Computing the Concept Lattice using Dendritical
Neural Networks

David Ernesto Caro-Contreras, Andres Mendez-Vazquez

Centro de Investigacion y Estudios Avanzados del Politécnico Nacional
Av. del Bosque 1145, colonia el Bajio, Zapopan , 45019, Jalisco, México.
dcaro@gdl.cinvestav.mx,amendez@gdl.cinvestav.mx

Abstract. Formal Concept Analysis (FCA) is a new and rich emerg-
ing discipline, and it provides efficient techniques and methods for effi-
cient data analysis under the idea of “attributes”. The main tool used
in this area is the Concept Lattice also named Galois Lattice or Max-
imal Rectangle Lattice. A naive way to generate the Concept Lattice
is by enumeration of each cluster of attributes. Unfortunately the num-
bers of clusters under the inclusion attribute relation has an exponential
upper bound. In this work, we present a novel algorithm, PIRA (PIRA
is a Recursive Acronym), for computing Concept Lattices in an elegant
way. This task is achieved through the relation between maximal height
and width rectangles, and maximal anti-chains. Then, using a dendriti-
cal neural network is possible to identify the maximal anti-chains in the
lattice structure by means of maximal height or width rectangles.

Keywords: formal concept analysis, lattice generation, neural networks,
dendrites, maximal rectangles.

1 Introduction

Formal Concept Analysis (FCA) refers to a mathematized and formal human-
centered way to analyze data. It can be described as an ontology-based Lattice
Theory. This theory describes ways of visualizing patterns, generate implications,
and representing generalizations and dependencies [1]. The theory makes use of
a binary relation between objects and attributes, which plays a fundamental
role in the understanding of human model conceptualization. FCA formalizes all
these ideas, and gives a mathematical framework to work on them [2].

The Concept Lattice is mainly used to represent and describe hierarchies
between data clusters (formal concepts or classes), which are inherent in the
perceived information. A formal concept can be regarded also as a data cluster,
in which certain attributes are all shared by a set of objects. The Concept Lattice
is the main subject of the theory of FCA, and it was first introduced in the early
eighties by Rudolf Wille [2, 3]. Over time, FCA has become a powerful theory
for many interesting applications. Examples of these are in the data analysis
of Frequent Closed Itemsets [4], association rules and Functional/Conditional
hierarchies discovery [5, 6, 7]. For all these reasons, concept lattice generation

© paper author(s), 2013. Published in Manuel Ojeda-Aciego, Jan Outrata (Eds.): CLA
2013, pp. 141-152, ISBN 978-2-7466—6566—8, Laboratory L3i, University of La
Rochelle, 2013. Copying permitted only for private and academic purposes.

142 David Ernesto Caro-Contreras and Andres Mendez-Vazquez

is an important topic in FCA research [8, 9, 10, 11, 12, 13, 14, 15]. However,
the main drawback of concept lattices generation is the exponential size of the
concept lattice and its generation complexity [16].

In this work, we present a Morphological Neural Network based method to
generate the Concept Lattice. This batch method is capable of generating the
Hasse diagram, and it is a bottom-up generation algorithm. With that in mind,
this work is organized as follows. Section 2 is an elementary description of FCA
Theory. Next, section 3 is a short introduction on how the Single Lattice Layer
Perceptron (SLLP) works. In section 4, a description on how to compute the
Maximal Rectangles is given. In this section, we also define a link between SLLP
and the design of a classifier for maximal anti-chains search. Section 5 shows a
comparison between PIRA and other known algorithms.

2 Basic Definitions

2.1 Formal Concept Analysis (FCA)
First, it is necessary to define the concept of a formal context [3].

Definition 1. A binary formal context K is a triple (G, M,I). In this math-
ematical structure, G and M are two finite sets, called objects and attributes
respectively, and I C G x M is a binary relation over G and M, named the
incidence of K.

In order to define formal concepts of the formal context (G,M,I), it is necessary
to define two derivation operators, named Galois connectors.

