
SPARQL Update under RDFS Entailment in Fully
Materialized and Redundancy-Free Triple Stores

Albin Ahmeti1 and Axel Polleres2

1 Vienna University of Technology, Favoritenstraße 9, 1040 Vienna, Austria
2 Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

Abstract. Processing the dynamic evolution of RDF stores has recently been stan-
dardized in the SPARQL 1.1 Update specification. However, computing answers
entailed by ontologies in triple stores is usually treated orthogonal to updates.
Even the W3C’s recent SPARQL 1.1 Update language and SPARQL 1.1 Entail-
ment Regimes specifications explicitly exclude a standard behavior how SPARQL
endpoints should treat entailment regimes other than simple entailment in the
context of updates. In this paper, we take a first step to close this gap, by drawing
from query rewriting techniques explored in the context of DL-Lite. We define a
fragment of SPARQL basic graph patterns corresponding to (the RDFS fragment
of) DL-Lite and the corresponding SPARQL update language discussing possible
semantics along with potential strategies for implementing them. We treat both
(i) reduced RDF Stores, that is, redundancy-free RDF stores that do not store
any RDF triples (corresponding to DL Lite ABox statements) entailed by others
already, and (ii) materialized RDF stores, which store all entailed triples explicitly.

1 Introduction

SPARQL provides a standard for accessing structured Data on the Web and the avail-
ability of such a standard may well be called one of the key factors to the success and
increasing adoption of RDF and semantic technologies. Still, in its first iteration the
SPARQL specification has neither defined any standard way how to treat entailments
with respect to RDFS and OWL ontologies, nor provided standard means how to update
dynamic RDF data. Both these gaps have been addressed within the recent SPARQL
1.1 specification, which both provides means to define query answers under ontological
entailments (SPARQL 1.1 Entailment Regimes [6]) as well as an update language to
update RDF data stored in a triple store (SPARQL 1.1 Update [5]).3 Nonetheless, these
specifications do not provide a standard behavior how SPARQL endpoints should treat
entailment regimes other than simple entailment in the context of updates. The main
issue of updates under entailments is how updates shall deal with implied statements:

– What does it mean if an implied triple is explicitly (re-)inserted (or, resp., deleted)?
– Which (if any) additional triples should be inserted, (or, resp., deleted) upon updates?

3 For the sake of simplicity we do not take into account NAMED graphs in this paper, which is
why we speak of “triple stores” as opposed to “graph stores”.

In the context of RDFS one might further ask about how to deal with axiomatic triples
such as rdf:type a rdf:Property., issues around the treatment of blank nodes
[12], or, in the context of OWL, the treatment of inconsistencies arising through updates;
for the sake of this present paper, we do not treat these additional issues separately, but
focus on a deliberately minimal treatment of RDFS inferences along the lines of [14]. As
it turns out, even in this confined setting, updates as defined in the SPARQL 1.1 Update
specification impose non-trivial challenges; particularly, specific issues arise through the
interplay of INSERT, DELETE, and WHERE clauses within a single SPARQL update
operation, which – to the best of our knowledge – have not been considered in the
literature in combination as of yet.

Example 1. As a running example, let us assume a RDF triple store 𝐺, containing data
about family relationships along with a RDFS ontology 𝑂𝑓𝑎𝑚 comprising the following
axioms (in Turtle syntax).

:hasFather rdfs:subPropertyOf :hasParent.
:hasMother rdfs:subPropertyOf :hasParent.
:Father rdfs:subClassOf :Parent. :Mother rdfs:subClassOf :Parent.
:hasFather rdfs:range :Father; rdfs:domain :Child.
:hasMother rdfs:range :Mother; rdfs:domain :Child.
:hasParent rdfs:range :Parent; rdfs:domain :Child.

Assuming now that the following data assertions are also in the RDF Store 𝐺

:joe :hasParent :jack.
:joe :hasMother :jane.

the following query should return both :jack and :jane as (RDFS entailed) answers:
SELECT ?Y WHERE { :joe :hasParent ?Y. }

A SPARQL endpoint that only considers simple entailment though, would only return
:jack as an answer.

The intended behavior for the query in Example 1 is typically achieved by either (i)
computing entailed answers at query runtime, which can actually be achieved by query
rewriting techniques, or (ii) by materializing all implied triples in the store, normally at
loading time.

That is, on the one hand, borrowing from query rewriting techniques from DL-Lite
(such as e.g. PerfectRef [3], several refinements of which have been proposed in the
literature) one can reformulate such a query to return also the implied answers. A mini-
malist query reformulation algorithm – that is, a down-stripped version of PerfectRef [3],
covering the essential entailments of RDFS – is shown in Alg. 1.

Example 2 (cont’d). If we interpret the WHERE clause in the query in Example 1 as a
conjunctive query, and the RDFS axioms from 𝑂𝑓𝑎𝑚 as DL TBox, the resulting UCQ as
from Alg. 1 can be just translated back into SPARQL as follows.
SELECT ?Y WHERE {{ :joe :hasParent ?Y. } UNION

{ :joe :hasFather ?Y. } UNION { :joe :hasMother ?Y. }}

Indeed this query returns both parents, :jane and :jack.

