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Preface

Formal concept analysis has, for many years, laid claim to providing a formal
basis for an applied lattice theory. With the many different formalisms and
implementations, and their applications available today, this claim is stronger
than ever, as witnessed by increasing amount and range of publications in the
area.

The International Conference “Concept Lattices and Their Applications (CLA)”
is being organized since 2002 with the aim of bringing together researchers work-
ing on various approaches for studying and practically applying concept lattices.
The main aim of CLA is to bring together researchers (students, professors, en-
gineers) involved in all aspects of the study of concept lattices, from theory to
implementations and practical applications. As the diversity of the selected pa-
pers shows, there is a wide range of theoretical and practical research directions,
ranging from algebra and logic to pattern recognition and knowledge discovery.

The Tenth edition of CLA was held in La Rochelle, France from October 15th
to October 18th, 2013. The event was organized and hosted by the Laboratory
L3i, University of La Rochelle.

This volume includes the selected papers and the abstracts of 4 invited talks.
This year there were initially 37 submissions from which 22 included papers
were accepted as full papers and 5 as short papers. Thus, the program of the
conference consisted of four keynote talks given by the following distinguished re-
searchers: Ralph Freese, Bart Goethals, Michel Grabisch and Vincent Duquenne,
together with twenty-seven communications, including the full and short papers,
authored by researchers from thirteen countries (Belgium, Chile, Cyprus, Czech
Republic, Djibouti, Estonia, France, Germany, Mexico, Russia, Slovakia, Spain
and USA).

The papers were reviewed by members of the Program Committee with the help
of the additional reviewers listed overleaf. We would like to thank them all for
their valuable assistance. It is planned that a selection of extended versions of
the best papers will be published in a renowned journal, after being subjected
again to a peer review.

The success of such an event is mainly due to the hard work and dedication of a
number of people, and the collaboration of several institutions. We want to thank
the contributing authors, who submitted high quality works, to acknowledge the
help of members of the CLA Steering Committee, who gave us the opportunity
of chairing this edition, and to thank the Program Committee, the additional
reviewers, and the local Organization Committee. All of them deserve many
thanks for having helped to attain the goal of providing a balanced event with
a high level of scientific exchange and a pleasant environment.

We would also like to thank the following institutions, which have helped the or-
ganization of the 10th CLA International Conference: Region of Poitou-Charentes,



Department of Charente Maritime, City of La Rochelle and University of La
Rochelle.

Last but not least, most of our bureaucratic tasks related to paper submission,
selection, and reviewing have been minimized thanks to the EasyChair confer-
ence system, and we should therefore not forget to mention its help after the list
of “official sponsors”.

October 2013 Manuel Ojeda-Aciego
Jan Outrata
Program Chairs of CLA 2013



Projective Lattices

Ralph Freese

Department of Mathematics, University of Hawaii
Honolulu, HI 96822, USA
ralph@math.hawaii.edu

A lattice L is projective in a variety V of lattices if whenever
f:K—>L (1)
is an epimorphism, there is a homomorphism
g:L—>K (2)

such that f(g(a)) = a for all a € L.

Projective lattices are characterized in [3] by four conditions. This talk will
discuss two of them that are of current interest.

If g in (2) is only required to be order-preserving, it is called an isotone
section of the epimorphism (1). We will characterize which lattices L have an
isotope section for every epimorphism (1). We will use this to characterize when
the ordinal (linear) sum of two projective lattices in V will be projective and
give some surprising examples.

The second of the four conditions characterizing projectivity we will discuss
is join refinement and the dependency relation; the so-called D-relation. This
condition and some closely related concepts are used in many parts of lattice
theory. Besides free lattice, projective lattices and finitely presented lattices, it
has applications to transferable lattices, congruence lattices of lattices, repre-
senting finite lattices as congruence lattices of finite algebras, and ordered direct
bases in database theory [1,2].

References
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Cartification: from Similarities to Itemset
Frequencies

Bart Goethals

University of Antwerp, Belgium
bart.goethals@ua.ac.be

Abstract. We propose a transformation method to circumvent the problems with high
dimensional data. For each object in the data, we create an itemset of the k-nearest
neighbors of that object, not just for one of the dimensions, but for many views of
the data. On the resulting collection of sets, we can mine frequent itemsets; that is,
sets of points that are frequently seen together in some of the views on the data.
Experimentation shows that finding clusters, outliers, cluster centers, or even subspace
clustering becomes easy on the cartified dataset using state-of-the-art techniques in
mining interesting itemsets.






Cooperative Games on Lattices

Michel Grabisch

Paris School of Economics
Université Paris [
106-112, Bd de I’Hoépital, 75013 Paris
michel.grabisch@Quniv-parisl.fr

In cooperative game theory, for a given set of players N, TU-games are functions
v: 2N — R which express for each nonempty coalition S C N of players the best they
can achieve by cooperation.

In the classical setting, every coalition may form without any restriction, i.e., the
domain of v is indeed 2V. In practice, this assumption is often unrealistic, since some
coalitions may not be feasible for various reasons, e.g., players are political parties with
divergent opinions, or have restricted communication abilities, or a hierarchy exists
among players, and the formation of coalitions must respect the hierarchy, etc.

Many studies have been done on games defined on specific subdomains of 2V, e.g.,
antimatroids [1], convex geometries [3,4], distributive lattices [6], or others [2,5]. In
this paper, we mainly deal with the case of distributive lattices. To this end, we assume
that there exists some partial order < on N describing some hierarchy or precedence
constraint among players, as in [6]. We say that a coalition S is feasible if the coalition
contains all its subordinates, i.e., i € S implies that any j < i belongs to S as well. Then
feasible coalitions are downsets, and by Birkhoff’s theorem, form a distributive lattice.
From now on, we denote by ¥ the set of feasible coalitions, assuming that O, N € F.

The main problem in cooperative game theory is to define a rational solution of the
game, that is, supposing that the grand coalition N will form, how to share among its
members the total worth v(N). The core is the most popular solution concept, since it
ensures stability of the game, in the sense that no coalition has an incentive to deviate
from the grand coalition. For a game v on a family ¥ of feasible coalitions, the core is
defined by

Cv)={xeR"|x(S) >v(S),VS € F,x(N) =v(N)}

where x(S) is a shorthand for ¥;-¢x;. When # = 2V, the core is either empty or a convex
bounded polyhedron. However, for games whose cooperation is restricted, the study of
the core becomes much more complex, since it may be unbounded or even contain
no vertices (see a survey in [7]). For the case of games with precedence constraints,
it is known that the core is always unbounded or empty, but contains no line (i.e., it
has vertices). The problem arises then, to select a significant bounded part of the core
as a reasonable concept of solution, since unbounded payments make no sense. We
propose to select a bounded face of the core. A systematic study of bounded faces is
done through the concept of normal collections.

We also present some results when ¥ is not a distributive lattice, but a set lattice
closed under intersection, or a regular set system.

Lastly, we introduce games on concept lattices, show that this induces in fact two
games, and give some results on the core.
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Some applications of Lattice Analysis (1983-2013)

Vincent Duquenne

CNRS-IMJ / C&O, Université Pierre et Marie Curie,
4 place Jussieu, 75005 Paris, France

duquenne@math. jussieu.fr

Abstract. Following [1,2] we report on applications of Lattice Analysis either
for deciphering data or for clarifying abstract lattices. Here, lattices are often
considered as implication models that can be summarized with canonical basis
[3,1,4,5] or (semi) lattice cores [1]. In a more symmetric way decompositions
through lattice congruence / tolerance relations are used for real data analysis as
well as for getting understandable structures of abstract lattices [6,7 and below].
As for the needed algorithms, many efforts have been done to “overtake” the
NEXT-CLOSURE algorithms since their discovery in 1984 [5]. For implications
the fees may involve an exponential explosion in memory. We will just try to
give some visions of what could be next in doing with(-out) NEXT-CLOSURE.
Hence in a fresh original spirit of the early eighties, for all these and further de-
velopments we still promote “more simplicity with more structure” (and toler-
ances ...) for deepening the concept systems and lattice applications.

Keywords: closure operator, lattice, canonical basis of implications, quasi/
pseudo-closed, (semi) lattice cores, perspectivities / arrows, congruences / tol-
erances, combinatorial exhaustive enumeration, NEXT-CLOSURE algorithms.
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Fig. 1. Peasants x possessions. Lattice gluing decomposable, hence substitution properties...
From : Models of possessions and Lattice Analysis, Social Sci. Information (1995).

Program GLAD (C) 1992 V.Duquenne Paris. Perm(5)

SOA

%

\

/Q

Fig. 2. Perm(5) quotiented by the meet of its maximal congruences: “having the same comple-
ments”. From : On permutation lattices, Mathematical Social Sciences (1994).



A practical application of Relational Concept
Analysis to class model factorization: lessons
learned from a thematic information system

A. Osman Guédi'?3, A. Miralles?, M. Huchard?, and C. Nebut?

'Université de Djibouti, Avenue Georges Clémenceau BP: 1904 Djibouti (REP)
2Tetis/Trstea, Maison de la télédétection, 500 rue JF Breton 34093 Montpellier Cdx 5
SLIRMM (CNRS et Univ. Montpellier), 161, rue Ada, F-34392 Montpellier Cdx 5

Abstract. During the design of class models for information systems,
databases or programming, experts of the domain and designers discuss
to identify and agree on the domain concepts. Formal Concept Analysis
(FCA) and Relational Concept Analysis (RCA) have been proposed, for
fostering the emergence of higher level domain concepts and relations,
while factorizing descriptions and behaviors. The risk of these methods
is overwhelming the designer with too many concepts to be analyzed. In
this paper, we systematically study a practical application of RCA on
several versions of a real class model for an information system in order
to give precise figures about RCA and to identify which configurations
are tractable.