Definition 2. For an arbitrary subsets A C G and B C M:

- A ={meM]|(g,m)elVgec A}
- B :={¢9geG|(g,m)el,Vme B}

These two derivation operators satisfy the following three conditions over arbi-
trary subsets A1, Ao C G and By,By C M:

1. Ay C Ay then AL C A} dually By C By then B, C Bj
2. A) C A} and A} = AY' dually B, C B and B} = BY’

Next, the definition of a formal concept idea, which represents the building unit
of FCA.

Definition 3. Let K be a formal context, K := (G, M,I). A formal concept C
of K is defined as a pair C = (A,B), A C G and B C M, where the following
conditions are satisfied, A = B’ and A’ = B, where A is named the extent and
B is named the intent of the formal concept (A, B).

Next, we will show some useful notions from Lattice Theory [17, 18] to under-
stand the algebraic structure generated by those derivation operators and the
formal concept idea.

Computing the Concept Lattice using Dendritical Neural Networks 143

Definition 4. A Partially Ordered Set (Poset) is a set X in which there is a
binary relation between elements of X, <, with the following properties:

1. Vz, z < z (Reflexive).
2. if x <y and y < x, then x = y (Antisymmetric).
3. ifx <yand y < z, then z < z (Transitive).

Formal Concepts can be partially ordered by inclusion. And for any pair C;,
C; have a unique greatest lower bound and a unique least upper bound. Then,
the set of all formal concept in K, ordered by inclusion, is known as a Concept
Lattice. Next definition links some definitions with the Formal Concept notion.

Definition 5. (Rectangles in K). Let A € G and B € M, a rectangle in K is
a pair (A, B) such that Ax BC 1T .

Given the set of Rectangles in K, a special kind of rectangles are defined as
follows:

Definition 6. (Mazimal Rectangles). A rectangle (A1, B1) is mazimal if and
only if there does not exist another valid rectangle (Ag, Bs) in K such that A; C
A2 or B1 g BQ .

From here, we have the formal concept as a maximal rectangle.

Theorem 1. (A, B) is a formal concept of K if and only if (A, B) is a mazimal
rectangle in K.

Now, the following definitions are going to be useful for the proposed bottom-up
approach of FCA generation.

Definition 7. Let K:= (G, M,I) and A C G. A is said to be an object deriva-
tive anti-chain set if and only if A} ¢ Ay and Ay, € A} for any two distinct
Ay, Ay € A Dually, for B C M nd B} ¢ B} for any
two distinct Bj, B} in B.

We will denote as D a derivative anti-chain and as (K) the set of all antichains
in K. All sets in which the super/subconcept order is not satisfied for any distinct
elements of the set is called anti-chain set.

Definition 8. DT is a mazimal derivative anti-chain iff there does not exist
other D € A(K) such that D D D*. There exists a mazimal derivative anti-
chain for objects and one for attributes.

Finally, we use a simple upward closed set definition.

Definition 9. Upward closed set. Let (L, <) be a poset P. A set S C L is said
to be upward closed if Vx,y € S with y > x implies that y € S.

Using these definitions of anti-chains, maximal rectangles and upward closed set,
it is possible to device a bottom-up approach by means of dendritic neuronal
networks.

144 David Ernesto Caro-Contreras and Andres Mendez-Vazquez

3 Lattice-Based Neural Networks (LBNN).

Artificial Neural Networks (ANN) are models of learning and automatic pro-
cessing inspired by the nervous system. The features of ANN make them quite
suitable for applications where there is no prior pattern that can be identified,
and there is only a basic set of input examples (previously classified or not).
They are also highly robust to noise, failure of elements in the ANN, and, fi-
nally, they are parallelizable. As we said early, our work is related with LBNN,
which is also considered an Artificial Neural Network, and are inspired in recent
advances in the neurobiology and biophysics of neural computation (author?)
[19, 20].

The theory of LBNN is actively used in classification [21, 20, 22], clustering
[23], associative memories [24, 25|, fuzzy logic [26], among others[27, 28]. Basi-
cally, in the LBNN model, an input layer receives external data, and subsequent
layers perform the necessary functions to generate the desired outputs. Single
Lattice Layer Perceptrons (SLLP), also named Dendritic Single Layer Percep-
tron, are basically a classifier in which there exists a set of input neurons, a
set of output neurons, and a set of dendrites growing from the output neurons.
Those dendrites are connected with the input set by some axons from those input
neurons. A training set configures those outputs based on the maxima \/ and
minima /\ operations derived from the morphological algebra (R, +,V, A). FCA
and Mathematical Morphology common algebraic framework: Erosion, dilata-
tion, morphological operators, valuations, an many other functions in concept
lattices have been previously studied [29].