:jack
:jane
:jack
:jane
:jack

While the rewritten query is exponential in the worst case wrt. the size of the ontology,
for moderate size ontologies, such a rewriting approach is quite feasible.

On the other hand, an alternative is to materialize all inferences (for instance produced
by the minimalist inference rules set for RDFS from [14]) in the triple store, such that
the original query can be used ’as is’.

Example 3 (cont’d). The materialized version of 𝐺 would contain the following triples –
for conciseness we only show assertional implied triples here, that is triples from rules
2)𝑏), 3)𝑏), 4)𝑎)+𝑏) from [14].

:joe :hasParent :jack. :joe a :Child. :jack a :Parent.
:joe :hasMother :jane; :hasParent :jane. :jane a :Mother, :Parent.

Obviously, on such an endpoint, the original query from Example 1 would already return
the expected results.

However, when it comes to updating the RDF store in terms of SPARQL 1.1 Update,
things become less clear.

Example 4 (cont’d). The following operation tries to delete an implied class membership
whereas it tries to (re-)insert another implied class membership.

DELETE{?X a :Child.} INSERT {?Y a :Mother.}
WHERE {?X :hasMother ?Y.}

Various existing triple stores offer different solutions to these problems, ranging
from – probably most commonly – ignoring entailments in updates altogether to keeping
explicit and implicit triples separate and recomputing all entailments upon updates. That
is, in the former case (ignoring entailments) updates only refer to explicitly asserted
information, which may result in non-intuitive behaviors, whereas the latter case (re-
materialization) may be very costly – while still not eliminating all non-intuitive cases,
as we will see. The problem is aggravated by no systematic approach to which implied
triples to store explicitly in a triple store and which not. As an example, take for instance

Algorithm 1: rewrite
Input: Conjunctive query 𝑞, TBox 𝒯
Output: Union (set) of conjunctive queries

1 𝑃 := {𝑞}
2 repeat
3 𝑃 ′ := 𝑃
4 foreach 𝑞 ∈ 𝑃 ′ do
5 foreach 𝑔 in 𝑞 do // expansion
6 foreach inclusion axiom 𝐼 in 𝒯 do
7 if 𝐼 is applicable to 𝑔 then
8 𝑃 := 𝑃 ∪

{︀
𝑞[𝑔/ gr(𝑔, 𝐼)]

}︀
9 until 𝑃 ′ = 𝑃

10 return 𝑃

Table 1. DL-Lite axioms vs. RDF(S)
DLRDFS RDFS

1 𝐴1 ⊑ 𝐴2 A1 rdfs : subClassOf A2.
2 ∃𝑃 ⊑ 𝐴 P rdfs :domain A.
3 ∃𝑃 − ⊑ 𝐴 P rdfs : range A.
4 𝑃1 ⊑ 𝑃2 P1 rdfs : subPropertyOf P2.

5 𝐴(𝑥) x rdf : type A.
6 𝑃 (𝑥, 𝑦) x P y.

Table 2. Semantics of gr(𝑔, 𝐼) in Alg.1
𝑔 𝐼 gr(𝑔/𝐼)

𝐴(𝑥) 𝐵 ⊑ 𝐴 𝐵(𝑥)
𝐴(𝑥) ∃𝑃 ⊑ 𝐴 𝑃 (𝑥, _)
𝐴(𝑥) ∃𝑃 − ⊑ 𝐴 𝑃 (_, 𝑥)

𝑃1(𝑥, 𝑦) 𝑃2 ⊑ 𝑃1 𝑃2(𝑥, 𝑦)
Here, ‘_’ stands for a “fresh” variable.

DBpedia which stores certain entailed triples, but not all (cf. the example in [16]). In
this paper we try to argue for a more systematic approach for dealing with updates
in the context of RDFS entailments. More specifically, we will distinguish between
two kinds of triple stores, that is (i) reduced RDF Stores, that is, redundancy-free RDF
stores that do not store any assertional (ABox) triples entailed by others already, and
(ii) materialized RDF stores, which store all entailed ABox triples explicitly. Next, we
propose alternative update samentics that preserve the respective types (i) and (ii) of
triple stores, and discuss possible implementation strategies, partially inspired by query
rewriting techniques that have become popular in the context of ontology-based data
access (OBDA) [11] and DL-Lite [3].

For the sake of this paper we will assume RDFS ontologies to be static and only
assertional statements (ABoxes) to be updated. Along these lines, we will define a
fragment of the SPARQL 1.1 Update language, that allows to Add/Delete assertional
ABox statements, but not terminological statements (using the RDFS vocabulary). As
already shown in [8], erasure of ABox statements is deterministic in the context of RDFS,
but insertion and particularly the interplay of DELETE/INSERT in SPARQL 1.1 Update
has not been considered therein.

The remainder of this paper continues with preliminaries (RDFS, SPARQL, DL-Lite,
SPARQL update operations) in Section 2. We then present alternative update semantics
along with possible implementation strategies in Section 3, and subsequently discuss
future and related work (Section 4) before we conclude (Section 5).