Keywords: Class model, class model factorization, Formal Concept Analysis,
Relational Concept Analysis

1 Introduction

Designing class models for information systems, databases or programs is a com-
mon activity, that usually involves domain experts and designers. Their task con-
sists in capturing the domain concepts, and organizing them in a relevant special-
ization structure with adequate abstractions and avoiding redundant concepts.
Formal Concept Analysis (FCA) and its variant Relational Concept Analysis
(RCA) have been proposed to assist this elaboration phase, so as to introduce
new abstractions emerging from the identified domain concepts, and to set up a
factorization structure avoiding duplication. FCA classifies entities having char-
acteristics!, while RCA also takes into account the fact that entities are linked
by relations. The concept lattices produced can be exploited so as to obtain the
generalization structure for the class model.

Nevertheless, while this whole factorization structure of a class model is a
mathematical object with strong theoretical properties, its practical use might

! The usual terms in the FCA domain are "objects" and "attributes"; we prefer not
using them here because they conflict with the vocabulary of class models.

© paper author(s), 2013. Published in Manuel Ojeda-Aciego, Jan Outrata (Eds.): CLA
2013, pp. 9-20, ISBN 978—2-7466—6566—8, Laboratory L3i, University of La Rochelle,
2013. Copying permitted only for private and academic purposes.
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suffer from limitations due to the large size of the obtained lattices. In such a
case, domain experts might be overwhelmed by the produced information making
it difficult (or even impossible) to use it to improve the class model.

In this paper we want to assess, in a real case study, the size of the fac-
torization results, in order to have a solid foundation for proposing practical
recommendations, tools or approaches. We work with a kind of "worst case" of
RCA application, by using all the modeling elements and not limiting our investi-
gation to some elements (like classes and attributes, or classes and operations).
We show, via various selected graphics, how RCA behaves. Our experiments
indicate which configurations are tractable, admitting that some tools present
results in a fine way, and which configurations lead to quite unusable results.

The rest of the paper is structured as follows. Section 2 briefly explains
how FCA and RCA can contribute to a class model design. Section 3 settles
the environment for our experiments and introduces our case study. Section 4
presents and discusses the obtained results. Section 5 presents related work, and
section 6 concludes.

2 Concept lattices in class model refactoring

In this section, we explain how concept lattices implement and reveal the under-
lying factorization structure of a class model. We also show how this property
can be exploited for class model refactoring, and in particular: generating new
reusable abstractions that improve the class organization and understanding,
especially for domain experts, limiting attribute and role duplication.

Formal Concept Analysis [5] is a mathematical framework that groups enti-
ties sharing characteristics: entities are described by characteristics (in a Formal
Context), and FCA builds (formal) concepts from this description. In Relational
Concept Analysis (RCA) [9], the data description consists of several Formal
Contexts and relations. The main principle of RCA is to iterate on FCA appli-
cation, and the concepts learnt during one iteration for one kind of entity are
propagated through the relations to the other kinds of entities. The concepts
are provided with a partial order which is a lattice. In the obtained concept
lattices, we distinguish merged concepts and new concepts. A merged concept is
a concept that has more than one entity in its simplified extent. This means that
the entities of the simplified extent share the same description. A new concept
is a concept that has an empty simplified extent. This means that no entity has
exactly the simplified intent of the concept as set of characteristics: Entities of
the whole extent own the characteristics of the simplified intent in addition to
other characteristics.

To apply FCA to class models, we encode the elements of a class model
into formal contexts. For example, we provide a context describing the classes
by their attributes. The FCA approach then reveals part of the factorization
structure and supports part of the refactoring process by using a straightforward
description of UML elements. For example, we can discover new concepts for
classes interpreted as new super-classes, factorizing two attributes.
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Nevertheless this approach does not fully exploit the deep structure of the
class model. Let us take the example of Figure 1(a). The attribute name is dupli-
cated in classes B1 and B2, and FCA can generate the model of Figure 1(b) that
introduces a new class (here manually named NamedElement) that factorizes this
attribute. However, FCA does not compute the factorization that can be found
in Figure 1(c), in which a class called SuperA factorizes the two associations from
A1 to B1 and from A2 to B2, being given that now B1 and B2 have an ancestor
NamedElement.

b B1
name : string

b B2
name : siring

NamedElement
name : string

7

A2 b | B2

SuperA b |NamedElement
name :string

[\ [\

Al A2 B1 B2

(©)

Fig. 1. Example of factorization in class models

Extracting abstractions using this deep structure can be done with RCA,
which builds the entire factorization structure, including information on the
elements (classes, attributes, associations) and their relations. RCA uses the
fact that classes are linked through associations. In the first iteration step, RCA
computes the factorization in Figure 1(b), and then propagates the new concept
NamedElement through the association between classes. Then the factorization
of Figure 1(c) is computed during the next iteration steps. The process stops
there since a fixpoint is found (no new abstractions can be found).
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The obtained structure contains no duplication, and improves the organiza-
tion of the model. However, when applied on large data, RCA may result in
the introduction of many new concepts, that may be too abstract, and/or too
many to be analyzed. That is why in the next sections, we investigate on a case
study the behavior of RCA for a large class model corresponding to an actual
information system. Our objective is to determine if RCA remains suitable for
large class models, and how to configure RCA to obtain exploitable results.

3 The Pesticides class model and experimental setup

Our case study is a class model which is part of a project from the Irstea insti-
tute, called Environmental Information System for Pesticides (EIS-Pesticides).
It aims at designing an information system centralizing knowledge and informa-
tion produced by two teams: a Transfer team in charge of studying the pesticide
transfers from plots to rivers and a Practice team which mainly works on the
agricultural practices of the farmers. The domain analysis has been carried on
during series of meetings with one team or both teams. Fifteen versions of this
class model have been created during this analysis. Figure 2 shows the number
of model elements over the versions.

[600
O#Classes M M 0 M n
500 .| M#Attributs (N ) S— ) i—
O#Associations -
o - _ -
400 #Elements
300
1200
: d d
0
VO Vi V2 V3 v4 V5 V6 V7 V8 V9 VIO Vi1 V2 VI3 Vi4

Fig. 2. The number of model elements over the various versions

Our tool is based on the Modeling Tool Objecteering? and the framework
eRCA3. eRCA has been extended for computing metrics. In this paper we fo-
cus on a configuration (part of the meta-model) including the following entities
described in formal contexts: classes, associations, operations (very few in the
Pesticides model), roles and attributes. Their characteristics are their names.
The relations describe: which class owns which attribute, which class owns which
operation, which class owns which role, which association owns which role and
which type (class) has a role. When applying RCA to this configuration, we
obtain 5 concept lattices, one for each formal context. We also consider four

% http://www.objecteering.com/
3 http://code.google.com/p/erca/
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parameterizations for this configuration depending on whether we take into ac-
count navigability and undefined elements. If a navigability is indicated on an
association, meaning that objects from the source know objects from the target
(not the reverse), taking into account navigability (denoted by Nav) results in
the following encoding: the source class owns the corresponding role, but the
target class does not own any role corresponding to that association. Not taking
into account navigability (denoted by noNav) means that the source class and the
target class own their respective role in the association. In the modeling tool, un-
named roles are named "undefined". We can choose to include this "undefined"
name in the contexts (denoted by Undef) or not (denoted by noUndef).

4 Results

In this section, we report the main results that we obtain. We consider two
special iteration steps: step 1 (close to FCA application) and step 6 (where
paths of length 6 in the model are followed, meaning that abstractions on classes
created at step 1 have been exploited to create other class abstractions through
roles and associations). At step 1 for example, common name attributes are used
to find new superclasses. At step 4, new superclasses can be found as shown in
Figure 1(c), and 2 steps later, new super-associations can be found from the class
concepts found at step 4. We examine, for classes and associations, which are the
main elements of the model, metrics on new class concepts and new associations
concepts (Section 4.1), then on merge class and association concepts (Section
4.2). Execution time is presented in Section 4.3, and we conclude this part by
giving indications about the number of steps when the process reaches the fix-
point.

4.1 New abstractions

We focus first on the new concepts that appear in the class lattice and in the
association lattice. They will be interpreted as new superclasses or as new gener-
alizations of associations. In a collaborative work, these concepts are presented
to the experts who use some of them to improve the higher levels of the class
model with domain concepts not explicit until then. This is why their number is
important; if too many new abstractions are presented to the experts, these ex-
perts might be overwhelmed by the quantity, preventing a relevant and efficient
use of the method.

Figure 3 (left-hand side) shows the new concepts in the class lattice (thus
the new superclasses) at step 1, when paths of size 1 have been traversed. For
example, this means that if some classes have attributes (or roles) of the same
name in common, those attributes (or roles) will certainly be grouped in a new
class concept. This new class concept can be presented to the expert to control
if this corresponds to a new relevant class abstraction (or superclass). We notice
that Nav parameterizations produce less new concepts than noNav ones. This is
due to the fact that noNav parameterizations induce much more circuits in the
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analyzed data, increasing the number of RCA steps and the number of gener-
ated concepts. The number of new concepts decreases as the analysis process
progresses.

