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ABSTRACT 

Representing	the	kinetic	state	of	a	patient	(posture,	motion,	and	ac‐
tivity)	during	vital	sign	measurement	is	an	important	part	of	continu‐
ous	 monitoring	 applications,	 especially	 remote	 monitoring	 applica‐
tions.	 In	 contextualized	 vital	 sign	 representation,	 the	 measurement	
result	 is	 presented	 in	 conjunction	 with	 salient	measurement	 context	
metadata.	We	 present	 an	 automated	 annotation	 system	 for	 vital	 sign	
measurements	that	uses	ontologies	from	the	Open	Biomedical	Ontolo‐
gy	Foundry	 (OBO	Foundry)	 to	 represent	 the	patient’s	 kinetic	 state	 at	
the	 time	 of	 measurement.	 The	 annotation	 system	 is	 applied	 to	 data	
generated	by	a	wearable	personal	status	monitoring	(PSM)	device.	We	
demonstrate	how	annotated	PSM	data	 can	be	queried	 for	 contextual‐
ized	vital	signs	as	well	as	sensor	algorithm	configuration	parameters.	

1 INTRODUCTION  
Vital sign measurements are often obtained without close 
clinical supervision. In hospital settings, ambulatory patient 
monitoring devices are used to track vital signs when a pa-
tient is away from the bedside [1]. Telemedicine applications 
permit a patient to take readings from a location that is re-
mote to their provider [2]. The availability of consumer-
grade devices coupled with easy-to-use, web-based health 
portals has fueled the adoption of vital signs monitoring as 
part of the Quantified-Self movement [3]. Users can now 
independently collect various sorts of data for fitness, health, 
wellness, and disease prevention. What is often lost in these 
scenarios, relative to a clinically supervised encounter, is an 
interpretation of the user’s context of measurement. As re-
mote continuous vital signs monitoring becomes a reality, 
the quality of vital signs data will increasingly rely on accu-
rately inferring and representing measurement context in an 
automated way.  

We use the term contextualized vital sign for the aggre-
gate of a vital sign and some non-trivial aspect of its meas-
urement context. Paradigmatic contextualized vital signs 
include: night-time blood pressure, post-operative blood 
pressure, resting respiratory rate, premenopausal body tem-
perature, and reclining heart rate. Such descriptions are often 
applied to snapshot (episodic) measurements, and efficiently 
recorded and transmitted.  

This paper presents a representation of contextualized vi-
tal signs that uses ontologies from the Open Biomedical On-
tology (OBO) Foundry. We then use this representation in an 
automated annotation system for a personal status monitor-
ing (PSM) device data stream. We have developed the PSM 
system to classify motion, body position, and high-
acceleration events (such as falls) alongside vital sign meas-
urements. The specific example we use throughout is the 
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representation of a user’s body position during a pulse rate 
measurement. However, the annotation system can scale to 
cover the entire suite of classifiers.  

The utility of having ontologically annotated PSM data is 
manifested in several applications:  
 Maintaining sensor configuration for each classification.  
 Maintaining classification algorithm configuration. 
 Training set construction from annotated PSM data for 

data mining and machine learning. 
 Querying PSM results using annotations as criteria. 
 Describing semantic alarms for continuous monitoring 

applications [11]. 
These are discussed below along with potential exten-

sions to the system. 

2 BACKGROUND   

2.1 Personal Status Monitoring System 
Accelerometers are the most prevalent sensors used for 
body-position classification applications [12]. The PSM 
device is a wearable multi-sensor system consisting of four-
teen tri-axial accelerometers and multiple vital sign moni-
tors, each of which is unobtrusive and noninvasive for the 
user. The accelerometers are mounted in such a way as to 
minimize noise and are positioned at the hips (2), knees (2), 
shins (2), shoulders (2), forearms (2), wrists (2), chest (1), 
and head (1). Four unsupervised classification algorithms 
are applied to PSM data in order to infer user motion, body 
position, device orientation, and fall events. Each of these 
classifications relies on either acceleration measured at each 
sensor or data derived from the combination of such meas-
urements. For example, body position is inferred using a 
classifier that takes as input the relative angles between 
limbs (Euler angles) or (in simple cases) the tilt of a limb 
relative to the anatomical axes. When all of the accelerome-
ters are used in the classification of body position, the result 
can be visualized as a rough skeletal wire-frame configura-
tion. Only a subset of the accelerometers is typically re-
quired to accurately classify crude body positions such as 
“sitting”, “standing”, and “lying down”. For clinical appli-
cations, one or two active accelerometers will suffice. Vital 
sign monitors include a heart rate and respiration rate moni-
tor mounted on the chest. Figure 1 illustrates three different 
embodiments of the PSM device. 
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Along with a ‘data’ portion where the measurement is rec-
orded, these archetypes contain a ‘state’ portion, representing 
the context of measurement. For example the ‘heart rate and 
rhythm’ archetype includes four body positions: ‘Lying’, 
‘Sitting’, ‘Reclining’, and ‘Standing’, along with definitions 
and an assumed default value. Other vital sign archetypes 
include specialized body positions when they are relevant to 
clinical measurement contexts. For example, the blood pres-
sure archetype’s state segment includes the position, “Lying 
with tilt to the left: Lying flat with some lateral tilt, usually 
angled toward the left side. Commonly required in the last 
trimester of pregnancy to relieve aortocaval compression.” 
Such free-text contextual descriptions are valuable, but to 
fully realize their value, they must be annotated and linked to 
machine-readable representations outside of the EHR itself.  

