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Foreword

The 28th Italian Conference on Computational Logic, CILC 2013, was hosted by the
University of Catania from September 25th to September 27th 2013. The event was the
28th edition of the annual meeting organized by GULP (Gruppo ricercatori e Utenti Logic
Programming). Since the first conference, which took place in Genoa in 1986, the annual
conference organized by GULP is the most important occasion for meeting and exchanging
ideas and experiences among Italian users, researchers and developers, who work in the
field of computational logic.

The program included 24 technical papers accepted for presentation (17 for long presen-
tation and 7 for short presentation). Authors were mainly affiliated to Italian universities,
but some of them belonged to universities of other countries (Mexico, France, Argentina,
Finland, Iceland, Spain, and United States). Paper selection was made by peer reviewing:
each submitted paper was assigned to at least three members of the Program Committee,
who in many cases availed themselves of the help of external referees.

Technical presentations concerned several different topics related to computational logic,
including verification of logic programs, answer set programming, proof and decision sys-
tems for several non-classical logics, computable set theory, machine learning. The quality
of the technical contributions confirms that the Italian community of computational logic
is lively and active.

The program included also three invited talks and a tutorial. The invited talks were
given by Maria Paola Bonacina, who reviewed recent trends and current developments
on model-based reasoning; by Eugenio G. Omodeo, who illustrated the state-of-the-
art of proof-verification technology based on set theory and surveyed the proof checker
ÆtnaNova/Referee; and by Alberto Policriti, who presented the result on the decidabil-
ity of the satisfiability problem for the class of purely universal formulae in set theory.
The tutorial was given by Joanna Golińska-Pilarek, who presented specific methodolog-
ical principles of constructing relational dual tableaux, also illustrating their applications
to non-classical logics.

A selection of the accepted papers will appear in a special issue of a scientific journal. The
complete program, with links to full papers and presentation slides, is available at
http://www.dmi.unict.it/˜cilc2013/en/programma.html.

We wish to thank all who contributed to the success of this edition, including authors,
speakers, reviewers, participants, organizers, and sponsors.

Domenico Cantone, Marianna Nicolosi Asmundo
October 2013
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the Test Template Framework (by M. Cristià, G. Rossi, C. Frydman) to appear in R. M.
Hierons, M. Merayo, and M. Bravetti (Eds.), SEFM 2013: 11th International Conference
on Software Engineering and Formal Methods, vol. 8137 of LNCS, Springer-Verlag, 229-
243, 2013.

The paper A Declarative Modeling Language for Concept Learning in Description Logics
(by Francesca Alessandra Lisi) already appeared in: F. Riguzzi, F. Zelezny (Eds.). Induc-
tive Logic Programming, 22nd International Conference, ILP 2012, Dubrovnik, Croatia,
September 17-19, 2012, Revised Selected Papers. Series: Lecture Notes in Computer
Science, Vol. 7842, 151-165, Springer (2013).





On Model-Based Reasoning: Recent Trends and
Current Developments

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona

Abstract. Proofs and models are the mainstay of automated reasoning.
Traditionally, proofs have taken center stage, because in first-order logic
theorem proving is semi-decidable, and model building is not. The growth
of algorithmic reasoning and of its applications to software has changed
the balance, because if satisfiability is decidable, symmetry is restored,
and models are useful for applications and intuitive for users. While first-
order provers search for a proof and may use an interpretation to guide
the search, algorithmic reasoners search for a model, use deduction to
drive the search, and the candidate model to guide the deduction. Thus,
the symmetry is also in the reasoner’s operations. However, decidability
comes at the expense of expressivity. After some historical perspective
on the evolution from proof to model oriented reasoning, we present a
method, named DPLL(Gamma+T), which integrates algorithmic rea-
soner and first-order prover, in such a way that each does what it is best
at, and the prover also makes use of the candidate model.





Proof verification within set theory

Eugenio G. Omodeo

Dipartimento Matematica e Geoscienze sez. Matematica e Informatica,
Università degli Studi di Trieste

Abstract. The proof-checker ÆtnaNova, aka Ref, processes proof sce-
narios to establish whether or not they are formally correct. A scenario,
typically written by a working mathematician or computer scientist, con-
sists of definitions, theorem statements and proofs of the theorems. There
is a construct enabling one to package definitions and theorems into
reusable proofware components. The deductive system underlying Ref
mainly first-order, but with an important second-order feature: the pack-
aging construct just mentioned is a variant of the Zermelo-Fraenkel set
theory, ZFC, with axioms of regularity and global choice. This is apparent
from the very syntax of the language, borrowing from the set-theoretic
tradition many constructs, e.g. abstraction terms. Much of Ref’s natu-
ralness, comprehensiveness, and readability, stems from this foundation;
much of its effectiveness, from the fifteen or so built-in mechanisms, tai-
lored on ZFC, which constitute its inferential armory. Rather peculiar
aspects of Ref, in comparison to other proof-assistants (Mizar to men-
tion one), are that Ref relies only marginally on predicate calculus and
that types play no significant role, in it, as a foundation.
This talk illustrates the state-of-the-art of proof-verification technology
based on set theory, by reporting on ‘proof-pearl’ scenarios currently
under development and by examining some small-scale, yet significant,
examples of use of Ref. The choice of examples will reflect today’s ten-
dency to bring Ref’s scenarios closer to algorithm-correctness verification,
mainly referred to graphs. The infinity axiom rarely plays a role in appli-
cations to algorithms; nevertheless the availability of all resources of ZFC
is important in general: for example, relatively unsophisticated argumen-
tations enter into the proof that the Davis-Putnam-Logemann-Loveland
satisfiability test is correct, but in order to prove the compactness of
propositional logic or Stone’s representation theorem for Boolean alge-
bras one can fruitfully resort to Zorn’s lemma.





On the decidability of the ∃∗∀∗ prefix class in
Set Theory

Alberto Policriti

Dipartimento di Matematica e Informatica, Universit degli Studi di Udine

Abstract. In this talk I will describe the set-theoretic version of the
Classical Decision Problem for First Order Logic. I will then illustrate
the result on the decidability of the satisfiability problem class of purely
universal formulae (∃∗∀∗-sentences) on the unquantified language whose
relational symbols are membership and equality. The class we studied
is, in the classical (first order) case, the so-called Bernays-Schoenfinkel-
Ramsey (BSR) class. The set-theoretic decision problem calls for the
existence of an algorithm that, given a purely universal formula in mem-
bership and equality, establishes whether there exist sets that substituted
for the free variables will satisfy the formula. The sets to be used are pure
sets, namely sets whose only possible elements are themselves sets. Much
of the difficulties in solving the decision problem for the BSR class in Set
Theory came from the ability to express infinity in it, a property not
shared by the classical BSR class. The result makes use of a set-theoretic
version of the argument Ramsey used to characterize the spectrum of
the BSR class in the classical case. This characterization was the result
that motivated Ramsey celebrated combinatorial theorem.





Relational Dual Tableaux: Foundations and
Applications

Joanna Golińska-Pilarek

Institute of Philosophy, University of Warsaw

The origin of dual tableaux goes back to the paper [RAS60] of Rasiowa and
Sikorski, where a cut-free deduction system for the classical first-order logic
has been presented. Systems in the Rasiowa-Sikorski style are top-down validity
checkers and they are dual to the well known tableau systems. The common
language of most of relational dual tableaux is the logic of binary relations which
was introduced in [ORL88] as a logical counterpart to the class of representable
relation algebras given by Tarski in [TAR41].

The relational methodology enables us to represent within a uniform for-
malism the three basic components of formal systems: syntax, semantics, and
deduction apparatus. Hence, the relational approach can be seen as a general
framework for representing, investigating, implementing, and comparing theo-
ries with incompatible languages and/or semantics. Relational dual tableaux are
powerful tools which perform not only verification of validity (i.e., verification
of truth of the statements in all the models of a theory) but often they can also
be used for proving entailment (i.e., verification that truth of a finite number of
statements implies truth of some other statement), model checking (i.e., verifi-
cation of truth of a statement in a particular fixed model), and finite satisfaction
(i.e., verification that a statement is satisfied by some fixed objects of a finite
model).

This presentation is an introductory overview on specific methodological prin-
ciples of constructing relational dual tableaux and their applications to non-
classical logics. In particular, we will present relational dual tableaux for stan-
dard non-classical logics (modal, intuitionistic, relevant, many-valued) and for
various applied theories of computational logic (fuzzy-set-based reasoning, qual-
itative reasoning, reasoning about programs, among others). Furthermore, we
will discuss decision procedures in dual tableaux style. By way of example, we
will show how to modify the classical dual tableau systems to obtain decision
procedures for some modal and intuitionistic logics.
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Negation as a Resource: a novel view
on Answer Set Semantics?

Stefania Costantini1 and Andrea Formisano2

1 DISIM, Università di L’Aquila, Italy stefania.costantini@univaq.it
2 DMI, Università di Perugia, Italy formis@dmi.unipg.it

Abstract. In recent work, we provided a formulation of ASP programs in terms
of linear logic theories. Answer sets were characterized in terms of maximal ten-
sor conjunctions provable from such theories. In this paper, we propose a full
comparison between Answer Set Semantics and its variation obtained by inter-
preting literals (including negative literals) as resources, which leads to a different
interpretation of negation. We argue that this novel view can be of both theoreti-
cal and practical interest, and we propose a modified Answer Set Semantics that
we call Resource-based Answer Set Semantics. One advantage is that of avoiding
inconsistencies, so every program has a (possibly empty) resource-based answer
set. This implies however the introduction of a different way of representing con-
straints.

Keywords: Answer Set Programming, Linear Logic, Default Negation

1 Introduction

In [1], we proposed a comparison between RASP and linear logic [2], where RASP
[3, 4, 5] is a recent extension of the Answer Set Programming (ASP) framework ob-
tained by explicitly introducing the notion of resource. As it is well-known, ASP is
nowadays a well-established programming paradigm, with applications in many areas
(see among many [6, 7, 8] and the references therein). RASP is a significant extension,
supporting both formalization and quantitative reasoning on consumption and produc-
tion of amounts of resources.

We proved in particular that RASP (and thus, ASP as a particular case) corresponds
to a fragment of linear logic. This was done by providing a two-ways translation of
RASP programs into a linear logic theory. The result implies that a RASP inference en-
gine (such as Raspberry [5]) can be used for reasoning in this fragment. In defining the
correspondence, we introduced a RASP and linear-logic modeling of default negation
as understood under the answer set semantics. We meant in some sense to propose “yet
another definition of answer set”, in addition to those reported in [9].

In the present paper, we show that understanding default negation as a resource
goes beyond, and leads to the definition of a generalization of the answers set semantics
(for short AS, on which ASP is based), with some potential advantages. We provide a

? A short version of this paper will appear in the Proc. of LPNMR 2013. This research is partially
supported by GNCS-13 project.



model-theoretic definition of the new semantics, that we call Resource-based Answer
Set Semantics. In the new setting, there are no inconsistent programs, and basic odd
cycles (similarly to basic even cycles in AS) are interpreted as exclusive disjunctions.
Constraints must then be represented explicitly (while in ASP they are “simulated” via
unary odd cycles). Therefore, what was before programs with constraints becomes a
plain ASP program (under the extended semantics) augmented with a set of explicitly
represented constraints. We argue that representing constraints separately can lead to
more generality and to an improved elaboration-tolerance (in the sense of [10]). In the
proposed approach, the “practical expressivity” in terms of knowledge representation is
improved (as we demonstrate by means of significant examples), though unfortunately
also the computational complexity increases.

The paper is organized as follows. In Sections 2 and 3, we provide the necessary
background on linear logic and ASP. In Section 4, we specialize the method defined in
[1] for RASP, so as to show that ASP can be defined as a fragment of linear logic. It is
relevant to recall this formalization, because it makes it clear which is the motivation
of the new notion of negation and of the generalized answer set semantics that we
then propose. In Sections 5 and 6 the semantic extension is described, formalized and
discussed. Finally, in Section 7 we conclude.

2 Background on Linear Logic

Linear logic [2] can be considered as a resource sensitive refinement of classical logic,
since it intrinsically supports a natural accounting of resources. Intuitively speaking, in
linear logic, two assumptions of a formula P are distinguished from a single assump-
tion of it. Below we briefly review the basic traits of (a fragment of) linear logic, by
recalling only the notions that will be used in the remaining part of the paper. For a
comprehensive treatment we refer the reader to [11] and to the references therein.

In linear logic, contraction and weakening rules are not allowed: hence, while a
statement of the form P→ P∧P is valid in classical logic, this is not the case in lin-
ear logic. The point here can be explained by observing that in classical logic state-
ments are assumed to express “static” properties, unchanging facts about the world.
On the contrary, linear propositions are concerned with dynamic properties of finite
amounts of resources (and the processes that use them). An example well-known in
the literature [11, 12] may further clarify this point. Consider the following proposi-
tions/resources:

P : “One dollar”
Q : “One pack of Camel”
R : “One pack of Marlboro”

and the following axiomatization of a vending machine:

P→ Q
P→ R

In classical logic, one can derive that P→ Q∧R, but this makes little sense if we are
assuming the mentioned interpretation of propositions as resources (and of implications
as transformation processes, very much like in RASP).

18 Stefania Costantini and Andrea Formisano



One of the crucial features of linear logic is that it makes a neat distinction between
two forms of conjunction that are not distinguished by classical logic. Namely, one
of them intuitively means “I have both”. This is said multiplicative conjunction and is
written as⊗. The other, the additive conjunction means “I have a choice” (and is written
as &). Dually, there are two disjunctions. The multiplicative one, written P O Q can be
read as “if not P, then Q”, and the additive disjunction P⊕Q, that intuitively stands for
the possibility of either P or Q, but we do not know which of the two. That is, it involves
“someone else’s choice”.

Finally, we have linear implication P —◦Q. It encodes a form of production pro-
cess: it can be read as “Q can be derived using P exactly once”. (Notice that, in such a
process P is “consumed”, so it cannot be used again.)

Linear negation ⊥ is the only negative operation in the logic. It is involutive (namely,
(P⊥)⊥ and P can be safely identified) and, at the same time, it retains a construc-
tive character. Notice that it acts as a sort of transposition: P —◦Q coincides with
Q⊥ —◦P⊥. Moreover, the linear implication P —◦Q can be rewritten as P⊥ O Q.

In order to re-gain the full power of classical logic exponential operators, namely !
and its dual ?, are introduced. Intuitively, !P means that we have how many P we want.
These connectives reintroduce, in a more controllable way, contraction and weakening
in the logical framework.

To better illustrate all these connectives, let us recall another example (taken
from [12]). Suppose that for a fixed price of 5 Dollars a restaurant will provide a ham-
burger, a Coke, as many french fries as you like, onion soup or salad (your choice), and
pie or ice cream (depending on availability, hence by someone else’s choice). This is
the menu:

For a fixed-Price Menu: 5 Dollars (D) you can have:
Hamburger (H)

Coke (C)
All the french fries (F) you can eat

One between Onion-Soup (O) or Salad (S)
Pie (P) or Ice-Cream (I) depending on availability

and its encoding in a linear logic formula:

(D⊗D⊗D⊗D⊗D) —◦
(
H⊗C⊗ !F⊗(O&S)⊗(P ⊕ I)

)

Some further notions will be used in what follows. Let Xs and Y s denote tensor
products of positive literals, e.g. formulas of the form (P1⊗·· ·⊗Pn) (for n > 0). Then,
generalized Horn implications are defined as follows:

– an Horn implication has the form: X —◦Y .
– An ⊕-Horn implication has the form:

(
X1 —◦(Y1⊕Y2)

)
.

– An &-Horn implication has the form:
(
(X1 —◦Y1)&(X2 —◦Y2)

)
.

Notice that a formula of the last form, say (P1 —◦Q1)&(P2 —◦Q2), encodes a nonde-
terministical process where a choice is made between the two disjuncts (say P2 —◦Q2)
and then the (sub-)process encoded by the selected option is executed (in our case Q2
is produced using P2).

Negation as a Resource: a novel view on Answer Set Semantics 19



A formal proof system for linear logic can be formulated in terms of a Gentzen-style
sequent calculus. A sequent is composed of two sequences of formulas separated by a
turnstile (`) symbol. The sequent ∆ ` Γ asserts that the multiplicative conjunction of
the formulas in ∆ together imply the multiplicative disjunction of the formulas in Γ .
In general, a sequent calculus proof rule consists of a set of hypothesis sequents and a
single conclusion sequent. A full set of Gentzen-style sequent rules for linear logic can
be found, for instance, in [13].

3 Background on Answer Set Semantics

In the answer set semantics (originally named “stable model semantics”), a (logic) pro-
gram Π (cf., [14, 15]) is a collection of rules of the form H ← L1, . . . ,Ln. where H is
an atom, n > 0 and each literal Li is either an atom Ai or its default negation not Ai. The
left-hand side and the right-hand side of rules are called head and body, respectively.
A rule can be rephrased as H ← A1, . . . ,Am,not Am+1, . . . ,not An. where A1, . . . ,Am
can be called positive body and not Am+1, . . . ,not An can be called negative body. A
rule with empty body (n = 0 is called a fact. A rule with empty head is a constraint,
where a constraint is of the form← L1, . . . ,Ln. and states that literals L1, . . . ,Ln cannot
be simultaneously true.

Various extensions to the basic paradigm exist, that we do not consider here as they
are not essential in the present context. We do not even consider “classical negation”
(cf., [15]).

In the rest of the paper, whenever it is clear from the context, by “a (logic) program
Π” we mean an answer set program (ASP program) Π , and we will implicitly refer
to the “ground” version of Π . The ground version of Π is obtained by replacing in all
possible ways the variables occurring in Π with the constants occurring in Π itself, and
is thus composed of ground atoms, i.e., atoms which contain no variables. By “minimal
model of Π” we mean a minimal model of Π intended as a classical logic theory, where
← is intended as implication and not as negation in classical logic terms.

The answer sets semantics [14, 15] is a view of a logic program as a set of inference
rules (more precisely, default inference rules), or, equivalently, a set of constraints on
the solution of a problem: each answer set represents a solution compatible with the
constraints expressed by the program. Consider simple program {q ← not p. p ←
not q.}. For instance, the first rule is read as “assuming that p is false, we can conclude
that q is true.” This program has two answer sets. In the first one, q is true while p is
false; in the second one, p is true while q is false.

Unlike other semantics, a program may have several answer sets, or may have no
answer set. Whenever a program has no answer sets, we will say that the program is in-
consistent. Correspondingly, checking for consistency means checking for the existence
of answer sets. The following program has no answer set: {a← not b. b← not c. c←
not a.}. The reason is that in every minimal model of this program there is a true atom
that depends (in the program) on the negation of another true atom, which is strictly for-
bidden in this semantics, where every answer set can be considered as a self-consistent
and self-supporting set of consequences of given program. The program {p← not p.}
has no answer sets either as it is contradictory. Constraints of the form defined above can
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be simulated by plain rules of the form p← not p,L1, . . . ,Ln. where p is a fresh atom.
Thus, consistency is related (as discussed at length in [16, 17]) to the occurrence of
“odd cycles” (of which p← not p is the basic case, though odd cycles may involve any
odd number of atoms) and how they are connected to other parts of the program. The
reason is that, in principle, the negation not A of atom A is an assumption, that must be
dropped whenever A can be proved, as answer sets are by definition non-contradictory.

Below is the specification of the Answer Set Semantics, reported from [14].

Definition 1 (The Gelfond-Lifschitz Operator). Let I be a set of atoms and Π a pro-
gram. A GL-transformation of Π modulo I is a new program Π/I obtained from Π by
performing the following two reductions:

1. removing from Π all rules which contain a negative premise not A such that A ∈ I;
2. removing from the remaining rules those negative premises not A such that A 6∈ I.

Π/I is a positive logic program, with Least Herbrand Model1 J. Let ΓΠ (I) = J.

Answer sets are defined as follows.

Definition 2. Let I be a set of atoms and Π a program. I is an answer set of Π iff
ΓΠ (I) = I.

It will be useful in what follows to report from [16] a simple property of ΓΠ .

Proposition 1. Let M be a minimal model2 of Π . Then, ΓΠ (M)⊆M.

Answer sets are in fact minimal supported models, and non-empty answer sets form
an anti-chain with respect to set inclusion.

In the ASP (Answer Set Programming) paradigm, each answer set is seen as a so-
lution of given problem, encoded as an ASP program. To find these solutions, an ASP-
solver is used. Several solvers have became available, see [19], each of them being
characterized by its own prominent valuable features. The expressive power of ASP, as
well as, its computational complexity have been deeply investigated (cf. e.g., [20]).

4 ASP and Linear Logic

In this section, we specialize the method defined in [1] for RASP, so as to show that
ASP can be defined as a fragment of linear logic. In particular, we define a translation
of ASP programs into a linear logic theory employing as connectives tensor product
⊗ (to express concomitant use/production of different resources), linear implication
—◦ (to model production processes), and additive conjunction & (to represent alter-

native/exclusive resource allocation). In well-known terminology, we adopt formulas
belonging to the so-called Horn-fragment of linear logic. In [1] we treat the more gen-
eral case of RASP, which manages resource production and consumption.

1 Cf. [18] for the definition of Least Herbrand Model of a Horn logic program, due to Van Emden
and Kowalski.

2 The property holds for models in general, but minimal ones are those of interest here.
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A positive ASP program Π (i.e., a program without default negation) can be trans-
formed into a corresponding Linear Logic RASP Theory as follows (notice that the
reverse translation is also possible, i.e., to transform a Linear Logic RASP Theory into
a (R)ASP program). In particular, in the definition below each atom q in the body of the
j-th rule of given program is renamed as q j, where the q j’s are called the standardized-
apart versions of q. Moreover, since the formalization passes through RASP, which
considers atoms as resources, each standardized-apart atom q j will stand for q j:1 (In
RASP terminology, a writing of the form q:a denotes an amount a of the resource q.).
The meaning is that, when using the body of a rule to derive the head, one uses one unit
of each atom (seen as a resource) in the body3. Notice that, in Π , the truth of an atom
might be used to prove several consequences (through different rules). As we men-
tioned before, linear logic provides the exponential connective !A, intuitively meaning
that we can use as many occurrences of A as we want. However, exploiting this con-
nective would bring us outside the finite propositional fragment of linear logic at hand.
The devised method remains within the propositional fragment.

Definition 3. Given a positive ASP program Π , the corresponding Linear Logic RASP
Theory ΣΠ is obtained by applying, in sequence, the following rewritings.

– Standardize apart the atoms in the bodies of rules of Π . Namely, each occurrence
of an atom A in the body of the j-th rule is replaced by A j:1.

– For every atom A occurring as head of h> 0 rules in (the standardize apart version
of) Π , let A← Bi,1, . . . ,Bi,`i , for i = 1, . . . ,h, be such rules (with `i possibly null,
if the corresponding rule is a fact). Replace these rules by the following linear
implications (where the Ais are fresh atoms):

Bi,1⊗ . . .⊗Bi,`i —◦Ai for i = 1, . . . ,h
A1 & . . .&Ah —◦A

– For each atom A, let A1:1, . . ., Am:1 be its standardized apart versions, introduced
as described earlier. Add to ΣΠ the linear implication A —◦A1:1⊗ . . .⊗Am:1.

– Replace in ΣΠ any linear implication B1⊗ . . .⊗Bn —◦H with the implication
B1⊗ . . .⊗Bn —◦H⊗B1R⊗ . . .⊗BnR.

Let us remark some aspects of the previous definition. Notice that through the second
step of the translation, the body of each rule in Π , which is a conjunction of atoms,
is turned into a tensor conjunction of atoms. The purpose of the linear implication
A1 & . . .&Ah —◦A is that of enabling the derivation of A by either of the (translations
of the) rules defining it. Clearly, the introduction of such an implication can be avoided
in case A occurs as head of a single rule (in this case h = 1 and we can simply replace A1
by A in the first linear implication). In what follows we will adhere to this convention
whenever possible.

The linear implication A —◦A1:1⊗ . . .⊗Am:1 can be seen as an &-Horn implica-
tions with a unique conjunct. It models the fact that A is a resource available to any rule
that may need to use it.

3 RASP allows for arbitrary quantities, not needed here.
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Notice, moreover, the introduction of a fresh atom BiRs corresponding to each atom
Bi, in the last step of the translation. These fresh atoms are called the r-copies of the
Bis. They are produced just in order to keep a record of those resources that have been
consumed. R-copies allow us to establish a correspondence between answer sets of Π
and maximal tensor conjunctions provable from ΣΠ , where:

Definition 4. Given linear logic theory Σ , a tensor conjunction of atoms A1⊗ . . .⊗An
(n ≥ 0), is called maximally provable if it is provable from Σ , and for any atom B, the
tensor conjunction A1⊗ . . .⊗An⊗B is not provable from Σ (we equivalently talk about
a maximal tensor conjunction provable from Σ ).

Lemma 1. Let Π be a positive ASP program Π , and ΣΠ be the corresponding Linear
Logic RASP Theory. Every maximal tensor conjunction A provable from ΣΠ includes
all the r-copies of facts of ΣΠ and of standardized-apart atoms occurring in the body of
linear implications of ΣΠ that have been used for proving atoms in A .

As mentioned, the role of r-copies is to keep records of facts (intended as resources
originally present in the program) and of intermediate conclusions used (as resources)
in further inference. In a linear-logic setting in fact, resources which are consumed
“disappear”, thus we would not be able to establish a relation between provable tensor
conjunctions and answer sets. Now in fact, we are able to state (neglecting, by abuse of
notation, the syntactic distinction between an atom A and its r-copy AR):

Theorem 1. Let Π be a positive ASP program Π , and ΣΠ be the corresponding Linear
Logic RASP Theory. A1⊗ . . .⊗An is a maximal tensor conjunction provable from ΣΠ
if and only if {A1, . . . , An} is an answer set for Π .

Let us now consider full ASP, where rule bodies involve negative literals. Assume
there are n occurrences of not A in the body of rules of given program Π . To represent
full RASP (and thus full ASP) we improve the transformation devised in Definition 3:

Definition 5. Given ASP program Π , the corresponding Linear Logic RASP Theory
ΣΠ is obtained by applying, in sequence, the following rewritings.

– For each atom A occurring negated in rules of Π , standardize apart each of its
negated occurrences by replacing not A with not A j:1, in the j-th rule.
Being not A j1 :1, . . ., not A jn :1 all the occurrences introduced in this manner, add
the (linear) fact not A:n to the translation of Π .

– For each rule A← B1, . . . ,B` of Π . Let such rule be the j-th one; rewrite it as
A← B1, . . . ,B`,not A j:n.
Let us denote by not Ak1 :n, . . .,not Aks :n all the atoms introduced in this manner.4

– Apply the rewriting indicated in Definition 3 to the result of the previous steps.
– Finally, for each linear fact not A:n added to ΣΠ (cf., the first two steps), also add

the &-Horn implications to the translation of Π :
(not A:n —◦not Ak1 :n)& . . .&(not A:n —◦not Aks :n)&
(not A:n —◦not A j1 :1⊗ . . .⊗not A jn :1)

4 In case identical atoms would be introduced in the body in consequence of different steps of
the translation, e.g., not Ak:1 and not Ak:1 might occur in the same rule if n equals 1 in the
first step and not A already appeared in the ASP rule body, then further standardize apart these
occurrences, e.g., as not Ak1:1 and not Ak2:1.
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The intuitive meaning behind this translation is that the assumption not A is made
available to every rule that intends to adopt it, unless A itself is provable. In which case
the assumption becomes totally unavailable (as proving A consumes the full available
quantity of the “resource” not A).

The transformation of Definitions 3 and 5 is clearly polynomial, as we add: (i) a
new conjunct in the body (not A if the rule head is A) and new elements (r-copies) in
the head of rules ; (ii) one &-Horn implication for each A occurring in the head of some
rule; (iii) one linear implication for each atom defined via several rules; (iv) one &-Horn
implication for each A occurring negatively in the body of some rule. Hence, we have:

Theorem 2. Let Π be an ASP program, and ΣΠ the corresponding Linear Logic RASP
Theory, obtained according to Definitions 3 and 5. Let M = {A1, . . . , An} be an answer
set for Π . Then, A1⊗ . . .⊗An is a maximal tensor conjunction provable from ΣΠ .

Note that the reverse result does not necessarily hold, because there are maximal
tensor conjunctions that are not answer sets but are provable from ΣΠ . This is due (as
discussed in [1]) to the lack of relevance of the answer set semantics (cf., [21]), but also
to the locality of a proof-based system such as linear logic.

5 Negation as a Resource: a novel view on Answer Set Semantics

It is interesting to notice that the linear logic formulation we summarized in the previous
section prevents contradictions. Consider for example the program Π1 = {p← not p.}.
It is transformed into:

not p11:1⊗not p12:1 —◦ p,
not p:1,
(not p:1 —◦not p11:1)&(not p:1 —◦not p12:1)

In the first rule, one occurrence of not p corresponds to the one originally present,
the other one has been added as for proving p it is necessary to “absorb” the whole
available quantity of not p (consider n = 1 in Definition 5). We can in fact verify that
the singleton tensor conjunction p is by no means provable: in fact, it would require
two units of not p, while just one is available. This does not lead to inconsistency, but
simply to the impossibility to prove p.

Consider again program Π = {a← not b. b← not c. c← not a.} which is an “odd
cycle” involving three atoms. In our formulation, ΣΠ is the following:

not a1:1⊗not b1:1 —◦a
not c2:1⊗not b2:1 —◦b
not a3:1⊗not c3:1 —◦c
not a:1
not b:1
not c:1
(not a:1 —◦not a1:1)&(not a:1 —◦not a3:1)
(not b:1 —◦not b1:1)&(not b:1 —◦not b2:1)
(not c:1 —◦not c2:1)&(not c:1 —◦not c3:1)
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From this linear logic theory we can prove the three maximal tensor conjunctions,
namely, a, b and c. Assume, in fact, to try to prove a (the cases of b and c are of course
analogous). Proving a uses resources not a1:1 and not b1:1. Therefore, after proving a,
b cannot be proved because its own negation (i.e., not b2:1) is not available: in fact,
the &-Horn implication related to b generates (indifferently) only one of the two items,
and has already been requested to produce not b1:1 for proving a. In turn, c cannot
be proved because not a3:1 is not available, as the &-Horn implication related to a
generates (indifferently) only one of the two items, and has already been requested to
produce not a1:1 for proving a. Then, ΣΠ behaves analogously to the GL-reduct as far
as c is concerned, being not a unavailable once a has been proved. But it behaves in a
more uniform way on b, in the sense that once not b has been used to prove a, it is no
longer possible to prove b.

This means that the 3-atoms odd cycles is interpreted as an exclusive disjunction,
exactly like the 2-atoms even cycle (such as {q← not p. p← not q.}) in AS. There-
fore, in the generate-and-test perspective which is at the basis of the ASP programming
methodology, our new view provides a new mean of easily generating the search space.

We call {a}, {b}, and {c} resource-based answer sets, for which we provide below a
logic programming characterization. The resource-based answers set for program {p←
not p.} is the empty set.

The ternary cycle has many well-known interpretations in terms of knowledge rep-
resentation, among which the following is an example:

{beach← not mountain.
mountain← not travel.
travel← not beach.}

In our approach we would have exactly one of (indifferently) beach, mountain, or travel.
Similarly for the program {work← not tired. tired← not sleep. sleep← not work.}.
Note that, in answer set programming, for defining the exclusive disjunction of three
atoms one has to resort to the extremal program [22] {a ← not b,not c. b ←
not c,not a. c← not a,not b.}

There are other semantic approaches to managing odd cycles, such as for instance
[23, 24] and [25, 26], with their own sound theoretical foundations, that can however
be distinguished from the present one: in fact, the former proposals basically choose
(variants of) the classical models, and the latter ones treat differently the unary and
ternary cycles.

Below we provide a variation of the answer set semantics that defines resource-
based answer sets.

Definition 6. Let Π be a program and I a minimal model of Π . I is called a Π -based
minimal model iff ∀A ∈ I, there exists a rule in Π with head A and positive body
C1, . . . ,Cm, m≥ 0, where {C1, . . . ,Cm} ⊆ I.

Definition 7. Let Π be a program. M is a resource-based answer set of Π iff M =
ΓΠ (I), where I is a Π -based minimal model of Π .

By Definition 7, there is a resource-based answer set for each Π -based classical
minimal model. It is clear that answer sets are among resource-based answer sets. In
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fact, as stated in Section 3 (Proposition 1), for any minimal model I it holds ΓΠ (I)⊆ I:
thus any answer set S, being a minimal model which is equal to ΓΠ (S), fits as a particular
case in the above definition. Therefore, some of the resource-based answer sets of Π are
classical models (coinciding with its answer sets), while the others are subsets of the
remaining Π -based minimal models (if any). Non-empty resource-based answer sets
still form an anti-chain w.r.t. set inclusion.

We call the new semantics RAS semantics (Resource-Based Answer Set semantics),
w.r.t. AS (Answer Set) semantics. Differently from answer sets, a (possibly empty)
resource-based answer set always exists. Complexity of RAS semantics is however
higher than complexity of AS semantics: in fact, [27] proves that deciding whether a set
of formulas is a minimal model of a propositional theory is co-NP-complete. Clearly,
checking whether a minimal model I is Π -based and computing ΓΠ (I) has polynomial
complexity. Then:

Proposition 2. Given program Π , deciding whether a set of atom I is a resource-based
answer set of Π is co-NP-complete.

The previous result about the relation with linear logic (Theorem 2) extends to the
new semantics. The proof, reported in [1] in the context of full RASP programs, re-
mains essentially the same. The difference is that where in previous case one referred
to answer sets, which implies that given program Π was supposed to be consistent, we
are now able to refer to any ASP program. Then we have:

Theorem 3. Let Π be an ASP program, and ΣΠ the corresponding Linear Logic RASP
Theory, obtained according to Definitions 3 and 5. If M = {A1, . . . , An} is a resource-
based answer set for Π , then A1⊗ . . .⊗An is a maximal tensor conjunction provable
from ΣΠ .