120% 7000%

H Nav-Undef [ENav-Undef
100% - B NoNaUnder | 6000% B e Undet
- noNav-Unde
I'1noNav-noUndef|| 5000% i 1noNav-noUndef i

80%

4000% il

60%
3000%

40%
2000%
20% 1000% | i
0% - el - el " | 0% ol 1, el =l -
VO V1 V2 V3 V4 V5 V6 V7 V8 V9 V10V11V12V13V14 VO V1 V2 V3 V4 V5 V6 V7 V8 V9 VI0V11V12V13V14

STEP 1 STEP 6

Fig. 3. New class abstractions created at step 1 and 6 v.s. the number of initial classes

In the best case (of percentage of new superclasses), 32% of new potential
superclasses will be presented to the experts, for the model V11 which contains
170 classes, giving 54 new potential superclasses. In the worst case, we have
112% of new potential superclasses, for VO model, which has 34 classes, thus
only 38 new potential superclasses are found. At this stage, we do not see a
serious difference between the four parameterizations.

Results obtained at step 6 are much more difficult to deal with. Figure 3
(right-hand-side) shows that the two parameterizations noNav (generating more
cycles in data) give results that will need serious filtering to separate relevant
new concepts from the large set of new concepts. Nav parameterizations will
produce less than one and a half the initial number of classes, while noNav
parameterizations can produce up to 10998 class concepts, really requiring either
additional post-treatments or avoiding to generate all the concepts.

Figure 4 (left-hand side) shows the new concepts in the association lattice at
step 1. They represent associations that are at a higher level of abstraction. Ex-
perts can examine them, to see if they can replace a set of low-level associations.
In Nav parameterizations, at most 15 higher level associations are presented to
experts; in noNav parameterizations, the number grows until 32, remaining very
reasonable to analyze.

Figure 4 (right-hand side) shows the new concepts in the association lattice
at step 6. It highlights the fact that, at this step, the number of these concepts
may explode, and it is especially high in the last versions of the class model,
in which we initially have many associations. The number of new association
concepts, in Nav parameterizations, is less than a hundred, and it still remains
reasonable (even if it is higher than in step 1), but in noNav parameterizations
it dramatically grows and may reach about 9500 concepts.
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Fig. 4. New association abstractions created at stepl and 6 v.s. the number of initial
associations

4.2 Merged concepts

Merged concepts are concepts which introduce several entities (e.g classes or
associations) in their extent. Such entities share exactly the same description
in the model. For example, a merge class concept can group classes that have
exactly the same name attributes. This common description is first detected at
step 1, then it does not change because the following steps refine the description
by adding new relational characteristics and concepts; entities remain introduced
in the same concepts. For classes and associations, the merged concept number
is the same for the four analysis configurations. For experts, analyzing a merged
concept consists in reviewing the simplified extent and examining if the entities
(class or association) have been exhaustively described or effectively correspond
to a same domain concept.

Figure 5 (left-hand side) presents metrics for merge class concepts. V5 and V6
have a higher percentage of merged concepts because during analysis, a package
has been duplicated at step 5 for refactoring purpose. The duplicated classes have
been removed at step V7. In the other cases, there are not so much merge class
concepts to be presented to the experts, between 0% and 2%, giving a maximum
of two classes. This often corresponds to classes with incomplete description,
that the experts should develop into more details. The low number of such cases
makes the task of experts easy.

16%
14% umav-Ungeg ‘ 20%
o B Nav-noUnde o -
12% LI noNav-Undef 18% S m:z:#gﬂggef
o " noNav-noUndef|| |16% noNav-Undef ||
10% 14% — noNav-noUndef||
8% 12% 1l
10% m
6% 8% 1
4% 6% (|11 i
2% :Z" I [l
0% — ﬂﬂﬂ'ﬂ A0 T AT N1 CWT] WT] O O"/o
VO V1 V2 V3 V4 V5 V6 V7 V8 V9 V10V11V12V13V14 VO V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14
Ratio # merge class concepts Ratio # merge association concepts
on # initial classes on # initial associations

Fig. 5. Merge class concept and merge association concepts vs. initial elements
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Figure 5 (right-hand side) presents metrics for merge association concepts.
The percentage of merge association concepts is higher than the percentage of
merge class concepts. This is explained by the fact that associations are only
described by roles, that occasionally share the same names (identical to some
class names). It varies between about 2% and 18%, meaning that at most 10
merge association concepts are presented to the experts for evaluation, making
a little bit more complicated the analysis task compared to the case of classes,
but it remains very reasonable.

4.3 Execution time, used RAM and total number of steps

Experimentations have been performed on a cluster composed of 9 nodes, each
one having 8 processors Intel (R) Xeon (R) CPU E5335 @ 2.00GHz with 8 Go of
RAM. The operating system was Linux (64 bits) and the programs are written
in Java.

Figure 6 shows the execution time in seconds, at step 1 and at step 6. At
step 1, the execution time for the two Nav parameterizations are below 6 seconds,
while for the two noNav parameterizations, for some versions (especially when
there are more associations, like in the last versions) it may reach about 13 sec-
onds. At step 6, the execution time for the two Nav parameterizations are below
8 seconds. But for the noNav parameterizations, we notice longer executions, up
to 10 minutes. However, such a task does not require an instantaneous answer,
and has not to be carried out too many times. Even if it occurs during an expert
meeting, it can be admitted to spend a few minutes for constructing the concept
lattices.

Table 1. Figures on used memory (in MegaBytes)

Step | Parameters |min|max|average
Nav-Undef |39 |453| 237
Nav-noUndef | 17 |471| 205
noNav-Undef | 41 | 969 | 480
noNav-noUndef| 24 | 969 | 532
Nav-Undef |44 |471| 213
Nav-noUndef | 6 |403| 140
noNav-Undef | 33 |1846| 656
noNav-noUndef| 33 (1147| 520

Step 1

Step 6

Table 1 shows the RAM used during execution, here again, noNav parame-
terizations are the worst, reaching about 2 GigaBytes of used memory. In the
case of Nav parameterizations, it is interesting to observe that there is not a
significant difference between step 1 and step 6.
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Fig. 6. Execution time at step 1 and 6 (in seconds)

Figure 7 shows, for the Nav-noUndef parameterization the total number of
steps needed to reach the fix-point, and the size of a longest path with no re-
peated arcs (such a path can be a cycle). We observe that the step number (from
6 to 16) is always below the size of the longest simple path which gives in our
context a practical upper bound to the number of steps. This means that if we
dispose in the future of relevant filtering strategies, we can envisage studying
new concepts appearing after step 6.

W Step number ‘
Tl Size longest path

VO V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11V12V13 V14

Fig. 7. Step number (first) and longest simple path size (second) in C2, Nav-noUndef
parameterization

4.4 Discussion

During this study, we observed that analyzing merge class concepts and merge
association concepts was a feasible task in all parameterizations. The analysis
of new class concepts and new associations concepts is more difficult. Nav pa-
rameterizations produce exploitable results with a maximum of about 50 class
concepts (resp. about 30 new association concepts) to be examined at step 1.
At step 6, experts may have to face from one to three hundreds of new class
concepts (resp. about one hundred of new association concepts). Execution time
and used memory are not problematic issues and we get a practical upper bound
to the number of steps in this kind of data, which is given by the size of a longest
simple path.

These observations may be the starting point of an efficient steering method
for a collaborative class model construction. The objective of such a method
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would be to insert between each model release; an RCA-based analysis, in order
to accelerate the discovery of new abstractions, and the completion of elements
(highlighting of the merged concepts). Both the concepts and the structure of
the lattice are useful for the experts to determine which relevant modifications
should be applied. The strength of the lattice representation is that it provides
a structure adapted to the task of choosing the right new abstractions, since
concepts can be presented following the specialization order, depending of what
is the demand of experts.

Known effects of some parameterizations can serve to favor different steering
strategies. The longest simple path size gives a bound on the step number, giving
an heuristic to decide when to stop the RCA process, with an idea about how
far we are from the convergence. Nav parameterizations can be easily controlled
by looking, at each step, the appearing concepts (and marking the non-relevant
ones to avoid finding them again at next steps). If information is expected from
NoNav parameterizations, experts have to be very careful because many concepts
will be created. A particular sub-order of the concept lattice (the AOC-poset),
induced by the concepts that introduce an entity or a characteristic, might offer
an important reduction of the produced concept numbers, without loosing main
information about factorization.

Another track is limiting input data, for example by removing attributes that
have limited semantic value and to group concepts declaring few attributes.

There are of course some limits to the generalization of our conclusions. The
class model is mainly a data model (very few operations), destined to build a
database schema and we study various versions of a same class model. Never-
theless, the Pesticides model is a classical model, representative of the models
that are built in the environmental field.

5 Related work

The use of FCA in the domain of class model refactoring has a long and rich
history in the literature. As far as we know, it has been introduced in the semi-
nal paper of Godin et al. [6] for extracting abstract interfaces from a Smalltalk
class hierarchy and extensions of the work have been published in [7]. Other ap-
proaches have been proposed, that take into account more information extracted
from source code like super calls and method signatures in [2].