2 Preliminaries

Since we will draw from ideas coming from OBDA and DL-Lite, we will use RDF
graphs and RDFS ontologies compatible with DL-Lite ontologies in the present paper.

Definition 1 (RDFS ontology, ABox, TBox, triple store). Let 𝐴 be an atomic concept
(or class, resp.) name and 𝑃 be an atomic role (or, property, resp.) name, and 𝛤 be a set
of constants which in context of RDF(S) coincides with the set 𝐼 of IRIs. We assume the
IRIs used for concepts, roles, and constants to be disjoint from IRIs of the RDFS and
OWL vocabularies.4 Let 𝑥, 𝑦 ∈ 𝛤 , then we call a set of inclusion axioms of the forms
1-4 in Tab. 1 a RDFS ontology, or (RDFS) TBox, whereas we call a set of assertions
of the forms 5+6 in Tab. 1 an (RDF) ABox, where we view RDF and DL notation
interchangeably. Finally, we call a container 𝐺 = 𝒯 ∪ 𝒜 holding a TBox 𝒯 and an
ABox 𝒜 an (RDFS) triple store.

That is, more informally, we treat any RDF graph consisting of triples without
non-standard RDFS vocabulary use as a pair of ABox and TBox triples, where, for the
purposes of this paper, we will consider the latter fixed/immutable. Further to this, we
will treat conjunctive queries (with only distinguished variables) and SPARQL basic
graph patterns (BGPs) interchangeably in this paper as follows. Note that we do not
provide details on more complex patterns (OPTIONAL, NOT EXISTS, FILTER, etc.) in

4 That is, we assume no “non-standard use” [16] of these vocabularies. We may also assume
concept names, role names and constants mutually disjoint (or distinguish them in the sense of
“punning” [13] based on their position in atoms or RDF triples).

SPARQL 1.1 which are defined on top of BGP matching, but refer the reader to [9] for
details on the semantics of these patterns.

Definition 2 (BGP, CQ, UCQ). A conjunctive query (CQ) 𝑞, or basic graph pattern
(BGP), is a set of atoms of the forms 5+6 from Tab. 1, where 𝑥, 𝑦 are either constants
from 𝛤 or variables (written as alphanumeric strings preceded by ’?’). A union of
conjunctive queries (UCQ) 𝑄, or UNION pattern, is a set of conjunctive queries. By
𝑉 𝑎𝑟(𝑞) (or 𝑉 𝑎𝑟(𝑄), resp.) we denote the set of variables occurring in 𝑞 (or 𝑄, resp.).

This definition allows only restricted forms of general SPARQL BGPs that corre-
spond to conjunctive queries along the lines of Description Logics; that is, we do not
allow, e.g., queries with variables in predicate positions nor “terminological” queries,
e.g. {?X rdfs:subClassOf ?Y.}. We neither consider blank nodes separately in
this paper.5 By these restrictions, we can treat query answering and BGP matching in
SPARQL analogously and define it in terms of interpretations and models (as usual in
Description Logics) as follows.

Definition 3 (Interpretation, satisfaction, model). An interpretation ℐ = ⟨𝛥ℐ , ·ℐ⟩
consists of a non-empty set 𝛥ℐ called the object domain, and an interpretation function
·ℐ which maps

– each atomic concept 𝐴 to a subset of the domain 𝐴ℐ ⊆ 𝛥ℐ ,
– each atomic role 𝑃 to a binary relation over the domain 𝑃 ℐ ⊆ 𝛥ℐ × 𝛥ℐ ,
– each element of 𝛤 to an element of 𝛥ℐ .

For concept descriptions the interpretation function is defined as follows:
– (∃𝑅)ℐ =

{︀
𝑥 ∈ 𝛥ℐ

⃒⃒
∃𝑦.(𝑥, 𝑦) ∈ 𝑅ℐ}︀

– (∃𝑅−)ℐ =
{︀

𝑦 ∈ 𝛥ℐ
⃒⃒
∃𝑥.(𝑥, 𝑦) ∈ 𝑅ℐ}︀

An interpretation ℐ satisfies an inclusion axiom 𝐸1 ⊑ 𝐸2 (of one of the forms 1-4 in
Tab. 1) if 𝐸ℐ

1 ⊆ 𝐸ℐ
2 . Analogously, ℐ satisfies an ABox assertion of the form

– 𝐴(𝑥) if 𝑥ℐ ∈ 𝐴ℐ

– 𝑃 (𝑥, 𝑦) if (𝑥ℐ , 𝑦ℐ) ∈ 𝑃 ℐ

Finally, an interpretation ℐ is called a model of a triple store 𝐺 = 𝒯 ∪ 𝒜, denoted
ℐ |= 𝐺, if ℐ |= 𝒯 and ℐ |= 𝒜, that is, if ℐ satisfies all terminological axioms in 𝒯 and
all ABox assertions in 𝒜.

Definition 4 (Query answers). For a CQ 𝑞 (or, UCQ 𝑄, resp.) and a triple store 𝐺,
a substitution 𝜃 from variables in 𝑉 𝑎𝑟(𝑞) to constants in 𝛤 such that 𝑞𝜃 is true (or,
there exists a 𝑞 ∈ 𝑄 with 𝑞𝜃 is true) in every model of 𝐺 is called an answer (under
RDFS Entailment) to 𝑞, and we denote the set of all answers by 𝑎𝑛𝑠RDFS(𝑞, 𝐺) (or,
𝑎𝑛𝑠RDFS(𝑄, 𝐺), resp.).