It remains to be explained why the new definition models the intuition, and how
it applies to practical cases. In particular, given minimal model I of Π , it may be that
ΓΠ (I) ⊂ I, i.e., ΓΠ (I) is a proper subset of I and thus I is not an answer set, for only
one reason. For atom A to belong to a Π -based minimal model I, there exists some rule
in Π with head A. For A not to belong to ΓΠ (I), so that ΓΠ (I) ⊂ I, each of the rules
that could cause A to be in the model must have been canceled by step (1) of ΓΠ , as
they include literal not B in their body, B ∈ I. Atoms belonging to ΓΠ (I) are therefore
those atoms in I that can be derived without such contradictions. As widely discussed in
[16, 17], contradictions only arise in program fragments corresponding to unbounded
odd cycles, i.e., odd cycles where no atom is bounded to be true/false (thus resolving the
contradiction) by links with other parts of the program. Starting from Π -based minimal
models however, ΓΠ (I) provides for these cycles the “exclusive or” interpretation that
we have proposed above.

Regarding general odd cycles involving k atoms, of the form {a1 ← not a2. a2 ←
not a3. . . .ak ← not a1.}, it is easy to see that each such cycle has k classical minimal
Π -based models (it admits k classical minimal models, all of them Π -based as there
are no positive conditions). Correspondingly, we obtain k resource-based answer sets,
where we have Mi = {ai+d , with d even, 0 ≤ d < k− 1}. This fact can be verified by
producing a translation into the corresponding Linear Logic RASP Theory analogous to
the one performed above for unary and ternary cycles. Then, unfortunately, odd cycles
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no longer model disjunction if k > 3, similarly to even cycles, which do not model
disjunction if k > 2.

In resource-based answer set semantics, there are no inconsistent programs. Nev-
ertheless, the new semantics is useful in knowledge representation not just to fix in-
consistencies: rather, it depicts a more general scenario in many reasonable examples.
Consider for instance the variation of the above program (inspired to examples proposed
in [23, 24]):

beach← not mountain.
mountain← not travel.
travel← not beach,passport ok.
passport ok← not forgot renew.
forgot renew← not passport ok.

This program has answer set M1 = {forgot renew,mountain}, as passport ok be-
ing false forces travel to be false, which in turn makes mountain true. The answer
set semantics cannot cope with the case of the passport being ok, which is in fact
excluded as this option determines no answer set. Instead, in resource-based answer
set semantics we have, in addition to M1, three other answer sets stating that, if the
passport is ok, any choice is possible, namely we have M2 = {passport ok,mountain},
M3 = {passport ok,beach}, and M4 = {passport ok, travel}. We may notice that the
semantics is still a bit strong on this example on the side of the answer set, as one
would say that not having passport ok prevents traveling, but any other choice should
be possible, while instead the mountain choice is forced.

A better formalization of the above example would be by means of the plain odd
cycle, plus the even cycle concerning passport, plus the constraint

← not passport ok, travel.
In the next section we will discuss how to introduce such a constraint, as a unary odd
cycle is no longer usable to this purpose.

6 Modeling Constraints

In resource-based answer set semantics, constraints cannot be modeled in terms of odd
cycles. Therefore, they have to be modeled explicitly. In particular, let assume a con-
straint C to be of the form← E1, . . . ,En. where the Eis are atoms5. This is with no loss
of generality, as a constraint such as, for instance,← A,not B. can be reformulated as
the program fragment← A,B′. B′← not B. Thus, an overall program ΠO can be seen
as composed of answer set program Π plus a set {C1, . . . ,Cv} of constraints, and, pos-
sibly, an auxiliary program ΠC , so that constraints can be defined on atoms belonging
to either Π or ΠC . We assume however that ΠC is stratified (i.e., it contains no cycles,
cf. e.g., [28] for a formal definition) and that atoms of Π may occur in ΠC only in the
body of rules (in the terminology of [16, 29], ΠC is a top program of Π ).

5 This limitation will be useful for the linear logic formulation (provided below).
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Consider for instance ΠO to be composed of the following Π :

{beach← not mountain.
mountain← not travel.
travel← not beach.
hyperthyroidism.}

plus the following ΠC :

{unhealthy← beach, hyperthyroidism.}

plus the constraint← unhealthy.
The resulting theory will have resource-based answer sets {mountain,

hyperthyroidism}, and {travel, hyperthyroidism}, while {beach, hyperthyroidism,
unhealthy} is excluded by the constraint. We now proceed to the formal definition.

Definition 8. An Answer Set Theory T is a couple 〈ΠO ,Constr〉, with ΠO = Π ∪ΠC ,
where ΠC is a top program for Π , and where Constr is a set {C1, . . . ,Cv}, v ≥ 0, of
constraints.

Definition 9. Given Answer Set Theory T = 〈ΠO ,Constr〉, a resource-based Answer
Set M for Π fulfills the constraints in Constr iff the answer set program Π ′ is consistent
(in the sense of traditional answer set semantics), where Π ′ is obtained from ΠC by
adding all atoms in M as facts, and all constraints in Constr as rules.

Definition 10. A Resource-based Answer Set M of Answer Set Theory T =
〈ΠO ,Constr〉 is a resource-based answer set for Π that fulfills all constraints in Constr.

It is easy to see that, in order to check that resource-based Answer Set M for Π ful-
fills the constraints, one can check consistency of Π ′ in a simple way, by: (i) computing
(in polynomial time, cf., e.g., [20]) the unique answer set M′′ of the stratified program
Π ′′ obtained from ΠC by adding all atoms in M as facts, and then (ii) checking con-
straints on M′′ by pattern-matching. Then, for constraints of the above simple form, we
can conclude that:

Proposition 3. Given Answer Set Theory T , deciding about the existence of a
resource-based answer set is a co-NP-complete problem.

The partition of ΠO into Π and ΠC is not strictly necessary in the present context.
In fact, one might simply check the constraints on Π ∪ΠC . However, we choose to
introduce the distinction because we believe that it may have a significance in terms
of knowledge representation and elaboration-tolerance, in the sense of [10]. In fact, the
same “generate” part (Π ) can be customized by adding on top, as an independent layer,
different “test” parts (ΠC ). Moreover, constraints might be generalized with respect to
the simple form proposed above, for instance drawing inspiration from the discussion
in [30, 31, 32], or also following the approach of Answer Set Optimization (cf. [33] and
the references therein), which proposes constraints expressing complex preferences for
choosing among answer sets.
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For the sake of completeness, it may be interesting to illustrate the linear logic
formalization of the full approach. To this aim, we have to resort to linear logic negation.
A constraint C =←E1, . . . ,En. can in fact be represented in linear logic as C L = E1

⊥ O
. . . O En

⊥ where O is the multiplicative disjunction, and ⊥ is linear logic negation, A⊥

meaning “there is no proof for A”.6

Thus, the overall linear logic theory would be ΣΠO
, and its resource-based answer

sets should be matched against the constraints. Formally:

Definition 11. Given resource-based answer set M = {A1, . . . , An} for ΠO , M is
a resource-answer set for answer set theory T = 〈ΠO ,Constr〉 where Constr
= {C1, . . . ,Cv} iff tensor conjunction A1⊗ . . .⊗An⊗C L

1 ⊗ . . .⊗C L
v is provable

from ΣΠO
.

Notice that each constraint is provable whenever at least one of its disjuncts is not
one of the Ai’s. Then, in terms of equivalence between the logic programming and linear
logic formulation, nothing really changes w.r.t. Theorem 3.

7 Concluding Remarks

In this paper, we have proposed an extension of the answer set semantics where ternary
odd cycles are understood as exclusive disjunctions, similarly to binary even cycles.
This extension stems from the interpretation of an answer set program as a linear logic
theory, where default negation is considered to be a resource. The practical advantage is
that there is more freedom in defining a search space, where constraints must however
be defined in a separate “module” to be added to given answer set program.

Concerning implementation, which is of course a main future issue for this research,
answer set solvers based on SAT appear to be good candidates for extension to the new
setting. In fact, apart from checking for minimality of models (which is the part respon-
sible for the additional complexity), they do not seem to need substantial modifications
in order to cope with the new semantics, that thus might in principle be easily and
quickly implemented.
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Abstract. Description Logics (DLs) are gaining a widespread adoption
as the popularity of the Semantic Web increases. Traditionally, reasoning
algorithms for DLs have been implemented in procedural languages such
as Java or C++. In this paper, we present the system TRILL for “Tableau
Reasoner for descrIption Logics in proLog”. TRILL answers queries to
SHOIN (D) knowledge bases using a tableau algorithm. Prolog non-
determinism is used for easily handling non-deterministic expansion rules
that produce more than one tableau. Moreover, given a query, TRILL is
able to return instantiated explanations for the query, i.e., instantiated
minimal sets of axioms that allow the entailment of the query. The Thea2
library is exploited by TRILL for parsing ontologies and for the internal
Prolog representation of DL axioms.

Keywords: Description Logics, Tableau, Prolog, Semantic Web

1 Introduction

The Semantic Web aims at making information available in a form that is un-
derstandable by machines [9]. In order to realize this vision, the World Wide
Web Consortium has supported the development of the Web Ontology Lan-
guage (OWL), a family of knowledge representation formalisms for defining on-
tologies. OWL is based on Description Logics (DLs), a set of languages that are
restrictions of first order logic (FOL) with decidability and for some of them low
complexity. For example, the OWL DL sublanguage is based on the expressive
SHOIN (D) DL while OWL 2 corresponds to the SROIQ(D) DL [9].

In order to fully support the development of the Semantic Web, efficient DL
reasoners, such us Pellet, RacerPro, FaCT++ and HermiT, must be available
to extract implicit information from the modeled ontologies. Most DL reasoners
implement a tableau algorithm in a procedural language. However, some tableau
expansion rules are non-deterministic, requiring the developers to implement a
search strategy in an or-branching search space. Moreover, in some cases we
want to compute all explanations for a query, thus requiring the exploration of
all the non-deterministic choices done by the tableau algorithm.

In this paper, we present the system TRILL for “Tableau Reasoner for de-
scrIption Logics in proLog”, a tableau reasoner for the SHOIN (D) DL imple-
mented in Prolog. Prolog’s search strategy is exploited for taking into account



non-determinism of the tableau rules. TRILL uses the Thea2 library [27] for
parsing OWL in its various dialects. Thea2 translates OWL files into a Prolog
representation in which each axiom is mapped into a fact.

TRILL can check the consistency of a concept and the entailment of an
axiom from an ontology and return “instantiated explanations” for queries, a
non-standard reasoning service that is useful for debugging ontologies and for
performing probabilistic reasoning. Instantiated explanations record, besides the
axioms necessary to entail the query, also the individuals involved in the appli-
cation of the axioms. This service was used in [21] for doing inference from DL
knowledge bases under the probabilistic DISPONTE semantics [20].

Our ultimate aim is to use TRILL for performing probabilistic reasoning.
The availability of a Prolog implementation of a DL reasoner will also facilitate
the development of a probabilistic reasoner for integrations of probabilistic logic
programming [23] with probabilistic DLs.

In the following, section 2 briefly introduces SHOIN (D) and its translation
into predicate logic. Section 3 defines the problem we are trying to solve while
Section 4 illustrates related work. Section 5 discusses the tableau algorithm used
by TRILL and Section 6 describes TRILL’s implementation. Section 7 shows
preliminary experiments and Section 8 concludes the paper.

2 Description Logics

Description Logics (DLs) are knowledge representation formalisms that possess
nice computational properties such as decidability and/or low complexity, see
[1, 2] for excellent introductions. DLs are particularly useful for representing
ontologies and have been adopted as the basis of the Semantic Web.

While DLs can be translated into FOL, they are usually represented using a
syntax based on concepts and roles. A concept corresponds to a set of individuals
of the domain while a role corresponds to a set of couples of individuals of the
domain. We now briefly describe SHOIN (D).

Let A, R and I be sets of atomic concepts, roles and individuals, respectively.
A role is either an atomic role R ∈ R or the inverse R− of an atomic role R ∈ R.
We use R− to denote the set of all inverses of roles in R. An RBox R consists
of a finite set of transitivity axioms Trans(R), where R ∈ R, and role inclusion
axioms R v S, where R,S ∈ R ∪ R−. Concepts are defined by induction as
follows. Each C ∈ A is a concept, ⊥ and > are concepts, and if a ∈ I, then {a}
is a concept called nominal. If C, C1 and C2 are concepts and R ∈ R ∪ R−,
then (C1 u C2), (C1 t C2), and ¬C are concepts, as well as ∃R.C, ∀R.C, ≥ nR
and ≤ nR for an integer n ≥ 0. A TBox T is a finite set of concept inclusion
axioms C v D, where C and D are concepts. We use C ≡ D to abbreviate
the conjunction of C v D and D v C. An ABox A is a finite set of concept
membership axioms a : C, role membership axioms (a, b) : R, equality axioms
a = b and inequality axioms a 6= b, where C is a concept, R ∈ R and a, b ∈ I.
A knowledge base (KB) K = (T ,R,A) consists of a TBox T , an RBox R and
an ABox A. A knowledge base K is usually assigned a semantics in terms of
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set-theoretic interpretations and models of the form I = (∆I , ·I) where ∆I is a
non-empty domain and ·I is the interpretation function that assigns an element
in ∆I to each a ∈ I, a subset of ∆I to each C ∈ A and a subset of ∆I ×∆I to
each R ∈ R.

The semantics of DLs can be given equivalently by converting a KB into
a predicate logic theory and then using the model-theoretic semantics of the
resulting theory. A translation of SHOIN into First-Order Logic with Counting
Quantifiers is given in the following as an extension of the one given in [24].
We assume basic knowledge of logic. In predicate logic, a concept is a unary
predicate symbol while a role is a binary predicate symbol. The translation uses
two functions πx and πy that map concept expressions to logical formulas, where
πx is given by

πx(A) = A(x) πx(¬C) = ¬πx(C)
πx({a}) = (x = a) πx(C uD) = πx(C) ∧ πx(D)

πx(C tD) = πx(C) ∨ πx(D) πx(∃R.C) = ∃y.R(x, y) ∧ πy(C)
πx(∃R−.C) = ∃y.R(y, x) ∧ πy(C) πx(∀R.C) = ∀y.R(x, y)→ πy(C)

πx(∀R−.C) = ∀y.R(y, x)→ πy(C) πx(≥ nR) = ∃≥ny.R(x, y)

πx(≥ nR−) = ∃≥ny.R(y, x) πx(≤ nR) = ∃≤ny.R(x, y)

πx(≤ nR−) = ∃≤ny.R(y, x)

and πy is obtained from πx by replacing x with y and vice-versa. Table 1 shows
the translation of each axiom of SHOIN knowledge bases into predicate logic.

Axiom Translation

C v D ∀x.πx(C)→ πx(D)

R v S ∀x, y.R(x, y)→ S(x, y)

Trans(R) ∀x, y, z.R(x, y) ∧R(y, z)→ R(x, z)

a : C πa(C)

(a, b) : R R(a, b)

a = b a = b

a 6= b a 6= b

Table 1. Translation of SHOIN axioms into predicate logic.

SHOIN (D) adds to SHOIN datatype roles, i.e., roles that map an individ-
ual to an element of a datatype such as integers, floats, etc. Then new concept
definitions involving datatype roles are added that mirror those involving roles
introduced above. We also assume that we have predicates over the datatypes.

A query Q over a KB K is usually an axiom for which we want to test the
entailment from the knowledge base, written K |= Q. The entailment test may
be reduced to checking the unsatisfiability of a concept in the knowledge base,
i.e., the emptiness of the concept.
SHOIN (D) is decidable if there are no number restrictions on non-simple

roles. A role is non-simple iff it is transitive or has transitive subroles.
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Given a predicate logic formula F , a substitution θ is a set of pairs x/a,
where x is a variable universally quantified in the outermost quantifier in F and
a ∈ I. The application of θ to F , indicated by Fθ, is called an instantiation
of F and is obtained by replacing x with a in F and by removing x from the
external quantification for every pair x/a in θ. Formulas not containing variables
are called ground. A substitution θ is grounding for a formula F if Fθ is ground.

Example 1. The following KB is inspired by the ontology people+pets [16]:
∃hasAnimal.Pet v NatureLover fluffy : Cat tom : Cat Cat v Pet
(kevin,fluffy) : hasAnimal (kevin, tom) : hasAnimal

It states that individuals that own an animal which is a pet are nature lovers
and that kevin owns the animals fluffy and tom. Moreover, fluffy and tom
are cats and cats are pets. The predicate logic formulas equivalent to the ax-
ioms are F1 = ∀x.∃y.hasAnimal(x, y) ∧ Pet(y) → NatureLover(x), F2 =
hasAnimal(kevin,fluffy), F3 = hasAnimal(kevin, tom), F4 = Cat(fluffy), F5 =
Cat(tom) and F6 = ∀x.Cat(x)→ Pet(x). The query Q = kevin : NatureLover
is entailed by the KB.

3 Querying KBs in SHOIN (D)

Traditionally, a reasoning algorithm decides whether an axiom is entailed or not
by a KB by refutation: axiom E is entailed if ¬E has no model in the KB.
Besides deciding whether an axiom is entailed by a KB, we want to find also
instantiated explanations for the axiom.

The problem of finding explanations for a query has been investigated by
various authors [25, 11, 13, 7, 12]. It was called axiom pinpointing in [25] and
considered as a non-standard reasoning service useful for tracing derivations and
debugging ontologies. In particular, Schlobach and Cornet [25] define minimal
axiom sets or MinAs for short.

Definition 1 (MinA). Let K be a knowledge base and Q an axiom that follows
from it, i.e., K |= Q. We call a set M ⊆ K a minimal axiom set or MinA for Q
in K if M |= Q and it is minimal w.r.t. set inclusion.

The problem of enumerating all MinAs is called min-a-enum in [25]. All-
MinAs(Q,K) is the set of all MinAs for query Q in knowledge base K.

However, in some cases, besides All-MinAs(Q,K), we may want to know
also the individuals to which the axioms were applied. We call this problem
instantiated axiom pinpointing.

In instantiated axiom pinpointing we are interested in instantiated mini-
mal sets of axioms that entail an axiom. An instantiated axiom set is a fi-
nite set F = {(F1, θ1), . . . , (Fn, θn)} where F1, . . . , Fn are axioms contained
in K and θ1, . . . , θn are substitutions. Given two instantiated axiom sets F =
{(F1, θ1), . . . , (Fn, θn)} and E = {(E1, δ1), . . . , (Em, δm)}, we say that F precedes
E , written F � E , iff, for each (Fi, θi) ∈ F , there exists an (Ej , δj) ∈ E and a
substitution η such that Fjθj = Eiδiη.
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Definition 2 (InstMinA). Let K be a knowledge base and Q an axiom that
follows from it, i.e., K |= Q. We call F = {(F1, θ1), . . . , (Fn, θn)} an instantiated
minimal axiom set or InstMinA for Q in K if {F1θ1, . . . , Fnθn} |= Q and F is
minimal w.r.t. precedence.

Minimality w.r.t. precedence means that axioms in an InstMinA are as instan-
tiated as possible. We call inst-min-a-enum the problem of enumerating all
InstMinAs. All-InstMinAs(Q,K) is the set of all InstMinAs for the query Q
in knowledge base K.

Example 2. The query Q = kevin : NatureLover of Example 1 has two MinAs
(in predicate logic): { hasAnimal(kevin,fluffy), Cat(fluffy),
∀x.Cat(x)→ Pet(x), ∀x.∃y.hasAnimal(x, y)∧Pet(y)→ NatureLover(x)} and
{ hasAnimal(kevin, tom), Cat(tom), ∀x.Cat(x) → Pet(x),
∀x.∃y.hasAnimal(x, y) ∧ Pet(y) → NatureLover(x)}. The corresponding In-
stMinAs are {hasAnimal(kevin,fluffy), Cat(fluffy) → Pet(fluffy), Cat(fluffy),
hasAnimal(kevin,fluffy) ∧ Pet(fluffy) → NatureLover(kevin)} and
{ hasAnimal(kevin, tom), Cat(tom), Cat(tom) → Pet(tom),
hasAnimal(kevin, tom) ∧ Pet(tom)→ NatureLover(kevin)}.

Instantiated axiom pinpointing is useful for a more fine-grained debugging of
the ontology: by highlighting the individuals to which axioms are applied, it
may point to parts of the ABox to be modified for repairing the KB. inst-min-
a-enum is also required to support reasoning in probabilistic DLs, in particular
in those that follow the DISPONTE probabilistic semantics [20, 19].

4 Related Work

Usually, DL reasoners implement a tableau algorithm using a procedural lan-
guage. Since some tableau expansion rules are non-determinsitic, the developers
have to implement a search strategy from scratch. Moreover, in order to solve
min-a-enum, all different ways of entailing an axiom must be found. For exam-
ple, Pellet [26] is a tableau reasoner for OWL written in Java and able to solve
min-a-enum. It computes All-MinAs(Q,K) by finding a single MinA using
the tableau algorithm and then applying the hitting set algorithm [17] to find
all the other MinAs. This is a black box method: Pellet repeatedly removes an
axiom from the KB and then computes again a MinA recording all the different
MinAs so found. Recently, BUNDLE [21] was proposed for reasoning over KBs
following the DISPONTE probabilistic semantics. BUNDLE computes the prob-
ability of queries by solving the inst-min-a-enum problem. BUNDLE is based
on Pellet’s source code and modifies it for recording the individuals to which
the axioms are applied. As in Pellet, it uses a black box method to compute
All-InstMinAs(Q,K).

Reasoners written in Prolog can exploit Prolog’s backtracking facilities for
performing the search. This has been observed in various works. In [3] the authors
proposed a tableau reasoner in Prolog for FOL based on free-variable semantic
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tableaux. However, the reasoner is not tailored to DLs. SWI Prolog [28] has an
RDF and Semantic Web library but is more focused on storing and querying RDF
triples, while it has limited support for OWL reasoning. Meissner [15] presented
the implementation of a Prolog reasoner for the DL ALCN . This work was the
basis of [8], that considered ALC and improved [15] by implementing heuristic
search techniques to reduce the running time. Faizi [6] added to [8] the possibility
of returning explanations for queries but still handled only ALC.

In [10] the authors presented the KAON2 algorithm that exploits basic su-
perposition, a refutational theorem proving method for FOL with equality, and
a new inference rule, called decomposition, to reduce a SHIQ KB into a dis-
junctive datalog program, while DLog [14] is an ABox reasoning algorithm for
the SHIQ language that allows to store the content of the ABox externally
in a database and to respond to instance check and instance retrieval queries
by transforming the KB into a Prolog program. TRILL differs from these work
for the considered DL and from DLog for the capability of answering general
queries.

5 The Tableau Algorithm

A tableau is an ABox. It can also be seen as a graph G where each node represents
an individual a and is labeled with the set of concepts L(a) it belongs to. Each
edge 〈a, b〉 in the graph is labeled with the set of roles L(〈a, b〉) to which the
couple (a, b) belongs. A tableau algorithm proves an axiom by refutation: it
starts from a tableau that contains the negation of the axiom and applies the
tableau expansion rules. For example, if the query is a class assertion, C(a), we
add ¬C to the label of a. If we want to test the emptyness (inconsistency) of a
concept C, we add a new anonymous node a to the tableau and add C to the
label of a. The axiom C v D can be proved by showing that C u ¬D is empty.
A tableau algorithm repeatedly applies a set of consistency preserving tableau
expansion rules until a clash (i.e., a contradiction) is detected or a clash-free
graph is found to which no more rules are applicable. A clash is, for example,
a concept C and a node a where C and ¬C are present in the label of a, i.e.
{C,¬C} ⊆ L(a). If no clashes are found, the tableau represents a model for the
negation of the query, which is thus not entailed.

In TRILL we use the tableau expansion rules for SHOIN (D) shown in
Figure 1 that are similar to those of Pellet [11]. Each expansion rule updates as
well a tracing function τ , which associates sets of axioms with labels of nodes
and edges. It maps couples (concept, individual) or (role, couple of individuals)
to a fragment of the knowledge base K. τ is initialized as the empty set for all
the elements of its domain except for τ(C, a) and τ(R, 〈a, b〉) to which the values
{a : C} and {(a, b) : R} are assigned if a : C and (a, b) : R are in the ABox
respectively. The output of the tableau algorithm is a set S of axioms that is a
fragment of K from which the query is entailed.

For ensuring the termination of the algorithm, TRILL, as Pellet, uses a spe-
cial condition known as blocking [11]. In a tableau a node x can be a nominal
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node if its label L(x) contains a nominal or a blockable node otherwise. If there is
an edge e = 〈x, y〉 then y is a successor of x and x is a predecessor of y. Ancestor
is the transitive closure of predecessor while descendant is the transitive closure
of successor. A node y is called an R-neighbour of a node x if y is a successor of
x and R ∈ L(〈x, y〉), where R ∈ R.

An R-neighbour y of x is safe if (i) x is blockable or if (ii) x is a nominal
node and y is not blocked. Finally, a node x is blocked if it has ancestors x0, y
and y0 such that all the following conditions are true: (1) x is a successor of x0
and y is a successor of y0, (2) y, x and all nodes on the path from y to x are
blockable, (3) L(x) = L(y) and L(x0) = L(y0), (4) L(〈x0, x〉) = L(〈y0, y〉). In
this case, we say that y blocks x. A node is blocked also if it is blockable and all
its predecessors are blocked; if the predecessor of a safe node x is blocked, then
we say that x is indirectly blocked.

Since we want to solve also the inst-min-a-enum problem, we modified the
tableau expansion rules of Pellet to return a set of pairs (axiom, substitution)
instead of a set of axioms. The tracing function τ now stores, together with
information regarding concepts and roles, also information concerning individ-
uals involved in the expansion rules, which will be returned at the end of the
derivation process together with the axioms. In Figure 1, (A v D, a) is the abbre-
viation of (A v D, {x/a}), (R v S, a) of (R v S, {x/a}), (R v S, a, b) of (R v
S, {x/a, y/b}), (Trans(R), a, b) of (Trans(R), {x/a, y/b}) and (Trans(R), a, b, c)
of (Trans(R), {x/a, y/b, z/c}), with a, b, c individuals and x, y, z variables con-
tained in the logical translation of the axioms (Table 1). The most important
modifications of Pellet’s tableau algorithm are in the rules → ∀+ and → ∀. For
rule → ∀+, we record in the explanation a transitivity axiom for the role R in
which only two individuals, those connected by the super role S, are involved.
For rule→ ∀, we make a distinction between the case in which ∀S1.C was added
to L(a1) by a chain of applications of → ∀+ or not. In the first case, we fully
instantiate the transitivity and subrole axioms. In the latter case, we simply ob-
tain τ(C, b) by combining the explanation of ∀S1.C(a1) with that of (a1, b) : S1.
To clarify how the rules → ∀ and → ∀+ work we now give two examples.

Example 3. Let us consider the query Q = ann : Person for the following
knowledge base:
kevin : ∀kin.Person (kevin, lara) : relative (lara, eva) : ancestor
(eva, ann) : ancestor Trans(ancestor) Trans(relative)
relative v kin ancestor v relative

TRILL first applies the → ∀+ rule to kevin, adding ∀relative.Person to the
label of lara. The tracing function τ is (in predicate logic):

τ(∀relative.Person, lara) = { ∀y.kin(kevin, y)→ Person(y),
relative(kevin, lara), relative(kevin, lara)→ kin(kevin, lara),
∀z.relative(kevin, lara) ∧ relative(lara, z)→ relative(kevin, z)}

Note that the transitivity axiom is not fully instantiated, the variable z is still
present. Then TRILL applies the → ∀+ rule to lara adding ∀ancestor.Person
to eva. The tracing function τ is (in predicate logic):
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Deterministic rules:
→ unfold: if A ∈ L(a), A atomic and (A v D) ∈ K, then

if D /∈ L(a), then
L(a) := L(a) ∪ {D}
τ(D, a) := τ(A, a) ∪ {(A v D, a)}

→ CE: if (C v D) ∈ K, then
if (¬C tD) /∈ L(a), then
L(a) := L(a) ∪ {¬C tD}
τ(¬C tD, a) := {(C v D, a)}

→ u: if (C1 u C2) ∈ L(a), then
if {C1, C2} 6⊆ L(a), then
L(a) := L(a) ∪ {C1, C2}
τ(Ci, a) := τ((C1 u C2), a)

→ ∃: if ∃S.C ∈ L(a), then
if a has no S-neighbor b with C ∈ L(b), then

create new node b, L(b) := {C}, L(〈a, b〉) := {S},
τ(C, b) := τ((∃S.C), a), τ(S, 〈a, b〉) := τ((∃S.C), a)

→ ∀: if ∀S1.C ∈ L(a1), a1 is not indirectly blocked and there is an S1-neighbor b of a1, then
if C /∈ L(b), then L(b) := L(a) ∪ {C}
if there is a chain of individuals a2, . . . , an and roles S2, . . . , Sn such that⋃n

i=2
{(Trans(Si−1), ai, ai−1), (Si−1 v Si, ai, ai−1)} ⊆ τ(∀S1.C, a1)

and ¬∃an+1 : {(Trans(Sn), an+1, an), (Sn v Sn+1, an+1)} ⊆ τ(∀S1.C, a1), then

τ(C, b) := τ(∀S1.C, a1) \
⋃n

i=2
{(Trans(Si−1), ai, ai−1), (Si−1 v Si, ai, ai−1)}∪⋃n

i=2
{(Trans(Si−1), ai, ai−1, b), (Si−1 v Si, ai, b)} ∪ τ(S1, 〈a1, b〉)

else
τ(C, b) := τ(∀S1.C, a1) ∪ τ(S1, 〈a1, b〉)

→ ∀+: if ∀(S.C) ∈ L(a), a is not indirectly blocked
and there is an R-neighbor b of a, Trans(R) and R v S, then

if ∀R.C /∈ L(b), then L(b) := L(b) ∪ {∀R.C}
τ(∀R.C, b) := τ(∀S.C, a) ∪ τ(R, 〈a, b〉) ∪ {(Trans(R), a, b), (R v S, a, b)}

→≥: if (≥ nS) ∈ L(a), a is not blocked, then
if there are no n safe S-neighbors b1, ..., bn of a with bi 6= bj , then

create n new nodes b1, ..., bn; L(〈a, bi〉) := {S};
add in the ABox 6= (bi, bj)
τ(S, 〈a, bi〉) := τ((≥ nS), a)
τ(6= (bi, bj)) := τ((≥ nS), a)

→ O: if, {o} ∈ L(a) ∩ L(b) and not a 6= b, then
Merge(a, b)
τ(Merge(a, b)) := τ({o}, a) ∪ τ({o}, b)
For each concept Ci in L(a), τ(Ci, b) := τ(Ci, a) ∪ τ(Merge(a, b))
(similarly for roles merged, and correspondingly for concepts in L(b))

Non-deterministic rules:
→ t: if (C1 t C2) ∈ L(a) and a is not indirectly blocked, then

if {C1, C2} ∩ L(a) = ∅, then
Generate graphs Gi := G for each i ∈ {1, 2}, L(a) := L(a) ∪ {Ci} for each i ∈ {1, 2}
τ(Ci, a) := τ((C1 t C2), a)

→≤: if (≤ nS) ∈ L(a), a is not indirectly blocked
and there are m S-neighbors b1, ..., bm of a with m > n, then

For each possible pair bi, bj , 1 ≤ i, j ≤ m; i 6= j then
Generate a graph Gk := G
τ(Merge(bi, bj)) := (τ((≤ nS), a) ∪ τ(S, 〈a, b1〉)... ∪ τ(S, 〈a, bm〉))
For each concept Ci in L(bi), τ(Ci, bj) := τ(Ci, bi) ∪ τ(Merge(bi, bj))
(similarly for roles merged, and correspondingly for concepts in L(bj))

Fig. 1. TRILL tableau expansion rules for OWL DL.
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τ(∀ancestor.Person, eva) = { ∀y.kin(kevin, y)→ Person(y),
relative(kevin, lara), ancestor(lara, eva),
∀z.relative(kevin, lara) ∧ relative(lara, z)→ relative(kevin, z),
∀z.ancestor(lara, eva) ∧ ancestor(eva, z)→ ancestor(lara, z),
relative(kevin, lara)→ kin(kevin, lara),
ancestor(lara, eva)→ relative(lara, eva) }

Now TRILL applies the→ ∀ rule to eva adding Person to the label of ann. The
tracing function τ is (in predicate logic):

τ(Person, ann) = { ∀y.kin(kevin, y)→ Person(y),
relative(kevin, lara), ancestor(lara, eva), ancestor(eva,ann),
relative(kevin, lara) ∧ relative(lara,ann)→ relative(kevin,ann),
ancestor(lara, eva) ∧ ancestor(eva,ann)→ ancestor(lara,ann),
relative(kevin,ann)→ kin(kevin,ann),
ancestor(lara,ann)→ relative(lara,ann) }

Here the chain of transitivity and subrole axioms becomes ground. At this point
the tableau contains a clash so the algorithm stops and returns the explanation
given by τ(Person, ann).

It is easy to see that the explanation entails the axiom represented by the argu-
ments of τ . In general, the following theorem holds.

Theorem 1. Let Q be an axiom entailed by K and let S be the output of a
reasoner with the tableau expansion rules of Figure 1, such as TRILL, with input
Q and K. Then S ∈ All-InstMinAs(Q,K).

Proof. The full details of the proof are given in [18], Theorem 5, with reference to
the reasoner BUNDLE that implements the same tableau algorithm as TRILL.
The proof proceeds by induction on the number of rule applications following
the proof of Theorem 2 of [11].

6 TRILL

We use the Thea2 library [27] that converts OWL DL ontologies to Prolog by ex-
ploiting a direct translation of the OWL axioms into Prolog facts. For example,
a simple subclass axiom between two named classes Cat v Pet is written using
the subClassOf/2 predicate as subClassOf(‘Cat’,‘Pet’). For more complex
axioms Thea2 exploits the list construct of Prolog, so the axiom NatureLover ≡
PetOwner t GardenOwner becomes equivalentClasses([‘NatureLover’,

unionOf([‘PetOwner’, ‘GardenOwner’]).
In order to represent the tableau, we use a couple Tableau = (A, T ), where

A is a list containing all the class assertions of the individuals with the corre-
sponding value of τ and the information about nominal individuals, while T is
a triple (G,RBN ,RBR) in which G is a directed graph that contains the struc-
ture of the tableau, RBN is a red-black tree in which each key is a couple of
individuals and the value associated to it is the set of the labels of the edge
between the two individuals, and RBR is a red-black tree in which each key is
a role and the value associated to it is the set of couples of individuals that are
linked by the role. This representation allows us to rapidly find the information
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needed during the execution of the tableau algorithm. For managing the block-
ing system we use a predicate for each blocking state, so we have the following
predicates: nominal/2, blockable/2, blocked/2, indirectly blocked/2 and
safe/3. Each predicate takes as arguments the individual Ind and the tableau,
(A, T ). safe/3 takes as input also the role R. For each nominal individual Ind
at the time of the creation of the ABox we add the atom nominal(Ind) to A,
then every time we have to check the blocking status of an individual we call
the corresponding predicate that returns the status by checking the tableau.