In [1], authors report an application of RCA to several medium-size class
models of France Télécom (now Orange Labs). The RCA configuration was corm-
posed of classes, methods, attributes, and associations. Classes have no descrip-
tion; attributes are described by name, multiplicity and initial value; methods
are described by name and method body; associations are described by names,
role name and information like multiplicity and navigability. Associations are
connected to their origin and destination classes, classes are connected to the
attributes and operations they own, attributes are connected to classes that are
their type, etc. The class models contain a few dozens of classes and the new con-
cepts to be examined by experts varies from a few concepts to several hundreds.
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In [11] detailed figures are given. In the largest project (57 classes), the number
of new concepts was 110 for the classes, 9 for the associations and 59 for the
properties. In this paper, we have several class models that are greater in terms
of number of classes and we reify the role notion, rather than encoding it in
the association description, with the risk of having more produced concepts. We
discard technical description (like multiplicity which has no strong semantics).
We also analyze the merged concepts, another interesting product of RCA.

In [8], RCA has been applied on an excerpt of the class model of the Jetsmiles
software of JETSGO society*. The class model excerpt is composed of only 6
classes, connected by 9 associations, and about 30 attributes. Attributes and
roles are mixed, and classes are connected by a relational context to attributes-
+roles, while attributes+roles are connected by another relational context to
their type (when it is a class). The UML elements are described by many tech-
nical features: multiplicity, visibility, being "abstract", initial value, etc. A post-
treatment analyzes the built concepts in order to keep the most relevant ones.
The class concept lattice contains about 35 concepts while the attribute-+role
concept lattice has about 25 concepts. In [8], the size of the class model is very
small. We suspect that using the configuration with many technical elements
would not be scalable in the case of the Pesticides model.

RCA has been experimented on two Ecore models, two Java programs and
five UML models in [4]. The used configuration is composed of the classes and
the properties (including attributes and roles) described by their names and their
connections. To report some representative results of this experiment, in Apache
Common Collections, which is composed of 250 classes, RCA finds 34 new class
concepts and less than 80 new property concepts; in UML2 metamodel, which
is composed of 246 classes and 615 properties, RCA extracts 1534 new class
concepts and 998 new property concepts. In this experiment, associations were
not encoded, contrary to what we do. Nevertheless an explosion of the concept
number yet appears. In our case, we introduce associations in the configuration,
and we show, that with some precautions as annotating by navigability and
naming the roles, refactoring with data including the associations may remain
feasible.

A more recent study [3] compared three strategies of FCA/RCA application
to part of the open-source Java Salome-TMF software which comprises 37 classes
and 142 attributes®. In the RCA strategy (ARC-NAME), a formal context in-
cludes the classes (no description), a formal context describes the attributes by
their names and the hyperonyms of their names, and relations connect classes
and their attributes (and reversely). ARC-NAME produces 33 new class con-
cepts, and 3 merge class concepts, 21 new attribute concepts and 13 merge
attribute concepts. Java softwares do not have associations and it is difficult
to generalize these results to the general case of class models. Compared to this
work, here we do not use linguistic information, this will be done in a future work,
nevertheless the terms in the model are not technical identifiers but rather do-

* http://www.jetsgo.net/
® http://wiki.ow2.org/salome-tmf/
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main terms carefully selected by the expert group, thus there are less problems
in using them directly.

Here we use the same class models as in [10] where RCA based metrics were
proposed to assist a designer during the evolution of the class model in indicating
him the evolution of the level of description and the level of abstraction.

6 Conclusion and perspectives

In this paper, we describe the most advanced study of the application of RCA on
class models, so as to obtain a relevant factorization structure. We apply RCA
on several versions of the model of the same information system (from 40 to
170 classes), and we study the impact of several parameters in the application.
The objective was to observe RCA on real-sized class models, so as to draw
conclusions, mainly on its scalability. The experiment shows that taking into
account the navigability, it is still possible to analyze the newly introduced ab-
stractions. Consequently, RCA can be considered to scale to real-size models, if
it is adequately parameterized. However, the produced results remain quite large
to analyze, and new strategies can be settled to face the number of concepts to
analyze.
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Abstract. Use case diagrams are the core diagrams of the Unified Mod-
eling Language (UML), de facto standard for software modeling. They
are used to visualize relations between the users (Actors) and the func-
tionality of the software system (Use Cases). Galois sub hierarchy (GSH)
is a sub-order of the concept lattice that contains only concepts with ob-
ject or attribute labels. This paper investigates the viability of GSH for
visualizing the information contained within use case diagrams. While it
is possible that a GSH diagram is more complex than a use case diagram
for certain formal contexts a study of 87 student projects found no such
case. On average, use case diagrams had 3.7 times more graphical ele-
ments than corresponding GSH diagrams, demonstrating the viability of
GSH as a more compact alternative to the use case diagram.

1 Introduction

Software engineering has a long tradition of graphical modeling, there are many
different diagram types like flowcharts, BPMN, ERD and even languages like
UML containing over dozen diagram types. Most of these diagrams have el-
ements connected with directed or non-directed connections. Each element is
represented as a node and each connection as a line between these nodes. While
this approach is easy to understand and apply, methods of Formal Concept Anal-
ysis (FCA) like Galois sub hierarchies (GSH) can represent the same information
in a more concise way, significantly reducing the number of graphical elements.
This is achieved because a single node in GSH diagram can represent several
elements (it can have many labels) and a line can represent many connections.
This conforms to the “reduce redundant data-ink” principle from E. Tufte’s clas-
sic work on visual information displays [19]. GSH diagram makes it easy to see
which elements have same connections and which element has a subset of other
elements connections inviting interesting comparisons.

GSH diagrams are most natural to use when there are two types of elements
and connections between these (a bipartite graph). This applies to the UML use
case diagram that describes actors, use cases and connections between them.
A study presented here compares the GSH approach with the UML use case
diagram. There is also a brief overview about describing the connections between
use cases and data tables with diagrams, information present in CRUD matrix,
another traditional software engineering artifact.

© paper author(s), 2013. Published in Manuel Ojeda-Aciego, Jan Outrata (Eds.): CLA

2013, pp. 21-32, ISBN 978-2-7466—6566—8, Laboratory L3i, University of La
Rochelle, 2013. Copying permitted only for private and academic purposes.
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2 Galois Sub-Hierarchies

Our method of visual representation is based on Galois sub- hierarchy (GSH)
diagrams from the field of Formal Concept Analysis (FCA). This article uses
some FCA terminology (formal concept, concept lattice, extent, intent) without
explanation and definitions, these can be found from many foundational articles
of this field [21], [9], [22], [23] . GSH is a subset of the concept lattice that contains
only labeled concepts. More formally, concept (A, B) from the formal context
(G, M, I) belongs to the GSH if and only if for some object g € G, (A,B) =
({g}”,{9}"), or dually, for some attribute m € M, (4, B) = ({m}’,{m}"”). GSH
as a tool for software engineering was introduced by Godin and Mili [10] for the
purpose of class hierarchy re-engineering.

This work differs from the standard FCA practice as the main area of in-
terest is not finding the concepts but visualizing the connections between the
elements of G and M in a concise way. Semantics of G and M can vary: objects
and attributes, use cases and actors, use cases and data tables. Users of GSH
diagrams would need to be acquainted with the following properties to see the
connections between G and M:

1. GSH diagrams show nodes (concepts), connections between them and labels
from the sets G and M attached to the nodes. Each element from G and M
has exactly one corresponding label.

2. g € G is connected to m € M iff there is an upward path from label g to
label m or they are labels of the same node.

3. If 1,90 € G and there is an upward path from g; to go then the set of
elements g is connected to, g5, is a subset of ¢1.

4. Dually, if mi,ms € M and there is a downward path from m; to mo then
the set of elements my is connected to, mb, is a subset of m].

5. If g1,92 € G and g1 and g are labels of the same node then g} = g}.

6. Dually, if mi,my € M and m, and mo are labels of the same node then
mh =mj.

Figure 1 presents a simple formal context where G = {1,2,3,4,5,6} and
M ={a,b,c,d,e, f} and its corresponding GSH diagram.

‘abcdef Ofd Oe Ob
- > 3 O 5
a
© 2
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O 6 O

Fig. 1. A formal context with the corresponding GSH diagram.
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There are several tools for concept lattice generation: Concept Explorer
[24], ToscanaJ [4], GaLicia [20]. Of these, only GalLicia supports Galois sub-
hierarchies, but its labeling scheme is not convenient for our purposes as its
labels contain full concept intents and extents, therefore same element can ap-
pear many times in different labels. Two freely available tools were developed as
bachelor theses, supervised by the author. One is GSH builder by Kristo Aun
[3], another is GSH by Maarja Raud [15]. Both generate GSH diagrams that
show the labels, not extents or intents.

3 Use Cases and Actors

Use Case modeling is a common tool for specifying functional requirements. An
actor is something with behavior (person, computer system) who interacts with
our system. A use case is a collection of related success and failure scenarios that
describe an actor using a system to support a goal [13]. A detailed description
of the use case is given in a text document while the use case diagram shows a
general overview: actors and their relationships to use cases. Use case diagram
can also show include and extend relations between use cases. A use case diagram
is a diagram type within Unified Modeling Language. There are many books
written about the topic including [16] and [13].

Following example (Figure 2) is redrawn from Craig Larmans partial use case
diagram describing NextGen sales system: a computerized application used to
record sales and handle payments in a retail store [13](pp. 29, 71). This is a basic
use case diagram showing use cases, actors and connections between them.

