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1 Introduction

The Semantic Web [2] aims at enabling Web resources to be accessible to automated processes by
adding “semantic annotations”—metadata (data about data) that describes their content. It is envisaged
that the semantics in semantic annotations will be given by ontologies [8], which will provide a source
of precisely defined terms (vocabularies) that are amenable to automated reasoning.

A standard for expressing ontologies in the Semantic Web has already emerged: the ontology
language OWL [4], which recently became a W3C proposed recommendation. One of the main features
of OWL is that there is a direct correspondence between (two of the three “species” of) OWL and
Description Logics (DLs) [12]. This means that reasoning procedures from DLs can be used in order
to infer useful facts from ontology based annotations in OWL. In particular, since annotations are
usually defined as individual instances of ontology classes, it is reasonable then to use ABox reasoning
(the DL term for reasoning about individuals) to reason about annotations [3]. However, developing
a practical ABox reasoner for such annotations is difficult. This difficulty arises not only from the
computational complexity of ABox reasoning, but also from the fact that the number of annotations
might be extremely large.

On the one hand, the task of reasoning with large amounts of individuals is difficult even for
the state-of-art optimised ABox reasoner RACER [9]. On the other hand, efficient management of
very large volumes of data is well known to be a stronghold of relational databases. The approach
of combining relational databases with Description Logics to deal with large amounts of data was,
therefore, proposed in [11] which we call an Instance Store.

The Instance Store provides an infrastructure for reasoning with large numbers of individuals. It
combines a DL reasoner with a database in order to provide large scale storage of instance data, and
sound and complete answers to instance retrieval queries for arbitrary query concepts. However, in
order to simplify the integrated architecture, and to provide acceptable query answering performance,
the current Instance Store only supports ABox axioms asserting that a given individual is an instance of
a given (possibly complex) concept (e.g., John is an instance of the class of persons having at least one
female child); but it forbids axiom assertions involving role relationships between pairs of individuals
(e.g., an assertion that Mary is a child of John).

Certainly, the idea of the Instance Store is not new, but, to the best of our knowledge, it is the
first implementation of a general purposed role-free1 DL reasoner over individuals that is sound and
complete, has reasonable response times. This claim is supported by presenting a variety of empirical
test results [11] contrasting the Instance Store with the other existing techniques such as RACER.

1 An ABox is said to be role-free if it does not contain role assertions, i.e., all the assertions are of the form a : C

rather then the form 〈a, b〉 : R.



2 A Brief Introduction to Description Logics

The family of Description Logics [1] is a knowledge representation system evolved from early frame
systems [14] and semantic networks [15]. DLs are distinguished from their ancestors by having a
precise semantics which enables the description and justification of automated deduction processes.

A DL knowledge base typically consists of two components—“TBox” and “ABox”. The TBox de-
fines the structure of the knowledge domain and consists of a set of asserted axioms, i.e., the definition
of a new concept in terms of other previously defined concepts. ABox contains a concrete knowledge
domain and asserted axioms about individuals, e.g., an individual is an instance of a concept or an
individual is related to another by a role.

The basic inference on concept expressions in a TBox is subsumption checking, typically written
C v D. Determining subsumption is the problem of checking whether the concept denoted by D (the
subsumer) is more general than the one denoted by C (the subsumee). In other words, subsumption
checks whether the first concept always denotes a subset of the set denoted by the second one. The basic
task of constructing a terminology in a TBox is classification, which amounts to placing a new concept
in the suitable place in a taxonomic hierarchy according to the partial order induced by subsumption
relationships among the other defined concepts.

The basic reasoning task in an ABox is instance checking, which verifies whether a given individual
is an instance of (belongs to) a specified concept, written as (a : C). Formally, an interpretation I maps
2 each individual name like a to an element of ∆I , it satisfies (a : C) if and only if aI ∈ CI . There
are other ABox reasoning tasks of practical usage, such as retrieval— given a KB K = 〈T ,A〉 and a
concept C. It is the problem of finding all individuals a such that K |= a : C. It is clear that that tasks
such as retrieval can be reduced to instance checking [6].

3 Instance Store

An ABox A is role-free if it contains only axioms of the form x : C. We can assume, without loss
of generality, that there is exactly one such axiom for each individual as x : C t ¬C holds in all
interpretations, and two axioms x : C and x : D are equivalent to a single axiom x : (C u D). It is
well known that, for a role-free ABox, instantiation can be reduced to TBox subsumption [10, 16]; i.e.,
if K = 〈T ,A〉, and A is role-free, then K |= x : D iff x : C ∈ A and T |= C v D. Similarly, if
K = 〈T ,A〉 and A is a role-free ABox, then the instances of a concept D could be retrieved simply
by testing for each individual x in A if K |= x : D. However, this would clearly be very inefficient if
A contained a large number of individuals.