In TRILL deterministic and non-deterministic tableau expansion rules are
treated differently, see Figure 1 for the list of rules. Deterministic rules are im-
plemented by a predicate rule name(Tab, Tab1) that, given the current tableau
Tab, returns the tableau Tab1 to which the rule was applied. Figure 2 shows the
code of the deterministic rule → unfold. The predicate unfold rule/2 searches
in Tab for an individual to which the rule can be applied and calls the predi-
cate find sub sup class/3 in order to find the class to be added to the label
of the individual. find/2 implements the search for a class assertion. Since the
data structure that stores class assertions is currently a list, find/2 simply calls
member/2. absent/3 checks if the class assertion axiom with the associated ex-
planation is already present in A. Non-deterministic rules are implemented by a

unfold_rule((A,T),([(classAssertion(D,Ind),[(Ax,Ind)|Expl])|A],T)):-

find((classAssertion(C,Ind),Expl),A),

atomic(C),

find_sub_sup_class(C,D,Ax),

absent(classAssertion(D,Ind),[(Ax,Ind)|Expl],(A,T)).

find_sub_sup_class(C,D,subClassOf(C,D)):-

subClassOf(C,D).

find_sub_sup_class(C,D,equivalentClasses(L)):-

equivalentClasses(L),

member(C,L),

member(D,L),

C\==D.

Fig. 2. Code of → unfold rules.

predicate rule name(Tab, TabList) that, given the current tableau Tab, returns
the list of tableaux TabList obtained by applying the rule. Figure 3 shows the
code of the non-deterministic rule → t. The predicate or rule/2 searches in
Tab for an individual to which the rule can be applied and unifies TabList with
the list of new tableaux created by scan or list/6.

Expansion rules are applied in order by apply all rules/2, first the non-
deterministic ones and then the deterministic ones. The predicate
apply nondet rules(RuleList,Tab,Tab1) takes as input the list of
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or_rule((A,T),L):-

find((classAssertion(unionOf(LC),Ind),Expl),A),

\+ indirectly_blocked(Ind,T0),

findall((A1,T),scan_or_list(LC,Ind,Expl,A,T,A1),L),

L\=[],!.

scan_or_list([],_Ind,_Expl,A,T,A).

scan_or_list([C|_T],Ind,Expl,A,T,[(classAssertion(C,Ind),Expl)|A]):-

absent(classAssertion(C,Ind),Expl,(A,T)).

scan_or_list([_C|T],Ind,Expl,A0,T,A):-

scan_or_list(T,Ind,Expl,A0,T,A).

Fig. 3. Code of → t rule.

non-deterministic rules and the current tableau and returns a tableau obtained
by the application of one rule. apply nondet rules/3 is called as
apply nondet rules([or rule,max rule],Tab,Tab1) and is shown in Fig. 4.
If a non-deterministic rule is applicable, the list of tableaux obtained by its

apply_all_rules(Tab,Tab2):-

apply_nondet_rules([or_rule,max_rule],Tab,Tab1),

(Tab=Tab1 -> Tab2=Tab1 ; apply_all_rules(Tab1,Tab2)).

apply_nondet_rules([],Tab,Tab1):-

apply_det_rules([o_rule,and_rule,unfold_rule,add_exists_rule,

forall_rule,forall_plus_rule,exists_rule,min_rule],Tab,Tab1).

apply_nondet_rules([H|T],Tab,Tab1):-

C=..[H,Tab,L],

call(C),!,

member(Tab1,L),

Tab \= Tab1.

apply_nondet_rules([_|T],Tab,Tab1):-

apply_nondet_rules(T,Tab,Tab1).

Fig. 4. Code of the predicates apply all rules/2 and apply nondet rules/3.

application is returned by the rule predicate, a cut is performed to avoid back-
tracking to other rule choices and a tableau from the list is non-deterministically
chosen with the member/2 predicate. If no non-deterministic rule is applicable,
deterministic rules are tried sequentially with the predicate apply det rules/3,
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shown in Figure 5, that is called as apply det rules(RuleList, Tab,Tab1). It
takes as input the list of deterministic rules and the current tableau and returns
a tableau obtained by the application of one rule. After the application of a
deterministic rule, a cut avoids backtracking to other possible choices for the
deterministic rules. If no rule is applicable, the input tableau is returned and
rule application stops, otherwise a new round of rule application is performed.
In each rule application round, a rule is applied if its result is not already present

apply_det_rules([],Tab,Tab).

apply_det_rules([H|T],Tab,Tab1):-

C=..[H,Tab,Tab1],

call(C),!.

apply_det_rules([_|T],Tab,Tab1):-

apply_det_rules(T,Tab,Tab1).

Fig. 5. Code of the predicates apply det rules/3.

in the tableau. This avoids both infinite loops in rule application and considering
alternative rules when a rule is applicable. In fact, if a rule is applicable in a
tableau, it will also be so in any tableaux obtained by its expansion, thus the
choice of which expansion rule to apply introduces “don’t care” non-determinism.
Differently, non-deterministic rules introduce in the algorithm also “don’t know”
non-determinism, since a single tableau is expanded into a set of tableaux. We
use Prolog search only to handle “don’t know” non-determinism.

Example 4. Let us consider the knowledge base presented in Example 1 and the
query Q = kevin : NatureLover. After the initialization of the tableau, TRILL
can apply the → unfold rule to the individuals tom or fluffy . Suppose it selects
tom. The tracing function τ becomes (in predicate logic):

τ(Pet, tom) = { Cat(tom), Cat(tom)→ Pet(tom)}
At this point TRILL applies the → CE rule to kevin, adding
¬(∃hasAnimal.Pet) t NatureLover = ∀hasAnimal.(¬Pet) t NatureLover to
L(kevin) with the following tracing function:

τ(∀hasAnimal.(¬Pet) tNatureLover, kevin) = {
∃y.hasAnimal(kevin, y) ∧ Pet(y)→ NatureLover(kevin)}

Then it applies the → t rule to kevin generating two tableaux. In this step we
have a backtracking point because we have to choose which tableau to expand.
In the first one TRILL adds ∀hasAnimal.(¬Pet) to the label of kevin with the
tracing function

τ(∀hasAnimal.(¬Pet), kevin) = {
∃y.hasAnimal(kevin, y) ∧ Pet(y)→ NatureLover(kevin)}

Now it can apply the → ∀ rule to kevin. In this step it can use either tom or
fluffy , supposing it selects tom the tracing function will be:
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τ(¬(Pet), tom) = { hasAnimal(kevin, tom),
hasAnimal(kevin, tom) ∧ Pet(tom)→ NatureLover(kevin)}

At this point this first tableau contains a clash for the individual tom, thus
TRILL backtracks and expands the second tableau. The second tableau was
created by applying the → CE rule that added NatureLover to the label of
kevin, so the second tableau contains a clash, too. Now TRILL joins the tracing
functions of the two clashes to find the following InstMinA:
{hasAnimal(kevin, tom) ∧ Pet(tom)→ NatureLover(kevin),
hasAnimal(kevin, tom), Cat(tom), Cat(tom)→ Pet(tom)}.

The tableau algorithm returns a single InstMinA. The computation of All-
InstMinAs(Q,K) is performed by simply calling findall/3 over the tableau
predicate.

Example 5. Let us consider Example 4. Once the first InstMinA is found, TRILL
performs backtracking. Supposing it applies the → unfold rule to the individual
fluffy instead of tom and following the same steps used in Example 4 it finds a
new InstMinA:
{hasAnimal(kevin,fluffy) ∧ Pet(fluffy)→ NatureLover(kevin),
hasAnimal(kevin,fluffy), Cat(fluffy), Cat(fluffy)→ Pet(fluffy)}.

7 Experiments

In this section, we evaluate TRILL performances when computing instantiated
explanations by comparing it to BUNDLE that also solves the inst-min-a-enum
problem. We consider four different knowledge bases of various complexity: the
BRCA3 that models the risk factor of breast cancer, an extract of the DBPedia4

ontology that has been obtained from Wikipedia, the Biopax level 35 that models
metabolic pathways and the Vicodi6 that contains information on European
history. For the tests, we used the DBPedia and the Biopax KBs without ABox
while for BRCA and Vicodi we used a little ABox contaning 1 individual for the
first one and 19 individuals for the second one. We ran two different subclass-of
queries w.r.t. the DBPedia and the Biopax datasets and two different instance-of
queries w.r.t. the other KBs. For each KB, we ran each query 50 times for a total
of 100 executions of the reasoners. Table 2 shows, for each ontology, the number of
axioms, the average number of explanations and the average time in milliseconds
that TRILL and BUNDLE took for answering the queries. In particular, in
order to stress the algorithm, the BRCA and the version of DBPedia that we
used contain a large number of subclass axioms between complex concepts.These
preliminary tests show that TRILL performance can sometimes be better than
BUNDLE, even if it lacks all the optimizations that BUNDLE inherits from
Pellet. This represents evidence that a Prolog implementation of a Semantic
Web tableau reasoner is feasible and that may lead to a practical system.

3 http://www2.cs.man.ac.uk/~klinovp/pronto/brc/cancer_cc.owl
4 http://dbpedia.org/
5 http://www.biopax.org/
6 http://www.vicodi.org/
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TRILL BUNDLE
Dataset n. axioms av. n. expl time (ms) time (ms)

BRCA 322 6.5 95,691 10,210

DBPedia 535 16.0 80,804 28,040

Biopax level 3 826 2.0 24 1,451

Vicodi 220 1.0 136 1,004
Table 2. Results of the experiments in terms of average times for inference.

8 Conclusions

In this paper we presented the algorithm TRILL for reasoning on SHOIN (D)
knowledge bases and its Prolog implementation. The results we obtained show
that Prolog is a viable language for implementing DL reasoning algorithms and
that performances are comparable with those of a state of the art reasoner.

In the future we plan to apply various optimizations to TRILL in order to
better manage the expansion of the tableau. In particular, we plan to carefully
choose the rule and node application order. Moreover, we plan to exploit TRILL
for performing reasoning on probabilistic ontologies and on integration of prob-
abilistic logic programming with DLs and for implementing learning algorithms
for such integration, along the lines of [4, 5, 22].

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Handbook of knowledge
representation, chap. 3, pp. 135–179. Elsevier (2008)

3. Beckert, B., Posegga, J.: leantap: Lean tableau-based deduction. J. Autom. Rea-
soning 15(3), 339–358 (1995)

4. Bellodi, E., Riguzzi, F.: Learning the structure of probabilistic logic programs. In:
Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS, vol.
7207, pp. 61–75. Springer (2012)

5. Bellodi, E., Riguzzi, F.: Expectation Maximization over binary decision diagrams
for probabilistic logic programs. Intel. Data Anal. 17(2), 343–363 (2013)

6. Faizi, I.: A Description Logic Prover in Prolog, Bachelor’s thesis, Informatics Math-
ematical Modelling, Technical University of Denmark (2011)

7. Halaschek-Wiener, C., Kalyanpur, A., Parsia, B.: Extending tableau tracing for
ABox updates. Tech. rep., University of Maryland (2006)

8. Herchenröder, T.: Lightweight Semantic Web Oriented Reasoning in Prolog:
Tableaux Inference for Description Logics. Master’s thesis, School of Informatics,
University of Edinburgh (2006)
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Abstract. In this paper we focus on proof methods and theorem proving for nor-
mal conditional logics, by describing nested sequent calculi as well as a theorem
prover for them. Nested sequent calculi are a useful generalization of ordinary se-
quent calculi, where sequents are allowed to occur within sequents. Nested sequent
calculi have been profitably employed in the area of (multi)-modal logic to obtain
analytic and modular proof systems for these logics. In this work, we describe
nested sequent calculi recently introduced for the basic conditional logic CK and
some of its significant extensions. We also provide a calculus for Kraus Lehman
Magidor cumulative logic C. The calculi are internal (a sequent can be directly
translated into a formula), cut-free and analytic. Moreover, they can be used to
design (sometimes optimal) decision procedures for the respective logics, and to
obtain complexity upper bounds. Our calculi are an argument in favour of nested
sequent calculi for modal logics and alike, showing their versatility and power.
We also describe NESCOND, a Prolog implementation of nested sequent calculi
mentioned above. NESCOND (NESted sequent calculi for propositional CONDi-
tional logics) is inspired by the methodolody of leanTAP. The paper also shows
some experimental results, witnessing that the performances of NESCOND are
promising. NESCOND is available at http://www.di.unito.it/∼pozzato/nescond/

1 Introduction

Conditional logics extend classical logic by means of a conditional operator⇒. They can
be seen as a generalization of (multi)modal logics, where the modality⇒ is indexed by
a formula of the same language. Conditional logics have a long history: Lewis [15, 16]
introduced them in order to formalize a kind of hypothetical reasoning: the conditional
formula A ⇒ B is used to formalize a sentence like “if A were the case then B” that
cannot be captured by classical logic with material implication. One original motivation
was to formalize counterfactual sentences, i.e. conditionals of the form “if A were the
case then B would be the case”, where A is false.

Over the years, conditional logics firmly established themselves in various fields of
artificial intelligence and knowledge representation. Just to mention a few, they have
been used3 to reason about prototypical properties [10] and to model belief change [12,
11]. Moreover, they can provide an axiomatic foundation of nonmonotonic reasoning
[7, 14]: in detail, a conditional A ⇒ B is read as “in normal circumstances, if A then
B”. Recently, constructive conditional logics have been applied to reason about access
control policies [9, 8]: the statement A says B, intuitively meaning that a user/program

3 We refer to [20, 1] for a complete bibliography about conditional logics.



A asserts B to hold in the system, can be naturally expressed by a conditional A⇒ B.
Finally, a kind of (multi)-conditional logics [3, 6] have been used to formalize epistemic
change in a multi-agent setting and in some kind of epistemic “games”, each conditional
operator expresses the “conditional beliefs” of an agent.

All conditional logics enjoy a possible world semantics, with the intuition that a
conditional A⇒ B is true in a world x if B is true in the set of worlds where A is true
and that are most similar to/closest to/“as normal as” x. Since there are different ways of
formalizing “the set of worlds similar/closest/...” to a given world, there are expectedly
rather different semantics for conditional logics, from the most general selection function
semantics to the stronger sphere semantics.

However, from the point of view of proof-theory and automated deduction, con-
ditional logics have not achieved a state of the art comparable with, say, the one of
modal logics, where there are well-established calculi, whose proof-theoretical and
computational properties are well-understood. In this work we first describe nested
sequent calculi, called NS, for propositional conditional logics, recently introduced in
[1, 2]. Nested sequent calculi, introduced by Kashima in [13] for classical modal logics,
are a natural generalization of ordinary sequent calculi where sequents are allowed to
occur within sequents. However, a nested sequent always corresponds to a formula of the
language, so that we can think of the rules as operating “inside a formula”, combining
subformulas rather than just combining outer occurrences of formulas as in ordinary
sequent calculi.

We will consider the basic normal conditional logic CK and its extensions with ID,
MP and CEM, as well as the cumulative logic C introduced in [14] which corresponds
to the flat fragment (i.e., without nested conditionals) of CK+CSO+ID. The calculi are
rather natural, all rules have a fixed number of premises. Completeness is established
by cut-elimination, whose peculiarity is that it must take into account the substitution
of equivalent antecedents of conditionals (a condition corresponding to normality). The
calculi can be used to obtain a decision procedure for the respective logics by imposing
some restrictions preventing redundant applications of rules. In all cases, we get a
PSPACE upper bound, a bound that for CK and its extensions with ID and MP is optimal
(but not for CK+CEM that is known to be CONP). For flat CK+CSO+ID = cumulative
logic C we also get a PSPACE bound, we are not aware of a better upper bound for this
logic (although we may suspect that it is not optimal).

Furthermore, we describe an implementation of NS calculi in Prolog. The program,
called NESCOND, gives a PSPACE decision procedure for the respective logics, and it is
inspired by the methodology introduced by the system leanTAP [4], even if it does not
fit its style in a rigorous manner. The basic idea is that each axiom or rule of the nested
sequent calculi is implemented by a Prolog clause of the program. The resulting code is
therefore simple and compact: the implementation of NESCOND for CK consists of only
6 predicates, 24 clauses and 34 lines of code. We also provide some experimental results
to show that the performances of NESCOND are promising, especially compared to the
ones of CondLean [17, 18] and GOALDUCK [19], to the best of our knowledge the only
existing provers for conditional logics. This shows that nested sequent calculi are not
only a proof theoretical tool, but they can be the basis of efficient theorem proving for
conditional logics.

50 Nicola Olivetti and Gian Luca Pozzato



2 Normal Conditional Logics

We consider a propositional conditional language L over a set ATM of propositional
variables. Formulas of L are built as usual: ⊥, > and the propositional variables in
ATM are atomic formulas; if A and B are formulas, then ¬A and A ⊗ B are compound
formulae, where ⊗ ∈ {∧,∨,→,⇒}. We adopt the selection function semantics.

Definition 1 (Selection function semantics). A model is a tripleM = 〈W, f, [ ]〉:
– W is a non empty set of worlds;
– f :W × 2W 7−→ 2W is the selection function;
– [ ] is the evaluation function, which assigns to an atom P ∈ ATM the set of worlds

where P is true, and is extended to boolean formulas as follows:
• [>] =W;
• [⊥] = ∅;
• [¬A] =W − [A];
• [A ∧B] = [A] ∩ [B];
• [A ∨B] = [A] ∪ [B];
• [A→ B] = [B] ∪ (W − [A]);
• [A⇒ B] = {w ∈ W | f(w, [A]) ⊆ [B]}.

A formula F ∈ L is valid in a model M = 〈W, f, [ ]〉, and we write M |= F , if
[F ] = W . A formula F ∈ L is valid, and we write |= F , if it is valid in every model,
that is to sayM |= F for everyM.

The semantics above characterizes the basic conditional system, called CK, where no
specific properties of the selection function are assumed. An axiomatization of CK is
given by (` denotes provability in the axiom system):

– any axiomatization of the classical propositional calculus (prop)
– If ` A and ` A→ B, then ` B (Modus Ponens)
– If ` A↔ B then ` (A⇒ C)↔ (B ⇒ C) (RCEA)
– If ` (A1 ∧ · · · ∧An)→ B then ` (C ⇒ A1 ∧ · · · ∧C ⇒ An)→ (C ⇒ B) (RCK)

Moreover, we consider the following standard extensions of the basic system CK:

System Axiom Model condition
ID A⇒ A f(w, [A]) ⊆ [A]
CEM (A⇒ B) ∨ (A⇒ ¬B) | f(w, [A]) |≤ 1
MP (A⇒ B)→ (A→ B) w ∈ [A] implies w ∈ f(w, [A])

CSO
(A⇒ B)∧(B ⇒ A)→ ((A⇒ C)→
(B ⇒ C))

f(w, [A]) ⊆ [B] and f(w, [B]) ⊆ [A] implies
f(w, [A]) = f(w, [B])

3 Nested Sequent Calculi NS for Conditional Logics

In this section we recall nested sequent calculi NS introduced in [1, 2], where S is an
abbreviation for CK{+X}, with X ∈ {CEM, ID, MP, ID+MP, CEM+ID}. We are able to
deal with the basic normal conditional logic CK and its extensions with axioms ID, MP
and CEM. We are also able to deal with some combinations of them, namely the systems
allowing ID with either MP or CEM. The problem of extending NS to the conditional
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Γ(P,¬P ) (AX) (AX⊤)Γ(⊤)

Γ(A ∧B) Γ(¬(A ∧B)) Γ(A ∨B) Γ(¬(A ∨B))

Γ(A) Γ(¬A) Γ(¬B)Γ(B) Γ(A,B)Γ(¬A,¬B)

Γ(A ⇒ B)

Γ(¬(A ⇒ B), [A′ : ∆])

Γ(¬(A ⇒ B), [A′ : ∆,¬B])

Γ([A : B])

A,¬A′

Γ([A : ∆])

Γ([A : ∆,¬A])

Γ([A : ∆], [B : Σ])

Γ([A : ∆,Σ], [B : Σ]) A,¬B B,¬A

(∧+) (∧−) (∨−)(∨+)

(⇒+)

(⇒−)

(ID)

(CEM)

Γ(A → B) Γ(¬(A → B))

Γ(¬A,B) Γ(A)
(→+) (→−)

(¬)
P ∈ ATM

Γ(¬(A ⇒ B))

Γ(¬(A ⇒ B), A) Γ(¬(A ⇒ B),¬B)
(MP )

Γ(A)

Γ(¬¬A)

A′,¬AΓ(¬B)

Γ(¬⊥) (AX⊥)

Γ,¬(A ⇒ B), [A′ : ∆]

Γ,¬(A ⇒ B), [A′ : ∆,¬B] Γ,¬(A ⇒ B), [A : A′]
(CSO)

Γ,¬(A ⇒ B), [A′ : A]

Fig. 1. The nested sequent calculiNS.

logics allowing both MP and CEM is open at present. As usual, the completeness of
the calculi is an easy consequence of the admissibility of cut. We are also able to turn
NS into a terminating calculus, which gives us a decision procedure for the respective
conditional logics.
A nested sequent Γ is defined inductively as follows:

– a formula of L is a nested sequent;
– if A is a formula and Γ is a nested sequent, then [A : Γ ] is a nested sequent;
– a finite multiset of nested sequents is a nested sequent.

A nested sequent can be displayed as

A1, . . . , Am, [B1 : Γ1], . . . , [Bn : Γn],

where n,m ≥ 0, A1, . . . , Am, B1, . . . , Bn are formulas and Γ1, . . . , Γn are nested
sequents.

A nested sequent can be directly interpreted as a formula, just replace “,” by ∨
and “:” by⇒. More explicitly, the interpretation of a nested sequent A1, . . . , Am, [B1 :
Γ1], . . . , [Bn : Γn] is inductively defined by the formula

F(Γ ) = A1 ∨ . . . ∨Am ∨ (B1 ⇒ F(Γ1)) ∨ . . . ∨ (Bn ⇒ F(Γn)).

The calculi NS are shown in Figure 1. As usual, we say that a nested sequent Γ is
derivable in NS if it admits a derivation. A derivation is a tree whose nodes are nested
sequents. A branch is a sequence of nodes Γ1, Γ2, . . . , Γn, . . . such that each node Γi is
obtained from its immediate successor Γi−1 by applying backward a rule ofNS, having
Γi−1 as the conclusion and Γi as one of its premises. A branch is closed if one of its
nodes is an instance of axioms (AX), (AX>), (AX⊥), otherwise it is open. We say that
a tree is closed if all its branches are closed. A nested sequent Γ has a derivation in NS
if there is a closed tree having Γ as the root. As an example, Figure 2 shows a derivation
in the calculus NCK+ID of an instance of the axiom ID.
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(AX)
[P : P,¬P ]

(ID)
[P : P ]

(⇒+)
P ⇒ P

Fig. 2. A derivation of an instance of the axiom ID inNCK+ID.

We have also provided a nested sequent calculus for the flat fragment, i.e. without nested
conditionals, of CK+CSO+ID, corresponding to KLM logic C. The rules of the calculus,
called NCKLM, are those ones of NCK+ID (restricted to the flat fragment) where the
rule (⇒−) is replaced by the rule (CSO).

The specificity of nested sequent calculi is to allow inferences that apply within
sequence. In order to introduce the rules of the calculus, we need the notion of context.
Intuitively a context denotes a “hole”, a unique empty position, within a sequent that
can be filled by a sequent. We use the symbol ( ) to denote the empty context. A context
is defined inductively as follows: Γ ( ) = Λ, ( ) is a context; if Σ( ) is a context,
Γ ( ) = Λ, [A : Σ( )] is a context. Finally, we define the result of filling “the hole” of a
context by a sequent. Let Γ ( ) be a context and∆ be a sequent, then the sequent obtained
by filling the context by ∆, denoted by Γ (∆) is defined as follows: if Γ ( ) = Λ, ( ),
then Γ (∆) = Λ,∆; if Γ ( ) = Λ, [A : Σ( )] then Γ (∆) = Λ, [A : Σ(∆)]. The notions
of derivation and of derivable sequent are defined as usual.

Nested sequent calculi NS are sound and complete with respect to the semantics for
the respective logics.

Theorem 1. The nested sequent calculi NS are sound and complete for the respective
logics, i.e. a formula F of L is valid in CK+X if and only if it is derivable in NCK+X.

Proof. (Soundness): If Γ is derivable inNS, then Γ is valid. To improve readability, we
slightly abuse the notation identifying a sequent Γ with its interpreting formula F(Γ ),
thus we shall write A⇒ ∆, Γ ∧∆, etc. instead of A⇒ F(∆),F(Γ )∧F(∆). First, we
prove that nested inference is sound, that is to say: let Γ ( ) be any context. If the formula
A1∧ . . .∧An → B, with n ≥ 0, is (CK{+X})-valid, then also Γ (A1)∧ . . .∧Γ (An)→
Γ (B) is (CK{+X}) valid. The proof is by induction on the depth of a context Γ ( ),
defined as follows:

– Γ ( ) = ∆, ( ) is a context with depth d(Γ ( )) = 0;
– if Σ( ) is a context, Γ ( ) = ∆, [A : Σ( )] is a context with depth d(Γ ( )) =

1 + d(Σ( )).

Let d(Γ ( )) = 0, then Γ = Λ, ( ). Since A1 ∧ . . . ∧An → B is valid, by propositional
reasoning, we have that also (Λ ∨ A1) ∧ . . . (Λ ∨ An) → (Λ ∨ B) is valid, that is
Γ (A1) ∧ . . . ∧ Γ (An) → Γ (B) is valid. Let d(Γ ( )) > 0, then Γ ( ) = ∆, [C : Σ( )].
By inductive hypothesis, we have thatΣ(A1)∧. . .∧Σ(An)→ Σ(B) is valid. By (RCK),
we obtain that also (C ⇒ Σ(A1))∧. . .∧(C ⇒ Σ(An))→ (C ⇒ Σ(B)) is valid. Then,
we get that (Λ ∨ (C ⇒ Σ(A1))) ∧ . . . ∧ (Λ ∨ (C ⇒ Σ(An)))→ (Λ ∨ (C ⇒ Σ(B)))
is also valid, that is Γ (A1) ∧ . . . ∧ Γ (An)→ Γ (B) is valid.
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Now we can prove the soundness of the calculi, namely if Γ is derivable in NS,
then Γ is valid. By induction on the height of the derivation of Γ . In the base case, Γ is
an axiom, that is Γ = Γ (P,¬P ); then, trivially P ∨ ¬P is valid, then also Γ (P,¬P )
is valid by the fact that nested inference is sound. Similarly for Γ (>) and Γ (¬⊥). For
the inductive step, in order to save space, we only show the most interesting case of
(⇒−): Γ = Γ (¬(A⇒ B), [A′ : ∆]) is derived from (i) Γ (¬(A⇒ B), [A′ : ∆,¬B]),
(ii) ¬A,A′, (iii) ¬A′, A. By inductive hypothesis we have that A ↔ A′ is valid. We
show that also (∗) [¬(A ⇒ B) ∨ (A′ ⇒ (∆ ∨ ¬B))] → [¬(A ⇒ B) ∨ (A′ ⇒
∆)] is valid, then we conclude since nested inference is sound and by applying the
inductive hypothesis. To prove (*), by (RCK) we have that the following is valid:
[(A′ ⇒ B) ∧ (A′ ⇒ (∆ ∨ ¬B))] → (A′ ⇒ ∆). Since A ↔ A′ is valid, by (RCEA)
we get that (A ⇒ B) → (A′ ⇒ B) is valid, so that also (A ⇒ B) → ((A′ ⇒
(∆ ∨ ¬B))→ (A′ ⇒ ∆)) is valid, then we conclude by propositional reasoning.

(Completeness): If Γ is valid, then Γ has a derivation in NS. First of all, it can be
shown that weakening and contraction are height-preserving admissible in NS, that is
to say: (weakening) if Γ (∆) is derivable in NS with a derivation of height h, then also
Γ (∆,Σ) is derivable in NS with a proof of height h′ ≤ h, where ∆ and Σ are nested
sequents; (contraction) given a nested sequent ∆, if Γ (∆,∆) has a derivation of height
h, then also Γ (∆) has a derivation of height h′ ≤ h. Moreover, the derivation of the
contracted sequent Γ (∆) does not add any rule application to the initial derivation.

Completeness is an easy consequence of the admissibility of the following rule cut:

Γ (F ) Γ (¬F )
(cut)

Γ (∅)

where F is a formula. The standard proof of admissibility of cut proceeds by a double
induction over the complexity of F and the sum of the heights of the derivations of the
two premises of (cut), in the sense that we replace one cut by one or several cuts on
formulas of smaller complexity, or on sequents derived by shorter derivations. We only
show the case of systems without MP and CSO, reminding to [2] for all the other details.
However, in NS the standard proof does not work in the following case, in which the
cut formula F is a conditional formula A⇒ B:

(1) Γ ([A : B], [A′ : ∆])
(⇒+)

(3) Γ (A⇒ B, [A′ : ∆])

(2) Γ (¬(A⇒ B), [A′ : ∆,¬B]) A,¬A′ A′,¬A
(⇒−)

Γ (¬(A⇒ B), [A′ : ∆])
(cut)

Γ ([A′ : ∆])

Indeed, even if we apply the inductive hypothesis on the heights of the derivations of
the premises to cut (2) and (3), obtaining (modulo weakening, which is admissible) a
derivation of (2′) Γ ([A′ : ∆,¬B], [A′ : ∆]), we cannot apply the inductive hypothesis
on the complexity of the cut formula to (2′) and (1′) Γ ([A : ∆,B], [A′ : ∆]) (obtained
from (1) again by weakening). Such an application would be needed in order to obtain a
derivation of Γ ([A′ : ∆], [A′ : ∆]) and then to conclude Γ ([A′ : ∆]) since contraction is
admissible: indeed, the two contexts are different, we have [A′ : ∆,¬B] in (2′) whereas
we have [A : ∆,B] in (1′).
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In order to tackle this problem, we need to prove another property, namely that if A
and A′ are equivalent, if a sequent Γ ([A : ∆]) is derivable inNS, then also Γ ([A′ : ∆]),
obtained by replacing A with the equivalent formula A′, is also derivable. In turn, we
need (cut) to prove this property, therefore we prove both the properties (admissibility
of (cut) and “substitution” of A with A′) by mutual induction, namely:

In NS, the following propositions hold:

– (A) If Γ (F ) and Γ (¬F ) are derivable, so is Γ (∅), i.e. (cut) is admissible in NS;
– (B) if (I) Γ ([A : ∆]), (II) A,¬A′ and (III) A′,¬A are derivable, then Γ ([A′ : ∆]) is

derivable.

Let us first consider (A). We have the following cases:

– (at least) one of the premises of (cut) is an instance of the axioms. Suppose that the
left premise is an instance of (AX). In case it has the form Γ (P,¬P, F ), then also
Γ (P,¬P ) is an instance of (AX) and we are done. Otherwise, we have Γ (F,¬F ).
In this case, the right premise of (cut) has the form Γ (¬F,¬F ), whereas the
conclusion is Γ (¬F ): since contraction is admissible, we conclude that Γ (¬F ) is
derivable and we are done. The other cases are symmetric. The cases in which one
premise of (cut) is an instance of either (AX>) or (AX⊥) are easy and left to the
reader;

– the last step of one of the two premises is obtained by a rule (R) in which F is not
the principal formula. This case is standard, we can permute (R) over the cut, i.e.
we cut the premise(s) of (R) and then we apply (R) to the result of cut.

– F is the principal formula in the last step of both derivations of the premises of the
cut inference. There are several subcases, to save space we only consider the above
mentioned case in which the standard proof does not work, where the derivation is
as follows:

(1) Γ (¬(A⇒ B), [A′ : ∆,¬B]) A,¬A′ A′,¬A
(⇒−)

Γ (¬(A⇒ B), [A′ : ∆])

(2) Γ ([A : B], [A′ : ∆])
(⇒+)

(3) Γ (A⇒ B, [A′ : ∆])
(cut)

Γ ([A′ : ∆])

First of all, since we have proofs for A,¬A′ and for A′,¬A and the complexity of A
is lower than the one ofA⇒ B, we can apply the inductive hypothesis for (B) to (2),
obtaining a derivation of (2′) Γ ([A′ : B], [A′ : ∆]). Since weakening is admissible,
from (3) we obtain a derivation of at most the same height of (3′) Γ (A⇒ B, [A′ :
∆,¬B]). We can then conclude as follows: we first apply the inductive hypothesis on
the height for (A) to cut (1) and (3′), obtaining a derivation of (4) Γ ([A′ : ∆,¬B]).
By weakening, we have also a derivation of (4′) Γ ([A′ : ∆,¬B], [A′ : ∆]). Again
by weakening, from (2′) we obtain a derivation of (2′′) Γ ([A′ : ∆,B], [A′ : ∆]).
We then apply the inductive hypothesis on the complexity of the cut formula to
cut (2′′) and (4′), obtaining a derivation of Γ ([A′ : ∆], [A′ : ∆]), from which we
conclude since contraction is admissible.