;‘ ):Sales Activity System E% Tax Calculator /_ L\ HR System

Accounting System%
] Cashier
Manage Users \ Analyze Activity O / O
O Cash In
Process Sale Process Rental

Manage Security

System Administrator | Payment Authorizatioff Servic

Handle Returns

Fig. 2. Use case diagram. Actors, like System Administrator, are shown as stick figures.
Use cases, like Manage Users, are shown as ovals. Actors participation within a use case
is shown as a line. Spatial arrangement conveys no information here, unlike in diagrams
of FCA.
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Cashier
Handle Returns R .
Sales Activity System System Administrator
(0] ..
A s Analyze Activity © Manage Users
ccounting System Manage Security

Tax Calculator
Payment Authorization Service HR System
Process Rental CashIn

Process Sale

Fig. 3. GSH diagram showing connections between use cases and actors.

Figure 3 shows a GSH diagram, equivalent to the use case diagram from
Figure 2. It is more concise with only 5 nodes and 2 lines, compared to 14 nodes
and 14 lines from Figure 2. A comparison of diagram types based on counting
the number of visual elements may seem simplistic but it is in accordance with
the principle stated by E. Tufte in his influential work on information displays
[19]: ¢ erase redundant data-ink, within reason”. Possible reasons for redundancy
being: “giving a context and order to complexity, facilitating comparisons over
various parts of data, perhaps crafting an aesthetic balance.” It is much easier to
see from GSH diagrams the actors that are related to same use cases, for example
Accounting System, Tax Calculator and Payment Authorization System. GSH
diagram makes also visible subset relationships between the use case sets that
actors participates in, for example Cashier can do anything that a HR System can
do. Therefore GSH diagram both reduces the data ink and compares favorably
with the use case diagram in giving a context and order to complexity and
facilitating comparisons over various parts of data.

Use case diagrams can contain relations between the use cases or between the
actors. Relating use cases is described by C. Larman [13] as “an optional step
to possibly improve their comprehension or reduce duplication” GSH diagram
showing relations between actors and use cases can not contain this information.
Figure 4 presents an example about generalization and include relationships.
Generalization is shown as a relation with a big arrowhead from less general
subtype to more general supertype. Subtype inherits relations that its super-
types have. Actor Moderator is a subtype of an actor User and thus inherits
its connection to Post a comment use case. Generalization relation between use
cases is defined dually. Generalization relations can be used to reduce the num-
ber of connections within the use case diagrams. While defining formal contexts
we add inherited relations to the subtypes.

Include and extend relations between use cases describe sub-functionality:
more complex use case includes the behavior of a smaller use case. They allow
to introduce different levels of abstraction: A. Cockburn [6] defines three common
levels of abstraction: summary, user goal (default level) and sub-function level.
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He also mentions very high summary (used rarely) and too low (should not be
used) abstraction levels. S. Ambler recommends to avoid more than two levels
of use case associations [1]. Use cases Post a comment and Delete inappropriate
comment include a common Log in sub-functionality. Use case Manage comments
includes use cases Post a comment and Delete inappropriate comment. Levels
of abstraction different from the default user goal level are shown through UML
stereotypes.

Extend and include arrows correspond to the direction of reference within the
use case documentation. In the case of an include relation, use case containing
the sub-functionality has a reference to it, in the case of an extend relation, the
sub-functionality has a reference to the use case containing it. Extend relation
is treated here as an include relation going to the opposite direction.

A method used here to deal with the include and extend relations is to
focus on a single level of abstraction (preferably user goal or summary). Use
cases at higher or lower levels of abstractions are removed and their relations
to actors are added to the use cases they have include/extend relations with.
This can introduce superfluous relations: it is impossible to deduce from the use
case diagram if a particular actor from the higher level use case participates in
certain sub-functionality or not, use case text has to be examined for that.

-

<<summary=>
IManage Comments

«includes>

L

E% Q tzincludes>
Q
Post a Comment
User .

- Delete a Comment
=<inclide=> R

Moderator
<<subfunction== Certification
Log In Senice

Fig. 4. Use case diagram with generalization and include relations.

Figure 5 shows how previous diagram (Figure 4) has been flattened as de-
scribed to the user goal abstraction level through the removal of generalization
and include relations and is now in the form that can be used for GSH generation.

GSH diagrams scale well when the number of use cases increases. Figure 6 is
based on the example project Chair in University from the course “Introduction
to information systems” in Tallinn University of Technology. Original documen-
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Post a Comment E %
User
c

ertification

e

Delete a Comment

Moderatar

Fig. 5. Previous use case diagram flattened to the user goal level of abstraction.

tation had entire use case model split into four use case diagrams containing 25
use cases, 3 actors and 30 connections between actors and use cases. These 4
diagrams are not reproduced here due to limited space. Equivalent GSH diagram
contains 5 nodes and 4 lines. That is a significant improvement in conciseness.

Student

Chair-holder | Lecturer -

_ Query courses
Approve course Modify course data Pause studies
Send course for re-edit Send course for approval Restart studies
Archive course Register course, Enroll to course
Set semesters workplan Get personal workplan Modify students data
Archive lecturer Query enrolled students Register student
Hire lecturer Register start of study
Query students Archive student

¢}
Check course data Evaluate knowledge

Query lecturer
Examine lecturers work data
Modify lecturers data

Fig. 6. Labelled line diagram for Chair in University information system.

In the previous examples GSH diagrams have all been simpler (less nodes,
less connections) than use case diagrams. It is easy to see that GSH diagram
can have no more nodes than the corresponding use case diagram as each GSH
node must have at least one label and labels don’t repeat. However, for certain
contexts, GSH diagram can have more connections than the corresponding use
case diagram, as shown in the following example.

Figure 7 shows a formal context with 16 connections and a corresponding
GSH diagram with 18 connections. That raises a question if GSH diagrams are
really simpler than use case diagrams for practical applications. Following study
tries to answer this.
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ABCD e 6 9
1]x x B .C\"r B
2lx  x 5 '\
3 x x j L ., |
4 x x O O O O O
5 x x 1 3 # o 5 B
6 X X N P
Tx x x x
- &

Fig. 7. A formal context with a corresponding GSH diagram that has more lines than
the number of original connections.

4 Study

A study of 87 student projects, that were presented to the author for 2012
“Introduction to information systems” course, was completed to compare the use
case and GSH diagrams. Student projects contained the analysis documentation
for a freely chosen information system, including use case diagrams. Some of
these projects were done in groups and were larger and there was also a variation
of effort and quality. For all these projects a corresponding GSH diagram was
generated, based on its use case diagram.

Some diagrams contained generalization relations between actors. In this
case sub-actors inherited all the relations from super-actors in the corresponding
formal context. Some diagrams contained <«includesrelationships between use
cases. For these cases, only use cases at the user goal level were kept, use cases
included in these and their connections with actors were merged into the user
goal level use cases as described in the previous section. Use case and connection
counts are for diagrams after removing the use cases not at the user goal level
of abstraction but before the removal of generalization relations. Generalization
relation is counted as one line.

Table 1. Results of the study. UC: number of use cases, A: number of actors, L:
number of lines in the use case diagram, GSH¢: number of concepts in GSH, GSH,:
number of lines in GSH.

|UC A UC+A L UC+A+LGSHe GSHL GSHeyr

Minimum | 3 2 6 4 10 2 0 2
Average |10.77 3.55 14.32 14.86 29.18 4.64 3.2 7.84
Maximum| 27 9 32 40 68 13 14 24
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Ratio between the average number of elements of the use case diagrams and
the GSH diagrams is (UC + A+ L)/GSHcyp = 3.72.

70

80

50

40

30

GSH C+GSH L

20

B P>
S~ >
b’:;Etb»E’EP:kF > " R
> B >
10 2

0 30 40 50 60 70
UC+A+L

Fig. 8. Scatter plot showing the number of visual elements (use case and GSH dia-
grams) for the 87 student projects.

Figure 8 shows the scatter plot of student projects showing the number of
visual elements on use case and GSH diagrams. It is easy to see that in all cases
GSH diagram was simpler than use case diagram, as all the data points lie below
the diagonal (UC' + A+ L) = GSHc4 1, line. This confirms that, at least for the
information systems with 30 or less use cases, GSH diagrams are much more
concise than the use case diagrams.

Use case diagrams have their own advantages. They are easier to sketch and
modify by hand and they are easier to decompose into several diagrams. That
seems to suggest complementary roles for use case and GSH diagrams, use case
diagrams for quick sketching and GSH diagrams for a well-formated and concise
view of the system.



Galois Sub-Hierarchies Used for Use Case Modeling 29

5 CRUD matrix

Use cases are not only connected to the actors who require such a functionality
but they operate on data tables. GSH diagrams are useful for modeling these
connections too. CRUD matrix is a well known artifact of software engineering
that describes relations between data tables and use cases. It is described in
several popular books about systems design [7] and databases [14]. Use of CRUD
matrix as a basis for GSH diagrams was described by author in [18]. It is shortly
summarized here to show the usefulness of GSH diagrams for different software
engineering activities. There are 4 basic actions performed on data tables by
use cases: (C)reate, (R)ead, (U)pdate, (D)elete. In some variations use cases are
replaced with actors or business processes.

Table 2 contains a CRUD matrix for a simplified library system. Columns
correspond to data tables and rows to use cases. Letters ¢, r, u, d inside the cells
of the matrix correspond to 4 basic actions. For example, use case Add New
Task reads data from the table Employee and creates (adds) new data to the
table Task.