Since we only treat RDFS entailment, but no other entailment regimes in this paper, in
the following we will drop the subscript and simply write 𝑎𝑛𝑠 instead of 𝑎𝑛𝑠RDFS.

The following results follow immediately from e.g. [8,14] & [3] and show that query
answering under RDF can be done by either query rewriting or materialization.

5 Blank nodes in a triple store may be considered as constants and we do not allow blank nodes
in queries, which does not affect the expressivity of SPARQL.

Proposition 1. Let 𝐺 = 𝒯 ∪ 𝒜 be a triple store, 𝑞 be a CQ. Further, let 𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑞, 𝒯)
be as per Alg. 1 above, whereas by 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝐺) = 𝒯 ∪ 𝒜′ we denote the triple store
obtained from exhaustive application of the following inference rules on 𝐺:6

?𝑃 rdfs:subPropertyOf ?𝑄. ?𝑆 ?𝑃 ?𝑂.
?𝑆 ?𝑄 ?𝑂.

?𝐶 rdfs:subClassOf ?𝐷. ?𝑆 rdf:type ?𝐶.
?𝑆 rdf:type ?𝐷.

?𝑃 rdfs:domain ?𝐶. ?𝑆 ?𝑃 ?𝑂.
?𝑆 rdf:type ?𝐶.

?𝑃 rdfs:range ?𝐶. ?𝑆 ?𝑃 ?𝑂.
?𝑂 rdf:type ?𝐶.

Then, 𝑎𝑛𝑠(𝑞, 𝐺) = 𝑎𝑛𝑠(𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑞, 𝒯), 𝐺 ∖ 𝒯) = 𝑎𝑛𝑠(𝑞, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝐺) ∖ 𝒯).

Various existing triple stores (such as e.g. BigOWLIM [2]) have the option to perform
materialization directly upon loading data. Accordingly, we will call materialized triple
stores all triple stores that in each state always guarantee 𝐺 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝐺). On the
other extreme, this suggests alternatively to discuss triple stores that do not store any
redundant ABox triples. By 𝑟𝑒𝑑𝑢𝑐𝑒(𝐺) we will denote the hypothetical operator that
produces the reduced “core” of 𝐺, and we call a triple store reduced if 𝐺 = 𝑟𝑒𝑑𝑢𝑐𝑒(𝐺).
While we do not provide the algorithm to compute 𝑟𝑒𝑑𝑢𝑐𝑒(𝐺), we note that this core
is uniquely determined in our setting whenever 𝒯 is acyclic (which is usually a safe
assumption)7; it could be naïvely computed by exhaustively “marking” each triple that
can be inferred from applying any of the rules in Prop. 1 and subsequently removing all
marked elements of 𝒜. The following observation follows trivially.

Lemma 1. Let 𝐺 = 𝒯 be a triple store with an empty ABox, then 𝐺 is both reduced
and materialized.

Finally, we introduce the notion of a SPARQL update operation.

Definition 5 (SPARQL update operation). Let 𝑃𝑑, 𝑃𝑖 be BGPs and 𝑃𝑤 a BGP or
UNION pattern. Then an update operation 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) has the form

DELETE 𝑃𝑑 INSERT 𝑃𝑖 WHERE 𝑃𝑤

Intuitively, the semantics of executing 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) on 𝐺, denoted as 𝐺𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤)
is defined interpreting both 𝑃𝑑 and 𝑃𝑖 as “templates” to be instantiated with the solutions
of 𝑎𝑛𝑠(𝑃𝑤, 𝐺), resulting in sets of ABox statements 𝒜𝑑 and 𝒜𝑖 to be deleted from and
inserted into 𝐺, respectively. A naïve update semantics follows straightforwardly.

Definition 6 (Naïve update semantics). Let 𝐺 = 𝒯 ∪𝒜 be a triple store, 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
be an update operation, then 𝐺𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤) = (𝐺 ∖ 𝒜𝑑) ∪ 𝒜𝑖, where

𝒜𝑑 =
⋃︁

𝜃∈𝑎𝑛𝑠(𝑃𝑤,𝐺)

𝑃𝑑𝜃 and 𝒜𝑖 =
⋃︁

𝜃∈𝑎𝑛𝑠(𝑃𝑤,𝐺)

𝑃𝑖𝜃 .

As easily seen, this naïve semantics neither preserves materialized nor reduced triple
stores; we leave it to the reader to confirm this observation on the update from Example 4
both on the reduced triple store from Example 1 and, resp., on the materialized triple
store from Example 3.

6 These rules correspond to rules 2)𝑏), 3)𝑏), 4)𝑎)+𝑏) from [14]; since we neither consider blank
nodes nor terminological inferences, we do not need the further rules from [14].