In SLLP, a set of n input neurons Ny, . . ., N, accepts input « = (21, ...,2,) €
R™. An input neuron provides information through axonal terminals to the den-
dritic trees of output neurons. A set of O output neurons is represented by
O1, ..., Op,. The weight of an axonal terminal of neuron N; connected to the ky,
dendrite of the O; output neuron is denoted by wfj 4> in which, the superscript
¢ € {0,1} represents an excitatory £ = 1 or a inhibitory ¢ = 0 input to the
dendrite. The ky, dendrite of O; will respond to the total value received from
the N input neurons set, and it will accept or reject the given input. Dendrite
computation is the most important operation in LBNN. The following equation
71 (), from SLLP, corresponds to the computation of the kq, dendrite of the jg,
output neuron|21].

@) =pr N NED T @+ w0l

i€I(k) LeL

Where z is the input value of neurons Ny, ..., N,, and z; is the the value of
the input neuron N;. I(k) C 1,...,n represents the set of all input neurons with
synaptic connection on the k¢, dendrite of O;. The number of terminal axonal
fibers on N; that synapse on a dendrite of O; is at most two, since £(:) C {0,1}
. Finally, the last involved element is p;; € {—1,1} and it denotes the excitatory
(pjr = 1) or inhibitory (p;r = —1) response of the k;, dendrite of O; to the
received input. All the values Tlﬁ(x) are passed to the neuron cell body. The

Computing the Concept Lattice using Dendritical Neural Networks 145

value computation of O; is a function that computes all its dendrites values.
The total value received by O; is given by[21]:

K;
I (z) = p; * \/ ()
k=1

In this SLLP model, K is the set of all dendrites of O;, p; = +1 represents
the response of the cell body to the received input vector. At this point, we
know that p; = 1 means that the input is accepted and p; = —1 means that the
cell body rejects the received input vector. The last statement related with O;
correspond to an activation function f, namely y; = f [77(z)].

1l < 7(x) >0
0 < 7(z)<0

Flr (@) = { (1)

As, we mention early, dendrites configurations is computed using a training
set. For this, they use merge and elimination methods [17].

4 PIRA Algorithm.

In PIRA-LBNN model for finding upward-closed set elements, a set of binary
patterns are represented by G’. Thus, the binary representation of a formal
context is itself a set of patterns, in which the derivative of each object is an
element x € G'. Then, we can define each element z = (x1,...,z,) € G’ as a
binary vector. This allows us to define a simple class classification rule to find
maximal rectangles, and in an equivalent way the maximal anti-chains.

In PIRA algorithm we search all the rectangles with maximum width or
height from each formal concept founded. There are two ways to achieve our
goal. It means that £ = 1 or £ = 0 depending on whether it is calculating, a
supremum or an infimum, by using excitatory or inhibitory dendrites. Thus, p;
is also a constant, p;; = 1 or p;r = —1 and it denotes the excitatory or inhibitory
response of the k;, dendrite of M} to the received input, and another remarkable
statement is the fact that we only need to connect zeros as axonal branches. The
simplest way to compute the value of the k;, dendrite derived from the SLLP
equations, is:

@) =\ (@) (2)

i€l (k)

This equation, where T]z (z) is the value of the computation of the ky, dendrite
of the jy, output neuron given a input x, I(k) C {1,...,n} is the set of input
neurons with terminal fibers that synapse the k;;, dendrite of our output neuron.
We realize that all weights wfjk are equal to zero, this is, for our upward closed
set classifier, we only need to store zero values from the input patterns in the
training step. Our goal is that the output of our classification neuron be x € C4