Concerning (B), we proceed by induction on the height h of the premise (I), as follows:
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– Base case: Γ ([A : ∆]) is an instance of the axioms, that is to say either ∆ =
Λ(P,¬P ) or ∆ = Λ(>) or ∆ = Λ(¬⊥): we immediately conclude that also
Γ ([A′ : ∆]) is an instance of the axioms, and we are done;

– Inductive step: we have to consider all possible rules ending (looking forward) the
derivation of Γ ([A : ∆]). We only show the most interesting case, when (⇒−) is
applied by using [A : ∆] as principal formula. The derivation ends as follows:

(1) Γ (¬(C ⇒ D), [A : ∆,¬D]) (2) C,¬A (3) A,¬C
(⇒−)

Γ (¬(C ⇒ D), [A : ∆])

We can apply the inductive hypothesis to (1) to obtain a derivation of (1′) Γ (¬(C ⇒
D), [A′ : ∆,¬D]). Since weakening is admissible, from (II) we obtain a derivation
of (II ′) C,A,¬A′, from (III) we obtain a derivation of (III ′) A′,¬A,¬C. Again
by weakening, from (2) and (3) we obtain derivations of (2′) C,¬A,¬A′ and
(3′) A′, A,¬C, respectively. We apply the inductive hypothesis of (A) that is that
cut holds for the formula A (of a given complexity c) and conclude as follows:

(1′) Γ (¬(C ⇒ D), [A′ : ∆,¬D])

(II ′) C,A,¬A′
(2′) C,¬A,¬A′

(cut)
C,¬A′

(III ′) A′,¬A,¬C
(3′) A′, A,¬C

(cut)
A′,¬C

(⇒−)
Γ (¬(C ⇒ D), [A′ : ∆])

With the admissibility of cut at hand, we can easily conclude the proof of completeness
of NS by showing that the axioms are derivable and that the set of derivable formulas is
closed under (Modus Ponens), (RCEA), and (RCK). A derivation of an instance of ID
has been shown in Figure 2. A derivation of an instance of MP is as follows:

(AX)
¬(A⇒ B),¬A,B,A

(AX)
¬(A⇒ B),¬A,B,¬B

(MP)
¬(A⇒ B),¬A,B

(→+)
¬(A⇒ B), A→ B

(→+)
(A⇒ B)→ (A→ B)

Here is a derivation of an instance of CEM:

(AX)
[A : B,¬B], [A : ¬B]

(AX)
A,¬A

(AX)
¬A,A

(CEM )
[A : B], [A : ¬B]

(⇒+)
[A : B], A⇒ ¬B

(⇒+)
A⇒ B,A⇒ ¬B

(∨+)
(A⇒ B) ∨ (A⇒ ¬B)

For (Modus Ponens), we have to show that, if (1) A → B ad (2) A are derivable,
then also B is derivable. Since weakening is admissible, we have also derivations
for (1′) A → B,B,¬A and (2′) A,B. Furthermore, observe that (3) A,B,¬A and
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(4) ¬B,B,¬A are both instances of (AX). Since cut is admissible (statement A above),
the following derivation shows that B is derivable:

(2′) A,B

(1′) A→ B,B,¬A
(3) A,B,¬A (4) ¬B,B,¬A

(→−)
¬(A→ B), B,¬A

(cut)
B,¬A

(cut)
B

For (RCEA), we have to show that if A↔ B is derivable, then also (A⇒ C)↔ (B ⇒
C) is derivable. As usual, A↔ B is an abbreviation for (A→ B) ∧ (B → A). Since
A ↔ B is derivable, and since (∧+) and (→+) are invertible, we have a derivation
for A → B, then for (1) ¬A,B, and for B → A, then for (2) A,¬B. We derive
(A⇒ C)→ (B ⇒ C) (the other half is symmetric) as follows:

(AX)
¬(A⇒ C), [B : C,¬C] (1) ¬A,B (2) A,¬B

(⇒−)
¬(A⇒ C), [B : C]

(⇒+)
¬(A⇒ C), B ⇒ C

(→+)
(A⇒ C)→ (B ⇒ C)

For (RCK), suppose that we have a derivation in NS of (A1 ∧ . . . ∧An)→ B. Since
(→+) is invertible, we have also a derivation of B,¬(A1 ∧ . . . ∧ An). Since (∧−)
is also invertible, then we have a derivation of B,¬A1, . . . ,¬An and, by weakening,
of (1) ¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B,¬A1,¬A2, . . . ,¬An], from which we
conclude as follows:

(1) ¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B,¬A1,¬A2, . . . ,¬An]

...
(⇒−)

¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B,¬A1,¬A2]
(AX)

C,¬C
(AX)

¬C,C
(⇒−)

¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B,¬A1]
(AX)

C,¬C
(AX)

¬C,C
(⇒−)

¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B]
(∧−)

¬(C ⇒ A1 ∧ . . . ∧ C ⇒ An), [C : B]
(⇒+)

¬(C ⇒ A1 ∧ . . . ∧ C ⇒ An), C ⇒ B
(→+)

(C ⇒ A1 ∧ . . . ∧ C ⇒ An)→ (C ⇒ B)

�

As usual, in order to obtain a decision procedure for the conditional logics under consid-
eration, we have to control the application of the rules (⇒−)/(CSO), (MP), (CEM ),
and (ID) that otherwise may be applied infinitely often in a backward proof search,
since their principal formula is copied into the respective premise(s). In detail, we obtain
a sound, complete and terminating calculus if we restrict the applications of these rules
as follows [1, 2]: (⇒−) can be applied only once to each formula ¬(A ⇒ B) with a
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context [A′ : ∆] in each branch - the same for (CSO) in the system CK+CSO+ID; (ID)
can be applied only once to each context [A : ∆] in each branch; (MP) can be applied
only once to each formula ¬(A⇒ B) in each branch. For systems with (CEM ), we
need a more complicated mechanism: due to space limitations, we refer to [1] for this
case. These results give a PSPACE decision procedure for their respective logics.

4 Design of NESCOND

In this section we present a Prolog implementation of the nested sequent calculi NS.
The program, called NESCOND (NESted sequent calculi for CONDitional logics), is
inspired by the “lean” methodology of leanTAP, even if it does not follow its style in a
rigorous manner. The program comprises a set of clauses, each one of which implements
a sequent rule or axiom of NS. The proof search is provided for free by the mere
depth-first search mechanism of Prolog, without any additional ad hoc mechanism.

NESCOND represents a nested sequent with a Prolog list of the form:

[F 1, F 2, ..., F m,[[A 1,Gamma 1],AppliedConditionals 1],
[[A 2,Gamma 2],AppliedConditionals 2], ..., [[A n,Gamma n],AppliedConditionals n]] ]

In detail, elements of a nested sequent can be either formulas F or contexts. A context is
represented by a pair [Context,AppliedConditionals] where:

– Context is also a pair of the form [F,Gamma], where F is a formula of L and
Gamma is a Prolog list representing a nested sequent;

– AppliedConditionals is a Prolog list [A 1=>B 1,A 2=>B 2,...,A k=>B k],
keeping track of the negated conditionals to which the rule (⇒−) has been already
applied by using Context in the current branch. This is used in order to implement
the restriction on the application of the rule (⇒−) in order to ensure termination.

Symbols > and ⊥ are represented by constants true and false, respectively, whereas
connectives ¬, ∧, ∨,→, and⇒ are represented by !, ˆ, v, ->, and =>.

As an example, the Prolog list

[p, q, !(p => q), [[p, [q v !p, [[p,[p => r]],[]], !r]],[p => q]], [[q, [p, !p]],[]]]

represents the nested sequent

P,Q,¬(P ⇒ Q), [P : Q ∨ ¬P, [P : P ⇒ R],¬R], [Q : P,¬P ].

Furthermore, the list [p => q] in the leftmost context is used to represent the fact that,
in a backward proof search, the rule (⇒−) has already been applied to ¬(P ⇒ Q) by
using [P : Q ∨ ¬P, [P : P ⇒ R],¬R].

Let us now discuss more in detail the implementation of NESCOND, starting from
the description of some auxiliary predicates, and then distinguishing among the different
conditional logics considered.
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4.1 Auxiliary predicates

In order to manipulate formulas “inside” a sequent, NESCOND makes use of the three
following auxiliary predicates:

– deepMember(+Formulas,+NS) succeeds if and only if either (i) the nested
sequent NS representing a nested sequent Γ contains all the fomulas in the list
Formulas or (ii) there exists a context [[A,Delta],AppliedConditionals]
in NS such that deepMember(Formulas,Delta) succeeds, that is to say there
is a nested sequent occurring in NS containing all the formulas of Formulas.

– deepSelect(+Formulas,+NS,-NewNS) operates exactly as deepMember,
however it removes the formulas of the list Formulas by replacing them with a
placeholder hole; the output term NewNS matches the resulting sequent.

– fillTheHole(+NS,+Formulas,-NewNS) replaces the placeholder hole
in NS with the formulas in the list Formulas. The resulting sequent matches the
output term NewNS.

4.2 NESCOND for CK

The calculi NS are implemented by the predicate

prove(+NS,-ProofTree).

This predicate succeeds if and only if the nested sequent represented by the list NS is
derivable. When the predicate succeeds, then the output term ProofTree matches with
a representation of the derivation found by the prover, used in order to display the proof
tree. For instance, in order to prove that the formula (A ⇒ (B ∧ C)) → (A ⇒ B) is
valid in CK, one queries NESCOND with the goal: prove([(a => b ˆ c) ->
(a => b)],ProofTree). Each clause of the prove predicate implements an
axiom or rule ofNS. To search a derivation of a nested sequent Γ , NESCOND proceeds
as follows. First of all, if Γ is an axiom, the goal will succeed immediately by using one
of the following clauses for the axioms:

prove(NS,tree(ax)):-deepMember([P,!P],NS),!.
prove(NS,tree(axt)):-deepMember([top],NS),!.
prove(NS,tree(axb)):-deepMember([!bot],NS),!.

implementing (AX), (AX>) and (AX⊥), respectively. If Γ is not an instance of the
axioms, then the first applicable rule will be chosen, e.g. if a nested sequent in Γ contains
a formula A v B then the clause implementing the (∨+) rule will be chosen, and
NESCOND will be recursively invoked on the unique premise of (∨+). NESCOND
proceeds in a similar way for the other rules. The ordering of the clauses is such that the
application of the branching rules is postponed as much as possible.

As an example, the clause implementing (⇒−) is as follows:

1. prove(NS,tree(condn,A,B,Sub1,Sub2,Sub3)):-
2. deepSelect([!(A => B),[[C,Delta],AppliedConditionals]],

NS,NewNS),

Nested Sequent Calculi and Theorem Proving for Normal Conditional Logics 59



3. \+member(!(A => B),AppliedConditionals),!,
4. prove([A,!C],Sub2),
5. prove([C,!A],Sub3),
6. fillTheHole(NewNS,[!(A => B),

[[C,[!B|Delta]],[!(A => B)|AppliedConditionals]]],DefNS),
7. prove(DefNS,Sub1).

In line 2, the auxiliary predicate deepSelect is invoked in order to find both a
negated conditional ¬(A ⇒ B) and a context [C : ∆] in the sequent (even in a
nested subsequent). In this case, such formulas are replaced by the placeholder hole.
Line 3 implements the restriction on the application of (⇒−) in order to guaran-
tee termination: the rule is applied only if ¬(A ⇒ B) does not belong to the list
AppliedConditionals of the selected context. Since the rules of NS are in-
vertible4, a cut ! is introduced in order to avoid useless backtrackings in the choice
of the rule to apply. In lines 4, 5 and 7, NESCOND is recursively invoked on the
three premises of the rule. In line 7, NESCOND is invoked on the premise in which
the context [C : ∆] is replaced by [C : ∆,¬B]. To this aim, in line 6 the auxil-
iary predicate fillTheHole(+NewNS,+Formulas,-DefNS) is invoked to re-
place the hole in NewNS, introduced by deepSelect, with the negated conditional
¬(A⇒ B), which is copied into the premise, and the context [C : ∆,¬B], whose list
of AppliedConditionals is updated by adding the formula ¬(A⇒ B) itself.

4.3 NESCOND for extensions of CK

The implementation of the calculi for extensions of CK with axioms ID and MP are very
similar. For systems allowing ID, contexts are triples [Context, AppliedConditionals,
AllowID]. The third element AllowID is a flag used in order to implement the re-
striction on the application of the rule (ID), namely the rule is applied to a context only
if AllowID=true:

prove(NS,tree(id,A,SubTree)):-
deepSelect([[[A,Delta],AppliedConditionals,true]]],NS,NewNS),!,
fillTheHole(NewNS,[[[A,[!A|Delta]],AppliedConditionals,false]]],DefNS),
prove(DefNS,SubTree).

When (ID) is applied to [Context, AppliedConditionals, true] then the
predicate prove is invoked on the unique premise of the rule DefNS, and the flag is
set to false in order to avoid multiple applications in a backward proof search.

The restriction on the application of the rule (MP) is implemented by equipping the
predicate prove by a third argument, AppliedMP, a Prolog list keeping track of the
negated conditionals to which the rule has already been applied in the current branch.
The clause of prove implementing (MP) is as follows:

4 The rule (⇒−), as well as (CEM), are only “weakly” invertible, in the sense that only the
leftmost premise of these rules can be obtained by weakening from the respective conclusions
(see [2] for details).
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1. prove(NS,AppliedMP,tree(mp,A,B,Sub1,Sub2)):-
2. deepSelect([!(A => B)],NS,NewNS),
3. \+member(A => B,AppliedMP),!,
4. fillTheHole(NewNS,[A,!(A => B)],NS1),
5. fillTheHole(NewNS,[!B,!(A => B)],NS2),
6. prove(NS1,[A => B|AppliedMP],Sub1),
7. prove(NS2,[A => B|AppliedMP],Sub2).

The rule is applicable to a formula ¬(A ⇒ B) only if [A => B] does not be-
long to AppliedMP (line 3). When (MP) is applied, then [A => B] is added to
AppliedMP in the recursive calls of prove on the premises of the rule (lines 6 and 7).

The implemetation of the calculus for the flat fragment of CK+CSO+ID, correspond-
ing to KLM cumulative logic C, is very similar to the one for CK+ID; the only difference
is that the rule (⇒−) is replaced by (CSO). This does not make use of the predicate
deepSelect to “look inside” a sequent to find the principal formulas ¬(A ⇒ B)
and [C : ∆]: since the calculus only deals with the flat fragment of the logic under
consideration, such principal formulas are directly selected from the current sequent
by easy membership tests (standard Prolog predicates member and select), without
searching inside other contexts.

As mentioned, NESCOND also deals with extensions with CEM; the clause imple-
menting the rule (CEM ) is as follows:

1. prove(NS,tree(cem,A,B,Sub1,Sub2,Sub3)):-
2. deepSelect([[[A,Delta],ApplCond1],[[B,Sigma],ApplCond2]],

NS,NewNS),
3. notSequentIncluded(Delta,Sigma),!,
4. prove([A,!B],Sub2),
5. prove([B,!A],Sub3),
6. append(Delta,Sigma,ResDelta),
7. fillTheHole(NewNS,[[[A,ResDelta],ApplCond1],

[[B,Sigma],ApplCond2]],DefNS),
8. prove(DefNS,Sub1).

In line 3 the predicate notSequentIncluded is invoked: this predicate implements
the restriction on the application of the rule described in the previous section in order to
ensure termination.

5 Performances of NESCOND

The performances of NESCOND are promising. We have tested it by running SICStus
Prolog 4.0.2 on an Apple MacBook Pro, 3.06 GHz Intel Core 2 Duo, 4GB RAM machine.
We have performed two kind of tests:

– we have compared the performances of NESCOND for CK with the ones of two other
provers for conditional logics, namely CondLean, implementing labelled sequent
calculi [17, 18], and the goal-directed procedure GOALDUCK [19]. To this aim, we
have tested the three theorem provers on randomly generated sequents, obtaining the
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results shown in Figure 3. It is easy to conclude that the performances of NESCOND
are better in all cases: in particular, concerning sequents containing formulas with a
high level of conditional nesting (15), with a 1ms time limit, GOALDUCK is not able
to answer in the 41% of cases, whereas CondLean finds all the valid sequents but it
is not able to find any non-valid ones. NESCOND answers correctly for the 100%
of the generated formulas, discovering that all the missing answers of CondLean are
non-valid ones;

– we have tested NESCOND over a set of 88 CK valid formulas obtained by translating
K valid formulas5 provided by Heuerding and used to test the theorem prover
ModLeanTAP [5] by Beckert and Goré. Also in this case, the results, shown in
Figure 4, are encouraging: NESCOND is not able to give an answer in less than 1
ms only in 16 cases over 88; the number of timeouts drops to 7 if we extend the time
limit to 5 seconds.

number of formulas: 10 Prop. vars: 3 Depth: 15 Timeout: 1ms

yes no timeout

UCK

CondLean

Nested sequents

55,00% 4,00% 41,00%

69,00% 0,00% 31,00%

69,00% 31,00% 0,00%

number of formulas : 30 Prop. vars: 5 Depth: 3 Timeout: 1 ms

yes no timeout

UCK

CondLean

Nested sequents

73,00% 21,00% 6,00%

74,00% 0,00% 26,00%

74,00% 26,00% 0,00%

Fig. 3. NESCOND vs CondLean vs GOALDUCK
Time limit (ms) 1 100 1000 5000 30000

NESCOND

CondLean

16 13 10 7 5

22 16 14 10 9

Fig. 4. Number of timeouts of NESCOND and CondLean over 88 CK valid formulas.

Time limit (ms)

Percentage of timeouts

1 50 100 5000

30% 28% 27% 20%

Fig. 5. Percentage of timeouts of NESCOND for extensions of CK.

These results show that the performances of NESCOND are encouraging, probably
better than the ones of the other existing provers for conditional logics (we are cur-
rently completing the comparative statistics). Figure 5 shows that this also holds for
extensions of CK: in the 70% of the tests (all of them are valid formulas), NESCOND
gives an answer in less than 1ms. The remaining 30% concerns the case of CEM(+ID),
where the performances worsen because of the overhead of the termination mechanism.
We note in passim that it does not exist a set of acknowledged benchmarks for condi-
tional logics. We are currently building a set of meaningful tests, they can be found at
http://www.di.unito.it/∼pozzato/nescond/.

6 Conclusions and Future Issues

In this work we have presented NESCOND, a theorem prover for conditional logics
implementing nested sequent calculi introduced in [1]. The performances described in
the previous section show that nested sequent calculi do not only provide elegant and

5 �A is replaced by > ⇒ A, whereas �A is replaced by ¬(> ⇒ ¬A).
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natural calculi for conditional logics, but they are also significant for developing efficient
theorem provers for them. In future research we aim to extend NESCOND to other
systems of conditional logics. To this regard, we strongly conjecture that adding a rule
for (CS) will be enough to cover the whole cube of the extensions of CK generated by
axioms (ID), (MP), (CEM) and (CS). This will be object of subsequent research.
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Focusing on contraction
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Abstract. Focusing [1] is a proof-theoretic device to structure proof
search in the sequent calculus: it provides a normal form to cut-free
proofs in which the application of invertible and non-invertible inference
rules is structured in two separate and disjoint phases. It is commonly
believed that every “reasonable” sequent calculus has a natural focused
version. Although stemming from proof-search considerations, focusing
has not been thoroughly investigated in actual theorem proving, in par-
ticular w.r.t. termination, if not for the folk observations that only neg-
ative formulas need to be duplicated (or contracted if seen from the top
down) in the focusing phase. We present a contraction-free (and hence
terminating) focused proof system for multi-succedent propositional intu-
itionistic logic, which refines the G4ip calculus of Vorob’ev, Hudelmeier
and Dyckhoff. We prove the completeness of the approach semantically
and argue that this offers a viable alternative to other more syntactical
means.

1 Introduction and related work

Focusing [1] is a proof-theoretic device to structure proof search in the sequent
calculus: it provides a normal form to cut-free proofs in which the application
of invertible and non-invertible inference rules is structured in two separate and
disjoint phases. In the first, called the negative or asynchronous phase, we apply
(reading the proof bottom up) all invertible inference rules in whatever order,
until none is left. The second phase, called the positive or synchronous phase,
“focuses” on a formula, by selecting a not necessarily invertible inference rule.
If after the (reverse) application of that introduction rule, a sub-formula of that
focused formula appears that also requires a non-invertible inference rule, then
the phase continues with that sub-formula as the new focus. The phase ends
either with success or when only formulas with invertible inference rules are en-
countered and phase one is re-entered. Certain “structural” rules are used to
recognize this switch. Compare this to standard presentation of proof search,
such as [22], where Waaler and Wallen describe a search strategy for the intu-
itionistic multi-succedent calculus LB by dividing rules in groups to be applied
following some priorities and a set of additional constraints. This without a proof
of completeness. Focusing internalizes in the proof-theory a stringent strategy,
and a provably complete one, from which many additional optimizations follow.



Contraction (or duplication, seen from the bottom up) is one of Gentzen’s
original structural rules permitting the reuse of some formula in the antecedent
or succedent of a sequent:

Γ,A,A ` ∆
Contr L

Γ,A ` ∆
Γ ` A,A,∆

Contr R
Γ ` A,∆

We are interested in proof search for propositional logics and from this stand-
point contraction is a rather worrisome rule: it can be applied at any time mak-
ing termination problematic even for decidable logics, thus forcing the use of
potentially expensive and non-logical methods like loop detection. It is therefore
valuable to ask whether contraction can be removed, in particular in the context
of focused proofs.

As it emerged from linear logic, focusing naturally fits other logics with strong
dualities, such as classical logic. As such, it is maybe not surprising that issue
of contraction has not been fully investigated: in linear logic contraction (and
weakening) are tagged by exponentials, while in classical logic duplication does
not affect completeness. As far as intuitionistic logic, an important corollary of
the completeness of focusing is that contraction is exactly located in between
the asynchronous and synchronous phases and can be restricted to negative
formulas3. This is a beginning, but it is well-known (see the system G3ip [21])
that the only propositional connective we do need to contract is implication.

There is a further element: Gentzen’s presentation of intuitionistic logic is ob-
tained from his classical system LK by means of a cardinality restriction imposed
on the succedent of every sequent: at most one formula occurrence. This has been
generalized by Maehara (see [15]), who retained a multiple-conclusion version,
provided that the rules for right implication (and universal quantification) can
only be performed if there is a single formula in the succedent of the premise to
which these rules are applied. As these are the same connectives where in the
Kripke semantics a world jump is required, this historically opened up a fecund
link with tableaux systems. Moreover, Maehara’s LB (following [22]’s terminol-
ogy) has more symmetries from the permutation point of view and therefore may
seem a better candidate for focusing than mono-succedent LJ. The two crucial
rules are:

Γ,A→ B ` A,∆ Γ,B ` ∆ → L
Γ,A→ B ` ∆

Γ,A ` B → R
Γ ` A→ B,∆

Interestingly here, in opposition to LJ, the → L rule is invertible, while → R
is not. According to the focusing diktat, → L would be classified as left asyn-
chronous and eagerly applied, and this makes the asynchronous phase endless.
While techniques such as freezing [4] or some form of loop checking could be
used, we exploit a well-known formulation of a contraction-free calculus, known
as G4ip [21], following Vorob’ev, Hudelmeier and Dyckhoff, where the→ L rule
is replaced by a series of rules that originate from the analysis of the shape of

3 Recall that in LJ a formula is negative (positive) if its right introduction rule is
invertible (non-invertible).
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the subformula A of the main formula A→ B of the rule. It is then routine that
such a system is indeed terminating, in the sense that any bottom-up derivation
of any given sequent is of finite length4. It is instead not routine to focalize such
a system, called G4ipf , and this is the main result of the present paper.

As the focusing strategy severely restricts proofs construction, it is paramount
to show that we do not lose any proof – in other terms that focusing is complete
w.r.t. standard intuitionistic logic. There are in the literature several ways to
prove that, all of them proof-theoretical and none of them completely satisfac-
tory for our purposes:

1. The permutation-based approach, dating back to Andreoli [1], works by
proving inversion properties of asynchronous connectives and postponement
properties of synchronous ones. This is very brittle and particularly prob-
lematic for contraction-free calculi: in fact, it requires to prove at the same
time that contraction is admissible and in the focusing setting this is far
from trivial.

2. One can establish admissibility of the cut and of the non-atomic initial rule
in the focused calculus and then show that all ordinary rules are admissible
in the latter using cut. This has been championed in [8]. While a syntactic
proof of cut-elimination is an interesting result per se, the sheer number
of the judgments involved and hence of the cut reductions (principal, focus,
blur, commutative and preserving cuts in the terminology of the cited paper)
makes the well founded-ness of the inductive argument very delicate and hard
to extend.

3. The so-called “grand-tour through linear logic” strategy of Miller and Liang [14].
Here, to show that a refinement of an intuitionistic proof system such as ours
is complete, we have to provide an embedding into LLF (the canonical fo-
cused system for full linear logic) and then show that the latter translation
is entailed by Miller and Liang’s 1/0 translation. The trouble here is that
contraction-free systems cannot be faithfully encoded in LLF [18]. While
there are refinements of LLF, namely linear logic with sub-exponentials [20],
which may be able to faithfully encode such systems, a “grand-tour” strategy
in this context is uncharted territory. Furthermore, sub-exponential encod-
ings of focused systems tend to be very, very prolix, which makes closing the
grand-tour rather unlikely.

4. Finally, Miller and Saurin propose a direct proof of completeness of focusing
in linear logic in [19] based on the notion of focalization graph. Again, this
seems hard to extend to asymmetric calculi such as intutionism, let alone
those contraction-free.

In this paper, instead, we prove completeness adapting the traditional Kripke
semantic argument. While this is well-worn in tableaux-like systems, it is the first
time that the model-theoretic semantics of focusing has been considered. The
highlights of our proof are explained in Section 3.3.

4 With some additional effort, one can prove that contraction is admissible in the
contraction-free calculus [10].
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Although stemming from proof-search considerations, focusing has still to
make an impact in actual theorem proving. Exceptions are:

– Inverse-based systems such as Imogen [16] and LIFF [7]: because the inverse
method is forward and saturation-based, the issue of contraction does not
come into play – in fact it exhibits different issues w.r.t. termination (namely
subsumption) and is in general not geared towards finite failure.

– TAC [5] is a prototype of a family of focused systems for automated inductive
theorem proving, including one for LJF. Because the emphasis is on the
automation of inductive proofs and the objective is to either succeed or
quickly fail, most care is applied to limit the application of the induction
rule by means of freezing. Contraction is handled heuristically, by letting the
user set a bound for how many time an assumption can be duplicated for
each initial goal; once the bound is reached, the system becomes essentially
linear.

– Henriksen’s [13] presents an analysis of contraction-free classical logic: here
contraction has an impact only in the presence of two kinds of disjunc-
tion/conjunctions, namely positive vs. negative, as in linear logic. The au-
thor shows that contraction can be disposed of by viewing the introduction
rule for positive disjunction as a restart rule, similar to Gabbay’s [12]:

` Θ, pos(A) ⇓ B
` Θ ⇓ A ∨+ B plus dual

where pos(A) = A∧+ t+ delays the non-chosen branch if A is negative (Θ is
positive only), and the focus left rule does not make any contraction. This
is neat, but not helpful as far as LB is concerned.

2 The proof system

We consider a standard propositional language based on a denumerable set of
atoms, the constant ⊥ and the connectives ∧, ∨ and →; ¬A stands for A→ ⊥.
Our aim is to give a focalized version of the well-known contraction-free calculus
G4ip of Vorob’ev, Hudelmeier and Dyckhoff [21]. To this end, one starts with
a classification of formulas in the (a)synchronous categories. In focused versions
of LJ such as LJF [14], an asynchronous formula has a right invertible rule
and a non-invertible left one – and dually for synchronous. The contraction-
free approach does not enjoy this symmetry – the idea is in fact to consider
the possible shape that the antecedent of an implication can have and provide
a specialized left (and here right5) introduction rule, yielding a finer view of
implicational connectives, which now come in pairs. As we shall see shortly,
formulas of the kind (A→ B)→ C have non-invertible left and right rules, while
the intro rules for (A ∧B)→ C and (A ∨B)→ C are both invertible. Formulas

5 And in this sense our calculus is reminiscent of Avron’s decomposition proof sys-
tems [3].
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a → B, with a an atom, have a peculiar behaviour: right rule is non-invertible,
left rule is invertible, but can be applied only if the left context contains the
atom a. This motivates the following, slight unusual, classification of formulas –
we discuss the issue of polarization of atoms in Section 4.

Async Formula (AF) ::= ⊥ | A ∧B | A ∨B | ⊥ → B | (A ∧B)→ C | (A ∨B)→ C
Sync Formula (SF) ::= a | a→ B | (A→ B)→ C where a is an atom

AF+ ::= a | AF
SF− ::= a non-atomic SF

The calculus is based on the following judgments, whose rules are displayed in
Figure 1:

– Θ;Γ =⇒ ∆;Ψ . Active sequent;
– Θ;A� Ψ . Left-focused sequent;
– Θ � A;Ψ . Right-focused sequent.

Γ and ∆ denote multisets of formulas, while Θ and Ψ denote multisets of SF.
We use the standard notation of [21]; for instance, by Γ,∆ we mean multiset
union of Γ and ∆.

Proof search alternates between an asynchronous phase, where asynchronous
formulas are considered, and a synchronous phase, where synchronous ones are.
The dotted lines highlights the rule that govern the phase change. In the asyn-
chronous phase we eagerly apply the asynchronous rules to active sequents
Θ;Γ =⇒ ∆;Ψ . If the main formula is an AF, the formula is decomposed; oth-
erwise, it is moved to one of the outer contexts Θ and Ψ (rule ActL or ActR).
When the inner contexts are emptied (namely, we get a sequent of the form
Θ; · =⇒ ·;Ψ), no asynchronous rule can be applied and the synchronous phase
starts by selecting a formula H in Θ,Ψ for focus (rule FocusL or FocusR). Dif-
ferently from the asynchronous phase, the rules to be applied are determined by
the formula under focus. Note that the choice of H determines a backtracking
point: if proof search yields a sequent where Θ only contains atoms and Ψ is
empty, no formula can be picked and the construction of the derivation fails; to
continue proof search, one has to backtrack to the last applied FocusL or FocusR

rule and select, if possible, a new formula for focus. The left-focused phase is
started by the application of rule FocusL and involves left-focused sequents of
the form Θ;A� Ψ . Here we analyze implications whose antecedents are either a
or A→ B. In the first case (rule→at), we perform a sort of forward application
of modus ponens, provided that a ∈ Θ, otherwise we backtrack. The application
of rule →→ L determines a transition to a new asynchronous phase in the left
premise, while focus is maintained in the right premise. The phase terminates
when an AF+ formula is produced with a call to rule BlurL. Alternatively, a
right-focused phase begins by selecting a formula H in Ψ (rule FocusR). Let us
assume that H is an atom. If H ∈ Θ, we apply the axiom-rule Init and the
construction of a closed branch succeeds; otherwise, we get a failure and we have
to backtrack. If H = K → B, we apply →R, which ends the synchronous phase
and starts a new asynchronous phase. This is similar to the LJQ system [9].
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⊥L
Θ;Γ,⊥ =⇒ ∆;Ψ

Θ;Γ =⇒ ∆;Ψ
⊥R

Θ;Γ =⇒ ⊥,∆;Ψ

Θ;Γ,A,B =⇒ ∆;Ψ
∧L

Θ;Γ,A ∧B =⇒ ∆;Ψ

Θ;Γ =⇒ A,∆;Ψ Θ;Γ =⇒ B,∆;Ψ
∧R

Θ;Γ =⇒ A ∧B,∆;Ψ

Θ;Γ,A =⇒ ∆;Ψ Θ;Γ,B =⇒ ∆;Ψ
∨L

Θ;Γ,A ∨B =⇒ ∆;Ψ

Θ;Γ =⇒ A,B,∆;Ψ
∨R

Θ;Γ =⇒ A ∨B,∆;Ψ

Θ;Γ =⇒ ∆;Ψ
⊥→L

Θ;Γ,⊥ → B =⇒ ∆;Ψ
⊥→R

Θ;Γ =⇒ ⊥→ B,∆;Ψ

Θ;Γ,A→ B → C =⇒ ∆;Ψ
∧→L

Θ;Γ, (A ∧B)→ C =⇒ ∆;Ψ

Θ;Γ =⇒ A→ B → C,∆;Ψ
∧→R

Θ;Γ =⇒ (A ∧B)→ C,∆;Ψ

Θ;Γ,A→ C,B → C =⇒ ∆;Ψ
∨→L

Θ;Γ, (A ∨B)→ C =⇒ ∆;Ψ

Θ;Γ =⇒ A→ C,∆;Ψ Θ;Γ =⇒ B → C,∆;Ψ
∨→R

Θ;Γ =⇒ (A ∨B)→ C,∆;Ψ

Θ, S;Γ =⇒ ∆;Ψ
ActLΘ;Γ, S =⇒ ∆;Ψ

Θ;Γ =⇒ ∆;S, Ψ
ActRΘ;Γ =⇒ S,∆;Ψ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Θ;S− � Ψ
FocusL

Θ,S−; · =⇒ ·;Ψ
Θ � S;Ψ

FocusRΘ; · =⇒ ·;S, Ψ
Θ;T =⇒ ·;Ψ

BlurLΘ;T � Ψ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Init
Θ, a� a;Ψ

Θ;K =⇒ B; ·
→R

Θ � K → B;Ψ

Θ, a;B � Ψ →at
Θ, a; a→ B � Ψ

Θ;A,B → C =⇒ B; · Θ;C � Ψ
→→L

Θ; (A→ B)→ C � Ψ

A, B and C are any formulas, S is a SF, S− is a SF−, T is a AF+ and K → B is a SF.

Fig. 1. The G4ipf calculus

We remark that the main difference between G4ipf and a standard focused
calculus such as LJF is that the rule FocusL does not require the contraction of
the formula selected for focus. This is a crucial point to avoid the generation of
branches of infinite length and to guarantee the termination of the proof search
procedure outlined above (see Section 3.1).

A derivation D of a sequent σ in G4ipf is a tree of sequents built bottom-up
starting from σ and applying backward the rules of G4ipf . A branch of D is a
sequence of sequents corresponding to the path from the root σ of D to a leaf
σl of D. If σl is the conclusion of one of the axiom-rules ⊥L, ⊥ → R and Init
(the rules with no premises), the branch is closed. A derivation is closed if all
its branches are closed. A sequent σ is provable in G4ipf if there exists a closed
derivation of σ; a formula A is provable if the active sequent ·; · =⇒ A; · with
empty contexts Θ, Γ and Ψ is provable.
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Example 1. Here we provide an example of a G4ipf -derivation of the formula
¬¬(a ∨ ¬a). Recall that a derivation of such a formula in the standard calculus
requires an application of contraction.

⊥L
a;⊥ =⇒ ·;

BlurLa;⊥ � · →ata;¬a� ·
FocusL¬a, a; · =⇒ ·; ·

[⊥R,⊥ → L,ActL]¬a; a,⊥ → ⊥ =⇒ ⊥; ·
⊥L¬a;⊥ =⇒ ·; ·
BlurL¬a;⊥ � · →→ L¬a;¬¬a� ·

FocusL¬a,¬¬a; · =⇒ ·; ·
[⊥R,∨ → L,ActL × 2]·;¬(a ∨ ¬a) =⇒ ⊥; ·
→R· � ¬¬(a ∨ ¬a); ·
FocusR·; · =⇒ ·;¬¬(a ∨ ¬a)
ActR·; · =⇒ ¬¬(a ∨ ¬a); ·

The double line corresponds to an asynchronous phase where more than one rule
is applied. The only backtracking point is the choice of the formula for left-focus
in the active sequent ¬a,¬¬a; · =⇒ ·; ·. If we select ¬a instead of ¬¬a, we get the
sequent ¬¬a;¬a� · and the construction of the derivation immediately fails.