7 We note that even in the case when the TBox is cyclic we could define a deterministic way to
remove redundancies, e.g. by preserving the lexicographically smallest ABox statements only
within a cycle. That is, given TBox 𝐴 ⊑ 𝐵 ⊑ 𝐶 ⊑ 𝐴 and ABox 𝐴(𝑥), 𝐶(𝑥); we would delete
𝐶(𝑥) and retain 𝐴(𝑥) only, to preserve reducedness.

3 Materialized/Reduced Preserving Update Semantics

In this section, we will investigate alternative update semantics under RDFS entailment
that either preserve materialized or reduced stores and discuss in how far these semantics
can – similar to query answering – be implemented in off-the-shelf SPARQL 1.1 triple
stores by simple rewriting techniques. We will look into the following possible semantics:

Sem𝑚𝑎𝑡
0 : As a baseline for a materialized-preserving semantics, we discuss to apply the
naïve semantics, followed by (re-)materialization of the whole triple store.

Sem𝑚𝑎𝑡
1 : Another materialized-preserving semantics could follow the intention to

– delete the instantiations of 𝑃𝑑 plus all their causes;
– insert the instantiations of 𝑃𝑖 plus all their effects.

Sem𝑚𝑎𝑡
2 : This semantics is also materialized-preserving but extends Sem𝑚𝑎𝑡

1 with the
intention to additionally (recursively) delete “dangling” effects for instantiations of
𝑃𝑑, that is, effect of to-be-deleted triples that would not be implied any longer by
any non-deleted triples after deletion.

Sem𝑟𝑒𝑑
0 : Again, the baseline for a reduced-preserving semantics would be to apply the
naïve semantics, followed by (re-)reducing the triple store.

Sem𝑟𝑒𝑑
1 : This reduced-preserving semantics extends Sem𝑟𝑒𝑑

0 by additionally deleting
the causes of instantiations of 𝑃𝑑.

The definitions of semantics Sem𝑚𝑎𝑡
0 and Sem𝑟𝑒𝑑

0 are straightforward.

Definition 7 (Baseline materialized- and reduced-preserving update semantics). Let
𝐺 and 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) be as in Def. 6 above. Then, analogously to Def. 6, we define
Sem𝑚𝑎𝑡

0 as

𝐺
Sem𝑚𝑎𝑡

0
𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤) = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝐺𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤))

and Sem𝑟𝑒𝑑
0 as

𝐺
Sem𝑟𝑒𝑑

0
𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤) = 𝑟𝑒𝑑𝑢𝑐𝑒(𝐺𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤))

Let us proceed with a quick “reality-check” on these two baseline semantics by
means of our running example.

Example 5. By referring back to the update from Example 4: as easily seen, neither
Sem𝑚𝑎𝑡

0 (executed on the materialized triple store of Example 3), nor Sem𝑟𝑒𝑑
0 (executed

on the reduced triple store of Example 1) would have any effect.

As this behavior is quite arguable, which is why we will proceed with discussing how
the other intentions could be implemented or, resp., what implications such alternative
update semantics would have.

Alternative Materialized-Preserving Semantics. Let us first look into materialized-
preserving semantics in more detail. As it turns out, Sem𝑚𝑎𝑡

1 can be achieved fairly
straightforwardly, building upon similar rewriting ideas as query rewriting. However, as
we will argue, there might be reasons why one wants to adopt the other semantics.

As we have seen, in the setting of RDFS we can use Alg. 1 rewrite to expand a CQ
𝑞 to a UCQ that considers all its “causes”. A slight variation can of course be used to

compute the set of all causes, that is, in the most naïve fashion by just “flattening” the
set of sets returned by Alg. 1 to a simple set; we denote this flattening operation on a set
of sets 𝑆 as 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑆).

Likewise, we can easily define a “turned around” rewriting that computes all the
“effects” of a pattern by modifying Alg. 1 such that it simply considers Table 2 with the
first and third column “swapped” (and ‘_’ just matching any variable or constant).8 Let
us call the resulting algorithm 𝑟𝑒𝑤𝑟𝑖𝑡𝑒𝑒𝑓𝑓 . Likewise, we could have defined 𝑟𝑒𝑤𝑟𝑖𝑡𝑒𝑒𝑓𝑓

algorithm as a modification of 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝐺) applied to BGPs instead of to the graph
itself.9 For the sake of completeness, in the same sense we can also analogously to
𝑟𝑒𝑑𝑢𝑐𝑒(𝐺) define an algorithm 𝑟𝑒𝑑𝑢𝑐𝑒(𝑃, 𝒯) which takes a pattern as input and reduces
it wrt. a TBox 𝒯 .

Using these considerations, we can thus define both rewritings that consider all
causes, as well as rewritings that consider all effects:

Definition 8 (Cause/Effect rewriting). Given a BGP insert or delete template 𝑃 for
an update operation over the triple store 𝐺 = 𝒯 ∪ 𝒜, we define the all-causes-rewriting
of 𝑃 as 𝑃 𝑐𝑎𝑢𝑠 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑃, 𝒯)); likewise, we define the all-effects-rewriting
of 𝑃 as 𝑃 𝑒𝑓𝑓 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑟𝑒𝑤𝑟𝑖𝑡𝑒𝑒𝑓𝑓 (𝑃, 𝒯)).