146 David Ernesto Caro-Contreras and Andres Mendez-Vazquez

Algorithm 1 addDendrite

INPUT: NeuralNetwork P,Pattern x
OUTPUT: Updated P
Dendrite k = addNewDendrite (P)
FOR EACH element in x
IF getValue(element) = 0

i = getPosition (element)
addAxonalBranch (k, i)
END
END
END

if the input € D, The training step is to find the set D*. This is achieved by
processing elements from higher to lower cardinality,

Specifically, each dendrite k corresponds with one maximal antichain intent
to be tested, I(k) is the incidence set of positions where the value of the maximal
rectangle is zero for the pattern represented by the k dendrite. We get the state
value of M; computing the minimum value of all it’s dendrites. Again, as the
SLLP, each T)z (x) is computed, and it is passed to the cell body of M;. Then we
can get the total value received by our output neuron as follows:

() = \ () 3)

We realize that the activation function is not required since f[77(z)] = 77 (z)
where 79(z) = 1if z £ y for all y € C; and 77(z) = 0 if z < y for some y € C.
As we mentioned above z is a maximal rectangles if and only if z £ y and y £ =
for all y € C;. Using the previous statement we can ensure that half of the work
is done, and the second test, y £ z, will be performed by processing data in a
particular order. In our case, we use cardinality order ensuring that each new
computed row is not a superset of the previously computed rows.

As we said before, the idea is to use our LBNN structure to classify maximal
rectangles. When we start computing a formal concept, our structure is empty,
this means there are not dendrites or axonal connections. So, the first step is to
add each element with the maximal cardinality as a pattern to learn. Algorithm
1 shows how an element is added to our LBNN for maximal rectangles learning.
First, algorithm 1 receives as parameter the LBNN which is being trained and
a binary vector. As we will see below, this binary vector has been proven as an
antichain element. Algorithm 1, first grows a new dendrite ky, in our output
neuron O;. Every column in z is checked, if that property is not contained by
the object x, then an axonal branch grows from the ¢ position of the input neu-
ron set to the new dendrite. This operation is represented by addAxonalBranch
calling. We can assure that we will not misclassify formal concepts in the pro-
cessed context. The algorithm 2 shows how to compute the Concept Lattice by
computing Maximal Antichain Sets recursively.

Computing the Concept Lattice using Dendritical Neural Networks

147

Algorithm 2 Compute Maximal Rectangles

INPUT: A Binary Context K:(G,M,I), K-Supremum, K-Infimum,

Lattice
OUTPUT: Intent HashSet Maximal Rectangles
STEP 1:
Init:

IBNN Upward Structure
Maximal Rectangles
STEP 2:
Sort G by derivative higher to lower Cardinality
STEP 3:
IF maximal cardinality is equal to K—Supremum intention
cardinality
Add Link from K—Supremum to K-Infimum
RETURN
Add, as positive dendrites, all elements with maximal
cardinality in G’ to LBNN.
STEP 4:
Foreach remaining element in G
IF Maximal Rectangles does not contains element’ AND
Upward evaluation element’ is 1 then:
add, as dendrite, element to LBNN
create Formal Concept with:
element union K-infimum as extent
element’ as intent
add this new formal concept to:
Maximal _Rectangles
OTHER IF Maximal Rectangles contains element
add element to previously Formal Concept created.
STEP 5:
Foreach Rectangle in Maximal Rectangles
IF Lattice does mnot contains Rectangle
add Rectangle to Lattice
add a Link from Rectangle to K-Infimum
Compute Maximal Rectangles with:
G = G / Rectangle extent
M = Rectangle intent
I = Projection
K—Supremum
Rectangle as a K-Infimum
Lattice
ELSE
add a Link from previously created Rectangle in
Global Maximal Rectangles to K-Infimum

148 David Ernesto Caro-Contreras and Andres Mendez-Vazquez

Algorithm 3 Main Function

INPUT: BinaryContext (G,M,I)
OUTPUT: Lattice L
Step 1: Get Maximum and Infimum elements.
FormalConcept max = getMax(G,M,I)
FormalConcept min = getMin (G,M,I)
addConcept (L, max), addConcept (L, min)
STEP 2: Get maximal Rectangles From min
MaxRectangles = Compute Maximal Rectangles with:
G/min . extent ,
min.intent ,I-Proj,
max,
min