3 Meta-theory

We show that proof search in G4ipf can be performed in finite time. We define
a well-founded relation ≺ such that, if σ is the conclusion of a rule R of G4ipf
and σ′ any of the premises of R, then σ′ ≺ σ. As a consequence, branches of
infinite length cannot be generated in proof search and the provability of σ in
G4ipf can be decided in finite time.

3.1 Termination

We assign to any formula A a weight wg(A) following [21]:

wg(a) = wg(⊥) = 2 wg(A ∧B) = wg(A) + wg(A) · wg(B)

wg(A ∨B) = 1 + wg(A) + wg(B) wg(A→ B) = 1 + wg(A) · wg(B)

The weight wg(σ) of a sequent σ is the sum of wg(A), for every A in σ. One can
easily prove that the following properties hold:

– wg(A→ (B → C)) < wg((A ∧B)→ C);

– wg(A→ C) + wg(B → C) < wg((A ∨B)→ C);

– wg(A) + wg(B → C) + wg(C) < wg((A→ B)→ C).
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The above properties suffice to prove that proof search in the calculus G4ip
terminates. Indeed, if R is a rule of G4ip, σ1 the conclusion of R and σ2 any
of the premises of R, it holds that wg(σ2) < wg(σ1); since weights are positive
numbers, we cannot generate branches of infinite length. On the other hand, in
G4ipf we cannot use the weight of the whole sequent as a measure, since we
have rules where the conclusion and the premise have the same weight (Focus,
Act and Blur).

Let ≺s (≺d) be the smallest relation between two sequents related by a rule
of the same (different) judgment such that σ1 ≺s σ2 (σ1 ≺d σ2) if there exists a
rule R of G4ipf such that σ2 is the conclusion of R and σ1 is any of the premises
of R. For instance:

(Θ;Γ,A =⇒ ∆;Ψ ) ≺s (Θ;Γ,A ∨B =⇒ ∆;Ψ ) (Θ, a;B � Ψ ) ≺s (Θ, a; a→ B � Ψ )

(Θ;A =⇒ B; · ) ≺d (Θ � A→ B;Ψ ) ≺d (Θ; · =⇒ ·;A→ B,Ψ )

Note that σ1 ≺s σ2 implies wg(σ1) ≤ wg(σ2); moreover, if σ1 ≺d σ2 then
wg(σ1) = wg(σ2).

Using as a measure the lexicographic ordering of 〈wg(A),wg(Γ ),wg(∆)〉 we
can show (see the proof in the Appendix):

Lemma 1. ≺s is a well-founded relation.

The relation ≺d corresponds to the application of a rule which starts or ends
a synchronous phase. Note that a synchronous phase cannot start by selecting
an atom (indeed, the formula S− chosen for focus by FocusL must be a SF−),
otherwise we could generate an infinite loop where an atom a is picked for focus
by FocusL and immediately released by BlurL. As a consequence, we cannot have
chains of the form σ1 ≺d σ2 ≺d σ3, but between two ≺d at least an ≺s must
occur. In the following lemma we show that two active sequents immediately
before and after a synchronous phase have decreasing weights.

Lemma 2. Let σa and σb be two active sequents, let σ1, . . . , σn be n ≥ 1 focused
sequents such that σa ≺d σ1 ≺s · · · ≺s σn ≺d σb. Then wg(σa) < wg(σb).

Proof. By definition of ≺d, σn is obtained by applying FocusL or FocusR to
σb, σa is obtained by applying BlurL or →R to σ1, while in σ1, . . . , σn only
synchronous rules are applied. If n = 1, we have two possible cases:

1. σa = Θ;A,B → C =⇒ B; ·
σ1 = Θ; (A→ B)→ C � Ψ
σb = Θ, (A→ B)→ C; · =⇒ ·;Ψ ;

2. σa = Θ;A =⇒ B; ·
σ1 = Θ � A→ B;Ψ
σb = Θ; · =⇒ ·;A→ B,Ψ (where A is an atom or an implication).

In both cases wg(σa) < wg(σb). Let n > 1. We have:

σa = Θ;H1 =⇒ ·;Ψ, σ1 = Θ;H1 � Ψ, . . . σn = Θ;Hn � Ψ
σb = Θ,Hn; · =⇒ ·;Ψ

Since wg(H1) < wg(Hn), it holds that wg(σa) < wg(σb). ut
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Let ≺ be the transitive closure of the relation ≺s ∪ ≺d. Note that σ1 ≺ σ2
implies wg(σ1) ≤ wg(σ2). Using lemmas 1 and 2, one can prove that (see the
proof in the Appendix):

Proposition 1. ≺ is a well-founded order relation.

By Proposition 1, every branch of a derivation of G4ipf has finite length. Indeed,
let D be a (possibly open) derivation of σ1 and let σ1, σ2, . . . be a branch of D.
We have σi+1 ≺ σi for every i ≥ 1, hence the branch has finite length.

3.2 Semantics

A Kripke model is a structure K = 〈P,≤, ρ, V 〉, where 〈P,≤, ρ〉 is a finite poset
with minimum element ρ; V is a function mapping every α ∈ P to a subset of
atoms such that α ≤ β implies V (α) ⊆ V (β). We write α < β to mean α ≤ β
and α 6= β. The forcing relation K, α  H (α forces H in K) is defined as follows:

– K, α 1 ⊥;
– for every atom a, K, α  a iff a ∈ V (α);
– K, α  A ∧B iff K, α  A and K, α  B;
– K, α  A ∨B iff K, α  A or K, α  B;
– K, α  A→ B iff, for every β ∈ P such that α ≤ β, K, β 1 A or K, β  B.

Monotonicity property holds for arbitrary formulas, i.e.: K, α  A and α ≤ β
imply K, β  A. A formula A is valid in K iff K, ρ  A. It is well-known that
intuitionistic propositional logic Int coincides with the set of formulas valid in
all (finite) Kripke models [6].

Given a Kripke model K = 〈P,≤, ρ, V 〉, a world α ∈ P and a sequent σ, the
relation K, α� σ (K realizes σ at α) is defined as follows:

– K, α�Θ;Γ =⇒ ∆;Ψ iff
K, α  A for every A ∈ Θ,Γ and K, α 1 B for every B ∈ ∆,Ψ .

– K, α�Θ;A� Ψ iff K, α�Θ;A =⇒ ·;Ψ .
– K, α�Θ � A;Ψ iff K, α�Θ; · =⇒ A;Ψ .

A sequent σ = Θ;Γ =⇒ ∆;Ψ is realizable if there exists a model K = 〈P,≤, ρ, V 〉
such that K, ρ � σ; in this case we say that K is a model of σ. We point out
that σ is realizable iff the formula

∧
(Θ,Γ ) → ∨

(∆,Ψ) is not intuitionistically
valid. Moreover, it is easy to check that, if σ is the conclusion of one of the
axiom-rules ⊥L, ⊥ → R and Init, then σ is not realizable. A rule R is sound iff,
if the conclusion of R is realizable, then at least one of its premises is realizable.
We can esaily proof that (see the Appendix):

Proposition 2. The rules of G4ipf are sound.

By Proposition 2 the soundness of G4ipf follows (see the proof in the Appendix):

Theorem 1 (Soundness). If σ is provable in G4ipf then σ is not realizable.

Focusing on contraction 73



3.3 Completeness

We show that, if proof search for a sequent σ fails, we can build a model K of σ,
and this proves the completeness of G4ipf . Henceforth, by unprovable we mean
‘not provable in G4ipf ’.

A left-focused sequent Θ;H � Ψ is strongly unprovable iff one of the following
conditions holds:

(i) H is an AF+ and the sequent Θ;H =⇒ ·;Ψ is unprovable;
(ii) H = A→ B and Θ;B � Ψ is strongly unprovable.

By definition of the rules of G4ipf , we immediately get:

Lemma 3. If σ = Θ;H � Ψ is strongly unprovable, then σ is unprovable.

Let σ = Θ;H � Ψ be a left-focused sequent.

– σ is at-unprovable w.r.t. a→ B iff, for some m ≥ 0, it holds that
H = H1 → · · · → Hm → a→ B and a 6∈ Θ (if m = 0, then H = a→ B);

– σ is at-unprovable if, for some a→ B, σ is at-unprovable w.r.t. a→ B;
– σ is →-unprovable w.r.t. (A→ B)→ C iff, for some m ≥ 0, it holds that
H = H1 → · · · → Hm → (A → B) → C and Θ;A,B → C =⇒ B; · is
unprovable (if m = 0, then H = (A→ B)→ C);

– σ is→-unprovable if, for some (A→ B)→ C, σ is→-unprovable w.r.t. (A→
B)→ C.

Note that a sequent can match the above definitions in more than one way. For
instance, let σ = ·; a1 → (a2 → a3)→ a4 → a5 � a6; then:

– σ is at-unprovable w.r.t. a1 → (a2 → a3)→ a4 → a5 and w.r.t. a4 → a5;
– σ is →-unprovable w.r.t. (a2 → a3)→ a4 → a5.

Lemma 4. Let σ = Θ;H � Ψ be an unprovable sequent. Then, σ is strongly
unprovable or at-unprovable or →-unprovable.

Proof. By induction on ≺. Let us assume that, for every σ′ ≺ σ, the lemma
holds for σ′; we prove the lemma for σ by a case analysis.

– Let H be an AF+. Since the sequent σ is unprovable then Θ;H =⇒ ·;Ψ is
unprovable. Hence by definition σ is strongly unprovable.

– Let H = a → B. If a 6∈ Θ then σ is at-unprovable w.r.t. a → B. Let a ∈ Θ
and let σ′ = Θ;B � Ψ . Then σ′ is unprovable. Since σ′ ≺ σ, by IH σ′

is strongly unprovable or at-unprovable or →-unprovable. If σ′ is strongly
unprovable, by definition σ is strongly unprovable. Let us assume that σ′ is
at-unprovable w.r.t. a′ → C. Then B = H1 → · · · → Hm → a′ → C and
a′ 6∈ Θ. This implies that σ is at-unprovable w.r.t. a′ → C. Finally, let us
assume that σ′ is →-unprovable w.r.t. (C → D) → E. Then B = H1 →
· · · → Hm → (C → D) → E and the sequent Θ;C,D → E =⇒ D; · is
unprovable. If follows that σ is →-unprovable w.r.t. (C → D)→ E.
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ρ

K1

ρ1

....

Kn

ρn

Fig. 2. The model Model(At, {K1, . . . ,Kn})

– Let H = (B → C) → D. If Θ;B,C → D =⇒ C; · is unprovable, then by
definition σ is→-unprovable w.r.t. (B → C)→ D. Otherwise, let Θ;B,C →
D =⇒ C; · be provable. Then σ′ = Θ;D � Ψ is unprovable. Since σ′ ≺ σ, by
IH σ′ is strongly unprovable or at-unprovable or →-unprovable. Reasoning
as above, the lemma holds for σ. ut

Let S = {K1, . . .Kn} be a (possibly empty) set of models Ki = 〈Pi,≤i, ρi, Vi〉
(1 ≤ i ≤ n), let At be a set of atoms such that, for every 1 ≤ i ≤ n, At ⊆ Vi(ρi);
without loss of generality, we can assume that the sets Pi are pairwise disjoint.
By Model(At,S) we denote the Kripke model K = 〈P,≤, ρ, V 〉 defined as follows:

1. If S is empty, then K is the Kripke model consisting of only the world ρ and
V (ρ) = At.

2. Let n ≥ 1. Then (see Fig. 2):
- ρ is new (namely, ρ 6∈ ⋃

i∈{1,...,n} Pi) and P = {ρ} ∪ ⋃
i∈{1,...,n} Pi;

- ≤ = { (ρ, α) | α ∈ P } ∪ ⋃
i∈{1,...,n} ≤i;

- V (ρ) = At and, for every i ∈ {1, . . . , n} and α ∈ Pi, V (α) = Vi(α).

It is easy to check that K is a well-defined Kripke model. In Point 2, for every
1 ≤ i ≤ n, every α ∈ Pi and every formula A, it holds that K, α  A iff Ki, α  A.
A world β of a model K is an immediate successor of α if α < β and, for every
γ such that α ≤ γ ≤ β, either γ = α or γ = β.

Lemma 5. Let H = H1 → · · · → Hm → A → B (m ≥ 0), let K = 〈P,≤, ρ, V 〉
be a model such that K, ρ 1 A and, for every immediate successor α of ρ, it holds
that K, α  H. Then K, ρ  H.

In the next lemma we show how to build a Kripke model of an unprovable
sequent.

Lemma 6. Let σ = Θ; · =⇒ ·;Ψ be an unprovable sequent such that, for ev-
ery non-atomic H ∈ Θ, the sequent Θ \ {H};H � Ψ is at-unprovable or →-
unprovable. Let At be the set of atoms of Θ and let Θ1 be the set of non-atomic
formulas H of Θ such that the sequent Θ \ {H};H � Ψ is not at-unprovable.
Let S be a (possibly empty) set of models satisfying the following conditions:

(i) For every H ∈ Θ1, let (A → B) → C such that Θ \ {H};H � Ψ is →-
unprovable w.r.t. (A → B) → C; then S contains a model of the sequent
Θ \ {H};A,B → C =⇒ B; ·.
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(ii) For every A→ B ∈ Ψ , S contains a model of the sequent Θ;A =⇒ B; ·.
(iii) Every model of S is of type (i) or (ii).

Then, Model(At,S) is a model of σ.

Proof. Let us assume that the set of models S is empty. Then Θ1 is empty and
Ψ only contains atoms not belonging to At. By definition, K = Model(At,S)
has only the world ρ. Since V (ρ) = At, we immediately get K, ρ  a, for every
a ∈ At, and K, ρ 1 a′, for every a′ ∈ Ψ . Let H be a non-atomic formula of Θ.
Since Θ1 = ∅, the sequent Θ \ {H};H � Ψ is at-unprovable. This means that
H = H1 → · · · → Hm → a → B, where a 6∈ At, hence K, ρ  H. This proves
that K, ρ� σ, thus K is a model of σ.

Let us assume that S contains the models K1 = 〈P1,≤1, ρ1, V1〉, . . . , Kn =
〈Pn,≤n, ρn, Vn〉 (n ≥ 1) and let K = 〈P,≤, ρ, V 〉 be the model Model(At,S); we
show that K is a model of σ.

If a ∈ At, then K, ρ  a by definition of V .

Let H be a non-atomic formula of Θ. If H 6∈ Θ1, then the sequent Θ \
{H};H � Ψ is at-unprovable, namely H = H1 → · · · → Hm → a → B, where
a 6∈ At. Firstly, we note that Ki, ρi  H, for every 1 ≤ i ≤ n; indeed, by (i)–
(iii), Ki is a model of a sequent of the form Θ′;Γ ′ =⇒ ∆′; · such that H ∈ Θ′.
It follows that Ki, ρi  H, for every 1 ≤ i ≤ n; hence K, ρi  H. By definition
of V , we have K, ρ 1 a. By Lemma 5, we get K, ρ  H.

Let H ∈ Θ1 and let Θ \ {H};H � Ψ be →-unprovable w.r.t. (A→ B)→ C.
This mean that H = H1 → · · · → Hm → (A→ B)→ C and, by (i), S contains
a model Kj of Θ \ {H};A,B → C =⇒ B; ·. This implies that:

(P1) Kj , ρj  A;

(P2) Kj , ρj  B → C;

(P3) Kj , ρj 1 B.

By (P1) and (P2) it follows that Kj , ρj  (A→ B)→ C, which implies Kj , ρj 
H. Moreover, if i ∈ {1, . . . , n} and i 6= j, then by (i)– (iii) Ki is a model of a
sequent Θ′;Γ ′ =⇒ ∆′; · such that H ∈ Θ′, hence Ki, ρi  H. Thus, for every
1 ≤ i ≤ n, it holds that Ki, ρi  H, which implies K, ρi  H. By (P1) and (P3),
we have K, ρj  A and K, ρj 1 B. Since ρ < ρj in K, we get K, ρ 1 A→ B. By
Lemma 5, we conclude K, ρ  H.

Let H ∈ Ψ . If H is an atom, then H 6∈ At, otherwise σ would be provable;
hence K, ρ 1 H. LetH = A→ B. By (ii), S contains a model Kj of Θ;A =⇒ B; ·.
Thus, Kj , ρj  A and Kj , ρj 1 B, which implies K, ρ 1 A → B. We conclude
that K is a model of σ. ut

We can now prove the completeness of G4ipf .

Proposition 3 (Completeness). Let σ = Θ;Γ =⇒ ∆;Ψ . If σ is unprovable,
then σ is realizable.
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Proof. By induction on ≺. If Γ,∆ is not empty, the proposition easily fol-
lows by the induction hypothesis. For instance, let σ = Θ;Γ,A ∨ B =⇒ ∆;Ψ .
By definition of the rule ∨L, one of the sequents σA = Θ;Γ,A =⇒ ∆;Ψ or
σB = Θ;Γ,B =⇒ ∆;Ψ is unprovable. Since σA ≺ σ and σB ≺ σ, by induction
hypothesis there exists a model K of σA or of σB . In either case K is a model of
σ, hence σ is realizable.

Let σ = Θ; · =⇒ ·;Ψ . We distinguish two cases (C1) and (C2).

(C1) There is a non-atomic formula H ∈ Θ such that σ′ = Θ \ {H};H � Ψ is
strongly unprovable.

By Lemma 3, σ′ is unprovable. Since σ′ ≺ σ, by induction hypothesis there exists
a model K of σ′; since K is also a model of σ, we conclude that σ is realizable.

(C2) For every non-atomic H ∈ Θ, the sequent σ′ = Θ \ {H};H � Ψ is not
strongly unprovable.

We build a model of σ by applying Lemma 6. We point out that the hypothesis
of Lemma 6 are satisfied. Indeed, for every non-atomic H ∈ Θ, since σ′ =
Θ \ {H};H � Ψ is not strongly unprovable, by Lemma 4 σ′ is at-unprovable or
→-unprovable. The (possibly empty) set of models S can be defined as follows:

(a) For every H ∈ Θ1, let us assume that Θ \ {H};H � Ψ is →-unprovable
w.r.t. (A→ B)→ C. Then H = H1 → · · · → Hm → (A→ B)→ C and the
sequent σH = Θ \ {H};A,B → C =⇒ B; · is unprovable. Since σH ≺ σ, by
induction hypothesis there exists a model of σH .

(b) For every K = A → B ∈ Ψ , the sequent σK = Θ;A =⇒ B; · is unprovable
(otherwise σ would be provable). Since σK ≺ σ, by induction hypothesis
there exists a model of σK .

Thus, we can define S as the set of models K = 〈P,≤, ρ, V 〉 mentioned in (a) and
in (b); note that, since At ⊆ Θ, we have At ⊆ V (ρ). By Lemma 6, Model(At,S)
is a model of σ, hence σ is realizable. ut

The above proof shows how to build a model of an unprovable sequent (see in
particular points (a) and (b)). We remark that, in the model construction, only
active sequents are relevant, while focused sequents are skipped. This justifies
why standard model construction techniques are not directly applicable and a
more involved machinery is needed.

By soundness and completeness of G4ipf , a sequent σ is provable in G4ipf
iff σ is not realizable. By definition, A ∈ Int iff the sequent ·; · =⇒ A; · is not
realizable. We conclude that A ∈ Int iff A is provable in G4ipf .

4 Conclusions and future work

We have presented a focused version of the contraction-free calculus G4ip [21].
Essentially, every treatment of focusing [14] extends the (a)synchronous clas-
sification of connectives to atoms, assigning them a bias or polarity. Different
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polarizations of atoms do not affect provability, but do influence significantly
the shape of the derivation, allowing one to informally characterize forward and
backward reasoning via respectively positive and negative bias assignments. Un-
fortunately, the contraction-free approach is essentially forward and negative bias
do not work as expected. Here is why: standard presentations, where contraction
on focus is allowed, use the following rules

InitLΘ;n� n, Ψ
Θ;P =⇒ ·;Ψ

BlurLΘ;P � Ψ
Θ; · =⇒ ·;n Θ;B � Ψ → at−

Θ;n→ B � Ψ

Θ, p;B � Ψ → at+
Θ, p; p→ B � Ψ

where n is a negative atom, p is a positive atom, P an AF or a positive atom.
These rules without contraction give rise to an incomplete calculus. For instance,
let us consider the non-realizable sequent σ = n → p, (n → p) → n; · =⇒ ·; p.
The only rule applicable to σ is FocusL. If we select n→ p we get:

(n→ p)→ n; · =⇒ ·;n

...

(n→ p)→ n; p� p → at−
(n→ p)→ n;n→ p� p

But the left premise is unprovable. On the other hand, if we choose (n→ p)→ n
we get:

...
n→ p;n, p→ n =⇒ p; · n→ p;n� p →→ L

n→ p; (n→ p)→ n� p

But the right premise is unprovable because there is no rule that can blur a
negative atom from focus. To get a complete calculus we should allow BlurL on
negative atoms, but in this case the calculus does not properly capture “backward
chaining”.

This paper is but a beginning of our investigation of focusing:

– It is commonly believed that every “reasonable” sequent calculus has a natu-
ral focused version. We aim to test this “universality” hypothesis further by
investigating its applicability to a rather peculiar logic, Gödel-Dummett’s,
which is well-known to lead a double life as a super-intuitionistic (but not
constructive) and as a quintessential fuzzy logic [17].

– We plan to investigate counterexample search in focused systems. The natu-
ral question is: considering that focused calculi restrict the shape of deriva-
tions, what kind of counter models do they yield, upon failure? How do they
compare to calculi such as [2] or the calculus [11] designed to yield models
of minimal depth?

– There seems to be a connection between contraction-free calculi and Gab-
bay’s restart rule [12], a technique to make goal oriented provability with
diminishing resources complete for intuitionistic provability. Focusing could
be the key to understand this.
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Appendix

Proof of Lemma 1

To prove that ≺s is a well-founded relation, we have to show that there is no
infinite descending ≺s-chain of the form

· · · ≺s σ3 ≺s σ2 ≺s σ1

Note that all the sequents in the ≺s-chain have the same kind. Thus, either all
the sequents in the ≺s-chain are focused or all are active.

Let σ1 = Θ1;A1 � Ψ1 and σ2 = Θ2;A2 � Ψ2 be two focused sequents
such that σ1 ≺s σ2. Then, Θ1 = Θ2, Ψ1 = Ψ2 and wg(A1) < wg(A2), hence
wg(σ1) < wg(σ2). Since the weight of a sequent is a positive number, every
descending ≺s-chains containing focused sequents has finite length.

Let σ1 = Θ1;Γ1 =⇒ ∆1;Ψ1 and σ2 = Θ2;Γ2 =⇒ ∆2;Ψ2 be two active
sequents such that σ1 ≺s σ2. Then, one of the following conditions holds:

1. wg(σ1) < wg(σ2);
2. wg(σ1) = wg(σ2) and wg(Γ1, ∆1) < wg(Γ2, ∆2).

Thus, every descending ≺s-chains containing active sequents has finite length.

Proof of Proposition 1

We have to prove that ≺ is a well-founded order relation. By definition, ≺ is
transitive. We show that there exists no infinite descending ≺-chain; this also
implies that ≺ is not reflexive. Let us assume, by absurd, that there exists
an infinite ≺-chain C of sequents σi (i ≥ 1) such that σi+1 ≺ σi for every
i ≥ 1. We have wg(σi+1) ≤ wg(σi) for every i ≥ 1. Since, by Lemma 1, the
relation ≺s is well-founded, C contains infinitely many occurrences of ≺d. By
Lemma 2, from C we can extract an infinite sequence of active sequents σ′i such
that wg(σ′i+1) < wg(σ′i) for every i ≥ 1, a contradiction. We conclude that every
descending ≺-chain has finite length, hence ≺ well-founded.

Proof of Proposition 2

We have to prove that the rules of G4ipf are sound. All the cases except the
one for →→ L and →R rules are immediate.

Let R be the rule →R, let σ = Θ � A → B;Ψ be the conclusion of R and
let K = 〈P,≤, ρ, V 〉 be a Kripke model such that K, ρ� σ. Since K, ρ 1 A→ B,
there exists β ∈ P such that K, β  A and K, β 1 B. It follows that the submodel
of K having root β realizes the premise Θ;A =⇒ B; · of R.

Let R be the rule →→ L , let σ = Θ; (A→ B)→ C � Ψ be the conclusion
of R and let us assume K, ρ � σ. If K, ρ  C, we get K, ρ � Θ;C � Ψ , hence
the right-most premise of R is realizable. Let us assume K, ρ 1 C. Since K, ρ 
(A → B) → C, we have K, ρ 1 A → B. Then, there exists β ∈ P such that
K, β  A and K, β 1 B. It follows that K, β  B → C, and this implies
K, β �Θ;A,B → C =⇒ B; ·; thus, the left-most premise of R is realizable.
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Proof of Theorem 1 (Soundness of G4ipf)

Let D be a closed derivation of σ and let us assume that σ is realizable. By
Proposition 2, one of the initial sequents σ of D is realizable. Since σ is the
conclusion of an axiom-rule, we get a contradiction.
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Abstract. We present a method for verifying partial correctness prop-
erties of imperative programs that manipulate integers and arrays by
using techniques based on the transformation of constraint logic pro-
grams (CLP). We use CLP as a metalanguage for representing imper-
ative programs, their executions, and their properties. First, we encode
the correctness of an imperative program, say prog, as the negation of
a predicate incorrect defined by a CLP program T . By construction,
incorrect holds in the least model of T if and only if the execution of
prog from an initial configuration eventually halts in an error configura-
tion. Then, we apply to program T a sequence of transformations that
preserve its least model semantics. These transformations are based on
well-known transformation rules, such as unfolding and folding, guided
by suitable transformation strategies, such as specialization and gener-
alization. The objective of the transformations is to derive a new CLP
program TransfT where the predicate incorrect is defined either by (i)
the fact ‘incorrect.’ (and in this case prog is not correct), or by (ii)
the empty set of clauses (and in this case prog is correct). In the case
where we derive a CLP program such that neither (i) nor (ii) holds, we
iterate the transformation. Since the problem is undecidable, this pro-
cess may not terminate. We show through examples that our method
can be applied in a rather systematic way, and is amenable to automa-
tion by transferring to the field of program verification many techniques
developed in the field of program transformation.

1 Introduction

In the last decade formal techniques have received a renewed attention as the
basis of a methodology for increasing the reliability of software artifacts and
reducing the cost of software production. In particular, great efforts have been
made to devise automatic techniques such as software model checking [23], for
verifying the correctness of programs with respect to their specifications.
? A preliminary version of this paper appears in [10].



In many software model checking techniques, the use of constraints has been
very effective both for constructing models of programs and for reasoning about
them [2, 8, 9, 12, 18, 20, 22, 33, 34]. Several kinds of constraints have been consid-
ered, such as equalities and inequalities over booleans, integers, reals, and finite
or infinite trees. By using constraints we can represent in a symbolic, compact
way the (possibly infinite) sets of values computed by programs and, in general,
the sets of states which are reached during program executions. Then, by us-
ing powerful solvers specifically designed for the classes of constraints we have
mentioned above, we can reason about program properties in an efficient way.

In this paper we consider a simple imperative programming language with
integer and array variables and we use Constraint Logic Programming (CLP) [21]
as a metalanguage for representing imperative programs, their executions, and
the properties to be verified. We use constraints consisting of linear equalities
and inequalities over integers. Note, however, that the method presented here is
parametric with respect to the constraint domain which is used. By following an
approach originally presented in [33], a given imperative program prog and its
interpreter are first encoded as a CLP program. Then, the proofs of the properties
of interest about the program prog are sought by analyzing that derived CLP
program. In order to improve the efficiency of that analysis, it is advisable to first
compile-away the CLP interpreter of the language in which prog is written. This
is done by specializing the interpreter with respect to the given program prog
using well-known program specialization techniques [24, 33].

In previous papers [9, 16] we have shown that program specialization can
be used not only as a preprocessing step to improve the efficiency of program
analysis, but also as a means of analysis on its own. In this paper, we extend
that approach and we propose a verification method based on more general
unfold/fold transformation rules for CLP programs [5, 13, 37].

Transformation-based verification techniques are very appealing because they
are parametric with respect to both the programming languages in which pro-
grams are written, and the logics in which the properties of interest are specified.
Moreover, since the output of a transformation-based verification method is a
program which is equivalent to the given program with respect to the proper-
ties of interest, we can apply a sequence of transformations, thereby refining the
analysis to the desired degree of precision (see, for instance, [9]).

The specific contributions of this paper are the following. We present a veri-
fication method based on a set of transformation rules which includes the rules
for performing conjunctive definition, conjunctive folding, and goal replacement,
besides the usual rules for unfolding and constraint manipulation which are used
during program specialization. The rules for conjunctive definition and conjunc-
tive folding allow us to introduce and transform new predicates defined in terms
of conjunctions of old predicates, while program specialization can only deal with
new predicates that correspond to specialized versions of exactly one old pred-
icate. The goal replacement rule allows us to replace conjunctions of predicates
and constraints by applying equivalences that hold in the least model of the CLP
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program at hand, while program specialization can only replace conjunctions of
constraints.

By using these more powerful definition and folding rules, we extend the
specialization-based verification method in the following two directions: (i) we
verify programs with respect to specifications given by sets of CLP clauses (for
instance, recursively defined relations among program variables), whereas pro-
gram specialization can only deal with specifications given by constraints, and
(ii) we verify programs manipulating arrays and other data structures by apply-
ing equivalences between predicates that axiomatize suitable properties of those
data structures (for instance, the ones deriving from the axiomatization of the
theory of arrays [31]).

The paper is organized as follows. In Section 2 we present our transformation-
based verification method. First, we introduce a simple imperative language and
we describe how correctness properties of imperative programs can be translated
into predicates defined by CLP programs. We also present a general strategy
for applying the transformation rules to CLP programs, with the objective of
verifying the properties of interest. Next, we present two examples of application
of our verification method. In particular, in Section 3 we show how we deal with
specifications given by recursive CLP clauses, and in Section 4 we show how we
deal with programs which manipulate arrays. Finally, in Section 5 we discuss
the related work which has been recently done in the area of automatic program
verification.

2 The Transformation-Based Verification Method

We consider an imperative C-like programming language with integer and array
variables, assignments (=), sequential compositions (;), conditionals (if and
if else), while-loops (while), and jumps (goto). A program is a sequence of
(labeled) commands, and in each program there is a unique halt command
which, when executed, causes program termination.

The semantics of our language is defined by a transition relation, denoted
=⇒, between configurations. Each configuration is a pair 〈〈c, δ〉〉 of a command c
and an environment δ. An environment δ is a function that maps: (i) every integer
variable identifier x to its value v, and (ii) every integer array identifier a to a
finite function from the set {0, . . . , dim(a)−1}, where dim(a) is the dimension of
the array a, to the set of the integer numbers. The definition of the relation =⇒
is similar to the ‘small step’ operational semantics given in [35], and is omitted.

Given an imperative program prog , we address the problem of verifying
whether or not, starting from any initial configuration that satisfies the prop-
erty ϕinit , the execution of prog eventually leads to a final configuration that
satisfies the property ϕerror , also called an error configuration. This problem is
formalized by defining an incorrectness triple of the form {{ϕinit}} prog {{ϕerror}},
where ϕinit and ϕerror are encoded by CLP predicates defined by (possibly re-
cursive) clauses. We say that a program prog is incorrect with respect to ϕinit

and ϕerror , whose free variables are assumed to be among z1, . . . , zr, if there
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exist environments δinit and δh such that: (i) ϕinit(δinit(z1), . . . , δinit(zr)) holds,
(ii) 〈〈`0 :c0, δinit〉〉 =⇒∗ 〈〈`h :halt, δh〉〉, and (iii) ϕerror (δh(z1), . . . , δh(zr)) holds,
where `0 : c0 is the first labeled command of prog and `h : halt is the unique
halt command of prog . A program is said to be correct with respect to ϕinit and
ϕerror iff it is not incorrect with respect to ϕinit and ϕerror . Note that this notion
of correctness is equivalent to the usual notion of partial correctness specified by
the Hoare triple {ϕinit} prog {¬ϕerror}.

Our verification method is based on the formalization of the notion of pro-
gram incorrectness by using a predicate incorrect defined by a CLP program.

In this paper a CLP program is a finite set of clauses of the form A :- c,B,
where A is an atom, c is a constraint (that is, a possibly empty conjunction
of linear equalities and inequalities over the integers), and B is a goal (that
is, a possibly empty conjunction of atoms). The conjunction c,B is called a
constrained goal. A clause of the form: A :- c is called a constrained fact. We refer
to [21] for other notions of CLP with which the reader might be not familiar.

We translate the problem of checking whether or not the program prog is
incorrect with respect to the properties ϕinit and ϕerror into the problem of
checking whether or not the predicate incorrect is a consequence of the CLP
program T defined by the following clauses:

incorrect :- initConf(X), reach(X).
reach(X) :- tr(X, X1), reach(X1).
reach(X) :- errorConf(X).

together with the clauses for the predicates initConf(X), errorConf(X), and
tr(X, X1). They are defined as follows: (i) initConf(X) encodes an initial config-
uration satisfying the property ϕinit , (ii) errorConf(X) encodes an error config-
uration satisfying the property ϕerror , and (iii) tr(X, X1) encodes the transition
relation =⇒. (Note that in order to define initConf(X), errorConf(X), and
tr(X, X1) and, in particular, to represent operations over the integer variables
and the elements of arrays, we need constraints.) The predicate reach(X) holds
if an error configuration Y such that errorConf(Y) holds, can be reached from
the configuration X.

The imperative program prog is correct with respect to the properties ϕinit

and ϕerror iff incorrect 6∈M(T ), where M(T ) denotes the least model of pro-
gram T [21]. Due to the presence of integer variables and array variables, M(T )
is in general an infinite model, and both the bottom-up and top-down evaluation
of the query incorrect may not terminate. In order to deal with this difficulty,
we propose an approach to program verification which is symbolic and, by using
program transformations, allows us to avoid the exhaustive exploration of the
possibly infinite space of reachable configurations.