This leads (almost) straightforwardly to a rewriting-based definition of Sem𝑚𝑎𝑡
1 :

Definition 9. Let 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) be an update operation, then

𝐺
Sem𝑚𝑎𝑡

1
𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤) = 𝐺𝑢(𝑃 𝑐𝑎𝑢𝑠

𝑑
,𝑃 𝑒𝑓𝑓

𝑖
,{𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑃𝑤)}{𝑃 𝑓𝑣𝑎𝑟𝑠

𝑑
})

where 𝑃 𝑓𝑣𝑎𝑟𝑠
𝑑 = {?x a rdfs:Resource. | for each ?x ∈ 𝑉 𝑎𝑟(𝑃 𝑐𝑎𝑢𝑠𝑃𝑑

𝑑) ∖ 𝑉 𝑎𝑟(𝑃𝑑)}.

The only tricky part in this definition is the rewriting of the WHERE clause, where
𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑃𝑤) is joined10 with a new pattern 𝑃 𝑓𝑣𝑎𝑟𝑠

𝑑 that binds the “free” variables (i.e.,
the new variables denoted by ‘_’ in Tab. 2, which were introduced by Alg. 1) in the rewrit-
ten DELETE clause, 𝑃 𝑐𝑎𝑢𝑠

𝑑 . Here ?x a rdfs:Resource. stands as a shortcut for the
UCQ {{?x ?x𝑝 ?x𝑜} UNION {?x𝑠 ?x ?x𝑜} UNION {?x𝑠 ?x𝑝 ?x}} which binds
any term occurring in the triple store.

Example 6. Getting back to the materialized version of the triple store from Example 3,
the update from Example 4 would, according to Sem𝑚𝑎𝑡

1 be rewritten to
DELETE { ?X a :Child. ?X :hasFather ?x1. ?X :hasMother ?x2.

?X :hasParent ?x3. }
INSERT { ?Y a :Mother. ?Y a :Parent. }
WHERE { { ?X :hasMother ?Y. }

{ ?x1 a rdfs:Resource. ?x2 a rdfs:Resource.
?x3 a rdfs:Resource.} }

8 We note that this could be viewed equivalently as simply applying the inference rules from
Prop. 1 exhaustively to 𝑞.

9 Please note that it is not our intention to provide optimized algorithms here, but just to convey
the feasibility of this rewriting.

10 A sequence of ’{}’-delimited patterns in SPARQL corresponds to a join, where such joins can
again be nested with UNIONs, with the obvious semantics, for details cf. [9].

with the resulting triple store containing the following triples.
:jane a :Mother, :Parent. :jack a :Father, :Parent.

It is easy to argue that Sem𝑚𝑎𝑡
1 is materialized-preserving. However, this semantics

might still result in potentially non-intuitive behaviors. For instance, in this semantics the
following subsequent calls of INSERTs and DELETEs might leave “traces” as shown by
the following example.

Example 7. Assuming 𝐺 = 𝑂𝑓𝑎𝑚 from Example 1 with an empty ABox. Under
Sem𝑚𝑎𝑡

1 semantics the following sequence of updates would leave as a trace the re-
sulting triples as in Example 6, which would not be the case under the naïve semantics.
DELETE{} INSERT {:joe :hasMother :jane;:hasFather :jack} WHERE{};
DELETE {:joe :hasMother :jane;:hasFather :jack} INSERT{} WHERE{};

Sem𝑚𝑎𝑡
2 tries to address the issue of such “traces”, but can no longer be formulated

by such a relatively straightforward rewriting. For the present, preliminary paper we
leave out a detailed definition/implementation capturing the intention of Sem𝑚𝑎𝑡

2 ; an
obvious starting point would be the “Delete and Rederive” algorithm [7], but whether
Sem𝑚𝑎𝑡

2 can be implemented by rewriting to SPARQL update operations following
the naïve semantics is open. We emphasize though, that a semantics that achieves the
intention of Sem𝑚𝑎𝑡

2 would still potentially run into arguable cases, since it might run
into removing explicitly added assertions, whenever removed assertions cause these, as
shown by the following example.

Example 8. Assuming a materialized-preserving update semantics implementing the
intention of Sem𝑚𝑎𝑡

2 , the behaviour of the following update sequence is left open:
DELETE {} INSERT {:x a :Parent.} WHERE {};
DELETE {} INSERT {:x a :Father.} WHERE {};
DELETE {:x a :Father.} INSERT {} WHERE {};
Note that the second and third update operation in this example show that even insertion
and immediate subsequent deletion of a single triple is not idempotent for Sem𝑚𝑎𝑡

2 .

In a strict reading of Sem𝑚𝑎𝑡
2 ’s intention, :x a :Parent. would count as a

dangling effect, since it is an effect of the triple in the second insertion with no other
causes in the triple store, and thus should be removed upon the third update operation.
Nonetheless, implementations of (materialized) triple stores may make a distinction
between implicit and explicitly inserted triples (e.g. by storing explicit and implicit triples
in separate graph); however, we consider the distinction between implicit triples and
explicitly inserted ones non-trivial in the context of SPARQL 1.1 Update: for instance,
is a triple inserted based upon implicit bindings in the WHERE clause of an INSERT
statement to be considered “explicitly inserted” or not? The authors of the present paper
tend towards avoiding such distinction, but we have more discussion of such rather
philosophical aspects of possible SPARQL update semantics on our agenda; for now, let
us rather turn our attention to the potential alternatives for reduced-preserving semantics.

