Shannon
information divergence (in iRDQL) or Jaccard distance (in iSPARQL).

Query similarity is also defined over query equivalence and containment.
Checking query containment is, however, undecidable. There are some approaches
that improve the complexity of query containment computation by certain lan-
guage restrictions [12,11].

In order to allow for a more efficient containment checking, a minimization
technique for RDFS query patterns is presented in [14]. Efficiency is achieved
by additional restrictions like a strict distinction between data and schema layer
and that domain and range restrictions are always defined and unique.

4 SPARQL Similarity Measures

For the purpose of this work, we need a generic definition of a similarity function
for queries that supports the comparison of the state-of-the-art approaches.

Basically, SPARQL query similarity is a function θ that maps two SPARQL
queries to a value in the closed interval between 0 and 1. (The higher value indi-
cates the higher degree of similarity). Q denotes the set of all queries (universe).

Definition 1 (Signature of a Query Similarity Function θ). A SPARQL
query similarity θ is a function θ : Q×Q 7→ [0, 1].

Let s be a similarity measure. The similarity of queries is obtained by ag-
gregating the similarity of their components C, depending on the particular
measure. The components for the similarity is denoted by C (C ⊆ A× V ×G×
P ×M ×R) (see Sec. 2 for the definition of a SPARQL query). We refer to the
set of possible components of queries by Cs. The similarity of query components
is a function γ that maps two SPARQL query components to a value in [0, 1].

Definition 2 (Query Components and Component Similarity). Let q ∈
Q be a SPARQL query and s a similarity measure.

1. Πs is a projection that maps a query q to its components c ∈ Cs, Πs
i is the

projection of the ith component
2. |Πs(q)| denotes the number of components that constitute q wrt. measure s
3. A SPARQL query component similarity γs is a function γs : Cs×Cs 7→ [0, 1]

Based on the signatures of θ and γ, we define the query similarity function.

Definition 3 (Query Similarity Function). Let q1, q2 ∈ Q be SPARQL
queries, s a similarity measure and Cs the domain of query components for
measure s. Let n = min(|Πs(q1)|, |Πs(q2)|) be the minimum number of com-
ponents in q1 and q2 respectively. The coefficient αi is a value in [0, 1] that is
used to weight the similarity values of the components / elements, such that∑n
i=1 αi = 1. σ is a permutation.

θs(q1, q2) =

n∑
i=1

αi · γs · (Πs
σs(i)(q1), Πs

σs(j)(q2))

Table 1. Overview of the existing similarity measures for SPARQL queries

Approaches Π(q) maps to ... Similarity γ Param.

Morsey et al. [9] the string of q Levenshtein n = 1,
Π : Q 7→ String

Lorey et al. [8] set of string triples Levenshtein n = 3k
Π : Q 7→

(String × String × String)k

Hogan et al. [4] the set of (1) literals (L), (1) Levenshtein distance n = k
(2) numerical values (Num) (for literals (L))

(3) categorical attributes (U) (2)Euclidian distance
Π : Q 7→ (for num. values (Num))

(String × String × (L|Num|U))k (3) attribute table
(direct match for subj. and pred.) (for cat. attr. (U))

Reddy et al. [2] the set of terms/nodes (T) distance of terms (T) n = 3k
and in an ontology to super-classes/

Hurtado et al. [5] Π : Q 7→ (T × T × T)k super-properties
(subj., pred., obj. can be relaxed) in an ontology

Morsey et al. [7] binary feature vector (1) squared Euclidean n = c
(0 =̂ unused, 1 =̂ used distance

in the query)
Π : Q 7→ {0, 1}c

c is number of features
(dimension of vector (fix))

Le et al. [10] the set of vertices V Jaccard sim. based on n = |V |+
and edges E of the the maximum |E|
Π : Q 7→ (V, E) common sub-graph

V ⊆ (B ∪ U ∪ L)2k

(subjects and objects),

E ⊆ Uk (predicates)

Kiefer et al. [3] set of variable (1) Levenshtein or n = |B|
bindings as strings (2) Jaccard or

Π : Q 7→ B (3) cosine sim. over

(B ⊆ String3k) TF-IDF (on strings)

Table 2. Similarity metrics vs. Dimension Assessment

Dimensions Morsey[9] Lorey[8] Hogan[4] Reddy[2] Hurtado[5] Morsey[7] Le[10] Kiefer[3]

Structure X — — — X — X —
Language — — — — — X — —
Content — X X X X X X —
Result — — — — — — — X

The definition of similarity of the query components (γs) depends on the par-
ticular similarity measure s. Πs(σs(i)) projects the (σs(i))th component, while
the permutation σs depends on s. αi is used to ensure that the results are nor-
malized. Table 1, shows the variations of the function γs proposed by the existing
approaches, as discusses in Section 3. k in Table 1 denotes the number of triple
patterns in a query-

Def 3 imposes restrictions on the number of comparisons of components of
both queries. For instance, if a measure s compares only triples, and assume
query q1 consists of three triples, and q2 consists of four triples, then the query
similarity θs aggregates the components similarity, which is the similarity of
triples, of three pairs that have the highest similarity value. The selection of three
triples out of four from the second query depends on the particular measure. This
is covered by the permutation σs in the definition.