Our verification method consists in applying to program T a sequence of pro-
gram transformations that preserve the least modelM(T ) [13, 15]. In particular,
we apply the following transformation rules, collectively called unfold/fold rules:
(i) (conjunctive) definition, (ii) unfolding, (iii) goal replacement, (iv) clause re-
moval, and (v) (conjunctive) folding. Our verification method is made out of the
following two steps.
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Step (A): Removal of the Interpreter. Program T is specialized with respect to the
given prog (on which tr depends), initConf, and errorConf, thereby deriving a
new program T1 such that: (i) incorrect ∈M(T ) iff incorrect ∈M(T1), and
(ii) tr does not occur explicitly in T1 (in this sense we say that the interpreter
is removed or compiled-away).

Step (B): Propagation of the Initial and Error Properties. By applying a sequence
of unfold/fold transformation rules, the CLP program T1 is transformed into a
new CLP program T2 such that the program prog is correct with respect to the
given initial and error properties iff incorrect 6∈M(T2).

The objective of Step (B) is to propagate the initial and the error properties
so as to derive a program T2 where the predicate incorrect is defined by either
(i) the fact ‘incorrect.’ (in which case prog is incorrect), or (ii) the empty set
of clauses (in which case prog is correct). In the case where neither (i) nor (ii)
holds, that is, in program T2 the predicate incorrect is defined by a non-empty
set of clauses not containing the fact ‘incorrect.’, we cannot conclude anything
about the correctness of prog and, similarly to what has been proposed in [9],
we iterate Step (B) in the hope of deriving a program where either (i) or (ii)
holds. Obviously, due to undecidability limitations, it may be the case that we
never get a program where either (i) or (ii) holds.

Steps (A) and (B) are both instances of the Transform strategy outlined in
Figure 1 below. These two instances are obtained by using two different ways
of controlling the application of the transformation rules. In particular, in the
instance of the Transform strategy that realizes Step (A) we never apply the goal
replacement rule and the resulting strategy coincides with the fully automatic
specialization strategy presented in [9].

In the Transform strategy we make use of the following rules, where P is
the input CLP program, and Defs is a set of clauses, called definition clauses,
constructed as we indicate in that strategy.

Definition Rule. By this rule we introduce a clause of the form newp(X) :- c,G,
where newp is a new predicate symbol, X is a tuple of variables occurring in (c,G),
c is a constraint, and G is a non-empty conjunction of atoms.

Unfolding Rule. Given a clause C of the form H :- c,L,A,R, where H and A are
atoms, c is a constraint, and L and R are (possibly empty) conjunctions of atoms,
let us consider the set {Ki :- ci,Bi | i = 1, . . . ,m} made out of the (renamed
apart) clauses of P such that, for i=1, . . . ,m, A is unifiable with Ki via the most
general unifier ϑi and (c,ci)ϑi is satisfiable (thus, the unfolding rule performs
some constraint solving operations). By unfolding C w.r.t. A using P , we derive
the set {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . ,m} of clauses.
Goal Replacement Rule. If a constrained goal c1, G1 occurs in the body of a clause
C, and M(P ) |= ∀ (c1, G1↔c2, G2), then we derive a new clause D by replacing
c1, G1 by c2, G2 in the body of C.

The equivalences which are needed for goal replacements are called laws
and their validity in M(P ) can be proved once and for all, before applying the
Transform strategy.
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Input : Program P .
Output : Program TransfP such that incorrect∈M(P ) iff incorrect∈M(TransfP).

Initialization:
Let InDefs be the set of all clauses of P whose head is the atom incorrect;
TransfP :=∅ ; Defs :=InDefs ;

while in InDefs there is a clause C do
Unfolding: Apply the unfolding rule at least once using P , and derive from C

a set U(C) of clauses;
Goal Replacement: Apply a sequence of goal replacements, and derive from

U(C) a set R(C) of clauses;
Clause Removal: Remove from R(C) all clauses whose body contains an un-

satisfiable constraint;
Definition&Folding: Introduce a (possibly empty) set NewDefs of new pred-

icate definitions and add them to Defs and to InDefs;
Fold the clauses in R(C) different from constrained facts by using the clauses
in Defs, and derive a set F(C) of clauses;

InDefs := InDefs− {C}; TransfP := TransfP ∪ F(C);
end-while;
Removal of Useless Clauses:
Remove from TransfP all clauses whose head predicate is useless.

Fig. 1. The Transform strategy.

Folding Rule. Given a clause E of the form: H :- e, L, Q, R and a clause D in
Defs of the form K :- d, D such that: (i) for some substitution ϑ, Q = Dϑ, and (ii)
∀ (e→dϑ) holds, then by folding E using D we derive H :- e, L, Kϑ, R.

Removal of Useless Clauses. The set of useless predicates in a given program Q
is the greatest set U of predicates occurring in Q such that p is in U iff every
clause with head predicate p is of the form p(X) :- c, G1, q(Y), G2, for some q in
U . A clause in a program Q is useless if the predicate of its head is useless in Q.

The termination of the Transform strategy is guaranteed by suitable tech-
niques for controlling the unfolding and the introduction of new predicates. We
refer to [28] for a survey of techniques which ensure the finiteness of unfolding.
The introduction of new predicates is controlled by applying generalization op-
erators based on various notions, such as widening, convex hull, most specific
generalization, and well-quasi ordering, which have been proposed for analyzing
and transforming CLP programs (see, for instance, [8, 11, 17, 32]).

The correctness of the strategy with respect to the least model semantics
directly follows from the fact that the application of the transformation rules
complies with some suitable conditions that guarantee the preservation of that
model [13].

Theorem 1. (Termination and Correctness of the Transform strategy) (i) The
Transform strategy terminates. (ii) Let program TransfP be the output of the
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Transform strategy applied on the input program P . Then, incorrect∈M(P)
iff incorrect∈M(TransfP).

3 Verification of Recursively Defined Properties

In this section we will show, through an example, that our verification method
can be used when the initial properties and the error properties are specified
by (possibly recursive) CLP clauses, rather than by constraints only (as done,
for instance, in [9]). In order to deal with that kind of properties, during the
Definition&Folding phase of the Transform strategy, we allow ourselves to
introduce new predicates which are defined by clauses of the form: Newp :- c, G,
where Newp is an atom with a new predicate symbol, c is a constraint, and G is a
conjunction of one or more atoms. This kind of predicate definitions allows us to
perform program verifications that cannot be done by the technique presented
in [9], where the goal G is assumed to be a single atom.

Let us consider the following program GCD that computes the greatest com-
mon divisor z of two positive integers m and n, denoted gcd(m,n, z).

GCD : `0: x = m ;
`1: y = n ;
`2: while (x 6= y) { if (x > y) x=x−y ; else y=y−x ; } ;
`3: z = x ;
`h: halt

We also consider the incorrectness triple {{ϕinit(m,n)}}GCD {{ϕerror (m,n, z)}},
where:
(i) ϕinit(m,n) is m≥1 ∧∧n≥1, and (ii) ϕerror (m,n, z) is ∃ d (gcd(m,n, d) ∧∧ d 6=z).
These properties ϕinit and ϕerror are defined by the following CLP clauses 1 and
2–5, respectively:

1. phiInit(M, N) :- M≥1, N≥1.
2. phiError(M, N, Z) :- gcd(M, N, D), D 6=Z.
3. gcd(X, Y, D) :- X>Y, X1=X−Y, gcd(X1, Y, D).
4. gcd(X, Y, D) :- X<Y, Y1=Y−X, gcd(X, Y1, D).
5. gcd(X, Y, D) :- X=Y, Y=D.

The predicates initConf and errorConf specifying the initial and the error
configurations, respectively, are defined by the following clauses:

6. initConf(cf(cmd(0, asgn(int(x), int(m))),
[[int(m), M], [int(n), N], [int(x), X], [int(y), Y], [int(z), Z]]))

:- phiInit(M, N).
7. errorConf(cf(cmd(h, halt),

[[int(m), M], [int(n), N], [int(x), X], [int(y), Y], [int(z), Z]])) :-
phiError(M, N, Z).

Thus, the CLP program encoding the given incorrectness triple consists of clauses
1–7 above, together with the clauses defining the predicates incorrect, reach,
and tr given as indicated in Section 2.
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Now we perform Step (A) of our verification method, which consists in the
removal of the interpreter, and we derive the following CLP program:
8. incorrect :- M≥1, N≥1, X=M, Y=N, new1(M, N, X, Y, Z).
9. new1(M, N, X, Y, Z) :- X>Y, X1=X−Y, new1(M, N, X1, Y, Z).

10. new1(M, N, X, Y, Z) :- X<Y, Y1=Y−X, new1(M, N, X, Y1, Z).
11. new1(M, N, X, Y, Z) :- X=Y, Z=X, Z 6=D, gcd(M, N, D).

By moving the constrained atom ‘Z 6=D, gcd(M, N, D)’ from the body of clause 11
to the body of clause 8, we can rewrite clauses 8 and 11 as follows (this rewriting
is correct because in clauses 9 and 10 the predicate new1 modifies neither the
value of M nor the value of N):
8r. incorrect :- M≥1, N≥1, X=M, Y=N, Z 6=D, gcd(M, N, D), new1(M, N, X, Y, Z).
11r. new1(M, N, X, Y, Z) :- X=Y, Z=X.

Note that we could avoid performing the above rewriting and obtain a similar
program where the constraints characterizing the initial and the error properties
occur in the same clause by starting our derivation from a more general definition
of the reachability relation. However, an in-depth analysis of this variant of our
verification method is beyond the scope of this paper.

Now we will perform Step (B) of the verification method by applying the
Transform strategy to the derived program consisting of clauses {3, 4, 5, 8r, 9, 10,
11r}. Initially, we have that the sets InDefs and Defs of definition clauses are
both equal to {8r}.
Unfolding. We start off by unfolding clause 8r w.r.t. the atom new1(M, N, X, Y, Z),
and we get:
12. incorrect :- M≥1, N≥1, X=M, Y=N, X>Y, X1=X−Y, Z 6=D, gcd(M, N, D),

new1(M, N, X1, Y, Z).
13. incorrect :- M≥1, N≥1, X=M, Y=N, X<Y, Y1=Y−X, Z 6=D, gcd(M, N, D),

new1(M, N, X, Y1, Z).
14. incorrect :- M≥1, N≥1, X=M, Y=N, X=Y, Z=X, Z 6=D, gcd(M, N, D).

By unfolding clauses 12, 13, and 14 w.r.t. the atom gcd(M, N, D), we derive:
15. incorrect :- M≥1, N≥1, M>N, X1=M−N, Z 6=D, gcd(X1, N, D),

new1(M, N, X1, N, Z).
16. incorrect :- M≥1, N≥1, M<N, Y1=N−M, Z 6=D, gcd(M, Y1, D),

new1(M, N, M, Y1, Z).

(The unfolding of clause 14 produces the empty set of clauses because the con-
straint ‘X=M, Z=X, Z 6=D, M=D’ is unsatisfiable.) The Goal Replacement and
Clause Removal phases leave the set of clauses produced by the Unfolding
phase unchanged, because no laws are available for the predicate gcd.
Definitions&Folding. In order to fold clauses 15 and 16, we perform a gener-
alization step and we introduce a new predicate defined by the following clause:
17. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, Z 6=D, gcd(X, Y, D), new1(M, N, X, Y, Z).

The body of this clause 17 is the most specific generalization of the bodies of
clause 8r (which is the only clause in Defs), and clauses 15 and 16 (which are the
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clauses to be folded). Now, clauses 15 and 16 can be folded by using clause 17,
thereby deriving:
18. incorrect :- M≥1, N≥1, M>N, X1=M−N, Z 6=D, new2(M, N, X1, N, Z, D).
19. incorrect :- M≥1, N≥1, M<N, Y1=N−M, Z 6=D, new2(M, N, M, Y1, Z, D).

Clause 17 defining the new predicate new2 is added to Defs and InDefs and,
since the latter set is not empty, we perform a new iteration of the while-loop
body of the Transform strategy.
Unfolding. By unfolding clause 17 w.r.t. new1(M,N,X,Y,Z) and then unfolding
the resulting clauses w.r.t. gcd(X,Y,Z), we derive:
20. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X>Y, X1=X−Y, Z 6=D, gcd(X1, Y, D),

new1(M, N, X1, Y, Z).

21. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X<Y, Y1=Y−X, Z 6=D, gcd(X, Y1, D),
new1(M, N, X, Y1, Z).

Definition&Folding. Clauses 20 and 21 can be folded by using clause 17,
and we derive:
22. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X>Y, X1=X−Y, Z 6=D, new2(M, N, X1, Y, Z).
23. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X<Y, Y1=Y−X, Z 6=D, new2(M, N, X, Y1, Z).

No new predicate definition is introduced, and the Transform strategy exits the
while-loop. The final program TransfP is the set {18, 19, 22, 23} of clauses, which
contains no constrained facts. Hence both predicates incorrect and new2 are
useless and all clauses of TransfP can be removed. Thus, the Transform strategy
terminates with TransfP=∅ and we conclude that the imperative program GCD
is correct w.r.t. the given initial and error properties.

4 Verification of Array Programs

In this section we apply our verification method to the following program
ArrayMax which computes the maximal element of an array:

ArrayMax : `0 : i = 0;
`1 : while (i<n) { if (a[i] > max) max = a[i];

i = i+1; };
`h : halt

We consider the following incorrectness triple:
{{ϕinit(i,n,a,max)}} ArrayMax {{ϕerror (n,a,max)}}

where: (i) ϕinit(i,n,a,max) is i≥0 ∧∧ n=dim(a) ∧∧ n≥ i+ 1 ∧∧ max=a[i], and
(ii) ϕerror (n,a,max) is ∃k (0≤k<n ∧∧ a[k]>max ).

First, we construct a CLP program T which encodes the above incorrectness
triple, similarly to what has been done in Section 3. In particular, the properties
ϕinit and ϕerror are defined by the following CLP clauses, respectively:
1. phiInit(I, N, A, Max) :- I≥0, N≥I+1, read((A, N), I, Max).
2. phiError(N, A, Max) :- K≥0, N>K, Z>Max, read((A, N), K, Z).

The clauses defining the predicates initConf(X) and errorConf(X) which specify
the initial and the error configurations, respectively, are as follows:
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3. initConf(cf(cmd(0, asgn(int(i), int(0))),
[[int(i), I], [int(n), N], [array(a), (A, N)], [int(max), Max]])) :-

phiInit(I, N, A, Max).
4. errorConf(cf(cmd(h, halt),

[[int(i), I], [int(n), N], [array(a), (A, N)], [int(max), Max]])) :-
phiError(N, A, Max).

Now we start off by applying Step (A) of our verification method which con-
sists in the removal of the interpreter. From program T we obtain the following
program T1:

5. incorrect :- I=0, N≥1, read((A, N), I, Max), new1(I, N, A, Max).
6. new1(I, N, A, Max) :- I1=I+1, I<N, I≥0, M>Max, read((A, N), I, M),

new1(I1, N, A, M).
7. new1(I, N, A, Max) :- I1=I+1, I<N, I≥0, M≤Max, read((A, N), I, M),

new1(I1, N, A, Max).
8. new1(I, N, A, Max) :- I≥N, K≥0, N>K, Z>Max, read((A, N), K, Z).

As indicated in [9], in order to propagate the error property, we ‘reverse’ the
derived program T1 and we get the following program T1rev:

rev1. incorrect :- b(U), r2(U).
rev2. r2(V) :- trans(U, V), r2(U).
rev3. r2(U) :- a(U).

where the predicates a, b, and trans are defined as follows:

s4. a([new1, I, N, A, Max]) :- I=0, N≥1, read((A, N), I, Max)
s5. trans([new1, I, N, A, Max], [new1, I1, N, A, M]) :-

I1=I+1, I<N, I≥0, M>Max, read((A, N), I, M).
s6. trans([new1, I, N, A, Max], [new1, I1, N, A, Max]) :-

I1=I+1, I<N, I≥0, M≤Max, read((A, N), I, M).
s7. b([new1, I, N, A, Max]) :- I≥N, K≥0, K<N, Z>Max, read((A, N), K, Z).

This reversal transformation, which from program T1 derives program T1rev ,
can easily be automatedand it is correct in the sense that incorrect∈M(T1)
iff incorrect∈M(T1rev). This equivalence holds because: (i) in program T1 the
predicate incorrect is defined in terms of the predicate new1 that encodes the
reachability relation from an error configuration to an initial configuration, and
(ii) in program T1rev the predicate incorrect is defined in terms of the pred-
icate r2 that also encodes the reachability relation, but this time the encoding
is, so to speak, ‘in the reversed direction’, that is, from an initial configuration
to an error configuration.

Now let us apply Step (B) of our verification method starting from the pro-
gram T1rev.

Unfolding. First we unfold clause rev1 w.r.t. the atom b(U), and we get:

9. incorrect :- I≥N, K≥0, K<N, Z>Max, read((A, N), K, Z),
r2([new1, I, N, A, Max]).

Neither Goal Replacement nor Clause Removal is applied.
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Definition&Folding. In order to fold clause 9 we introduce the following
clause:

10. new2(I, N, A, Max, K, Z) :- I≥N, K≥0, K<N, Z>Max, read((A,N), K, Z),
r2([new1, I, N, A, Max]).

By folding clause 9 using clause 10, we get:

11. incorrect :- I≥N, K≥0, K<N, Z>Max, new2(I, N, A, Max, K, Z).

Now we proceed by performing a second iteration of the body of the while-loop of
the Transform strategy because InDefs is not empty (indeed, clause 10 belongs
to InDefs).

Unfolding. After some unfoldings from clause 10 we get the following clauses:

12. new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M>Max, Z>M,
read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

13. new2(I1, N, A, Max, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M≤Max, Z>Max,
read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

Goal Replacement. We use the following law which is a consequence of the
fact that arrays are finite functions:

(L1) read((A, N), K, Z), read((A, N), I, M) ↔
(K=I, Z=M, read((A, N), K, Z)) ∨ (K 6=I, read((A, N), K, Z), read((A, N), I, M))

Thus, (i) we replace the conjunction of atoms ‘read((A, N), K, Z), read((A, N), I, M)’
occurring in the body of clause 12 by the right hand side of law (L1), and then
(ii) we split the derived clause with disjunctive body into the following two
clauses, each of which corresponds to a disjunct of the right hand side of (L1).
We get the following clauses:

12.1 new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M>Max, Z>M,
K=I, M=Z, read((A, N), K, Z), r2([new1, I, N, A, Max]).

12.2 new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M>Max, Z>M,
K 6=I, read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

Clause Removal. The constraint ‘Z>M, M=Z’ in the body of clause 12.1 is
unsatisfiable. Hence, this clause is removed from TranfP. By simplifying the
constraints in clause 12.2 we get:

14. new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M>Max, Z>M,
read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

By applying similar goal replacements and clause removals, from clause 13 we
get:

15. new2(I1, N, A, Max, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M≤Max, Z>Max,
read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

Definition&Fold. In order to fold clause 14, we introduce the following def-
inition:

16. new3(I, N, A, Max, K, Z) :- K≥0, K<N, K<I, Z>Max, read((A, N), K, Z)),
r2([new1, I, N, A, Max]).
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Clause 16 is obtained from clauses 10 and 14 by applying a generalization op-
erator called WidenSum [17], which is a variant of the classical widening opera-
tor [6]. Clause 16 can be used also for folding clause 15, and by folding clauses 14
and 15 using clause 16, we get:
17. new2(I1, N, A, Max, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M>Max, Z>M,

read((A, N), I, M), new3(I, N, A, Max, K, Z).
18. new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M≤Max, Z>Max,

read((A, N), I, M), new3(I, N, A, Max, K, Z).
Now we perform the third iteration of the body of the while-loop of the strategy.
After some unfolding, goal replacement, clause removal, and folding steps, from
clause 16 we get:
19. new3(I1, N, A, M, K, Z) :- I1=I+1, K≥0, K<I, N≥I1, M>Max, Z>M,

read((A, N), I, M), new3(I, N, A, Max, K, Z).
20. new3(I1, N, A, Max, K, Z) :- I1=I+1, K≥0, K<I, N≥I1, M≤Max, Z>Max,

read((A, N), I, M), new3(I, N, A, Max, K, Z).
Since we did not introduce any new definition, and no clause remains to be pro-
cessed (indeed, the set InDefs of definitions is empty), the Transform strategy ex-
its the while-loop and we get the program consisting of the set {11, 17, 18, 19, 20}
of clauses.

Since no clause in this set is a constrained fact, by the final phase of removing
the useless clauses we get a final program consisting of the empty set of clauses.
Thus, the program ArrayMax is correct with respect to the given ϕinit and ϕerror

properties.

5 Related Work and Conclusions

The verification method presented in this paper is an extension of the one in-
troduced in [9], where Constraint Logic Programming (CLP) and iterated spe-
cialization have been used to define a general verification framework that is
parametric with respect to the programming language and the logic used for
specifying the correctness properties. The main novelties of this paper are the
following ones: (i) we have considered imperative programs acting on integer
variables as well as array variables, and (ii) we have allowed a more expres-
sive specification language, in which one can write properties about elements of
arrays and, in general, elements of complex data structures.

In order to deal with this more general setting, we have defined the oper-
ational semantics of array manipulation, and we have also considered powerful
transformation rules, such as conjunctive definition, conjunctive folding, and
goal replacement. These transformation rules together with some strategies for
guiding their application, have been implemented in the MAP transformation
system [29], so that the proofs of program correctness have been performed in a
semi-automatic way.

The idea of encoding imperative programs into logic programs for reasoning
about the properties of those imperative programs is not novel. In particular,
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for instance, this encoding has been recently used for reasoning about the type
system of Featherweight Java programs in [1]. The use of constraint-based tech-
niques for program verification is not novel either.Indeed, CLP programs have
been successfully applied to perform model checking of both finite and infinite
state systems [12, 14, 17] because through CLP programs one can express in a
simple manner both (i) the symbolic executions of imperative programs and
(ii) the invariants which hold during their executions. Moreover, there are pow-
erful CLP-based tools, such as ARMC [34], TRACER [22], and HSF [20], that
can be used for performing model checking of imperative programs. These tools
are fully automatic, but they are applicable to classes of programs and proper-
ties that are much more limited than those considered in this paper. We have
shown in [9] that, by focusing on verification tasks similar to those considered by
ARMC, TRACER, and HSF, we can design a fully automatic, transformation-
based verification technique whose effectiveness is competitive to the one of the
above mentioned tools.

Our rule-based program transformation technique is also related to conjunc-
tive partial deduction (CPD) [11], a technique for the specialization of logic
programs with respect to conjunctions of atoms. There are, however, some sub-
stantial differences between CPD and the approach we have presented here.
First, CPD is not able to specialize logic programs with constraints and, thus,
it cannot be used to prove the correctness of the GCD program where the role
of constraints is crucial. Indeed, using the ECCE conjunctive partial deduction
system [27] for specializing the program consisting of clauses {3, 4, 5, 8r, 9,
10, 11r} with respect to the query incorrect, we obtain a residual program
where the predicate incorrect is not useless. Thus, we cannot conclude that
the atom incorrect does not belong to the least model of the program, and thus
we cannot conclude that the program is correct. One more difference between
CPD and our technique is that we may use goal replacement rules which allow
us to evaluate terms over domain-specific theories. In particular, we can apply
the goal replacement rules using well-developed theories for data structures like
arrays, lists, heaps and sets (see [4, 30, 19, 3, 36, 39] for some formalizations of
these theories).

An alternative, systemic approach to program transformation is supercom-
pilation [38], which considers programs as machines. A supercompiler runs a
program and, while it observes its behavior, produces an equivalent program
without performing stepwise transformations of the original program.

The verification method we have presented in this paper is also related to
several other methods for verifying properties of imperative programs acting on
arrays. Those methods use techniques based on abstract interpretation, theorem
proving and, in particular, Satisfiability Modulo Theory (see, for instance, [7,
25, 26]).

The application of the powerful transformation rules we have considered in
this paper enables us to verify larger classes of properties, but the strategies to
be applied for dealing with those classes are not all instances of the automated
strategy introduced in [9].

Verification of Imperative Programs by Transforming Constraint Logic Programs 95



In the future we intend to consider the issue of designing fully mechanizable
strategies for guiding the application of our program transformation rules. In
particular, we want to study the problem of devising suitable unfolding strategies
and generalization operators, by adapting the techniques already developed for
program transformation. We also envisage that the application of the laws used
by the goal replacement rule can be automated by importing in our framework
the techniques used in the fields of Theorem Proving and Term Rewriting. For
some specific theories we could also apply the goal replacement rule by exploiting
the results obtained by external theorem provers or Satisfiability Modulo Theory
solvers.

We also plan to address the issue of proving correctness of programs acting
on dynamic data structures such as lists or heaps, looking for a set of suitable
goal replacement laws which axiomatize those structures.
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Abstract. We provide a semantical reconstruction of rational closure. We first
consider rational closure as defined by Lehman and Magidor for propositional
logic, and we provide a semantical characterization based on minimal models
mechanism on rational models. Then, we extend the whole formalism and se-
mantics to Description Logics focusing our attention to the standard ALC: we
first naturally adapt to Description Logics Lehman and Magidor’s propositional
rational closure, starting from an extension of ALC with a typicality operator
T that selects the most typical instances of a concept C (hence T(C) stands
for typical Cs). Then, we provide for ALC plus T a semantical characterization
similar to the one for propositional logic. Last, we extend the notion of rational
closure to the ABox.

1 Introduction
In [18] Kraus, Lehmann and Magidor (henceforth KLM) proposed a set of natural
properties of non-monotonic reasoning. Plausible inferences are represented by non-
monotonic conditionals of the form A |∼ B, to be read as “typically or normally A
entails B”: for instance monday |∼ go work can be used to represent that “normally
if it is Monday I go to work”. Conditional entailment is non-monotonic since from
A |∼ B one cannot derive A ∧ C |∼ B, in our example from monday |∼ go work one
cannot monotonically derive monday ∧ ill |∼ go work (“normally if it is Monday,
even if I am ill I go to work”). KLM organized the core properties of non-monotonic
reasoning into a hierarchy of systems, from the weakest to the strongest: cumulative
logic C, loop-cumulative logic CL, preferential logic P. Preferential logic has been
strengthened into rational logic R in [20]. In this work, we restrict our attention to the
rational logic R on which rational closure is built.

KLM system R formalizes desired properties of non-monotonic inference but it
is too weak to perform useful non-monotonic inferences. We have just seen that by
the non-monotonicity of |∼, A |∼ B does not entail A ∧ C |∼ B, and this is a wanted
property of |∼. However, there are cases in which, in the absence of information to
the contrary, we want to be able to tentatively infer that also A ∧ C |∼ B, with the
possibility of withdrawing the inference in case we discovered that it is inconsistent.
For instance, we might want to infer that A ∧ C |∼ B when C is irrelevant with respect
to the property B: we might want to tentatively infer from monday |∼ go work that
monday ∧ shines |∼ go work (“normally if it is Monday, even if the sun shines I go to
work”), with the possibility of withdrawing the conclusion if we discovered that indeed
the sun shining prevents from going to work. R cannot handle irrelevant information in
conditionals, and the inferences just exemplified are not supported.

Partially motivated by this weakness, Lehmann and Magidor have proposed a true
non-monotonic mechanism on the top of R. Rational closure on the one hand preserves



the properties of R, on the other hand it allows to perform some truthful non-monotonic
inferences, like the one just mentioned (monday ∧ shines |∼ go work). In [20] the
authors give a syntactic procedure to calculate the set of conditionals entailed by the
rational closure as well as a quite complex semantic construction. It is worth noticing
that a strongly related construction has been proposed by Pearl [22] with his notion of
1-entailment, motivated by a probabilistic interpretation of conditionals.

The first problem we tackle in this work is that of giving a purely semantic characteri-
zation of the syntactic notion of rational closure. Our semantic characterization has as its
main ingredient the modal semantics of logic R, over which we build a minimal models’
mechanism, based on the minimization of the rank of worlds. Intuitively, we prefer
the models that minimize the rank of domain elements: the lower the rank of a world,
the more normal (or less exceptional) is the world and our minimization corresponds
intuitively to the idea of minimizing less-plausible worlds (or maximizing most plausible
ones). We show that a semantic reconstruction of rational closure can be given in terms
of a specific case of a general semantic framework for non-monotonic reasoning.

In the second part of the paper we consider Description Logics (DLs for short). A
large amount of discussion has recently been done in order to extend the basic formal-
ism of DLs with non-monotonic reasoning features [1, 2, 4, 6, 7, 14, 19, 17, 3, 21]; the
purpose of these extensions is that of allowing reasoning about prototypical properties
of individuals or classes of individuals. In spite of the load of work in this direction,
finding a solution to the problem of extending DLs for reasoning about prototypical
properties seems far from being solved. The best known semantics for non-monotonic
reasoning have been used to the purpose, from default logic [1], to circumscription [2],
from Lifschitz’s non-monotonic logic MKNF [6, 21] to KLM logics. Concerning KLM
logics, in [10] a preferential extension of ALC is defined, based on the logic P, and in
[14] a minimal model semantics for this logic is proposed; in [3], a defeasible description
logic based on the logic R is introduced and, in [4], a notion of rational closure is defined
for ALC through an algorithmic construction similar to the one introduced by Freund
for the propositional calculus. Although [4] provides axiomatic properties of this notion
of rational closure, it does not provide a semantics for it.
We here extend to ALC the definition of rational closure by Lehmann and Magidor
[20] and define a minimal model semantics for rational closure in ALC by adapting the
semantics introduced in the propositional case. We start from the extension of the descrip-
tion logicALC with a typicality operator T, first proposed in [10], that allows to directly
express typical properties such as T(HeartPosition) v Left , T(Bird) v Fly , and
T(Penguin) v ¬Fly , whose intuitive meaning is that normally, the heart is positioned
in the left-hand side of the chest, that typical birds fly, whereas penguins do not. In this pa-
per, the T operator is intended to enjoy the well-established properties of rational logic R.
Even if T is a non-monotonic operator (so that for instance T(HeartPosition) v Left
does not entail that T(HeartPositionuSitusInversus) v Left) the logic itself is mono-
tonic. Indeed, in this logic it is not possible to monotonically infer from T(Bird) v Fly ,
in the absence of information to the contrary, that also T(Bird u Black) v Fly . Nor it
can non-monotonically be inferred from Bird(tweety), in the absence of information to
the contrary, that T(Bird)(tweety) and that Fly(tweety). Non-monotonicity is achieved,
from a semantic point of view, by defining, on the top of ALC with typicality, a minimal
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model semantics which is similar to the one in [14], with the difference that the notion
of minimality is based on the minimization of the ranks of the worlds, rather than on the
minimization of specific formulas, as in [14]. This semantics provides a characterization
to the rational closure construction for ALC, which assigns a rank (a level of exception-
ality) to every concept; this rank is used to evaluate defeasible inclusions of the form
T(C) v D: the inclusion is supported by the rational closure whenever the rank of C is
strictly smaller than the one of C u ¬D.

Last, we tackle the problem of extending rational closure to ABox reasoning: in
order to ascribe defeasible properties to individuals we maximize their typicality. This
is done by minimizing their ranks (that is, their level of exceptionality). Because of the
interaction between individuals (due to roles) it is not possible to separately assign a
unique minimal rank to each individual and alternative minimal ranks must be considered.
We end up with a kind of skeptical inference with respect to the ABox.

The rational closure construction that we propose has not just a theoretical interest
and a simple minimal model semantics, we show that it is also feasible. Its complexity is
EXPTIME in the size of the knowledge base (and the query), the same complexity as
the underlying logic ALC. In this respect it is less complex than other approaches to
non-monotonic reasoning in DLs [14, 2] and comparable with the approaches in [4, 21],
and thus a good candidate to define effective non-monotonic extensions of DLs.

2 Propositional rational closure: a semantic characterization
2.1 KLM rational system R
The language of logic R consists just of conditional assertions A |∼ B. Here we consider
a richer language which also allows boolean combinations of assertions. Our language
L is defined from a set of propositional variables ATM , the boolean connectives and
the conditional operator |∼. We assume that the set ATM is finite. We use A,B,C, . . .
to denote propositional formulas (that do not contain conditional formulas), whereas
F,G, . . . are used to denote all formulas (including conditionals). The formulas of L are
defined as follows: if A is a propositional formula, A ∈ L; if A and B are propositional
formulas, A |∼ B ∈ L; if F is a boolean combination of formulas of L, F ∈ L. A
knowledge base K is any set of formulas: in this work we restrict our attention to finite
knowledge bases.

Here is the axiomatization of logic R [11]. We use `PC (resp. |=PC) to denote
provability (resp. validity) in the propositional calculus:
• All axioms and rules of propositional logic
• A |∼ A (REF)
• if `PC A↔ B then (A |∼ C)→ (B |∼ C), (LLE)
• if `PC A→ B then (C |∼ A)→ (C |∼ B) (RW)
• ((A |∼ B) ∧ (A |∼ C))→ (A ∧B |∼ C) (CM)
• ((A |∼ B) ∧ (A |∼ C))→ (A |∼ B ∧ C) (AND)
• ((A |∼ C) ∧ (B |∼ C))→ (A ∨B |∼ C) (OR)
• ((A |∼ B) ∧ ¬(A |∼ ¬C))→ ((A ∧ C) |∼ B) (RM)

The axiom (CM) is called cumulative monotony and it is characteristic of all KLM
logics, axiom (RM) is called rational monotony and it characterizes the logic of rational
entailment R (it is what distinguishes rational from the weaker preferential entailment). R
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seems to capture the core properties of non-monotonic reasoning, as shown by Friedman
and Halpern these properties are quite ubiquitous being characterized by different
semantics (all of them being instances of so-called plausibility structures [8]).

The logic R enjoys a simple modal semantics, actually it turns out that it is the flat
fragment (i.e. without nested conditionals) of the well-known conditional logic VC. The
modal semantics is defined by considering a set of worldsW equipped by an accessibility
(or preference) relation <. Intuitively the meaning of x < y is that x is more normal/less
exceptional than y. We say that a conditional A |∼ B is true in a model if B holds in all
most normal worlds where A is true, i.e. in all <-minimal worlds satisfying A.