Alternative Reduced-Preserving Semantics. Again, similar to Sem𝑚𝑎𝑡
2 , for both the

baseline semantics Sem𝑟𝑒𝑑
0 and Sem𝑟𝑒𝑑

1 we leave it open whether it can be implemented
by rewriting to SPARQL update operations following the naïve semantics, i.e., without
the need to apply 𝑟𝑒𝑑𝑢𝑐𝑒(𝐺) over the whole triple store after each update; a strategy to
avoid calling 𝑟𝑒𝑑𝑢𝑐𝑒(𝐺) would roughly include the following steps:

– delete the instantiations 𝑃𝑑 plus all the effects of instantiations of 𝑃𝑖, which will be
implied anyways upon the new insertion, thus preserving reduced;

– insert instantiations of 𝑃𝑖 only if they are not implied, that is, neither already implied
by the current state of 𝐺 or all their causes in 𝐺 were to be deleted.

We leave further investigation of whether these steps can be cast into one or several
update requests directly by rewriting techniques to future work.

Rather, we show that we can capture the intention of Sem𝑟𝑒𝑑
1 by a relatively straight-

forward extension of the baseline semantics.

Definition 10 (Sem𝑟𝑒𝑑
1). Let 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) be an update operation, then

𝐺
Sem𝑟𝑒𝑑

1
𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤) = 𝑟𝑒𝑑𝑢𝑐𝑒(𝐺𝑢(𝑃 𝑐𝑎𝑢𝑠

𝑑
,𝑃𝑖,{𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑃𝑤)}{𝑃 𝑓𝑣𝑎𝑟𝑠

𝑑
}))

where 𝑃 𝑐𝑎𝑢𝑠
𝑑 and 𝑃 𝑓𝑣𝑎𝑟𝑠

𝑑 are as before.

Example 9. Getting back to the reduced version of the triple store from Example 1, the
update from Example 4 would, according to Sem𝑟𝑒𝑑

1 be rewritten to
DELETE { ?X a :Child. ?X :hasFather ?x1. ?X :hasMother ?x2.

?X :hasParent ?x3. }
INSERT { ?Y a :Mother. }
WHERE { { ?X :hasMother ?Y. }

{ ?x1 a rdfs:Resource. ?x2 a rdfs:Resource.
?x3 a rdfs:Resource.} }

with the resulting triple store after (re-)reduction containing the following triple.

:jane a :Mother.

Note that in a reduced store there is no need to delete effects of 𝑃𝑑, which make the
considerations that lead us to Sem𝑚𝑎𝑡

2 irrelevant for a reduced-preserving semantics, as
shown in following example.

Example 10. Under Sem𝑟𝑒𝑑
1 , as opposed to Sem𝑚𝑎𝑡

1 , the update sequence of Example 7
would leave no traces. However, note that the deletion of :joe :hasParent :jack

in Example 9 might be viewed as non-intuitive, plus the update sequence of Example 8
would likewise result in an empty ABox, thus neither guaranteeing idempotence of single
triple insertion followed by immediate deletion.

We finally observe that the rewriting for Sem𝑟𝑒𝑑
1 is almost identical to Sem𝑚𝑎𝑡

1 , but
reduced-preservation depends on a separate post-processing step not readily available in
off-the-shelf triple stores, whereas Sem𝑚𝑎𝑡

1 could be directly executed by rewriting on
any triple store, preserving materialization.

4 Further Related Work and Possible Future Directions

There has already been work on updates over TBox-es in the context of tractable
ontologies such as RDFS [8] and DL-Lite [4]. Even though such approaches give
deterministic answers in general while computing updates, they are either limited to

DELETEs or INSERTs, but not both at the same time nor in combination with templates
filled by WHERE clauses, as in SPARQL 1.1; that is, these approaches are not based
on BGP matching but rather on a set of ABox assertions to be updated known a priori.
Pairing both DELETE and INSERT, as in our case, poses new challenges which we
tried to fill the gap by introducing different rewriting semantics and taking into account
both materialized and reduced stores. In the future, we plan to extend our work in the
context of DL-Lite where we could reuse off-the-shelf, thoroughly studied rewriting
techniques, and at the same time benefiting from a more expressive query language.
Expanding beyond the simple language at the intersection of RDFS and DL-Lite towards
more features of DL-Lite or coverage of less restricted RDF graphs and BGPs would
impose new challenges: for instance, consistency checking and consistency-preserving
updates (such as treated in [4]) do not yet play a role in the setting of RDFS; we are
looking forward to investigate extensions in these directions. Besides, we are planning
to implement all the proposed semantics and to test them against existing triple stores.