An alternative approach is to add a new axiom Cx v D to T for each axiom x : D in A, where Cx

is a new atomic concept; we will call such concepts pseudo-individuals. Classifying the resulting TBox
is equivalent to performing a complete realisation of the ABox: the most specific atomic concepts that
an individual x is an instance of are the most specific atomic concepts that subsume Cx and that are not
themselves pseudo-individuals. Moreover, the instances of a concept D can be retrieved by computing
the set of pseudo-individuals that are subsumed by D.

The problem with this latter approach is that the number of pseudo-individuals added to the TBox
is equal to the number of individuals in the ABox, and if this number is very large, then TBox reasoning
may become inefficient or even break down completely (e.g., due to resource limits).

The basic idea behind the Instance Store is to overcome this problem by using a DL reasoner
to classify the TBox and a database to store the ABox, with the database also being used to store a
complete realisation of the ABox, i.e., for each individual x, the concepts that x realises (the most
specific atomic concepts that x instantiates). The realisation of each individual is computed using the
DL (TBox) reasoner when an axiom of the form x : C is added to the Instance Store ABox.

A retrieval query Q to the Instance Store (i.e., computing the set of individuals that instantiate a
concept Q) can be answered using a combination of database queries and TBox reasoning. Given an

2 Note that, although not mandatory, this mapping usually has to respect the unique name assumption (UNA),
i.e., distinct individual names denote distinct objects. Formally, if a and b are distinct individual names, then
aI 6= bI .



Instance Store containing a KB 〈T ,A〉 and a query concept Q, retrieval involves the computation of
the following sets of individuals for which we introduce a special notation:

– I1 denotes the set of individuals in A that realise some concept in Q↓T ;
– I2 denotes the set of individuals in A that realise every concept in dQeT .

The Instance Store algorithm to retrieve the instances of Q can be then described as follows:

1. use the DL reasoner to compute Q↓T ;
2. use the database to find the set of individuals I1;
3. use the reasoner to check whether Q is equivalent to any atomic concept in T ; if that is the case

then simply return I1 and terminate;
4. otherwise, use the reasoner to compute dQeT ;
5. use the database to compute I2;
6. use the reasoner and the database to compute I3, the set of individuals x ∈ I2 such that x : C is

an axiom in A and C is subsumed by Q;
7. return I1 ∪ I3 and terminate.

4 Extending the Instance Store

Although the current Instance Store has already demonstrated its usage in a variety of application
domains, examples include the use of ontology based vocabulary to describe documents in “publish
and subscribe” applications [17], to annotate data in bioinformatics applications [7] and to annotate
web resources such as web pages [5] or web service descriptions [13] in Semantic Web applications.
We believe that the existing one could be improved by adding some optimisations, providing extra
functionalities and relaxing several assumptions.

A severe restriction made in the Instance Store is that axioms asserting role relationships between
pairs of individuals are not allowed. A DL technique, so-called precompletion [10], can be used to
transform a general ABox (allowing role assertions) into an equivalent role-free one. With this pre-
treatment, the Instance Store will be able to cope with more general ABox datasets.

Precompletions of knowledge bases are built using a set of syntactic rules which extend the ABox
of the original knowledge base. It tries to make explicit all the information concerning a single in-
dividual by means of relationships which link the individual with other individuals. In other words,
additional concept assertions are added into the knowledge base to capture the information carried by
role assertions. Because of the possible non-determinism of the precompletion rules, many different3

precompletions can be derived from a single knowledge base.

4.1 Inverse role

The extension of precompletion for inverse roles is problematic, as an example, let us consider the
following ABox

A1 = {John : ∃hasFriend.(∀hasFriend−1.(∀hasChild.¬female)),Mary : female}

Adding role assertion 〈John,Mary〉 : hasChild to ABox A5 is inconsistent, as the combination of
the existential and universal quantification ∃hasFriend.∀hasFriend−1.(. . .) pushes extra restric-
tions on the individual John and Mary (i.e., the new concept label ∀hasChild.¬female on John and
¬female on Mary), and results in a contradiction of Mary : female u ¬female.

The example above shows that precompletion might fail in the presence of inverse role because
it cannot prevent cases when new concepts might be added to the label of the individuals due to
terminological reasoning.