L

3

In algorithm 2, the first step creates a new dendritic neural network. It is
initialized with one output neuron, n = |intent| and k = 0, where the number
of input neurons is n, and each input neuron represents one attribute element
in M. The second step is used to get the G’ set ordered by attribute cardinal-
ity. Next, in a third step, if the maximal cardinality of the elements in G’ is
equal to the Supremum intent cardinality, it adds a link between Supremum and
Infimum, and stops. Otherwise, it adds all the elements in G’ with the maxi-
mal cardinality, to the dendritical neural network structure. Those elements are
maximal rectangles in the given binary context. The fourth step is used to check
the remaining elements. If an element derivative does not exist already, as an
intent, and the evaluation 3 says that it is a maximal rectangle, then, it adds the
object and its derivative as a new maximal rectangle. Otherwise, if the element
derivative already exists, it is added to the previously formal concept as its ex-
tent. In the last step, it processes each maximal rectangle that has been found. If
that element is already contained in the lattice, it adds a link between Infimum
and the previous element created in the lattice. Otherwise, it adds that link and
processes that formal concept recursively. Then, it adds this new element to the
lattice structure.

At this point, it computes all the concepts given by the binary context, but
B(K) cardinality is bounded by an exponential complexity. A simple way to
avoid this issue is to use a Binary Tree to store and recover all elements in®5(K).
Basically, this binary tree works as a hash function using the concept of intent
in their binary representation. Then, it searches, finds and adds any intent in
|M| steps. In addition, the processing order enables us to generate the edges of
the Hasse diagram without additional computing steps. Therefore, the process
of generating the concept lattice and Hasse diagram presented in this paper has
an expected polynomial delay time [16] for maximal anti-chains search.

Computing the Concept Lattice using Dendritical Neural Networks 149

5 Computational Experiments.

As shown in [16], many parameters are involved in the performance and running
time of an algorithm. For our tests, we considered the number of objects, the
number of attributes, the density of the context and the worst case for contexts
of M x M. Where density is the least percentaje of binary relations for each
object in K. Those parameters were tested inde-
pendently. Four algorithms were selected to compare the Dendritical algorithm
performance. Implementations were performed in java.

Figure 1 shows the execution time behavior for a formal context with 10%
density and 100 attributes. Here, the V-axis represent the running time of each
algorithm in ms, and the H-axis the total number of objects under constant
number of attributes. The test was performed by increasing the number of objects
from one thousand to twenty thousand, with a random distribution and 10% of
density.

We can verify that Bordat algorithm and our algorithm have the best per-
formance when the number of objects increase with respect to the attributes.

Figure 1. Growing objects number. Figure 2. Growing attributes number

20000

18000 II
12000000 / 16000 /
10000000 14000

l —+—Bordat
/ 12000
ndritica

J’ —8—Dendritical
8000000 10000 » o
odin
/ —®—Dendritical 8000 /
6000000 I / =mNourrine
Nourrine 6000 A
l / Valtch
4000000 ——Godin 4000

Valtche 2000 |

. P
; 10 20 s0 100

1000 2000 5000 10000 20000

2000000

0

Execution time when the number of
Execution time when the number of attributes from 10 to 100 with 1000
objects grows from 1000 to 20000, with objects and 10% density case.
100 attributes and 10% of density.

Figure 2 shows the increase in execution time when the number of attributes
increases. All datasets for this test has a 10% density and 1000 objects, and the
number of attributes is increasing from ten to one hundred, and, the number of
formal concepts is growing too. Here we can notice that Bordat and Dendritical
algorithms, are faster than Godin, Nourrine and Valtchev algorithms. We can
also notice that Dendritical execution time behavior is faster when the number
of objects grows.

Figure 3 shows the increase in execution time when the density percentage
becomes higher. All datasets has 1000 objects and 100 attributes and when the
density grows the number of formal concepts grows too. As we mention, density
is mainly the percentage of attributes for all the objects in the formal context.