5 Similarity Dimensions

In Section 4, we compared the computation of a variety of similarity measures.
When mapping or decomposing queries to their components (Π in Table 1), we
can observe different ways how queries (or their components) are “used” for a
certain similarity computation. While this mapping is obviously determined by
the similarity measure, an interesting additional issue is the correlation between
the way the query is constituted and the actual application of its constituents
in the similarity computation.

We can observe different types of elements of a query that are considered in
the similarity computation: (1) only the query structure, expressed by a string (as
the sequence of symbols) or a graph structure, is considered; (2) only the query
content, i.e. its triple patterns are considered, and they are expressed as strings,
ontological terms or numerical values; (3) only the use of language features, such
as query modifiers, are considered; (4) the query result sets are considered.

Based on these observations, we extract four dimensions of query similarity
assessment: structure, content, language and result set. The most common cri-
teria used in numerous methods is the correspondence of the query structure,
followed by content, results and language. Nevertheless, queries may be assessed
with respect to not only one, but also two or even all dimensions. A group-
ing of similarity measures into these dimensions is shown in Table 2. For each
assessment dimension, we discuss application and complexity issues.

5.1 Structure-based Similarity

A structure-based metric considers the query elements A, V , P , M ∈ Cs where
their representation is expressed by a sequence of symbols (string), or a set of
vertices and edges (graphs). For every pair of queries, the metrics at this level,
checks the similarity of their structure, i.e, if their sequence of symbols or graph
representation agree.

More formally: (1) two queries q1 and q2 have similar structure if there is
correspondences between symbols of string(q1) and those of string(q2) with the
property that the ordering of the symbols is the same. (2) Two queries q1 and q2
have similar structure if there is correspondences on their graph representations,
denoted as graph(q1) and graph(q2), i.e. between vertices of graph(q1) and those
of graph(q2), and that two vertices of graph(q1) are adjacent if and only if
their images in graph(q2) are adjacent. Correspondences may also includes other
properties such as size. In particular, for graphs, it may include the properties
depth (graph property related to the cardinality of paths in a graph) and breadth
(graph property related to the cardinality levels in a graph).

In general, structure-based similarities are used in pattern matching tech-
niques. The goal in these applications is to recognizes common structural pat-
terns in queries, to cluster queries with a certain structure or to merge queries
with common shapes. Existing approaches, which make use of structural mea-
sures, like Morsey et al. [9,7] use the string representation of queries to devise
the generation of query patterns.

The computational complexity varies with the actual measure. String simi-
larity measures has low computational complexity, graph comparison has higher
complexity instead. Nevertheless, the most used string similarity, Levenshtein
Distance, has complexity O(m2) (m is the string length), which is still too slow
for large datasets.

5.2 Content-based Similarity

Content-based similarities assess the content (the agent information need) cov-
ered by the query, i.e. a content-based metric considers the element P ∈ Cs.
Thus, the term content refers to the set of triple patterns in a query.

Two queries q1 and q2 are equal if they share the same content. This means, if
for each triple t1 ∈ q1, and t1 = (s1, p1, o1) where s1, p1, and o1 are the subject,
predicate, and object of t1 respectively, and t2 ∈ q2, and t2 = (s2, p2, o2), there
is a one-to-one correspondences between s1 and s2, p1 and p2, o1 and o2.

Similar to structure-based metrics, triple patterns can be expressed by se-
quence of symbols or graph representation, and thus all structure-based metrics
can also be applied here. However, content-metrics are more flexible since they
do not rely on the ordering of the triples. For every two queries that have two
equal triple patterns t1 and t2, even if they are encoded in different ordering, for
instance, in the first query t1 follows t2, and in the second t2 follows t1, they are
still equal at this dimension.

Additionally, it is usual practice that each constituent of a triple pattern
(s, p, o) ∈ t is expressed using different representation (string representation
for literals, numerical representation for numbers, ontology categorization for
resources). Reddy et al. [2] and Hurtado at al. [5] express subject, predicate and
object of triples regarding to ontology terms, i.e. replaced by super-classes and
super-properties with respect to an RDFS ontology. Hogan at al. [4] make used of
normalized Euclidean distance to compute similarity of two numerical values, for
string values on normalized Levenshtein edit distance, and for categorical values
based on a similarity table which is pre-computed. The similarity measure in [10]
just checks for the correspondences of the predicates.