3 ONTOLOGY FOR CONTEXTUALIZED 
VITAL SIGNS 

We use OBO Foundry ontologies for our annotation system 
for several reasons: such ontologies are open-source, actively 
developed by domain experts, use stable IRIs to denote 
types, honor the distinction between individuals and univer-
sals, share the Basic Formal Ontology (BFO) as a common 
upper-ontology3, and share the OBO Relation Ontology 
(RO) as a common source for relations [7]. OBO Foundry 
ontologies are implemented in machine-readable formats 
(OWL-DL and OBO Format), and are developed to maxim-
ize reuse of terms and relations. OBO Foundry reference 
ontologies are general enough for use across several do-
mains. These are in contrast to application ontologies, which 
import terms and relations from reference ontologies and 
define new application-specific terms and relations for the 
purposes of a given application. 

We have developed the Ontology for Contextualized Vi-
tal Signs (OCVS)4 as an application ontology for PSM data 
annotations. A central feature of OCVS is its use of external 
terms and relations from OBO Foundry ontologies when 
possible. These external terms are used to form cross-product 
definitions and description logic restrictions. 

For example standing pulse rate can be defined using a 
necessary and sufficient DL-restriction using the Vital Sign 
Ontology (VSO) [8], the Ontology for Biomedical Investiga-
tions (OBI) [9], and the Experimental Conditions Ontology 
(XCO) [10]: 

 
“The pulse rate of an organism in the standing position”  
vso:‘pulse rate’ AND  
 inheres_in SOME (obi:organism AND  
  bearer_of SOME xco:‘standing position’) 
 
The relations (in bold) are standard relations from the 

OBO Relation Ontology. OCVS does not have to redefine 
new terms in order to construct the definition of ‘standing 
pulse rate’, and the same cross-product template can be used 
for different vital signs (from VSO) and body positions 

  
3
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4
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(from XCO). OCVS imports terms from the Unit Ontology5 
(UO) to represent measurement units. All terms are imported 
using the MIREOT mechanism [5]. Throughout the paper, 
the source ontology for a term will be indicated via its OBO 
prefix (e.g., obi:‘measurement datum’ is the term ‘measure-
ment datum’ from the Ontology for Biomedical Investiga-
tions). 

3.1 Representing Measurements 
These imported terms are combined with relations from the 
Relation Ontology to form the basic representations for PSM 
measurements. A PSM measurement datum consists of three 
acceleration magnitude measurements, three tilt measure-
ments (relative to each device axis), a signal vector magni-
tude measurement (SVM), a signal magnitude area (SMA) 
measurement, and a time stamp representing an interval.  

The time stamp represents the total running time in sec-
onds from the beginning of the data acquisition session. Ac-
celeration is given in g-units (1 g = 9.8 m/s2), which OCVS 
asserts to be a type of acceleration unit. The angle of tilt, 
relative to the acceleration along each axis a, is computed as 
follows:  	

																																						 asin
180

																															 1  

 
This produces an angular measurement of stationary tilt 

in the range [-90, 90] degrees. SVM is computed with each 
reading as a function of all three acceleration components at 
a particular time (x(t), y(t), z(t)): 

 
										 , , 														 2  

 
The SMA is a running total of the absolute sum of com-

ponent-wise accelerations over a window of N readings: 
 

				 , ,
1

| | | | | | 											 3  

 
At any given time, the SMA is a sum over a window con-

taining the last N readings. In OCVS, we assert that each of 
these measurement data is a part of the ‘PSM measurement 
datum’ with the same timestamp. 

There are multiple ways of measuring qualities such as 
tilt. OCVS includes term annotations indicating the formulas 
used to derive relevant measurement data, thus providing 
metadata for consumers of annotated data as to how each 
input parameter to the body position classifier was derived.  