As for further related works, in the context of reduced stores, let us also refer
to [15], where the cost of redundancy elimination under various (rule-based) entailment
regimes – including RDFS – is discussed in detail. In the area of database theory,
there has been a lot of work on updating logical databases: Winslett [17] distinguishes
between model-based and formula-based updates; our approach clearly falls in the
latter category, more concretely, it could be viewed as sets of propositional knowledge
base updates [10] generated by SPARQL instantiating DELETE/INSERT templates.
Moreover, in the domain of updates over views, the “Delete and Rederive” algorithm [7]
is closely related to our discussion about “dangling” effects (particularly, to our proposed
semantics Sem𝑚𝑎𝑡

2) where the tuples to be deleted from (recursive) materialized views are
determined if only there are no tuples in relational stores that map to the corresponding
tuples in the view, i.e. there is no alternative derivation for the tuples in the view; as
mentioned above, it is on our agenda to investigate whether such behavior can be achieved
in terms of update-rewriting techniques rather than full re-derivations. Let us further
note that in the more applied area of databases, there are obvious parallels between some
of our considerations and CASCADE DELETEs in SQL (that is, deletions under foreign
key constraints), in the sense that we trigger additional deletions of causes/effects in
some of the proposed updated semantics discussed herein. Finally, it is worth mentioning
that similar work has been done also in classical AI, e.g., in [1], where the main idea
is to choose the maximal subset of propositions from a set that do not imply a certain
proposition (which is going to be deleted), hereby coinciding with the delete rewriting
of our Sem𝑚𝑎𝑡

1 semantics.

5 Conclusions

We have discussed the semantics of SPARQL 1.1 Update in the context of RDFS. To
the best of our knowledge, this is the first work to discuss in depth how to combine
SPARQL 1.1 Entailment Regimes with the new SPARQL 1.1 Update language. While
we acknowledge that our results are at a preliminary stage and we have been operating
on a very restricted language in this paper, we could demonstrate that even in such
a restricted setting (only capturing minimal RDFS entailments, only allowing ABox
updates, restricting BGPs) the definition of a SPARQL 1.1 Update semantics under

entailments is a non-trivial task. While we proposed several possible semantics, neither
of those might seem intuitive for all possible use cases. So, while a “one-size-fits-all”
update semantics might not exist, we believe that this is a timely topic that deserves
increased attention. Particularly, in the light of the increased importance that RDF and
SPARQL are experiencing also in dynamic domains where data is continuously updated
(dealing with dynamics in Linked Data, querying sensor data or stream reasoning) further
research in this area is needed.

Acknowledgments This work has been funded by the Vienna Science and Technology
Fund (WWTF, project ICT12-015), and by the Vienna PhD School of Informatics.

References

1. Alchourron, C.E., Gardenfors, P., Makinson, D.: On the logic of theory change: Contraction
functions and their associated revision functions. Theoria 48, 14–37 (1982)

2. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: A family
of scalable semantic repositories. Semantic Web 2(1), 33–42 (2011)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Automated
Reasoning 39(3), 385–429 (2007)

4. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite knowledge
bases. In: ISWC. pp. 112–128 (2010)

5. Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update (Mar 2013), W3C Recommendation
6. Glimm, B., Ogbuji, C., Hawke, S., Herman, I., Parsia, B., Polleres, A., Seaborne, A.: SPARQL

1.1 Entailment Regimes (Mar 2013), W3C Recommendation
7. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: ACM

SIGMOD Int’l Conf. on Management of Data. pp. 157–166. ACM (1993)
8. Gutierrez, C., Hurtado, C., Vaisman, A.: Updating RDFS: from theory to practice. In: 8th

Extended Semantic Web Conf. (ESWC 2011) (2011)
9. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language (Mar 2013), W3C Recommendation

10. Katsuno, H., Mendelzon, A.O.: A unified view of propositional knowledge base updates. In:
IJCAI. pp. 1413–1419 (1989)

11. Kontchakov, R., Rodriguez-Muro, M., Zakharyaschev, M.: Ontology-based data access with
databases: A short course. In: Reasoning Web 2013, LNCS, vol. 8067, pp. 194–229. Springer
(2013)

12. Mallea, A., Arenas, M., Hogan, A., Polleres, A.: On Blank Nodes. In: Proceedings of the 10th
International Semantic Web Conference (ISWC 2011). LNCS, vol. 7031. Springer (Oct 2011)

13. Motik, B.: On the Properties of Metamodeling in OWL. Journal of Logic and Computation
17(4), 617–637 (2007)

14. Muñoz, S., Pérez, J., Gutiérrez, C.: Minimal deductive systems for RDF. In: ESWC. pp. 53–67
(2007)

15. Pichler, R., Polleres, A., Skritek, S., Woltran, S.: Complexity of redundancy detection on RDF
graphs in the presence of rules, constraints, and queries. Semantic Web – Interoperability,
Usability, Applicability 4(4) (2013)

16. Polleres, A., Hogan, A., Delbru, R., Umbrich, J.: RDFS & OWL reasoning for linked data. In:
Reasoning Web 2013, LNCS, vol. 8067, pp. 91–149. Springer (Jul 2013)

17. Winslett, M.: Updating Logical Databases. Cambridge University Press (2005)

	SPARQL Update under RDFS Entailment in Fully Materialized and Redundancy-Free Triple Stores