Definition 1. A rational model is a tripleM = 〈W, <, V 〉 where: • W is a non-empty
set of worlds; •< is an irreflexive, transitive relation onW satisfying modularity: for all
x, y, z, if x < y then either x < z or z < y. < further satisfies the Smoothness condition
defined below; • V is a function V : W 7−→ 2ATM , which assigns to every world
w the set of atoms holding in that world. If F is a boolean combination of formulas,
its truth conditions (M, w |= F ) are defined as for propositional logic. Let A be a
propositional formula; we define MinM< (A) = {w ∈ W | M, w |= A and ∀w′, w′ < w

impliesM, w′ 6|= A}. HenceM, w |= A |∼ B if for all w′, if w′ ∈ MinM< (A) then
M, w′ |= B.
We define the Smoothness condition: ifM, w |= A, then w ∈ MinM< (A) or there is
w′ ∈ MinM< (A) s.t. w′ < w. Validity and satisfiability of a formula are defined as usual.
Given a set of formulas K of L and a modelM = 〈W, <, V 〉, we say thatM is a model
of K, writtenM |= K, if for every F ∈ K and every w ∈ W ,M, w |= F . K rationally
entails a formula F (K |= F ) if F is valid in all rational models of K.

Since in this work we limit our attention to a language containing finitely many atoms,
and to finite knowledge bases, we can restrict our attention to finite models, as the logic
enjoys the finite model property (observe that in this case the smoothness condition is
ensured trivially by the irreflexivity of the <). It is easy to see from Definition 1 that
the truth condition of A |∼ B is “global” in a modelM = 〈W, <, V 〉: given a world
w, we have thatM, w |= A |∼ B if, for all w′, if w′ ∈ MinM< (A) thenM, w′ |= B. It
immediately follows that A |∼ B holds in w if and only if A |∼ B is valid in a model,
i.e. it holds thatM, w′ |= A |∼ B, for all w′ inW; for this reason we will often write
M |= A |∼ B. Moreover, when the reference to the modelM is unambiguous, we will
simply write Min<(A) instead of MinM< (A).

Rational models can be equivalently defined by postulating the existence of a rank
function k : W → N, and then letting x < y iff k(x) < k(y). For this reason rational
models are also called “ranked models”.

Definition 2 (Rank of a world). Given a modelM = 〈W, <, V 〉, the rank kM of a
world w ∈ W , written kM(w), is the length of the longest chain w0 < · · · < w from w
to a minimal w0 (i.e. there is no w′ such that w′ < w0).

Definition 3 (Rank of a formula). The rank kM(F ) of a formula F in a modelM is
i = min{kM(w) :M, w |= F}. If there is no w :M, w |= F , F has no rank inM.

Proposition 1. For anyM = 〈W, V,<〉 and any w ∈ W , we haveM |= A |∼ B iff
kM(A ∧B) < kM(A ∧ ¬B) or A has no rank inM.
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2.2 Lehmann and Magidor’s definition of rational closure
As already mentioned, although the operator |∼ is non-monotonic, the notion of logical
entailment just defined is itself monotonic. In order to strengthen R and to obtain
non-monotonic entailment, Lehmann and Magidor in [20] propose the well-known
mechanism of rational closure. Since in rational closure no boolean combinations of
conditionals are allowed, in the following, the knowledge base K is just a finite set of
positive conditional assertions of the form A |∼ B.

Definition 4 (Exceptionality of propositional formulas and conditional formulas).
Let K be a knowledge base (i.e. a finite set of positive conditional assertions) and A a
propositional formula. A is said to be exceptional for K if and only if K |= > |∼ ¬A. A
conditional formula A |∼ B is exceptional for K if its antecedent A is exceptional for K.
The set of conditional formulas which are exceptional for K will be denoted as E(K).

It is possible to define a non increasing sequence of subsets of K, C0 ⊇ C1, . . . by
letting C0 = K and, for i > 0, Ci = E(Ci−1). Observe that, being K finite, there is a
n ≥ 0 such that for all m > n,Cm = Cn or Cm = ∅.

Definition 5 (Rank of a formula). Let K be a knowledge base and let A be a proposi-
tional formula. A has rank i (for K) if and only if i is the least natural number for which
A is not exceptional for Ci. If A is exceptional for all Ci then A has no rank.

Definition 5 above allows to define the rational closure of a knowledge base K.

Definition 6 (Rational closure K̄ of K). Let K be a conditional knowledge base. The
rational closure K̄ of K is the set of all A |∼ B such that either (1) the rank of A is
strictly less than the rank of A ∧ ¬B (this includes the case A has a rank and A ∧ ¬B
has none), or (2) A has no rank.

This mechanism, which is now well-established, allows to overcome some weaknesses
of R . First of all it is closed under rational monotonicity (RM): if (A |∼ B) ∈ K̄ and
(A |∼ ¬C) 6∈ K̄ then (A ∧ C) |∼ B ∈ K̄. Furthermore, rational closure supports some
of the wanted inferences that R does not support. For instance rational closure allows
to deal with irrelevance: from monday |∼ go work, it does support the non-monotonic
conclusion that monday ∧ shines |∼ go work.

2.3 A semantical characterization of rational closure
We provide a semantical reconstruction of rational closure in terms of a minimal models’
mechanism, thus providing an instantiation of the following general recipe for non-
monotonic reasoning:
(i) fix an underlying modal semantics for conditionals (here we concentrate on R but
another possible choice could have been the weaker P as in [12]),
(ii) obtain non-monotonic inference by restricting semantic consequence to a class of
minimal models. These minimal models should be chosen on the basis of semantic con-
siderations, independent from the language and from the set of conditionals (knowledge
base) whose non-monotonic consequences we want to determine.
In the next proposition we will useMi defined as follows. LetM = 〈W, <, V 〉 be
any rational model of K. LetM0 = M and, for all i, letMi = 〈Wi, <i, Vi〉 be the
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rational model obtained fromM by removing all the worlds w with kM(w) < i, i.e.,
Wi = {w ∈ W : kM(w) ≥ i}.
Proposition 2. LetM = 〈W, <, V 〉 be any rational model of K. For any propositional
formula A, if rank(A) ≥ i, then 1) kM(A) ≥ i, and 2) if A |∼ B is entailed by Ci, then
Mi satisfies A |∼ B.

The semantics we propose is a fixed interpretations minimal semantics, for short FIMS .
In some respects our approach is similar in spirit to minimal models approaches to
non-monotonic reasoning, such as circumscription4.

Definition 7 (FIMS ). GivenM = 〈W, <, V 〉 andM′ = 〈W ′, <′, V ′〉 we say thatM
is preferred toM′ with respect to the fixed interpretations minimal semantics, and we
writeM <FIMS M′, ifW = W ′, V = V ′, and for all x, kM(x) ≤ kM′(x) whereas
there exists x′ : kM(x′) < kM′(x′). We say thatM is minimal w.r.t. <FIMS in case
there is noM′ such thatM′ <FIMS M. We say that K minimally entails a formula
F w.r.t. FIMS , and we write K |=FIMS F , if F is valid in all models of K which are
minimal w.r.t. <FIMS .

Can we capture rational closure within the semantics of Definition 7 above? We are soon
forced to recognize that this is not the case. For instance, consider the following:

Example 1. Let K = {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly}. We derive
that K 6|=FIMS penguin ∧ black |∼ ¬fly. Indeed in FIMS there can be a modelM in
whichW = {x, y, z}, V (x) = {penguin, bird, fly, black}, V (y) = {penguin, bird},
V (z) = {bird, fly}, and z < y < x.M is a model of K, and it is minimal with respect
to FIMS (indeed once fixed V (x), V (y), V (z) as above, it is not possible to lower the
rank of x nor of y nor of z unless we falsify K). Furthermore, inM, x is a typical world
in which “it flies” and “it is black” hold (since there is no other world satisfying the same
propositions which is preferred to it). Therefore, K 6|=FIMS penguin ∧ black |∼ ¬fly.

We have that {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly} 6|=FIMS penguin ∧
black |∼ ¬fly. On the contrary, it can be verified that penguin∧ black |∼ ¬fly is in the
rational closure of {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly}. Therefore, FIMS
as it is does not allow us to define a semantics corresponding to rational closure. Things
change if we consider FIMS applied to models that contain all possible valuations
compatible (see Definition 8 below) with a given knowledge base K. We call these
models canonical models.

Example 2. Consider Example 1 above. If we restrict our attention to models that also
contain a w with V (w) = {penguin, bird, black} which satisfies “it is a penguin”, “it
is black” and “it does not fly” in which w is a typical world satisfying “it is a penguin”,
we are able to conclude that typically it holds that if it is a penguin and it is black then it
does not fly, as in rational closure. Indeed, in all minimal models of K that also contain
w with V (w) = {penguin, bird, black}, it holds that penguin ∧ black |∼ ¬fly.

4 As for circumscription, there are mainly two ways of comparing models with the same domain:
by keeping the valuation function fixed (only comparingM andM′ if V and V ′ in the two
models respectively coincide); or by also comparingM andM′ in case V 6= V ′. In this work
we consider the latter alternative.
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We are led to the conjecture that FIMS restricted to canonical models could be the
right semantics for rational closure. Canonical models are defined w.r.t. the language
L. A truth assignment v : ATM −→ {true, false} is compatible with K, if there is no
formula A ∈ L such that v(A) = true and K |= A |∼ ⊥.

Definition 8. A modelM = 〈W, <, V 〉 satisfying a knowledge base K is said to be
canonical if it contains (at least) a world associated to each truth assignment compatible
with K, that is to say: if v is compatible with K, then there exists a world w inW , such
that for all propositional formulas BM, w |= B iff v(B) = true.

It can be shown that for any knowledge base a minimal canonical model exists: this is
any canonical model in which every possible world w has the rank associated to the
conjunction of all atoms and negated atoms in L that it satisfies. We can also prove that
the canonical models that are minimal with respect to FIMS are an adequate semantic
counterpart of rational closure.

Theorem 1. Let K be a knowledge base andM be a canonical model of K minimal
w.r.t. <FIMS . We show that, for all conditionals A |∼ B,M |= A |∼ B if and only if
A |∼ B ∈ K, where K is the rational closure of K.

3 Rational closure in Description Logics
As mentioned, the interest towards non-monotonic reasoning in DLs has grown in the
last years. In this section, we extend to ALC the notion of rational closure proposed
by Lehmann and Magidor [20], recalled in Section 2.2, and we define a semantic
characterization of this notion of rational closure by introducing a minimal model
semantics for ALC with defeasible inclusions. This semantics is a direct generalization
of the minimal (canonical) model semantics introduced in Section 2.3

To express defeasible inclusions, ALC is extended with a typicality operator T,
following the approach in [10, 14]. Differently from [14], here we consider special
kinds of preferential models, namely, rational models, to define the semantics of the
T operator, and we use a different notion of preference between models, namely, the
preference relation <FIMS , introduced in Section 2.3. Given the typicality operator,
the defeasible assertion T(C) v D (all the typical C’s are D’s) plays the role of the
conditional assertion C |∼ D in R.

3.1 The logic ALCRT

Similarly to rational closure which is a non-monotonic mechanism built over R, our
application of rational closure to DLs is done in two steps. First, similarly to what done
in [10], we extend the standard ALC by a typicality operator T that allows to single out
the typical instances of a concept T. Since we are dealing here with rational closure (that
builds over R), we attribute to T properties related to R. The resulting logic is called
ALCRT. As a second step, we build over ALCRT a rational closure mechanism.

Our starting point is therefore the extension of logic ALC with a typicality operator
T. The intuitive idea is to extend the standard ALC allowing concepts of the form T(C)
whose intuitive meaning is that T(C) selects the typical instances of a concept C. We
can therefore distinguish between the properties that hold for all instances of concept C
(C v D), and those that only hold for the typical such instances (T(C) v D).
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Definition 9. We consider an alphabet of concept names C, of role names R, and of
individual constants O. Given A ∈ C and R ∈ R, we define CR := A | > | ⊥ | ¬CR |
CR u CR | CR t CR | ∀R.CR | ∃R.CR, and CL := CR | T(CR). A KB is a pair
(TBox, ABox). TBox contains a finite set of concept inclusions CL v CR. ABox contains
assertions of the form CL(a) and R(a, b), where a, b ∈ O.

The T operator satisfies a set of postulates that are essentially a reformulation of rational
logic R: in this respect, the T-assertion T(C) v D is equivalent to the conditional
assertion C |∼ D in R.

A first semantic characterization of T can be given by means of a set of postulates
that are essentially a restatement of axioms and rules of non-monotonic entailment
in rational logic R. Given a domain ∆ and a valuation function I one can define the
function fT(S) that selects the typical instances of S, and in case S = CI for a concept
C, it selects the typical instances of C. In this semantics, (T(C))I = fT(CI), and fT
has the following intuitive properties for all subsets S of ∆:

(fT − 1) enforces that typical elements of S belong to S. (fT − 2) enforces that if there
are elements in S, then there are also typical such elements. (fT − 3) expresses a weak
form of monotonicity, namely cautious monotonicity. The next properties constraint the
behavior of fT wrt ∩ and ∪ in such a way that they do not entail monotonicity. Last,
(fT−R) corresponds to rational monotonicity, and forces again a form of monotonicity:
if there is a typical S having the property R, then all typical S and Rs inherit the
properties of typical Ss.

The semantics of ALCRT can be equivalently formulated in terms of rational
models: models of ALC are equipped by a preference relation < on the domain, whose
intuitive meaning is to compare the “typicality” of domain elements, that is to say x < y
means that x is more typical than y. Typical members of a concept C, that is members of
T(C), are the members x of C that are minimal with respect to this preference relation
(s.t. there is no other member of C more typical than x). This semantics with one single
preference relation < is the one that, as we will show, corresponds to rational closure5.

Definition 10 (Semantics ofALCRT). A modelM ofALCRT is any structure 〈∆,<
, I〉 where: ∆ is the domain; < is an irreflexive, transitive and modular relation over
∆ (< is modular if, for all x, y, z ∈ ∆, if x < y then either x < z or z < y); I
is the extension function that maps each concept C to CI ⊆ ∆, and each role R to
RI ⊆ ∆I × ∆I . For concepts of ALC, CI is defined in the usual way. For the T
operator, we have (T(C))I = Min<(CI), where Min<(S) = {u : u ∈ S and @z ∈ S

5 One may think of considering a sharper semantics with several preference relations. We aim to
explore this possibility in future works, for the moment, we just notice that (i) the definition
of such a semantics is not straightforward (what does differentiate one preference relation
from another? What are the dependencies between the different preference relations? Has
the typicality operator to be made parametric?) (ii) it cannot be expected that the resulting
semantics, being stronger than the one just proposed, can correspond to rational closure below.
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s.t. z < u}. Furthermore, < satisfies the Smoothness Condition, i.e., for all concepts C,
CI is smooth. For S ⊆ ∆, we say that S is smooth iff for all x ∈ S, either x ∈ Min<(S)
or ∃y ∈ Min<(S) such that y < x,

Theorem 2. [Theorem 1 in [9]] A KB=(TBox,ABox) is satisfiable in a model described
in Definition 10 iff it is satisfiable in a model 〈∆, I, fT〉 where fT satisfies (fT − 1)−
(fT − 5) and (fT −R), and (T(C))I = fT(CI).

In the following, we will refer to the definition of the semantics given in Definition 10.

Definition 11 (Model satisfying a Knowledge Base). Given a modelM, I is extended
to assign a distinct element aI of ∆ to each individual constant a of O (i.e. we assume
the unique name assumption).
We say that: a modelM satisfies an inclusion C v D if it holds CI ⊆ DI ;M satisfies
an assertion C(a) if aI ∈ CI ; andM satisfies an assertion R(a, b) if (aI , bI) ∈ RI .
We say that:M satisfies a knowledge base K=(TBox,ABox), if it satisfies both its TBox
and its ABox, where:M satisfies TBox ifM satisfies all inclusions in TBox andM
satisfies ABox ifM satisfies all assertions in ABox.

From now on, in this section, we restrict our attention to ALCRT and to finite models.
Given a knowledge base K and an inclusion CL v CR, we say that the inclusion is
derivable from K (we write K |=ALCRT CL v CR) if CI

L ⊆ CI
R holds in all models

M = 〈∆,<, I〉 satisfying K.

Definition 12 (Rank of a domain element). The rank kM of a domain element x in a
modelM is the length of the longest chain x0 < · · · < x from x to a minimal x0 (s.t.
for no x′, x′ < x0).

Finite ALCRT models can be equivalently defined by postulating the existence of a
function k : ∆→ N, and then letting x < y iff k(x) < k(y).

Definition 13 (Rank of a concept). Given a modelM = 〈∆,<, I〉, the rank kM(CR)
of a concept CR in the modelM is i = min{kM(x) : x ∈ CI

R}. If CI
R = ∅, then CR

has no rank and we write kM(CR) =∞.

Proposition 3. For any M = 〈∆,<, I〉, we have that M satisfies T(C) v D iff
kM(C uD) < kM(C u ¬D).

As already mentioned, although the typicality operator T itself is non-monotonic (i.e.
T(C) v D does not imply T(CuE) v D), the logicsALC+T andALCRT are mono-
tonic: what is inferred from K can still be inferred from any K ′ with K ⊆ K ′. This is a
clear limitation in DLs. As a consequence of non-monotonicity in ALCRT one cannot
deal with irrelevance for instance. So one cannot derive from K = {Penguin v Bird ,
T(Bird) v Fly , T(Penguin) v ¬Fly} that K |=min T(Penguin u Black) v ¬Fly ,
even if the property of being black is irrelevant with respect to flying. In the same way if
we added to K the information that jim is a bird (Bird(jim)), in ALCRT one cannot
non-monotonically derive that it is a typical bird and therefore flies ( T(Bird)(jim) and
Fly(jim) ). We investigate the possibility of overcoming this weakness by extending
to ALCRT the notion of rational closure. We first consider the rational closure of the
TBox alone. Next we will consider rational closure that also takes into account the ABox.
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3.2 Rational Closure of the TBox in ALCRT

Let us first define the notion of query. Intuitively, a query is either an inclusion relation
or an assertion of the ABox; we want to check whether it is entailed from a given KB.

Definition 14 (Query). A query F is either an assertion CL(a) or an inclusion relation
CL v CR. Given a modelM = 〈∆,<, I〉, a query F holds inM ifM satisfies F .

Definition 15. Let TB be a TBox and C a concept. C is said to be exceptional for TB
iff TB |=ALCRT T(>) v ¬C. A T-inclusion T(C) v D is exceptional for TB if C is
exceptional for TB . The set of T-inclusions of TB which are exceptional in TB will be
denoted as E(TB).

Given a DL knowledge base K=(TBox,ABox), it is possible to define a sequence of
non-increasing subsets of TBox E0 ⊇ E1, . . . by letting E0 = TBox and, for i > 0,
Ei = E(Ei−1) ∪ {C v D ∈ TBox s.t. T does not occurr in C}. Observe that, being K
finite, there is an n ≥ 0 such that for all m > n,Em = En or Em = ∅. Observe also
that the definition of the Ei’s is the same as the definition of the Ci’s in Lehmann and
Magidor’s definition of rational closure in Section 2.2, except for the fact that here, at
each step, we also add all the strict inclusions.

Definition 16. A concept C has rank i (denoted by rank(C) = i) for K=(TBox,ABox),
iff i is the least natural number for which C is not exceptional for Ei. If C is exceptional
for all Ei then rank(C) =∞, and we say that C has no rank.

As for propositional logic, the notion of rank of a formula allows to define the rational
closure of the TBox of a knowledge base K.

Definition 17 (Rational closure of TBox). Let K=(TBox,ABox) be a DL knowledge
base. We define, TBox , the rational closure of TBox, as

TBox = {T(C) v D | either rank(C) < rank(C u ¬D)
or rank(C) =∞} ∪ {C v D | K |=ALC C v D}

It can be easily seen that the rational closure of TBox is a non-monotonic strengthening
ofALCRT. For instance it allows to deal with irrelevance. If TBox = {Penguin v Bird ,
T(Bird) v Fly , T(Penguin) v ¬Fly}, then it can be verified that T(BirduBlack) v
Fly ∈ TBox . This is a non-monotonic inference that does no longer follow if we
knew that indeed black birds are non typical birds that do not fly: in this case from
TBox’= TBox ∪{T(Bird u Black) v ¬Fly} (in this case T(Bird u Black) v Fly 6∈
TBox ′). Similarly, as for the propositional case, rational closure is closed under rational
monotonicity: from T(Bird) v Fly ∈ TBox and T(Bird) v ¬LivesEurope 6∈ TBox
it follows that T(Bird u LivesEurope) v Fly ∈ TBox .

As for the propositional case, in order to semantically characterize the rational
closure, we first restrict our attention to minimal rational models that minimize the rank
of domain elements. Informally, given two models of K, one in which a given domain
element x has rank 2 (because for instance z < y < x) , and another in which it has
rank 1 (because only y < x), we would prefer the latter, as in this model the element x
is “more normal” than in the former.
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From now on, we restrict our attention to canonical minimal models. First, we define
a set of concepts S closed under negation and subconcepts. We assume that all the
concepts in K and in the query F belong to S. In order to define canonical models, we
consider all the sets of concepts {C1, C2, . . . , Cn} ⊆ S that are consistent with K, i.e.,
s.t. K 6|=ALC C1 u C2 u · · · u Cn v ⊥.

Definition 18 (Canonical model w.r.t. S). Given K=(TBox,ABox) and a query F ,
a model M = 〈∆,<, I〉 satisfying K is canonical w.r.t. S if it contains at least a
domain element x ∈ ∆ s.t. x ∈ (C1 u C2 u · · · u Cn)I , for each set of concepts
{C1, C2, . . . , Cn} ⊆ S that are consistent with K.

Definition 19 (Minimal canonical models (w.r.t. S)). Consider two models M =
〈∆,<, I〉 andM′ = 〈∆′, <′, I ′〉, canonical w.r.t. S . We say thatM is preferred toM′
(M < M′) if ∆ = ∆′, and for all x ∈ ∆, kM(x) ≤ kM′(x) whereas there exists
y ∈ ∆ such that kM(y) < kM′(y). Given a knowledge base K, we say thatM is a
minimal canonical model of K if it is a canonical model satisfying K and there is no
canonical modelM′ satisfying K such thatM′ <M.

The following results hold (more details and proofs can be found in [15, 16]):

Theorem 3. For any K there exists a minimal canonical model w.r.t. TBox.

Theorem 4. Let K=(TBox,ABox) be a knowledge base and C v D a query. We have
that C v D ∈ TBox if and only if C v D holds in all minimal canonical models of K
with respect to S.

Theorem 5 (Complexity of rational closure over the TBox). Given a knowledge base
K =(TBox,ABox), the problem of deciding whether T(C) v D ∈ TBox is in EXPTIME.

3.3 Rational Closure Over the ABox
In this section we extend the notion of rational closure defined in the previous section
in order to take into account the individual constants in the ABox. We address this
question by first considering the semantic aspect, in order to treat individuals explicitly
mentioned in the ABox in a uniform way with respect to the other domain elements: as
for all the domain elements we would like to attribute to each individual constant named
in the ABox the lowest possible rank. So we further refine Definition 19 of minimal
canonical models with respect to TBox by taking into account the interpretation of
individual constants of the ABox: given two minimal canonical modelsM andM′,
we preferM toM′ if there is an individual constant b occurring in ABox such that
kM(bI) < kM(bI

′
) (whereas kM(aI) ≤ kM(aI

′
) for all other individual constants

occurring in ABox).

Definition 20 (Minimal canonical model of K minimally satisfying ABox). Given
K=(TBox,ABox), letM = 〈∆,<, I〉 andM′ = 〈∆′, <′, I ′〉 be two canonical models
of K which are minimal w.r.t. Definition 19. We say thatM is preferred toM′ with
respect to ABox (M <ABox M′) if for all individual constants a occurring in ABox,
kM(aI) ≤ kM(aI

′
) and there is at least one individual constant b occurring in ABox

such that kM(bI) < kM(bI
′
).
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Theorem 6. For any K = (TBox,ABox) there exists a minimal canonical model of
K minimally satisfying ABox.

In order to see the power of the above semantic notion, consider the standard birds and
penguins example.

Example 3. Suppose we have a knowledge base K where TBox = {T(Bird) v Fly,
T(Penguin) v ¬Fly, Penguin v Bird}, and ABox = {Penguin(pio), Bird(tweety)}.
Knowing that tweety is a bird and pio is a penguin, we would like to be able to assume,
in the absence of other information, that tweety is a typical bird, whereas pio is a typ-
ical penguin, and therefore tweety flies whereas pio does not. Consider any minimal
canonical modelM of K. Being canonical,M will contain, among other elements:

– x ∈ (Bird)I , x ∈ (Fly)I , x ∈ (¬Penguin)I , kM(x) = 0;
– y ∈ (Bird)I , y ∈ (¬Fly)I , y ∈ (¬Penguin)I , kM(y) = 1;
– z ∈ (Penguin)I , z ∈ (Bird)I , z ∈ (¬Fly)I , kM(z) = 1;
– w ∈ (Penguin)I , w ∈ (Bird)I , w ∈ (Fly)I , kM(w) = 2;

Notice that in the definition of minimal canonical model there is no constraint on the
interpretation of the ABox constants tweety and pio. As far as Definition 19 is concerned
for instance tweety can be mapped onto x ((tweety)I = x) or onto y ((tweety)I = y):
the minimality ofM with respect to Definition 19 is not affected by this choice. However
in the first case it would hold that tweety is a typical bird, in the second tweety is not a
typical bird. We want to prefer the first case, and this is what derives from Definition 20:
if inM tweetyI = x whereas inM1 (which for the rest is identical toM) it holds that
tweetyI = y, thenM is preferred toM1. The same for pio. As a result in all models
of K minimal with respect to both TBox and ABox (Definition 20), it holds what we
wanted: that tweety is a typical bird (T (Bird)(tweety)), and therefore it flies, whereas
pio is a typical penguin (T (Penguin)(pio)), and therefore it does not fly.

We conclude this section by providing an algorithmic construction for the rational
closure of ABox, whose idea is that of considering all the possible minimal consistent
assignments of ranks to the individuals explicitly named in the ABox. Each assignment
adds some properties to named individuals which can be used to infer new conclusions.
We adopt a skeptical view of considering only those conclusions which hold for all
assignments. The equivalence with the semantics shows that the minimal entailment
captures a skeptical approach when reasoning about the ABox.

More formally, in order to calculate the rational closure of ABox (ABox ) for all
individual constants of the ABox we find out what is the lowest possible rank they can
have in minimal canonical models w.r.t. Definition 19, with the idea that an individual
constant ai can have a given rank (kj(ai)) just in case it is compatible with all the
inclusions of the TBox whose antecedent A’s rank is ≥ kj(ai) (the inclusions whose
antecedent A’s rank is < kj(ai) do not matter. The minimal possible rank assignment
kj for all ai is computed in the algorithm below: µj

i computes all the concepts that ai
would need to satisfy in case it had the rank attributed by kj (kj(ai)). The algorithm
verifies whether µj

i is compatible with (TBox , ABox) and whether it is minimal. Notice
that in this phase all constants are considered simultaneously (indeed the possible ranks
of different individual constants depend on each other). For this reason µj takes into
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account the ranks attributed to all individual constants, being the union of all µj
i for

all ai, and the consistency of this union with (TBox , ABox) is verified (instead of the
consistency of all separate µj

i ). Once computed the minimal rank assignments these are
used to define ABox ) as the set of all assertions derivable in ALC from ABox ∪µj for
all minimal consistent rank assignments kj .

Definition 21 (ABox : rational closure of ABox). Let a1, . . . , am be the individuals
explicitly named in the ABox. Let k1, k2, . . . , kh be all the possible rank assignments
(ranging from 1 to n) to the individuals occurring in ABox.
• Given a rank assignment kj we define:

– for each ai: µ
j
i = {(¬C t D)(ai) s.t. C,D ∈ S, T(C) v D in TBox , and

kj(ai) ≤ rank(C)} ∪ {(¬C tD)(ai) s.t. C v D in TBox };
– let µj = µj

1 ∪ · · · ∪ µj
m for all µj

1 . . . µ
j
m just calculated for all a1, . . . , am in the

ABox
• kj is minimal and consistent with (TBox , ABox) if:

– ABox ∪µj is consistent in ALC;
– there is no ki consistent wih (TBox , ABox) s.t. for all ai, ki(ai) ≤ kj(ai) and for

some b, ki(b) < kj(b).
• The rational closure of ABox (ABox ) is the set of all assertions derivable in ALC
from ABox ∪µj for all minimal consistent rank assignments kj , i.e:

ABox =
⋂

kjminimal consistent{C(a) : ABox ∪µj |=ALC C(a)}

The following theorems hold (again, see [15, 16] for details and proofs):

Theorem 7 (Soundness and Completeness of ABox ). Given K=(TBox, ABox), for
all individual constant a in ABox, we have that C(a) ∈ ABox if and only if C(a) holds
in all minimal canonical models of K minimally satisfying ABox.

Theorem 8 (Complexity of rational closure over the ABox). Given a knowledge base
K =(TBox,ABox), an individual constant a and a concept C, the problem of deciding
whether C(a) ∈ ABox is EXPTIME-complete.

4 Related work
In [14] non-monotonic extensions of DLs based on the T operator have been proposed.
In these extensions, the semantics of T is based on preferential logic P. Non-monotonic
inference is obtained by restricting entailment to minimal models, where minimal models
are those that minimize the truth of formulas of a special kind. In this work, we have
presented an alternative approach. First, the semantics underlying the T operator is R .
Moreover and more importantly, we have adopted a minimal model semantics, where, as
a difference with [14], the notion of minimal model is completely independent from the
language and is determined only by the relational structure of models.

Casini and Straccia [4] study the application of rational closure to DLs. They extend
to ALC the algorithmic construction proposed by Freund for capturing the rational
closure in the propositional calculus. While in the propositional calculus this construction
is proved to be equivalent with the notion of rational closure in [20], the equivalence
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is not known to hold for the case of ALC. While Casini and Straccia prove axiomatic
properties of their notion of rational closure, here we focus on an extension of Lehmann
and Magidor definition of rational closure for ALC and we define a semantics for it. [4]
also keeps the ABox into account, and defines closure operations over individuals. It
introduces a consequence relation  among a knowledge base K and assertions, under
the requirement that the TBox is unfoldable and the ABox is closed under completion
rules, such as, for instance, that if a : ∃R.C ∈ ABox, then both aRb and b : C (for some
individual constant b) must belong to the ABox too. Under such restrictions they are
able to define a procedure to compute the rational closure of the ABox assuming that the
individuals explicitly named are linearly ordered, and different orders determine different
sets of consequences. The authors show that, for each order s, the consequence relation
s is rational and can be computed in PSPACE. In a subsequent work [5], the authors
introduce an approach based on the combination of rational closure and Defeasible
Inheritance Networks (INs).

5 Conclusions
In the first part of the paper we have provided a semantic reconstruction of the well
known rational closure, in detail a minimal model semantics based on the idea that
preferred rational models are those ones in which the height of the worlds is minimized.
Adding suitable possibility assumptions to a knowledge base, such a minimal model
semantics corresponds to rational closure.

The correspondence between the proposed minimal model semantics and rational
closure suggests the possibility of defining variants of rational closure by varying the
ingredients underlying our approach, namely: (i) the properties of the preference relation
<: for instance just preorder, or multi-linear or weakly-connected; (ii) the comparison
relation on models: based for instance on the rank of the worlds or on the inclusion
between the relations <, or on negated boxed formulas satisfied by a world, as in the
logic Pmin [12]. The systems obtained by various combinations of these ingredients are
largely unexplored and may give rise to useful non-monotonic logics.

In the second part of the paper we have defined a rational closure construction for
the Description Logic ALC extended with a typicality operator and provided a minimal
model semantics for it, based on the idea of minimizing the rank of objects in the domain,
that is their level of “untypicality”. This semantics corresponds to a natural extension
to DLs of Lehmann and Magidor’s notion of rational closure. We have also extended
the notion of rational closure to the ABox, by providing an algorithm for computing it
that is sound and complete with respect to the minimal model semantics. Last, we have
shown an EXPTIME upper bound for the algorithm.

In future work, concerning Description Logics, we will consider further ingredients
in the recipe for non-monotonic DLs. First, we aim to study stronger versions of rational
closure that allow to overcome the weaknesses of the basic one, for instance the fact
that we cannot reason separately on the inheritance of different properties. Furthermore,
non-monotonic extensions of low complexity DLs based on the T operator have been
recently provided [13]. In future works, we aim to study the application of the proposed
semantics to DLs of the EL and DL-Lite families, in order to define a rational closure
for low complexity DLs.
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Abstract. Reasoning by analogy is essential to provide new conclusions
helpful to solve a problem. Here we present the definition of a new oper-
ator aimed at reasoning by analogy. The proposed reasoner relies on the
Roles Mapping Engine. It finds analogous roles encoded in descriptions
that use domain-specific terminology, overcoming syntactical constraints
that limit the relations to have the same name. We employ also a struc-
tural similarity function to face cases affected by ambiguity. We evaluate
our approach using examples proposed in other works, producing com-
parable results.

1 Introduction

As pointed out by [6], reasoning by analogy is essential in order to produce new
conclusions helpful to solve a problem. In particular, some perspectives make this
type of reasoning a primary issue. First, in the study of learning, analogies are
important in the transfer of knowledge and inferences across different concepts,
situations, or domains. Second, analogies are often used in problem solving and
reasoning. Third, analogies can serve as mental models to understand new do-
mains. Fourth, analogy is important in creativity. Studies in history science show
that analogy was a frequent mode of thought for such great scientists as Faraday,
Maxwell, and Kepler. Fifth, analogy is used in communication and persuasion.
Sixth, analogy and its cousin, similarity, underlie many other cognitive process.
[6] defines the analogies as partial similarities between different situations that
support further inferences. Specifically, analogy is defined as a kind of similarity
in which the same system of relations holds across different objects. Analogies
thus capture parallels across different situations.

This proposal consists in the definition of a new operator aimed at reasoning
by analogy. The reasoner relies on the Roles Mapping Engine (RME), that finds
common roles across descriptions. The long term objective is to embed in such
definition a strategy for the cooperation with other reasoning operators.

The remainder of this work is organized as follow: in Section 2 related works
are presented with related criticisms, in Section 3 some considerations about the
analogy process are reported, then we present the proposed mapping procedure
in details, presenting an evaluation in the successive section, finally we conclude
with some considerations and future works.