 ‘PSM Measurement Datum’ in OCVS is a defined class. 
Defined classes, like universals, correspond to OWL classes. 
OWL object properties are used to implement OBO Foundry 
relations, and OWL data properties are used to link particu-
lars (OWL individuals) to data. The parts of a PSM meas-
urement datum and relevant relations are shown in Figure 2. 

A single PSM measurement datum is the input to the 
body position classification algorithm which has as output a 

  
5
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Finally, we express the relationship between measure-
ment data and the measurement devices that produce them. 
We assert dt measured_using dev when: 

 
1. dt is a obi:‘measurement data’ 
2. dev is a obi:‘measurement device’ 
3. dt is the specified output of the realization of dev’s 

measure function.  
 
This allows us to make assertions linking PSM device 

types to data types. The universal-level relation expresses the 
link for all such device and data pairings. This implies that 
all particular instances of datum universals are linked to in-
stances of device universals. This is important because the 
PSM has fourteen accelerometer instances and an arbitrary 
number of (potentially redundant) vital sign sensor instances. 
For example, if we want to measure a pulse rate using both a 
pulse oximeter and a cardiac monitor, the same data type can 
be linked via the universal-level restriction:  

 
vso:‘pulse rate measurement datum’ rdfs:subClassOf  
    measured_using SOME  
        (‘pulse oximeter’ OR ‘cardiac monitor’) 

 
The measurement device types are then linked to the 

measure functions they were designed to realize: 
 

‘triaxial accelerometer’ rdfs:subClassOf has_function 
    ONLY ‘acceleration magnitude measure function’ 
 
‘pulse oximeter’ rdfs:subClassOf  has_function  
    SOME ‘pulse rate measure function’ 

 
Notice that the quantifiers differ here. The only function 

of the accelerometer is to measure acceleration magnitude, 
however the measure function of the pulse oximeter can be 
realized in multiple processes (including blood oxygen 
measurement processes and pulse rate measurement process-
es). The ontology captures multi-function devices via differ-
ent measure function types. The corresponding instance-level 
relations (denoted in italics: measured_using) calls out the 
particular devices used. For example: (1.1g, 0.6g, -0.2g) 
measured_using Freescale MMA7660FC Triaxial Accel-
erometer #6. Two pulse rate measurement data instances can 
differ and still be of the same ontological type. The prove-
nance of each datum is captured by the instance-level rela-
tion that ties it to a particular device, allowing for redundant 
readings. 

3.3 Vital Sign Monitoring Device Configuration 
Pulse rate and heart rate are typically highly correlated and 
are often used interchangeably. The PSM uses an on-garment 
chest-strap cardiac monitor to compute heart rate. However, 
the PSM can also be configured to use a clip-on pulse oxime-
ter for pulse rate measurements.  In order to capture the 
provenance of vital sign measurement data, OCVS repre-
sents: the device, the vital sign being measured, and the ana-
tomic configuration of the monitoring device. Superclass 
terms for ‘vital sign measurement device’ and ‘pulse rate 

measurement datum’ are drawn from the Vital Sign Ontolo-
gy. Anatomic configuration for vital sign monitoring devices 
is represented in the same way as accelerometer anatomic 
configuration, only without the need for the orientation or 
proxy measurement of condition 4.  

4 AUTOMATED ANNOTATION SYSTEM 
OCVS was developed to facilitate automated annotation of 
PSM data. Annotation involves associating each PSM con-
figuration parameter, numerical measurement, and classifier 
prediction with an OCVS term (i.e., making an assertion 
about an owl:NamedIndividual using rdf:type), and asserting 
instance-level relations that hold between particular individ-
uals. The resulting output can be expressed using the Re-
source Description Framework (RDF) and serialized using a 
suitable RDF syntax. RDF Turtle syntax is preferred for 
transmission to minimize file size. We use the SPARQL 
query language to query annotated PSM data files (see next 
section). An example of a part of an annotated PSM meas-
urement datum is shown in Table II. 