The complexity depends on the used structure-based metrics for the triple
patterns. Besides this, if additional characteristics like the relaxation based on
ontologies are used, the complexity also depends on the ontology size and struc-
ture, e.g., the hight of concept hierarchies.

5.3 Language-based Similarity

Language-based similarities assess only the language terms covered by the query
language, i.e. a language-based metric considers only the element V,M ∈ Cs. If
two queries q1 and q2 are described by same set of language terms (i.e. SPARQL
features) then they are equal.

Morsey et al. [7] use language-feature metrics to incorporate the comparison
of SPARQL operators such as the UNION, OPTIONAL and FILTER construc-
tors, the DISTINCT solution modifier, operators like REG and STR. An advan-
tage of this assessment is that the complexity is linear in n = c (c refers to the
number of features). Additionally, this metrics is can be extended to measure the
similarity of the corresponding present features, e.g., by using string similarity.
In this case, the total complexity is the complexity of the feature vector com-
parison and the complexity of the feature comparison of present features (e.g.,
the complexity of string similarity).

5.4 Result-Based Similarity

The computation on the result-based level measures the similarity of SPARQL
queries based on the relations between set of their result sets. In this level, the
similarity is defined based on the set of data retrieve when evaluating the query
against to one or all possible RDF graph(s). The assessment at the structure,
content, and language level aim at measuring the relations between two queries
based on their syntax. For instance, if two queries are encoded using the same
symbols (and ordering), for either all the elements in A, V , P , and/or M , for
A, V, P,MinC, then they are equal. The assessment at the result-based level
aims at measuring the relations of the elements in R ∈ C. Obviously, they are
highly related, for instance, if for all elements in A, V , P , and M , are equal, the
all the elements in C are equal when evaluated over a given RDF graph G.

Query equivalence is defined for queries q1 and q2 that have a one-to-one
correspondence between the result sets over all possible RDF graphs. Query

equivalence is, however, an undecidable problem. Therefore, existing approaches
restrict to the one-to-one correspondence between the result sets of r1 and those
of r2, when q1 and q1 are evaluated against a given RDF graph. The works of
[13] and [3] relies on similarity at this dimension.

The complexity depends on the query size and on implementation aspects.
In the worst case, the complexity is NP-complete.

6 Analysis

The definition of a good similarity measure relies on the answer of what elements
of the SPARQL queries are intended to be essential and how this can be actually
measured. Therefore, a similarity metric is determined to be good or bad from
a user’s or application’s point of view. In the literature, there is no consensus on
the notion of SPARQL queries correspondence, there is no unique mechanisms
to measure the “goodness” of a similarity measure. Accordingly, an evaluation
of the above described metrics would not be possible, since they vary on their
assessments and their results could not be compared. In the following, we discuss
two aspects as a guideline for using and further developing query similarity
measures.

What a metric is good for? — The Application Matters. The application
context heavily determines the choice for a similarity measure, i.e. the application
content reveals how a measure should deal with the similarity computation.

Structure-based measures are important in application where the represen-
tation of the query itself indicates similarity. Most of such applications aim to
identify frequent (sub-) structures (e.g., sequences or graphs) in order to classify
or cluster queries. A typical application for such metrics is data mining. However,
structural similarity is not always enough. Even if structural similarity includes
the assessment of the query content, it is still less flexible (i.e. it relies on the
ordering of the symbols) than the content-based metrics and thus it is often not
appropriate for content analysis.

Content-based similarity is preferred when concrete triples, particular re-
sources and relationships among resources are relevant to determine relatedness
of queries. Two queries that share the same content, but are expressed in dif-
ferent sequence ordering or even using different query modifiers or variables,
are obviously the same regarding their content. Typical applications that use
content-based metrics are query completion, query suggestion and query recom-
mendation. In these cases, a part of a graph pattern is given and either potential
extensions of this partial query or a list of related queries that have some content
overlap are suggested as possible query continuations.

Result-based similarity is essential if the query representation does not inter-
est at all (which is for sure not the case for applications such as pattern mining).
Typical examples are relevance feedback-based applications. For instance, the
user picks a query and the result of the query is the only criteria that matters.

Only few applications are based in language-based similarity. Still these met-
rics are the only ones which includes the pecularities of language the queries are
encoded. Usually, these similarity are used in combination with metrics assess-
ing other dimensions, in order to align the computation to the specific encoded
language, for instance, the assessement of graphs which are, in turn, encoded
with a specific language.