3 In the worst-case, exponentially many precompletions can be derived from the original knowledge base, in such
cases, our approach seems not to be helpful.



4.2 Unique name assumption

As the Instance Store does not respect the Unique Name Assumption (UNA), two separate individuals
could be inferred to be identical. When individuals are determined to be the same, information about
them (concept assertions and role assertions) should be expanded explicitly in a way such that the
consistency of the original knowledge base is preserved—this would clearly require an extension to
the original precompletion algorithm.

4.3 Instance retrieval

Another issue one should consider is how to make the instance retrieval in the extended Instance
Store correct, extra caution has to be taken regarding the predecessors appearing in role assertions. To
motivate how the problem could possibly merge, let us consider for example the following ABox and
instance retrieval queries:

A2 = {John : ∀hasChild.female, 〈John,Mary〉 : hasChild, Mary : doctor}

Q1(x) ?− (female u doctor)(x)

Q2(x) ?− (∃hasChild.doctor)(x)

our precompletion algorithm considers the interaction of role assertions and value restrictions, there-
fore it must take into account that Mary must also be a female (which follows from the fact that she
is a child of John) and this would make Mary’s concept label female u doctor and hence the answer
to Q1 is {Marry}. However, it would fail to answer Q2—although obviously {John} should be the
answer since he has a child Mary who is a doctor.

This problem comes directly from the precompletion procedure: when a role assertion is added
to the ABox, the precompletion only pushes information to the successor down the role edge but
leave the predecessor untouched—clearly some information is lost. The solution is trivial as shown in
Definition 2:

Definition 1 (label). Given a knowledge base K = 〈T ,A〉, the label of an individual x ∈ A is defined
as the conjunction of all the concepts in the concept assertions about the individual x:

L(x) = C1 u C2 u · · · u Cn

where {x : Ci | i = 1, · · · , n} ⊆ A.

Definition 2 (extended label). Given a knowledge base K = 〈T ,A〉, the extended label L′(x) of
an individual x ∈ A is defined as the conjunction of L(x) and ∃Rx.L′(ax) for each role assertion
〈a, ax〉 :Rx in A:

L′(x) := L(x) u
⋂

∃Rx.L′(ax) for all 〈a, ax〉 :Rx in A

Clearly, the information carried by role assertion is therefore made explicit to its predecessor in
L′(x), and L′(x) instead of L(x) can be used in the instance retrieval operation to fix the problematic
situation mentioned above. In the previous A5’s example, L′(John) becomes { ∀hasChild.femaleu
∃hasChild.doctor }, when computing the answer for Q2 against L′(John) instead of L(John) (i.e.,
∀hasChild.female), it would successfully find out that {John} is indeed the answer.

However, when a set of role assertions in the ABox form a cycle (even a role assertion such as
〈a, a〉 :R), the simple rolling up procedure is not working anymore—the presence of cycles lead to an
endless reference chain.4

4 One possible way of resolving this is to use fixpoint semantics to capture the cyclic situation, this approach is
still under investigation.



5 Contributions Anticipated

The anticipated main contributions of this research can be summarised in the following points:

– An extension of the instance store which relaxes some constraints on the kinds of ABox that can
be handled, for example, ABoxes containing role assertions;

– An extended precompletion technique which removes the UNA and adopts optimisations for re-
ducing non-determinism;

– Demonstrate the applicability of the instance store in realistic applications;
– An evaluation of the techniques used in the instance store against other DL/DB or, if one exists,

some other DL+DB applications for supporting Semantic Web annotations reasoning.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

2. T. Berners-Lee. Weaving the Web. Harpur, San Francisco, 1999.
3. G. De Giacomo and M. Lenzerini. TBox and ABox reasoning in expressive description logics. In Proc. of the

5th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’96), pages 316–327, 1996.
4. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,

and L. A. Stein. OWL web ontology language 1.0 reference, July 2002. Available at http://www.w3.org/
TR/owl-ref/.

5. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Rajagopalan, A. Tomkins,
J. A. Tomlin, and J. Y. Zien. Semtag and seeker: Bootstrapping the semantic web via automated semantic
annotation. In Proc. of the Twelfth International World Wide Web Conference (WWW 2003), 2003.

6. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept languages: From subsumption
to instance checking. J. of Logic and Computation, 4(4):423–452, 1994.

7. GOA project. European Bioinformatics Institute. http://www.ebi.ac.uk/GOA/.
8. T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition, 5(2):199–220, 1993.
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