TABLE II.  PART OF AN ANNOTATED PSM MEASUREMENT DATUM 

Reading #13384_2 part_of (BFO_0000051) instance-level assertions 

:13384_2 rdf:type psm:PSM_0000010 , 
                        owl:NamedIndividual ; 
                
               obo:BFO_0000051 :13384_2AccelX , 
                               :13384_2AccelY , 
                               :13384_2AccelZ ; 
 
               obo:IAO_0000581 :13384_2ReadingTime ; 
                
               obo:BFO_0000051 :13384_2SMA , 
                               :13384_2SVM , 
                               :13384_2TiltX , 
                               :13384_2TiltY , 
                               :13384_2TiltZ . 

owl:NamedIndividual rdf:type 
obo:has_measu
rement_value 

#13384_2ReadingTime time measurement datum (IAO_0000416) 47.00 (s) 

#13384_2AccelX 

accelerometer x-axis acceleration magni-

tude measurement datum 

(PSM_0000031) 

0.19 (g) 

#13384_2TiltZ 
accelerometer z-axis tilt measurement 

datum (PSM_0000038) 
0.02 (deg) 

#13384_2BodyPosMDatum 
body position measurement datum 

(PSM_0000029) 
Upright 

 
The annotation system is implemented using a series of PHP 
scripts that are invoked offline and after a particular session 
has ended. Each session is given a unique identifier and is 
assumed to have a stable anatomical and device configura-
tion throughout.  

Annotated PSM data files6 are only linked to the ontolo-
gy by way of the IRI identifier of the corresponding OCVS 
types.  This loose coupling allows for further development 
and refinement of the ontology without changing the repre-
sentation of the annotated data file. All that is required is that 
OCVS types retain their IRI identifiers. The representation is 
also flexible enough to permit arbitrarily many new sensors 

  
6 See http://www.awqbi.com/ontologies/psm-instances.owl for a small sample annotated data file. 



Goldfain  et al. 

6 

to be integrated into the PSM platform without invalidating 
previously annotated (legacy) PSM data.  

5 QUERYING ANNOTATED PSM DATA 
We utilize the SPARQL to query annotated RDF-formatted 
PSM data. Annotated PSM data is queried locally using the 
ARQ command-line tool from the Apache Jena framework.  

The following is part of a SPARQL query that returns all 
of the PSM measurement data measured using an accelerom-
eter positioned at the sternum in which the inferred body 
position is ‘Bending Backward’:  

 
SELECT DISTINCT ?psmmd 
WHERE 
{ 
  ?psmdevtype rdfs:label "PSM device"@en . 
  ?cfg rdfs:label "Sternum"@en . 
  ?psmmdt rdfs:label "PSM measurement datum"@en . 
  ?d rdf:type ?psmdevtype . 
  ?d part_of: ?psmdevpart . 
  ?psmdevpart has_anatomic_configuration: ?cfg . 
  ?psmmd measured_using: ?d . 
  ?psmmd rdf:type ?psmmdt . 
  ?alg has_specified_input: ?psmdt . 
  ?alg has_specified_output: ?bpmd .  
  ?bpmd has_body_position_measurement: "Bending Backward"^^rdfs:Literal . 
} 
 
The query results are bound to ?psmmd and represent 

PSM measurement data that satisfy the criteria in the 
WHERE clause. This query exemplifies several different 
search criteria we may apply to the annotated PSM data set. 
If we are interested in the details of the configuration (e.g., 
the devices used, their sampling rates, and their anatomical 
configurations), then we could expand the query on the re-
sults bound to ?psmdevpart. If we are interested in the 
contextualized vital sign measurement value, we can expand 
the query on the results bound to ?psmmd and examine its 
measurement data parts. If we want to obtain details about 
the algorithm configuration, we can examine ?alg.  

From a user interface perspective, it is easier to provide a 
web-based form from which queries can be constructed. We 
are implementing scripts to programmatically generate que-
ries via the Graphite PHP Linked Data library7. 

6 CONCLUSION 
OCVS provides a representation of vital sign measurement 
context using the OBO Foundry ontologies. On the strength 
of cross-product definitions from orthogonal, independently 
developed ontologies, we are able to create descriptions of 
body positions, configurations, and queries in a composition-
al way. OCVS metadata captures enough domain knowledge 
to serve as a meaningful component of a pattern classifica-
tion pipeline. 

The semantic web standards used to build our annotation 
system enable decentralized development, storage, and query 
of resources. Further development on OCVS (or any of the 
OBO Foundry ontologies on which it relies) will not disrupt 
the data acquisition and classification routines. 

OCVS is currently used to annotate continuous raw sen-
sor measurement data. As such, the annotated PSM data is at 
the finest granularity. Currently, such data only need to be 
transmitted when an episodic reading is taken. In applica-
tions requiring more continuous transmission, OCVS-based 
  
7 http://graphite.ecs.soton.ac.uk/   

annotation can be applied to more coarse-grained data such 
as feature sets or sets of classifier outputs. A switch in data 
granularity will only require extension of the ontology rather 
than a switch of ontologies.  

We believe that using OBO Foundry ontologies and se-
mantic web standards can serve as the core knowledge repre-
sentation for contextualized vital signs. Such a representation 
can be extended to perform further contextualization (e.g., 
disease-based contextualization) depending on the require-
ments of the particular application. 
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