Table 2. CRUD matrix for a simplified library system. Reused from previous article
[18].

‘Employee Reader Task Loan EmployeePosition Book

Manage readers crud

Manage employees crud cd

Manage books crud
Add loan ¢ r
Add new task r c

Return loaned book u r

We can think of a CRUD matrix as defining dependencies between use case
layer and data layer. To describe only dependencies we introduce a new binary
matrix where all entries with no actions in the original CRUD matrix are replaced
with 0 and all entries with at least one action are replaced with 1. We refer to
such a matrix as a usage matrix. Table 3 is a usage matrix for Table 2.

It is obvious that usage matrix, and therefore GSH diagram, can be gener-
ated automatically from CRUD matrix. That kind of tool could provide visual
representation of CRUD matrix without extra effort from the tool user.

Figure 9 is a GSH diagram based on the usage matrix from Table 3. From the
GSH diagram it is much easier to see the elements with same dependencies, like
use cases Add loan and Return loaned book and disconnected subsystems, like
use case Manage Readers with data table Reader. GSH diagrams are also helpful
for detecting hidden similarities/isomorphisms between different contexts. It is
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Table 3. Usage matrix for a simplified library system. Based on Table 2.

‘Employee Reader Task Loan EmployeePosition Book

Manage readers X
Manage employees X X
Manage books X
Add loan X X
Add new task x x
Return loaned book X X
Add loan
o Return loaned book Add new task _ Manage employees
.~ Loan Task EmployeePosition
Manage readers
Reader
S Manage books Y
Book Employee

Fig. 9. Labelled line diagram based on Table 3.

much easier to see that GSH diagrams from Figures 1 and 9 are isomorphic than
that matrices from Figure 1 and Table 3 are isomorphic.

6 Related work

The use of methods of FCA for software engineering is not a novel idea. A
thorough survey of FCA support for software engineering activities is given in
[17]. Most of such research is about extracting potential class hierarchies from
different contexts.

Dolques et al [8] propose a FCA-based method for simplifying use case dia-
grams through the introduction of new generalizations. The result of this method
is a refactored use case diagram. Their method preserves the information of in-
clude and extend relations. Reduction of diagram elements seems to be smaller
than with GSH based method reviewed here though these results are hard to
compare exactly as they present them in the terms of edge density (ratio of ex-
isting edges to all possible edges). It is possible that the edge density goes down
while the actual number of edges increases when new generalized use cases and
actors are introduced.
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Wolfgang Hesse and Thomas Tilley [12] use a concept lattice connecting
use cases and ”things” as a tool for identifying candidate classes for object
oriented design. There has been much research into using FCA and GSH for
class hierarchy design [10], [11]. Algorithms for GSH generation are compared in
the article by Arévalo et al [2], a newer algorithm Hermes is presented by Berry
et al [5].

7 Conclusions

GSH diagrams can be a concise replacement for UML use case diagrams. In our
study they had 3.7 times less visual elements. GSH diagrams are likely to be
useful wherever there are connections between two types of elements: actors and
use cases, use cases and data tables, use cases and classes, business processes
and use cases and so on.

One area for further research is the software engineering activity of group-
ing elements into subsystems. Similar use cases can be grouped into functional
subsystems, similar data tables can be grouped into registers. GSH and concept
lattice diagrams can help here by organizing elements by similar connections.
Use cases that depend on the same data tables are likely to be similar. Group-
ing elements with similar connections into same subsystems would also help to
minimize the connections at subsystem level. GSH diagrams can also be used to
visualize the subsystem level connections, thus promising to be a quite universal
tool for software engineering.
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Abstract. Functional dependencies provide valuable knowledge on the
relations between the attributes of a data table. To extend their use, gen-
eralizations have been proposed, among which purity and approximate
dependencies. After discussing those generalizations, we provide an al-
ternative definition, the similarity dependencies, to handle a similarity
relation between data-values, hence un-crisping the basic definition of
functional dependencies. This work is rooted in formal concept analysis,
and we show that similarity dependencies can be easily characterized and
computed with pattern structures.

1 Introduction

In the relational database model, functional dependencies (FDs) are among the
most popular types of dependencies [19] since they indicate a functional relation
between sets of attributes: the values of a set of attributes are determined by the
values of another set of attributes. To handle errors and uncertainty in real-world
data, alternatives exist. Approzimate Dependencies [12] are FDs that hold in a
part —which is user defined— of the database. Purity Dependencies [15] express
the relationship on the relative impurity induced by two partitions of the table
(generated by two sets of attributes). If the impurity is zero, we have a FD.

These generalizations do not necessarily capture the semantics of some pat-
terns that may hold in a dataset. This motivates the definition of “Similarity
Dependencies”, which can be seen as a generalization of Functional Dependen-
cies, but un-crispring the basic definition of FDs: similar values of an attribute
determine similar values of another attribute. Similarity has been considered
for FDs under several terms, e.g. fuzzy FDs [3], matching dependencies [16],
constraint generating dependencies [2]. Moreover, it is still an active topic of
research in the database community [4,8,16,17].

The main objective of the present article is to give a characterization of
similarity dependencies within FCA [10], thanks to the formalism of pattern
structures [9]. Indeed, characterizing and computing FDs is strongly related to
lattice theory and FCA. For example, the lattice characterization of a set of
FDs is studied in [5,6,7], while a characterization within a formal context in

© paper author(s), 2013. Published in Manuel Ojeda-Aciego, Jan Outrata (Eds.): CLA

2013, pp. 33—44, ISBN 978-2-7466—6566—8, Laboratory L3i, University of La
Rochelle, 2013. Copying permitted only for private and academic purposes.
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FCA is proposed in [10]. The latter is based on a binarization, which is the
transformation of the original set of data into a binary context. To overcome
the burden usually induced by such a transformation, pattern structures [9]
have emerged as a valuable alternative to avoid arbitrary transformations and
complexity problems [1].

Accordingly, our purpose here is threefold. Firstly, we propose a definition of
Similarity Dependencies, and secondly a formalization based on pattern struc-
tures in FCA, avoiding a transformation of data into a binary table. It follows
that classical algorithms of FCA can be —almost directly— applied to compute
similarity dependencies. This work is based on [1] where FDs are characterized
thanks to pattern structures, and on [13] where similarity is introduced in pat-
tern structures as a tolerance relation (reflexive, symmetric, but not transitive).
Finally, we also report preliminary experiments showing the capabilities of the
approach.

The paper is organized as follows. In Section 2 we introduce the definition of
Functional, Approximate and Purity Dependencies. In Section 3 we propose a
definition and a characterization of Similarity Dependencies with pattern struc-
tures. Finally, Section 4 reports preliminary experimental results showing the
capabilities of our approach.

2 Functional, Approximate and Purity Dependencies

2.1 Notation

We deal with datasets which are sets of tuples. Let U be a set of attributes
and Dom be a set of values (a domain). For the sake of simplicity, we assume
that Dom is a numerical set. A tuple ¢ is a function ¢ : 4 — Dom and then
a table T is a set of tuples. Usually a table is presented as a matrix, as in the
table of Example 1, where the set of tuples (or objects) is T' = {t1, t2, t3,t4} and
U ={a,b,c,d} is the set of attributes.

The functional notation allows to associate an attribute with its value. We
define the functional notation of a tuple for a set of attributes X as follows,
assuming that there exists a total ordering on U. Given a tuple ¢ € T and
X ={z1,22,...,2,} CU, we have:

HX) = (t(z1), t(x2), - .-, t(zn))
In Example 1, we have t3({a,c}) = (ta(a),t2(c)) = (4,4). In this paper, the set
notation is usually omitted and we write ab instead of {a,b}.

Ezample 1. This is an example of a table T' = {t1, to, t3,t4}, based on the set of
attributes U = {a, b, ¢, d}.

lid][a[b]c]d]
1 [1[3[4
to |4
3]
tall4

W | W| =

3|4
8|4
3|7
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We are also dealing with the set of partitions of a set. Let S be any arbitrary
finite set, then, Part(S) is the set of all possible partitions that can be formed
with S. The set of partitions of a set is a lattice [11]. We recall that partitions
can also be considered as equivalence classes induced by an equivalence relation.

Now, we define the set of the “maximal subsets” of a set.

Definition 1. Given a finite base set S and X = {X1,Xo,..., X} a set of
subsets of S, a subset X; is mazximal in X if there does not exist any other
subset X; in X such that X; C X;.

Then X praz 1S the set of the mazimal subsets of X.

For example, let S = {a,b,c} and X = {{a, b}, {b,c},{a},{b}}. Then X is a
subset of §2(S) the powerset of S, but not all elements of X are maximal subsets.
Indeed, Xpsa. = {{a,b}, {b,c}}.

Moreover, we define the function maxs which applies to a set of sets such as
X and returns the set of maximal subsets of X, i.e. Xprqz.

Definition 2. Given a finite set S and a subset X = {X1, Xo,..., X} of §2(S),
the function mazg returns the set X prq. of mazimal subsets of X :

mamS(X) = XMaz :{XZ e X | ﬂXJ eX:X; CXj}

2.2 Functional Dependencies
We now introduce functional dependencies (FDs).

Definition 3 ([19]). Let T be a set of tuples (or a data table), and X, Y CU.
A functional dependency (FD) X — Y holds in T if:

Vi,t' €T (X)) =t (X)=t(Y)=t(Y)

For example, the functional dependencies a — d and d — a hold in the table
of Example 1, whereas the functional dependency ¢ — ¢ does not hold since
ta(a) = ty(a) but ta(c) # te(c).