150

Figure 3. Growing density percentage

David Ernesto Caro-Contreras and Andres Mendez-Vazquez

Figure 4. MxM worst case contexts

600000 100000 r[
/ / 50000 ,,
500000 80000 I
/ / 70000
l400000 —4—Bordat 0000 == Bordat
/ —8—oendritical 8- Dendritical
50000
300000 Nourrine // Nourrine
40000
/ / P ——Godin / —mvalichey
200000 30000 A
Valichev l Gadin
20000
100000 l /
& 19000
o 0 ::A.—.—
10 12 14 16 18 20 8 11 13 15 16 18 19 20

Execution time when density increases
from 10% to 20%. 1000 objects and 100
attributes case.

Algorithms running diagonal contexts in

which number of attributes are growing
from 8 to 20 attributes.

Here, we notice that when the density grows Dendritical is closer and even faster
than the other algorithms. Figure 4 shows running time for zero diagonal con-
texts where |G| = |[M| and yields the complete lattice, which means 2/ formal
concepts. In this kind of formal contexts, we can see a clear running time superi-
ority of the dendritical algorithm. Finally, table 1 shows some examples of time
complexity at each algorithm step.

Table 1. Execution time examples

INO. Obleo. AttlDensitleonceptleuery TimelOrdering Dendriticall Total ‘

1000 36 17 8377 722ms 20ms 49ms 791ms

1000 49 14 14190 924ms 67ms 101ms 1092ms

1000 81 11 26065 1853ms 124ms 201ms 2178ms
Algorithms time when density becomes higher and the number of attributes become

lower. Those tests shows the increase in execution when attributes and I C G x M
are modified.

6 Conclusion

In this paper, we presented an algorithm based on the main idea of maximal
rectangles, using the cardinality notion and the dendritical classifier. We have
also compared it with some known algorithms for the construction of Concept
Lattices.

From the tests presented in this paper, we can see that as the number of
objects grows, our algorithm time execution is higher than Bordat or other
methods, but it could be a better choice when the density or the number of
attributes is high. Also, the results shows a good performance for the M x M
contexts in the worst case scenario, which demonstrates the feasibility of our
algorithm on some kinds of datsets.

Computing the Concept Lattice using Dendritical Neural Networks 151

Bibliography

[1] Belohlavek, R., Beydoun, G.: Formal Concept Analysis With Background
Knowledge: Attribute Priorities. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 5465 (2009) 109-117

[2] Hereth, J., Stumme, G., Wille, R., Wille, U.: Conceptual knowledge discov-
ery: a human-centered approach. Journal of Applied Artificial Intelligence
17 (2003) 281-302

[3] Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies
of Concepts. In: ICFCA. (2009) 314-339

[4] Valtchev, P.; Missaoui, R., Godin, R., Meridji, M.: Generating frequent
itemsets incrementally: two novel approaches based on Galois lattice theory.
J. Exp. Theor. Artif. Intell. 14(2-3) (2002) 115-142

[5] Maddouri, M.: A Formal Concept Analysis Approach to Discover Associa-
tion Rules from Data. R. Belohlavek. V. Snasel CLA 1 (2005) 10-21

[6] Agrawal, R.: Fast algorithms for mining association rules in large databases.
Proceedings of the 20th International Conference on Very Large Data Bases,
1 (1994) 487-499

[7] Lakhal, L., S.G.: Efficient Mining of Association Rules Based on Formal
Concept Analysis. Ganter et al. Springer. LINAT 3626 (2005) 180-195

[8] Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A New Incremental Al-
gorithm for Constructing Concept Lattices. In Eklund, P., ed.: Concept
Lattices. Volume 2961 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2004) 372-385

[9] Lv, L., Zhang, L., Jia, P., Zhou, F.: A Bottom-Up Incremental Algorithm
of Building Concept Lattice. In Wu, Y., ed.: Software Engineering and
Knowledge Engineering: Theory and Practice. Volume 115 of Advances in
Intelligent and Soft Computing. Springer Berlin Heidelberg (2012) 91-98

[10] Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards
constructing Galois (concept) lattices. Discrete Math. 256(3) (2002) 801—
829

[11] Nourine, L., Raynaud, O.: A Fast Algorithm for Building Lattices. Inf.
Process. Lett. 71(5-6) (1999) 199-204

[12] Nourine, L., Raynaud, O.: A fast incremental algorithm for building lattices.
J. Exp. Theor. Artif. Intell. 14(2-3) (2002) 217-227