Is there a complete measure which is good for everything? No. Unfor-
tunately, there is no complete similarity metric so far for all different application
purposes. A complete SPARQL query similarity metric should suit the analy-
sis of not only the query structure, content and language (its syntax), but also
its semantic (result set). It seems to be rather challenging to come up with a
similarity measure that covers all these different dimensions, maybe with some
weighting mechanisms to adjust the measure for particular needs. At the same
time, such a similarity measure should also be computational tractable. As dis-
cussed earlier, result-based measures are NP-complete. Thus, coming up with a
comprehensive measure seems to be a computational very hard problem.

In order to build such a comprehensive but also computational tractable
similarity measure, the best choice is probably to use the most promising build-
ing blocks from existing similarity measures. A first direction is to consider
a mixed dimension assessment, depending on the relevance for a specific ap-
plication. For example, considering IE applications, a mix of content and lan-
guage assessments is the most promising. The use graph patterns instead of only
triple pattern should enhance the information need about the combination of
SPARQL features. Graph patterns can be combined using different features like
optional parts, union of patterns, nesting, filtering (or restricting) values of pos-
sible matchings, and the possibility of choosing the data source to be matched by
a pattern. Additionally, aspects of feature-based solution modifiers are a further
issue for a similarity measure. For instance, the use of distinct solution modifier,
which counts as the presence of a feature in the feature-based similarity mea-
sure, can influence a lot the result set, and thus, the presence or absences of this
solution modifier might be a good indicator for query similarity.

7 Conclusion

Several applications for information extraction from linked data are based on
query log analysis. These techniques rely on similarity measures for SPARQL
queries. While there is a bunch of different measures, inspired from other research
areas, a thorough comparison of these measures and their intended usage is still
missing in order to assess the usefulness of a linked data source for a particular
IE application. This gap has been closed by the research efforts that has been
presented in this paper.

We have shown a comprehensive comparison of existing SPARQL similarity
measures. In the first step, we have introduced a similarity specification as a
common denominator for all presented similarity measures. In the comparison,

each similarity measure is related to this specification to account for a better
comparability. In the second step, we have looked for the basic “building blocks”
of SPARQL queries that are assumed by the different similarity measures. We
ended up with categories of query similarity assessment, namely structure, con-
tent, language and result set.

We plan to proceed this research into two directions. First, we will conduct
a user evaluation to get feedback which measure is intuitive with respect to
human feeling of similarity. Second, we will extend the graph similarity measure
by incorporating all operators of SPARQL.

References

1. Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello., G.: Introducing
RDF Graph Summary with application to Assisted SPARQL Formulation. In:
DEXA. (2012)

2. Reddy, B.R.K., Kumar, P.S.: Efficient Approximate SPARQL Querying of Web of
Linked Data. In: URSW. (2010) 37–48

3. Kiefer, C., Bernstein, A., Stocker, M.: The Fundamentals of iSPARQL: A Virtual
Triple Approach for Similarity-Based Semantic Web Tasks. In: ISWC/ASWC.
(2007) 295–309

4. Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards Fuzzy Query-
Relaxation for RDF. In: ESWC. (2012) 687–702

5. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query Relaxation in RDF. J. Data
Semantics 10 (2008) 31–61

6. Raghuveer, A.: Characterizing machine agent behavior through sparql query min-
ing. In: USEWOD, Lyon, France, Arxiv (April 2012)

7. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.C.: Usage-Centric Bench-
marking of RDF Triple Stores. In: AAAI 2012. (2012)

8. Lorey, J., Naumann, F.: Detecting SPARQL Query Templates for Data Prefetch-
ing. In: ESWC. LNCS, Springer (2013)

9. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.C.: DBpedia SPARQL
Benchmark – Performance Assessment with Real Queries on Real Data. In: ISWC
2011. (2011)

10. Le, W., Kementsietsidis, A., Duan, S., Li, F.: Scalable Multi-query Optimization
for SPARQL. In: ICDE ’12, IEEE Computer Society (2012) 666–677

11. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static Analysis and Optimization
of Semantic Web Queries. In: PODS. (2012) 89–100

12. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3) (September 2009) 16:1–16:45

13. Bernstein, A., Kiefer, C.: Imprecise RDQL: Towards Generic Retrieval in Ontolo-
gies Using Similarity Joins. In: ACM Symposium on Applied Computing (SAC).
(2006) 1684–1689

14. Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and Mini-
mization of RDF/S Query Patterns. In: ISWC. Volume 3729 of LNCS., Springer
(2005) 607–623

	Which of the following SPARQL Queries are Similar? Why?