There is an alternative way of considering Functional Dependencies using
partitions of the set of tuples T'. Taking a set of attributes X C U, we define the
partition of tuples induced by this set as follows.

Definition 4. Let X C U be a set of attributes in a table T. Two tuples t; and
t; in T are equivalent w.r.t. X when:

t; th <~ tZ(X) :tj(X)

Then, the partition of T induced by X is a set of equivalence classes:

Hx(T) = {Cl,CQ,...,Cm}
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For example, if we consider the table in Example 1, we have II,(T) =
{{t1, 3}, {t2, ta}}-

Given X, ITx (T) is a partition or alternatively an equivalence relation. Then
we have:

1. Ulx(T) =T, for all X CU.
2. ¢;Ne;=0forall ¢,c; € Ix(T), i #j.

The classes in a partition induced by X are disjoint and they cover all the
tuples in T'. The set of all partitions of a set T' is Part(T). We can also notice
that the set of partitions of any set Part(T") induces an ordering relation <:

VPZ',PjGPaI't(T)ZPiSPj <~ VCEPZ'ZHC/EPJ'ZCQC/

For example: {{t1}, {ta}, {t3,ta}} < {{t1}, {t2,t3,t4}}. According to the par-
titions induced by a set of attributes, we have an alternative way of defining the
necessary and sufficient conditions for a functional dependency to hold:

Proposition 1 ([12]). A functional dependency X — Y holds in T if and only
if Iy (T) < Hx(T).

Again, taking the table in Example 1, we have that a — d holds and that

Hd S Ha since Ha(T) = {{t17t3},{t2,t4}} and Hd(T> = {{tl,tg},{tg,t4}}
(actually d — a holds too).

2.3 Purity and Approximate Dependencies

Approximate Dependencies [12]. In a table, Ezample 2. This table is an ex-

there may be some tuples that prevent a func- cerpt of the Average Daily Tem-

. . perature Archive from The Uni-

tional dependency from holding. Those tuples versity of Dayton, that shows the

can be seen as exceptions (or errors) for that de- month average temperatures for dif-
. ferent cities.

pendency. Removing such tuples allows the de-

pendency to exist: then a threshold can be set to

. . id|Month|Year|Av. Temp.| City
define a set of “approximate dependencies” hold- [¢:] 1 [1995] 364 Milan
o t2] 1 [1996] 33.8 Milan
ing in a table. For e>.(ample, a thresh-old of 19% 51996631 oo
means that all functional dependencies holding [z, 5 (1997 59.6 Rome
after removing up to 10% of the tuples of a ta- [ts| 1 [1998] 414 | Dallas

. . . ts| 1 [1999] 46.8 Dallas
ble are valid approximate dependencies. The set 515 TTo06| 845 [Houston
of tuples to be removed for validating a func- [ts] 5 [1998] 80.2 [Houston

tional dependency does not need to be the same for each approximate depen-
dency. Considering in Example 2 the dependency Month — Av.Temp, we can
check that 6 tuples should be removed before verifying the dependency: we keep
only one tuple for Month 1 and one tuple for Month 5 (actually just as if we
remove “duplicates”). Then, if the threshold is equal to or larger than 75%,
Month — Av.Temp is a valid Approximate Dependency.

Purity Dependencies [15] are a generalization of the relationship between
partitions induced by the left-hand side and right-hand side of a functional de-
pendency. These dependencies are based on the relative impurity measure of two
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partitions. In order to compute this impurity measure, we need a concave and
subadditive function defined on the interval [0, 1] (for example, the binary en-
tropy function). The intuition about this measure is that it computes how much
those partitions disagree, i.e. how far two partitions 7 and ¢ are from fulfilling
the relation m < ¢. If the impurity measure is zero (or close to zero), then 7 < .

For example, the impurity measure (details on this measure are given in [14])
of partition {{1, 2, 3},{4,5}} w.r.t. partition {{1,2},{3,4,5}} is 5.6, whereas the
impurity measure of partition {{1,3},{2,5}, {4}} w.r.t. partition {{1, 2}, {3,4,5}}
is 8.2. In the first pair of partitions, only tuple 3 is misplaced, i.e. moving 3 from
one partition to another leads to the the same partitions, whereas in the sec-
ond example, the number of misplaced elements is larger (2, 3, and 4 should be
moved).

An important feature of this measure is that if a partition is finer than
another, then, their relative impurity measure is exactly 0. This implies that a
purity dependency X — Y holds if and only if the relative impurity of ITx(T)
w.r.t. [Ty (T) is below a user-defined threshold. Therefore, if ITy (T) < IIx(T), a
functional dependency is a valid purity dependency, regardless of the threshold.

For example, we consider all the possible dependencies having the attribute
Average Temperature in their right-hand side. The purpose of this choice is to
find out which attributes determine the values of the average temperature (Av.
Temp.) in Example 2. Considering Approximate Dependencies, we introduce the
two metrics # Tuples and Percentage: # Tuples denotes the minimal number
of tuples that must be removed from the dataset for allowing the dependency to
hold, and Percentage denotes the percentage that # Tuples represents for the
whole dataset. For example, the Approximate Dependency Month — Av.Temp
holds when we remove at least 6 (well-chosen) tuples, which represent 75% of
the whole dataset.

Ezxample 3. Dependencies with Average Temperature in their right-hand and the
metrics related to Approximate and Purity Dependencies.

Dependency #Tuples|Percentage|Purity
Month -> Av. Temp 6 5% 12.98
Month, Year -> Av. Temp 1 12.5% 4.0
Month, City -> Av. Temp 4 50% 4.0
Year -> Av. Temp 3 37.5% | 8.26
Year, City -> Av. Temp 0 0% 0.0
City -> Av. Temp 4 50% 4.0

As for the purity measure, we use the measure of relative entropy of two
partitions described in [14]. If we examine the dependency Month — Av.Temp,
we should the relative entropy of the partitions induced by Month and Aw.
Temp., which are, respectively:

Iyrontn = {{t1,t2,ts5,t6 }, {t3, ta, tr, ts}}

I av.remp. = {1}, {2}, {ts}, {ta}; {ts}, {t}, {t7}, {ts}}
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Then, the relative entropy of IInfonen and Il g4y Temp. is 12.98, i.e. the largest
of the conditional entropies that are computed. Actually the number of tuples
that need to be reallocated for I1ay.1emp. < Iniontn is significantly large. It
is also significant that the number of tuples that need to be removed for the
dependency Year,City — Av.Temp to hold is zero and that the relative en-
tropy of Ilyeqr,city and Il oy Temp. is zero as well. The Functional Dependency
Year, City — Av.T'emp holds because there is no pair of tuples ¢;,¢; such that
t;i(Year,City) = t;(Av.Temp.), i.e. there is no need to remove any tuple to verify
this dependency. In addition the relative entropy of Ilycqr,city and I ay Temp.
is zero, because the partitions induced by both sides, Ilycqr,city and I ay. Temp
are exactly the same: {{t1}, {t2}, {ts}, {ta}, {t5}, {te}, {t7}, {ts}}. Therefore, the
relation Iy cqr city < I av.Temp holds, i.e. the relative entropy is zero and this
dependency trivially holds.

Yet, the intuition about this dataset is that the “Average Temperature” de-
pends, to some extent, on the location and the month, i.e. given a city and a
month, we should be able to predict the average temperature. But this intuitive
relationship is somehow difficult to deduce with Approximate and Purity Depen-
dencies. For example, the metrics for the dependency Month, City — Av.Temp
indicate that 4 tuples must be removed (50% of the dataset) for checking this de-
pendency, or alternatively, the relative entropy of the partitions Iasonth,city and
IT Ay Temyp is 4.0. Considering the number of tuples, removing 50% of the whole
dataset is a lot, especially if the intuition tells that this dependency should hold.
Considering the entropy rate, the smallest entropy rate is zero and the largest
computed rate is 12.98. Thus, it seems difficult to deduce the right threshold in
each case.

Instead of considering measures that deal with the sets of tuples as a whole,
dependencies could be directly related with the notion of “similarity”: if two
tuples have similar values for the attributes Month and City, then they should
have a similar value for the attribute Av. Temp. This can be interpreted as
follows: if two cities are close enough and the corresponding months are also
close enough, then the average temperature in the cities should be close enough
or “similar” as well. In such a context, “having similar values” depends on the
type of the attributes. For temperatures it mean that the absolute difference of
the values is less than a given threshold. For months, it could mean that they
are adjacent. For cities, it could mean that their locations are close enough.

Such a kind of dependency would provide more control and a more intuitive
explanation of the relations existing between attributes.