[13] Farach-Colton, M., Huang, Y.: A Linear Delay Algorithm for Building
Concept Lattices. In Ferragina, P., Landau, G., eds.: Combinatorial Pattern
Matching. Volume 5029 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2008) 204-216

[14] Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation al-
gorithms based on Galois (Concept) lattices. Computational Intelligence
11(2) (1995) 246267

152 David Ernesto Caro-Contreras and Andres Mendez-Vazquez

[15] Ganter, B.: Two basic algorithms in concept analysis. In: Proceedings of
the 8th international conference on Formal Concept Analysis. ICFCA-10,
Berlin, Heidelberg, Springer-Verlag (2010) 312-340

[16] Kuznetsov, S.0O., Obiedkov, S.A.: Comparing performance of algorithms
for generating concept lattices. Journal of Experimental and Theoretical
Artificial Intelligence 14(2-3) (2002) 189-216

[17] Kaburlasos, V.G., Ritter, G.X.: Computational Intelligence Based on Lat-
tice Theory. Volume 67 of Studies in Computational Intelligence. Springer
(2007)

[18] B. A. Davey, H.A.P.: Introduction to lattices and orders. 2nd edn. Press
Sindicate H. Cambridge University (2002)

[19] Ritter, G.X., Iancu, L., Urcid, G.: Neurons, Dendrites, and Pattern Classi-
fication. In: CIARP. (2003) 1-16

[20] Urcid, G., Ritter, G.X., Iancu, L.: Single Layer Morphological Perceptron
Solution to the N-Bit Parity Problem. In: CTARP. (2004) 171-178

[21] Ritter, G., Urcid, G.: Learning in Lattice Neural Networks that Employ
Dendritic Computing. In Kaburlasos, V., Ritter, G., eds.: Computational
Intelligence Based on Lattice Theory. Volume 67 of Studies in Computa-
tional Intelligence. Springer Berlin / Heidelberg (2007) 25-44

[22] Barmpoutis, A., Ritter, G.X.: Orthonormal Basis Latice Neural Networks.
In Computational Intelligence Based on LatticeTheory, V. Kaburlasos and
G. X. Ritter 1 (Springer-Verlag, Heidelberg, Germany, 2007) 43-56

[23] Kaburlasos, V.: Granular Enhancement of Fuzzy ART-SOM Neural Classi-
fiers Based on Lattice Theory. In Kaburlasos, V., Gerhard, R., eds.: Com-
putational Intelligence Based on Lattice Theory. Volume 67 of Studies in
Computational Intelligence. Springer Berlin / Heidelberg (2007) 3-23

[24] Aldape-Perez, M., Yanez-Marquez, C., Camacho-Nieto, O., J.Arguelles-
Cruz, A.: An associative memory approach to medical decision support
systems. Comput. Methods Prog. Biomed. 106(3) (2012) 287-307

[25] Ritter, G.X., Chyzhyk, D., Urcid, G., Grana, M.: A Novel Lattice Associa-
tive Memory Based on Dendritic Computing. In: HAIS. (2012) 491-502

[26] Kaburlasos, V.G., P.V.: Fuzzy lattice neurocomputing (fin) models. Neural
Networks 13 (10) (2000) 1145-1170.

[27] Witte, V., Schulte, S., Nachtegael, M., Malange, T., Kerre, E.: A Lattice-
Based Approach to Mathematical Morphology for Greyscale and Colour
Images. In Kaburlasos, V., Ritter, G., eds.: Computational Intelligence
Based on Lattice Theory. Volume 67. Springer Berlin / Heidelberg (2007)
129-148

[28] Urcid, G., Nieves-Vazquez, J.A., Garcia-A., A., Valdiviezo-N., J.C.: Robust
image retrieval from noisy inputs using lattice associative memories. In:
Image Processing: Algorithms and Systems. (2009)

[29] Atif, J., BI.D.F.H.C.: Mathematical morphology operators over concept
lattices. . In: Cellier, P., Distel, F., Ganter, B. (Eds.) ICFCA 2013,
(Springer-Verlag Berlin Heidelberg) LINAT 7880 (2013) 28-43.