3 Similarity Dependencies

First, we define a tolerance relation in a set .S:
Definition 5. § C S x S is a tolerance relation if:

1. Vs; € S : s;0s; (reflezivity)
2. Vsi,85 € 815,055 <= s;0s; (symmetry)
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A tolerance relation is not necessarily transitive and induces blocks of tolerance:

Definition 6. Given a set S, a subset K C S, and a tolerance relation 8 C Sx.S,
K is a block of tolerance of 0 if:

1. Va,y € K : 20y (pairwise correspondence)
2. Vz & K,Ju € K : =(z0u) (mazimality)

All elements in a tolerance block are in pairwise correspondence, and the
block is maximal with respect to the relation 6. The set of all tolerance blocks
induced by a tolerance relation 6 on the set S is denoted by S/6 (by analogy
with the notation of equivalence classes). S/6 is a set of maximal subsets of S
and as such, S/0 € §£2(§2(S)). Thus we have:

Property 1. VK;,K; € S/8 : K; ¢ K; and K; ¢ K; for all i # j

Then, we define a partial ordering on the set of all possible tolerance relations
in a set S as follows:

Definition 7. Let 61 and 0 two tolerance relations in the set S. We say that
0, < 65 if and only if VK; € 5/91 : HKJ‘ S 5/92 : K; C Kj

This relation is a partial ordering and induces a lattice where the meet and
join operations of two tolerance relations 61 and 65, or, equivalently, on the sets
of blocks of tolerance of 8; and 68, are:

Definition 8. Let 6; and 05 two tolerance relations in the set S.
01 NOy =60, N0 = maxs({ki n ]fj | k; € S/Gl,kj € S/GQ})
01Vl =0,U60, = maxS(S/91 U 5/92)

The meet 61 A 0y is the set of pairwise intersections of all blocks in S/6; and
S/02, and then removing intersections that are not maximal. The join is simpler
as it consists in simply joining the blocks of tolerance in S/6; and S/62 and then
removing the unions that are not maximal.

An example of a tolerance relation is the similarity that can be defined within
a set of integer values as follows. Given two integer values v, vo and a threshold
€ (user-defined): v10ve <= |v; — va| < €. For example, when S = {1,2,3,4,5}
and € = 2, then S/0 = {{1,2,3},{2,3,4},{3,4,5}}. S/0 is not a partition as
transitivity does not apply.

We now come back to the set of tuples T" and the set of attributes M. For each
attribute m € M, we define a tolerance relation on the values of that attribute:
0. The set of tolerance blocks induced by the tolerance relation of the attribute
m is T/6,,. All the tuples in a tolerance block K € T'/0,,, are similar one to the
other according to their values w;r.t. the attribute m.

Ezample 4. Let us define a tolerance relation on an attribute m € {a,b,c,d} as
follows: ¢;0,,t; <= |ti(m) —t;(m)| <e.

Now, assuming that e = 1 in example 1, we have:

T/0o = {{t1,t3},{ta,ta}}, T/0p = {{t1, t2, ta}, {ta}}, T/0c = {{t1,t2, 3}, {ta}}
and S/0d = {{tl,tg}, {tg,t4}}.
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We can also extend this definition to sets of attributes. Given X C U, the
similarity relation fx is defined as follows:

(ti,tj) €0x <= Yme X : (t;,t;) € O,

Two tuples are similar w.r.t. a set of attributes X if and only if they are
similar w.r.t. each attributes in X. We now can define a similarity dependency:

Definition 9. Let X,Y C U: X — Y is a similarity dependency iff: Vt;,t; €
T: tiextj = ti@ytj

In the case of a functional dependency, X — Y holds if and only if, for each
pair of tuples having the same value w.r.t. the attributes in X, then, they have
the same value w.r.t. the attributes in Y.

In the case of a similarity dependency, X — Y holds if and only if, for each
pair of tuples having similar values w.r.t. the attributes in X, then, they have
stmilar values w.r.t. the attributes in Y.

Ezample 5. We revisit the table in Example 4 and we define the tolerance rela-
tion: t;0,,t; <= [|ti(m)—t;(m)| < 2. Then the following similarity dependencies
hold: a — d,ab — d,abc — d,ac — d,b — d,bc — d,c — d.

It is interesting to notice that b — d is a similarity dependency but not a
functional dependency, as t;(b) = t2(b) and t1(d) # ta2(d). Because of the same
pair of tuples, the similarity dependency bed — a does not hold, as t16p.q4t2 but
we do not have t16,t2, since [t1(a) — t2(a)| £ 2.

By contrast, the functional dependency bed — a holds because there is no
pair of tuples ¢;,t; such that t;(bed) = t;(bed).

Ezample 6. Going back to example 2, let us compute the Similarity Dependen-
cies that hold and that have the attribute Av. Temp. in their right-hand side).

Dependency Holds
Month -> Av. Temp N
Month, Year -> Av. Temp N
Month, City -> Av. Temp Y
Year -> Av. Temp N
Year, City -> Av. Temp N
City -> Av. Temp N

The only similarity dependency that holds is Month, City — Av.Temp, using
the following similarity measures for each attribute: © Oprontn v <= |z — y| <
0,  Oyear y <= |z —yl <0,z 0city y < distance(x,y) < 500 and
T OavTemp Yy <= |z —y| < 10.

The similarity imposes that the month and year must be the same, whereas
the distance between cities should be less than 500 kilometers and the difference
between average temperatures should be less than 10 degrees (all these values
are of course arbitrary).

In particular, considering the tuples t1, ta: t10nrontn, cityt2 since t1(Month) =
to(Month) = (1) and t1(City) = t2(City) = ( Milan ). From the other side, we
have that t16 4y Temp.t2 since |36.4 — 33.8| < 10.
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3.1 Computing Similarity Dependencies with Pattern Structures

A pattern structure allows one to apply FCA directly on non-binary data [9].
Formally, let G be a set of objects, let (D, M) be a meet-semi-lattice of potential
object descriptions and let § : G — D be a mapping associating each object
with its description. Then (G, (D,M),4) is a pattern structure. Elements of D
are patterns and are ordered thanks to a subsumption relation C: Ve, d € D,
¢ C d < cMNd = ¢. A pattern structure (G, (D, 1), ) is based on two derivation
operators (-)7. For A C G and d € (D,N):

A7 =TT d(9) d2 ={geGldE(g)}.

geEA

These operators form a Galois connection between (p(G),C) and (D,N).
Pattern concepts of (G, (D,M), §) are pairs of the form (A, d), A C G,d € (D,N),
such that A” = d and A = d”. For a pattern concept (A, d), d is a pattern intent
and is the common description of all objects in A, the pattern extent. When
partially ordered by (A1,d1) < (Aa,d2) & A1 C Ay (& do C dy), the set of all
concepts forms a complete lattice called pattern concept lattice.

Thanks to the formalism of pattern structures, similarity dependencies can
be characterized (and computed) in an elegant manner. Firstly, the description
of an attribute m € M is given by d(m) = G/6,, which is given by the set of
tolerance blocks w.r.t. 6,, and G = T'. As tolerance relations can be ordered as
presented and discussed in Definitions 7 and 8, then descriptions can be ordered
within a lattice.

Then, a dataset can be represented as a pattern structure (M, (D,M),0)
where M is the set of original attributes, and (D, M) is the set of sets of blocks
of tolerance over GG provided with the meet operation defined in Definition 8.

An example of concept formation is given as follows. Starting from the set
{a,c} € M and assuming that t;0,,t; <= |t;(m)—t;(m)| < 2 for all attributes:

{avC}D = 5(0') N 5(6) = {{t17t3}7 {t27t4}} M {{t17t27t3}’ {t4}}
= {{t1, ts}, {t2}, {ta}}
{{t:.ts}, {2}, {ta}}” = {m € M|{{t1, 13}, {ta}, {ta}} C 5(m)} = {a, ¢}

This pattern concept lattice allows us to characterize all similarity depen-
dencies holding in M:

Proposition 2. A similarity dependency X — Y holds in a table T if and only
if: {X}P = {XY}" in the pattern structure (M, (D,1),5).

Proof. First of all, we notice that (t,#') € { X} if and only if t(X)0x#' (X), since
(t,t') € {X}" if and only if Vo € X : t(x)0,t'(x), if and only if t(X)0xt'(X).
We also notice that {X,Y}H C {X}F.

(=) We prove that if X — Y holds in T, then, {X}~ = {X, Y}V, that is,
{X}P C {X,Y}Y. We take an arbitrary pair (¢,#') € {X}7, that is: ¢(X)0xt'(X).
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Since X — Y holds, it implies that ¢(XY)0xyt'(XY), and this implies that
(t,t") € {X,Y}".

(<) We take an arbitrary pair ¢,¢' € T such that ¢(X)0xt'(X). Therefore,
we have that (t,t') € {X}", and by hypothesis, (¢,#) € {XY}7, that is:
t(XY)0xyt'(XY). Since this is for all pairs t,# € T such that ¢(X) = t/(X),
this implies that X — Y holds in T'.

4 Experiments

Dataset description. Electronic sport denotes the extreme practice of video
games where so-called cyber-athletes compete in world-wide tournaments. As
for any sport, such professionals are surrounded by sponsors and practice within
professional teams. These professional games are even broadcast by commenta-
tors over specialized TV channels [18]. STARCRAFT II (Blizzard Entertainment)
is the most competitive video game. Since e-sport is a digital entertainment, one
can easily find game statistics and recording in great numbers on the Web. We
list more than 209, 000 games between two opponents and their associated statis-
tics (attributes). For each game, we derive two tuples (one for each of the players
involved). Each player in a game (tuple) is described by 31 attributes such as
his faction, the result, and several indicators of his game play.

Experimental settings. The final dataset has about 400,000 tuples described
by 31 attributes with different domain types (Boolean, qualitative, and numeri-
cal). For attributes with Boolean or non-ordered qualitative domains, the simi-
larity parameters are set to 0 as for classical FDs, since we do not have similarity
constraints between their values. For the others, parameters are set by an expert
of the domain, helped with the distribution of that attribute values.