2 Related Work

Plenty of works studied an operator aimed to perform reasoning by analogy.
The most popular line of thought regards the research of identities between
predicates across domain, using as representation formalism propositional or first
order logic. In particular, in [13] the author aims to compose goal and sub-goal
using analogous experiences. The authors claim that retrieving one (or many)
analogies consists in finding similar past cases, then imposing to find the same
predicate in both the experiences. This proposal contrasts with the canonical
definition of analogy, in which only a correlation between roles is expected.

Similar assumption can be found in [10], in which the author proposes a
strategy of knowledge projection between domains. This procedure is based on
a definition of analogy presented in [9], that relies on the assumption that some
given terms are analogous across domains if they are tied by the same predicate
(as stated also in [8, 11]). In [5, 3, 7], the central statement is not so different:
the author claims that analogy is characterized by the mapping of relations
(having same predicate name) between objects, rather than attributes of objects,
from base to target. The particular contribution that is slightly different from
the other works is that this work isolates four primary classes of matching:
literal similarity (in which both predicates and attributes are mapped), analogy
(in which mainly predicates are mapped), abstraction (having an analogy like
behaviour, but aimed to use the mapping for different goals) and anomaly (that
is a wrong trying of analogical mapping). The current class depends on the
domain in which an analogy is sought.

Again the same assumption is kept into account in [12], in which the author
trains a classifier with a set of word pairs having as label the name of their
relationship. The output of its algorithm is a classification, where the learned
class describes a given relationship. All the pairs that are part of this class are
claimed as analogues. We point out some limitations. In first place, the evaluation
of a single relationship for each time is equivalent to consider each relationship
in a complex context as independent from the others. In second place, this work
proposes a supervised approach that require a concept description with a fixed
list of features, such requirement is not always available in real cases.

A different approach has been proposed in [1], in which analogies are carried
out using Evolutionary Computation. The authors represent the knowledge in
semantic graphs and generate the dataset using common sense knowledge bases.
At this point potential analogies are generated through evolution (i.e. using pairs
of descriptions as parents probabilistically selected from population with reselec-
tion allowed) and evaluated through the Structure Mapping Engine (SME, [7])
that provides a fitness measure score. Despite the novelty of this approach, the
methodology relies on the mapping of equal relation only.

In [2], the authors use the SME [7] in order to recognize similar sketches.
In particular, they propose a software system in which an expert can draw a
sketch that is stored as ground truth. In such a way a student can draw a sketch
in turn, that is compared to the stored one with the aim to catch analogical
aspects, checking its correctness. Unfortunately, this is a typical task of pattern
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recognition, that fits with similarity evaluations. In fact, this work proposes
an algorithm that exploits a numerical technique to revise the SME mistakes,
instead of considering that analogy involves semantic aspects of reasoning that
are far from pattern recognition in sketches.

In a general view, the attempt is to produce analogies searching identities
between predicates across domains, we must underline that, despite the reliabil-
ity of these works (shown by the experimental results), the research of identical
predicates alone could be not enough to generate useful analogies.

3 The analogical reasoner

In this Section we will present our approach. For the sake of clarity, the descrip-
tion used as prior knowledge is referred as base domain, whereas the description
of the current problem is referred as target domain.

We introduce some assumptions that limit our scopes: (1) we assume that all
the descriptions are encoded using the same abstraction level, (2) this work does
not keep into account the formalization of the goal, suggesting then all plausible
analogies.

Retrieving oldest useful knowledge We want to face the retrieval of poten-
tially analogues experiences. A good starting point can be an evaluation of com-
mon knowledge, that provides hints about potential points of contact between
descriptions. Furthermore, the evaluation of the subnet of common knowledge
relations allows to include the direct dependences between common statements.
The addition of relational dimension allows the soundness check of the results.

In [11], the authors propose to face this step using a structural similarity
evaluation, because they hope that this choice would increase the possibility of
retrieval surprising and creative source domains. They describe the experiences
in a n-dimensional structure space, where each dimension represents a particular
topological quality of that domain. In such a way they can project the experi-
ences in a vector space. Unfortunately, using such representation formalism some
information are lost (e.g. connections among concepts).

For this reason, we decided to evaluate the similarity using the structural
measure proposed in [4] and denoted as fs, because it performs a multi-level
evaluation combining the similarities at terms, literals and clauses level. We
apply the fs measure between a given description and each other one in the
background knowledge. Unfortunately, such measure presents a drawback. Sup-
pose given two short similar descriptions. In such a case the fs score will indicate
similarity. Despite its score, the knowledge that can be effectively used for infer-
ences could be poor. For this reason, such score is smoothed by a multiplicative
factor denoted as mf. Given a set of clauses S, two clauses C ′ ∈ S and C ′′ ∈ S,
mf is computed as:

mf(C ′, C ′′) =
|C ′|+ |C ′′|

2 ∗ L =
µ(|C ′|, |C ′′|)

L
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Algorithm 1 Roles Mapping Engine.

Input: A pair of Horn clauses < C′, C′′ >.
Output: Two sets: term mappings θt and predicate mappings θp.

θp = ∅
H =< h′, h′′ >| h′ is the head of C′, h′′ is the head of C′′

θt ← θt ∪ {term mappings in H}
RA = literals having the same predicate in C′ and C′′

θt ← θt ∪ {term mappings in RA}
θp ← θp ∪ {predicate mappings in RA}
repeat
repeat
θinit
p ← θp, θinit

t ← θt
repeat
θprevp ← θp, θprevt ← θt
RA = literals having the same predicate, and some terms in θt
θt ← θt ∪ {term mappings in RA}
θp ← θp ∪ {predicate mappings in RA}

until θp 6= θprevp ∨ θt 6= θprevt
repeat
θprevp ← θp, θprevt ← θt
RA = literals having different predicates, and all terms in θt
RRA = RA ranked by reliability score

θp ← θp ∪ { predicate mappings in RRA}
RA = literals having different predicates, and some terms in θt
RRA = RA ranked by reliability score

θt ← θt ∪ {term mappings in RRA}
until θp 6= θprevp ∨ θt 6= θprevt

until θp 6= θinit
p ∨ θt 6= θinit

t

θscorep ← θp, θscoret ← θt
S = (l′, l′′) | l′ ∈ C′, l′′ ∈ C′′, S is arg max(l1,l2)∈C′×C′′ rs(l1, l2), l′ and l′′ are not
fully mapped

θt ← θt ∪ {term mappings in S}
θp ← θp ∪ {predicate mappings in S}

until θp 6= θscorep ∨ θt 6= θscoret

where: RA = {< {L′ | L′ ⊆ C′}, {L′′ | L′′ ⊆ C′′} >, ...} is a set of pairs of sets in which
new mappings are sought; RRA is the list of sets in RA ranked by reliability score.

where L = arg maxC∈S |C|. Such a trick could avoid obvious or useless analogies
between too short or too unbalanced descriptions.

Roles Mapping Engine Reasoning by analogy cannot be reduced to look-
ing for equal predicates across domains, because the derived inference could be
useless or trivial. In this section our mapping strategy is presented through the
RME.

Each concept is represented in Horn clause logic. Telling our strategy in a
nutshell, starting points are sought, then the mapping is expanded in breadth.
Both steps are executed keeping consistency requirements.

We will discuss the RME approach using the Algorithm 1. In particular, such
algorithm presents iterations on three levels: the external level has an iteration
enclosing the whole life cycle of the analogical mapping; the middle level has an
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iteration that checks whether one of the inner researches for mappings of identical
and non-identical predicates produce novel mappings or not; the internal level
has an iteration which aims to search for mappings of identical predicates and
another one aimed to research mappings of non-identical predicates.

Such phases will be described in a formal notation and they will be equipped
with a running example. Such example refers to the analogy between a proverb
stating that “when the fox cannot reach the grapes, he says they are not ripe.”
and a life context in which “a man cannot have a girl, he spreads a bad opin-
ion about her”. We propose such example in order to clarify each step of our
proposal.

Example 1 (Proverb and life context).
proverb(fox, grape) :- wants(fox, grape), cannot take(fox, grape, fox does not reach

grape), is(fox, crafty), cause(fox does not reach grape, bad opinion), says(fox, grape is
not ripe), is(grape, not ripe, grape is not ripe), have(john, bad opinion).

situation(john, carla) :- loves(john, carla), cannot have(john, carla, john cannot
have carla), says(john, carla is bad), is(carla, bad, carla is bad), uses(jealous, crafti-
ness).

In order to understand the mapping procedure, we need to define what are
starting points and how to map terms and predicates as well.

Definition 1 (Starting point). Given two clauses C ′ and C ′′, a starting point
S is a binding S = [e′/e′′] where (e′ ∈ predicates(C ′) ∧ e′′ ∈ predicates(C ′′)) ∨
(e′ ∈ terms(C ′) ∧ e′′ ∈ terms(C ′′)).

Definition 2 (Term mapping). Given two clauses C ′ and C ′′, two sets of
literals L′ ⊆ C ′ and L′′ ⊆ C ′′, a pair of terms t′ and t′′, a consistent term
association θ ⊆ terms(C ′)× terms(C ′′); then t′/t′′ is a term mapping if

– {t′/t′′} ∪ θ is a consistent term association;
– either ∀l′ ∈ L′ s.t. t′ is a term of l′, ∀l′′ ∈ L′′ s.t. t′′ is a term of l′′, both
t′ and t′′ have position p; or ∃l′, l′′ ∈ L′ × L′′ s.t. t′ is a term of l′, t′′ is a
term of l′′ and both t′ and t′′ have name n and position p.

A term association θ is said to be consistent if it is a bijection, inconsistent
otherwise.

Definition 3 (Predicate mapping). Given two clauses C ′ and C ′′, two sets
of literals L′ ⊆ C ′ and L′′ ⊆ C ′′ where ∀l′ ∈ L′, l′ = p′(t′1, ..., t

′
a) and ∀l′′ ∈

L′′, l′′ = p′′(t′′1 , ..., t
′′
a), a consistent predicate association θp ⊆ predicates(C ′) ×

predicates(C ′′), a consistent term association θt ⊆ terms(C ′)×terms(C ′′); then
p′/p′′ is a predicate mapping if

– {p′/p′′} ∪ θp is a consistent predicate association;
– either p′ = p′′; or a matching association defined as θl′/l′′ = {t′1/t′′1 , ..., t′a/t′′a}

s.t. ∀i = 1, ..., a, t′i/t
′′
i is a term mapping, holds (i.e. θl′/l′′ ⊆ θt).

A predicate association θp is said to be consistent if it is a bijection, inconsistent
otherwise.
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Definition 4 (Compatibility under term and predicate mapping). Two
term mappings θ′ and θ′′ are t-compatible iff θ′ ∪ θ′′ is consistent. Two literals,
or two sequences of literals, are p-compatible iff all their predicate mappings are
defined and consistent.

Suppose given two clauses C ′ = p′(t′1, ..., t
′
n) :- l′1, ..., l

′
k and C ′′ = p′′(t′′1 , ..., t

′′
m)

:- l′′1 , ..., l
′′
h that the Algorithm 1 takes in input. Initially, we have an empty global

term mapping θt and an empty global predicate mapping θp.
The heads mapping could be a good starting point. Since an analogy is sought

between the descriptions of the concepts represented by the heads, this choice
reflects the intrinsic strength of the heads relationship. More formally, if n = m,
then θ′t = {t′1/t′′1 , ..., t′n=m/t

′′
n=m} is a term mapping. Since θt is empty, θt and

θ′t are t-compatible, then θt ← θt ∪ θ′t.
Although the entities in the descriptions will play specific roles (likely using a

domain specific terminology), it is plausible that part of explanations are encoded
using common sense, providing potential points of contact. Then a research of
equal predicates across descriptions makes sense. The underlying idea is that two
domains in the same knowledge share the representation formalism (implying the
common sense as intersection between any pair of descriptions).

The first iteration of the internal level in the Algorithm 1 can be formalized
as follow. Using Definitions 2, 3 and 4, we carry on our mappings searching
for shared knowledge. Given two subsets L′ ⊆ C ′ and L′′ ⊆ C ′′ s.t. ∀l′ ∈ L′,
l′ = p(t′1, ..., t

′
a) and ∀l′′ ∈ L′′, l′′ = p(t′′1 , ..., t

′′
a), then θ′p = {p/p} is a predicate

mapping. If θp and θ′p are p-compatible, then θp ← θp ∪ θ′p.

Example 2 (Proverb and life context). Firstly, the heads are mapped, since they
have the same arity, obtaining <grape, carla>, <fox, john>. At this point the
literals having a predicate used by both clauses are isolated, in order to search
for deterministic alignment. Then we have {says(fox, grape is not ripe)} and
{says(john, carla is bad)}, from which <says/2, says/2> becomes a mapped
predicate and <grape is not ripe, carla is bad> becomes a mapped term. Going
on, the sets {is(grape, not ripe, grape is not ripe)} and {is(carla, bad, carla is
bad)} are isolated, in which some terms are mapped, and from which we can add
to the mapped predicates <is/3, is/3> and to the mapped terms <not ripe,
bad>.

In Algorithm 1, the second iteration of the internal level tries to map non-
identical predicates expanding in breadth the previous mappings to those con-
cepts that are syntactically different but that play an analogous role. The re-
search of predicates and terms association goes on until new mappings are done.
More formally, suppose given two subsets of literals L′ ⊆ C ′ and L′′ ⊆ C ′′ for
which ∃t′/t′′ ∈ θt s.t. ∀l′ ∈ L′, t′ is a term of l′ and ∀l′′ ∈ L′′, t′′ is a term of
l′′. If exists a term mapping θ′t s.t. ∀t′/t′′ ∈ θ′t, t′ is a term of l′ ∈ L′ in posi-
tion w, t′′ is a term of l′′ ∈ L′′ in position w, θt and θ′t are t-compatible, then
θt ← θt∪θ′t. Moreover, if exists a predicate mapping θ′p s.t. ∀p′/p′′ ∈ θ′p, ∀l′ ∈ L′,
l′ = p′(t′1, ..., t

′
a), ∀l′′ ∈ L′′, l′′ = p′′(t′′1 , ..., t

′′
a), ∀i = 1, ..., a then ∃t′i/t′′i ∈ θt, θp

and θ′p are p-compatible, then θp ← θp ∪ θ′p.
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Table 1. Mapping between proverb and life context.

Outcome Base clause Target clause

mapped
says/2 says/2
is/3 is/3

predicates wants/2 loves/2
cannot take/3 cannot have/3

mapped

fox john
grape carla
grape is not ripe carla is bad

terms not ripe bad
fox does not reach grape john cannot have carla
crafty craftiness

Example 3 (Proverb and life context). In the Example 2 a set of mapped pred-
icates and a set of mapped terms have been obtained. Since {<grape, carla>,
<fox, john>} ⊂ θt (see Algorithm 1), the expansion in breadth produces the
pair of sets {wants(fox, grape)} and {loves(john, carla)}, from which <wants/2,
loves/2> is added to θp. Consequently, {cannot take(fox, grape, fox does not
reach grape)} and {cannot have(john, carla, john cannot have carla)} is found,
allowing to map <cannot take/3, cannot have/3> that can be added to θp and
<fox does not reach grape, john cannot have carla> that can be added to θt.

The middle level iteration in Algorithm 1 ensures that the internal iterations
are repeated until at least one of them extends the mappings. Then, the middle
level performs all deterministic mappings based on previous ones.

Unfortunately, it could be the case in which common knowledge does not
exist, or cannot be used as starting point, or deterministic mappings are not
available. A strategy relying on the structure analysis becomes a primary issue,
in order to suggest starting points that do not share the representation. Then
a structural similarity is exploited in order to obtain a reliability score between
literals (denoted as rs). In such a way we design a pair of literals as new starting
point, if it is the most similar, it is not already mapped and its literals have the
same arity. This is the reason for which the external level exists. It attempts to
restart the mappings expansion using such evaluation to overcome the absence
of deterministic mappings. This attempt can be seen as the last opportunity to
make novel deterministic mappings after the end of the algorithm.

More formally, we obtain a pair l′/l′′ ∈ C ′ × C ′′ s.t. l′ = p′(t′1, ..., t
′
a), l′′ =

p′′(t′′1 , ..., t
′′
a), rs(l′, l′′) is the maximum score, l′/l′′ has not been fully mapped

through term and predicate mappings. Then θ′t = {t′1/t′′1 , ..., t′a/t′′a} and θ′p =
{p′/p′′}. If θt∪θ′t is t-compatible, then θt ← θt∪θ′t. If θp and θ′p are p-compatible,
then θp ← θp ∪ θ′p.

Example 4 (Proverb and life context). At this point, the mapping expanded
in breadth pursued in the Example 3 (see Table 1) cannot be carried on be-
cause there are not novel deterministic bindings. The similarity function suggests
{is(fox, crafty)} and {uses(jealous, craftiness)}. Here, only <crafty, craftiness>
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is a deterministic mapping. Since fox is already in θt as <fox, john>, jealous
cannot be mapped, impeding the association of the respective predicates.

Ranking of hypotheses A known problem is the ranking of the hypotheses to
learn. Such problem affects reasoning by analogy, since each new mapping relies
on previous ones, and so on. In this proposal, the hypotheses ranking problem
has been faced using relative frequencies.

Given a clause C and a literal l ∈ C, the score of l is obtained averaging the
relative frequencies for each term t in l, then:

rfµ(l) =

∑a
i=1 oi
n ∗ a

where o is the number of literals in C in which the t appears, n is the total
number of literals in C, a is the arity of l. The idea behind the rfµ(l) scores is
to represent the centrality of l in its clause. Then, given two literals l′ and l′′,
the reliability score rs(l′, l′′) for their hypothesis of mapping is computed as:

rs(l′, l′′) = rfµ(l′) ∗ rfµ(l′′)

Mappings hypotheses are ranked using a descendant rs(l′, l′′) score. A ranking
so defined means that each new mapping maximizes the coverage of literals in
both clauses.

Making inference During the mapping phase, the attention has been focused
on the recognition of analogous roles cross-domains (both for objects and rela-
tions). As highlighted in [3], one-to-one alignment has a primary importance,
since part of the structural consistency is verified if the bijection holds. For this
reason, the inference is carried out starting from a one-to-one alignment of the
mapped literals (i.e. both for the predicate and its arguments), and ending with
the projection of all the residual knowledge.

Giving a more practical view of the procedure, after the filtering out of the
one-to-one correspondences, the procedure seeks base knowledge that could be
novel in the target domain. Consistently with the assumption that common
knowledge is fundamental for analogical inference, it is possible that the lacking
mappings are part of common knowledge, then it is projected using a Skolem
function. An inference having Skolem functions is a hypothesis having an unre-
liability degree directly proportional to the number of Skolem functions.

Example 5 (Proverb and life context). The expected explanation of the phenom-
ena sounds like: “John has a bad opinion about Carla because he cannot have
the love of Carla, then he uses his craftiness in order to do not appear rejected
from the girl”. Let us examine the inference hypotheses from the proverb to the
life context:

1. skolem is(john, craftiness)
2. skolem cause(john cannot have carla, skolem bad opinion)
3. skolem has(john, skolem bad opinion)

These hypotheses fully satisfy the expected interpretation.
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Table 2. Literal mappings between proverb and life context.

Proverb Life context

proverb(fox, grape) situation(john, carla)
says(fox, grape is not ripe) says(john, carla is bad)

is(grape, not ripe, grape is not ripe) is(carla, bad, carla is bad)
wants(fox, grape) loves(john, carla)

cannot take(fox, grape, cannot have(john, carla,
fox does not reach grape) john cannot have carla)

Meta-Pattern formalization Using the RME we can carry out an analogi-
cal mapping between each pair of clauses representing experiences, contexts or
concepts. From such a mapping we can outline a pattern.

Let us to give a formal view of a pattern. Given two clauses C ′ = h′ :-
l′1, ..., l

′
n and C ′′ = h′′ :- l′′1 , ..., lm, a set θt containing the mapped terms and a

set θp containing the mapped predicates, we can outline a generalized pattern
C = h :- l1, ..., lk with k ≤ min(n,m), s.t. ∀l ∈ C, ∃l′/l′′ s.t. l′ ∈ C ′, l′′ ∈ C ′′,
l′ = p′(t′1, ..., t

′
a), l′′ = p′′(t′′1 , ..., t

′′
a), p′/p′′ ∈ θp and t′i/t

′′
i ∈ θt (∀i = 1, ..., a).

Moreover, l = p(t1, ..., ta) where: if p′ = p′′, then p = p′ = p′′, otherwise p = p∗,
where p∗ is a new predicate; if t′i = t′′i , then ti = t′i = t′′i , otherwise ti = t∗i,
where t∗i is a new term.

Since each analogy has a reason to exist with respect to a specific perspective,
we cannot expect that each pattern will become general. Conversely, very often
analogies remain specific. Then each refinement of a pattern needs to be consider
a new pattern, because we have not any reason to consider too specific or useless
the older pattern. In any case, we can say that trying an analogical mapping
between a pattern and a third description (or another pattern), if the pattern(s)
is not fully mapped, a novel and more general meta-pattern arises.

The reason behind such a choice is that if the pattern is used to make a novel
analogy, many domains can support a mapping or suggest the argument of the
relative Skolem function. To note that for each use or refinement of a pattern,
the novel domain contributes to support each survived mapping in the pattern,
giving further confirmation that the mappings in which the name of the original
predicate or term has been preserved are effectively common sense expressions.

The story of each predicate/term in the pattern can be recognized, since the
origin of each predicate/term in the pattern is stored using the formalism:

db(head, type, pattern name, original name)

where ‘head’ stands for the head of the original clause, ‘type’ indicates if we are
storing a predicate or a term, ‘pattern name’ represents the name reported in
the pattern and the ‘original name’ reports the name in the original clause.

Example 6 (Proverb and life context). The mappings presented in Table 1 bring
to the literals alignment in Table 2, from which we obtain the following pattern.

pattern(proverb(fox, grape), situation(john, carla)) :-

wants OR loves(fox OR john, grape OR carla),
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cannot take OR cannot have(fox OR john, grape OR carla,

fox does not reach grape OR john cannot have carla),

says(fox OR john, grape is not ripe OR carla is bad),

is(grape OR carla, not ripe OR bad, grape is not ripe OR carla is bad).

What is an analogy? In order to provide a formal definition of analogy, we
need to formalize what is the role that an object plays in a description. Keeping
in mind that an object is an abstract entity that can be materialized differently
in each description, let us to define a role.

Definition 5 (Role). Given a clause C, and a literal l = p(t1, ..., ta) s.t. l ∈ C,
then the role of a term ti(1 ≤ i ≤ a) is a set Rti = {l1, ..., lk} s.t. ∀l′ ∈ Rti ,
l′ ∈ C and ti appears in l′. Such a set refers to the role that the term ti plays
with respect to the other terms involved in the relations in which it is involved.

In any situation a task can be recognized. Any task requests a focus, i.e. the
set of objects and relations necessary and sufficient to carry out the current task.
Sometimes objects or relations lack, then an analogy could represent a way to
hypothesize them from previous experiences. We need to retrieve the experience
having an alignable focus, in order to derive hypotheses. In the light of such
premises, we define the analogical perspective.

Definition 6 (Analogical perspective). Given two descriptions < D′, D′′ >
representing respectively base and target domain, K ′ and K ′′ denote the aligned
knowledge among D′ and D′′, T ′ and T ′′ denote the aligned knowledge among
D′ and D′′ that solves the current task, an analogical perspective holds if either

T ′ ⊆ K ′ ⊆ D′ ∧ T ′′ ⊆ K ′′ ⊆ D′′

or

T ′ ⊆ K ′ ⊆ D′ ∧ T ′′ ⊆ (K ′′ ∪ I) ⊆ D′′

Where I is the inference obtained from the base domain.

Definition 7 (Analogy). Given two relational descriptions < D′, D′′ > repre-
sentable as sets of roles < RD′ , RD′′ > and a perspective P , we say that D′ and
D′′ are analogous if there exist two subsets SD′ ⊆ RD′ and SD′′ ⊆ RD′′ s.t. a
bijective function f : SD′ → SD′′ holds, and f satisfies P . f satisfies P if for
each role r ∈ RD′ ∨RD′′ necessary to explain P , f holds (i.e., r ∈ SD′ ∨ SD′′).

Remark 1 (Analogy). Given a description, each object plays a specific role with
respect to each other. Common roles across descriptions are essential to the
analogy, relations analysis is fundamental for roles identification, common ob-
jects can be a clue for relations analysis.
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4 Evaluation

We present a qualitative evaluation, in such a way we can further clarify our
proposal. In [8] the analogical reasoning is explored from the cognitive psychology
perspective. The authors want to study the analogical process of reasoning in
humans. Then they give to a group of humans two stories: the former talks about
a general that wants to capture a fortress, whereas the latter talks about a doctor
that wants to defeat a tumor. These stories are respectively the base and the
target domain. The human subjects completed the latter story in the light of the
former one (i.e. trying to recognize the knowledge that solves the problem in the
target story). Without any suggestion, only the 57% of the subjects provided
a complete solution to the analogy, whereas our software system implementing
the RME provides directly the correct analogical solution.

RME assessment Let us give details about the stories and the relative ex-
pected solution. The base story follows.

A fortress was located in the center of the country. Many roads radiated out
from the fortress. A general wanted to capture the fortress with his army. The
general wanted to prevent mines on the roads from destroying his army and
neighbouring villages. As a result the entire army could not attack the fortress
along one road. However, the entire army was needed to capture the fortress.
So an attack by one small group would not succeed. The general therefore
divided his army into several small groups. He positioned the small groups at
the heads of different roads. The small groups simultaneously converged on
the fortress. In this way the army captured the fortress.

The base story is translated in a Horn clause having as head conquer(fortress).
Each item in the following list encodes a sentence in the story.

1. located(fortress,center), partof(center,country),
2. radiated(oneroad,fortress), radiated(roads,fortress), partof(oneroad,roads),
3. capture(general,fortress), use(general,army),
4. prevent(general,mines), located(mines,oneroad), located(mines,roads),

destroy(mines,army), destroy(mines,villages),
5. couldnotuse(army,oneroad),
6. capture(army,fortress),
7. couldnotuse(subgroup,oneroad),
8. splittable(army,subgroups), partof(subgroup,subgroups), partof(subgroups,army),

destroy(mines,subgroup), notenough(subgroup),
9. distribute(subgroups,roads),

10. converge(subgroups,fortress),
11. capture(subgroups,fortress).

The target story follows.

A tumor was located in the interior of a patient’s body. A doctor wanted to
destroy the tumor with rays. The doctor wanted to prevent the rays form
destroying healthy tissue. As a result the high-intensity rays could not be
applied to the tumor along one path. However, high-intensity rays were needed
to destroy the tumor. So applying one low-intensity ray would not succeed.
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Table 3. Military and medical mapping outcomes.

Outcome Base clause Target clause

mapped

destroy/2 aredestroyed/2
capture/2 defeat/2
partof/2 partof/2
couldnotuse/2 couldnotuse/2
splittable/2 splittable/2

predicates use/2 use/2
radiated/2 radiated/2
prevent/2 prevent/2
located/2 located/2
notenough/1 notenough/1

Outcome Base clause Target clause

mapped

country body
center interior
roads slits
subgroups subrays
oneroad oneslit

arguments army rays
mines healthytissue
general doc
subgroup ray
fortress tumor

The target story becomes a Horn clause having the head heal(tumor). The last
item encodes implicit knowledge. In particular such item says that the cancer
can be reached from one or many directions. It encodes also that a slit is one of
many slits, that the rays can be splitted and that healthy tissue can be damaged
and/or destroyed from rays or sub-rays.

1. located(tumor,interior), partof(interior,body),
2. defeat(doc,tumor), use(doc,rays),
3. prevent(doc,healthytissue), located(healthytissue,oneslit),

located(healthytissue,slits), aredestroyed(healthytissue,rays),
4. couldnotuse(rays,oneslit),
5. defeat(rays,tumor),
6. couldnotuse(ray,oneslit),
7. (additional) radiated(oneslit,tumor), radiated(slits,tumor),

partof(oneslit,slits), splittable(rays,ray), partof(ray,subrays),
partof(subrays,rays), aredestroyed(healthytissue,ray),
aredestroyed(healthytissue,subrays), notenough(ray).

The expected result must contain the lacking knowledge of the target story,
that is: “The doctor therefore divided the rays into several low-intensity rays.
He positioned the low-intensity rays at multiple locations around the patient’s
body. The low intensity rays simultaneously converged on the tumor. In this way
the rays destroyed the tumor.”

Given the mapping in Table 3, the inference hypotheses from base to target
domain are:

1. defeat(subrays,tumor)
2. splittable(rays,subrays)
3. skolem distribute(subrays,slits)
4. skolem converge(subrays,tumor)
5. aredestroyed(healthytissue,skolem villages)

The hypothesis 1 can be identified as the goal of the problem, it is made of
fully mapped components, making it a conclusive inference. The hypotheses 2,
3 and 4 represent the procedure useful to reach the goal, their predicates are
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Table 4. Pattern and Pharmaceutical mapping outcomes.

Outcome Pattern Target clause

mapped

capture OR defeat/2 purchase/2
partof/2 partof/2
couldnotuse/2 couldnotuse/2

predicates located/2 located/2
use/2 use/2
prevent/2 mustface/2

mapped

country OR body pharmacy
subgroups OR subrays many partial amounts
subgroup OR ray partial amount
center OR interior warehouse
oneroad OR oneslit one money source

terms army OR rays medicine total amount
mines OR healthytissue not enough money
general OR doc patient
fortress OR tumor medicine

not mapped, then skolem has been added (i.e. a Skolem function), in order to
emphasize that the relation could be common sense knowledge, making it pro-
jectable without further elaborations. In any case, this type of inference needs to
be considered contingent instead of conclusive. The hypothesis 5 does not make
sense, then it is a case of fake inference. It is straightforward to highlight that
all these statements was absent in the target domain, and have been completely
obtained using the base domain. Finally, it is easy to note the consistency with
the expected analogical reasoning.

In order to evaluate the similarity of the relational structure, the similarity
between the clauses has been evaluated using the fs measure [4] before and after
the use of the RME. The fs ranges between ]0,1[. The original clauses score is
0.65, whereas after alignments, the score became 0.85. The alignment allowed
the recognition of the 20% of the structure. Such portion of the clauses appeared
unrelated before the RME.

Patterns assessment The proposed approach has been evaluated using a qual-
itative experiment that carries on the running example of analogical reasoning
between military and medical domains, that produced a pattern as described in
Section 3. We chosen a third domain telling about the purchase of a medicine
for which an offertory is needed. We refer to this story as Pharmaceutical.

A medicine is located in the warehouse of a pharmacy. A patient needs to
purchase the medicine. The patient must face the problem that his money is
not enough. As a result the patient cannot purchase the medicine paying the
total price. However, the total amount is needed to purchase the medicine. So
applying a minor amount cannot succeed.

The clause encoding such concepts has the head get(medicine).
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Table 5. Suggestions from original domains.

Pharmaceutical Mapping Source

mustface/2 prevent/2
Military
Medical

use/2 use/2
Military
Medical

located/2 located/2
Military
Medical

couldnotuse/2 couldnotuse/2
Military
Medical

partof/2 partof/2
Military
Medical

purchase/2
capture/2 Military
defeat/2 Medical

medicine
fortress Military
tumor Medical

Pharmaceutical Mapping Source

patient
general Military

doc Medical

not enough money
mines Military

healthytissue Medical

medicine total amount
army Military
rays Medical

one money source
oneroad Military
oneslit Medical

warehouse
center Military

interior Medical

partial amount
subgroup Military

ray Medical

many partial amounts
subgroups Military
subrays Medical

pharmacy
country Military

body Medical

1. located(medicine, warehouse), located(warehouse, pharmacy),

2. purchase(patient, medicine), use(patient, medicinetotalamount),

3. mustface(patient, notenoughmoney),

4. couldnotuse(medicinetotalamount, onemoneysource),

5. couldnotuse(partialamount, onemoneysource),

6. purchase(medicinetotalamount, medicine),

7. (additional) splittable(medicinetotalamount, partialamount), partof(partialamount,
manypartialamounts), partof(manypartialamounts, medicinetotalamount).

In the light of the mappings in Table 4, the RME suggests analogous domains
using the stored original mappings, reported in Table 5. For the predicates use/2,
located/2, couldnotuse/2 and partof/2 there is no novelty. Instead, the predicates
mustface/2 and purchase/2 are more interesting because the suggestion indicates
that mustface/2 is the “difficulty” that the protagonist must solve, whereas
purchase/2 stands for the main action on which Pharmaceutical story is built.

The term mapping suggestions have not shared knowledge, then each term
is traced to different terms in base domains. For instance patient is traced to
the main actors in the other domains (general and doc), such as medicine that
is the target object in the story is traced to fortress and tumor, and so on.

As for the analogy between Military and Medical domains, also here the fs
measure has been exploited to evaluate the gain in the alignment of the portion
of the structure for which the analogy holds. The original clauses score is 0.4,
whereas the score after the RME is 0.74. Then the 34% of the structure that
appeared not related in the original clauses, has been aligned in order to bring
out the analogy.

The evaluation of the inference step is important in turn. Since the projection
of knowledge is not empty, we can conclude that the analogy with Pharmaceu-
tical domain is well represented by another pattern. The consequence is that a
novel pattern has been produced.
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5 Conclusions

In this work we propose a strategy aimed to recognize analogies and to build
meta-patterns for further reasoning, generalizing the analogical schemas. Our
proposal differs from the existing literature since it allows to learn patterns rep-
resenting both the intuition to know any potential solution to the problem, and
a computational trick that allows to reuse analogies computed in the past. More-
over, the RME captures non-syntactic alignments without meta-descriptions.

Future improvements will regard relations with opposite sense (perhaps using
a common sense knowledge). Another interesting direction could be the use of
a probabilistic approach to mappings of non identical predicates. We plan also
to face the factual validity using the abductive procedure, in order to check if
the inferred knowledge (mapped or projected) is consistent with the constraints
of the world. Last but not least, we will equip the solution with an abstraction
operator, in order to shift the representation if needed.
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Abstract Reasoning in very complex contexts often requires purely de-
ductive reasoning to be supported by a variety of techniques that can
cope with incomplete data. Abductive inference allows to guess informa-
tion that has not been explicitly observed. Since there are many expla-
nations for such guesses, there is the need for assigning a probability to
each one. This work exploits logical abduction to produce multiple ex-
planations consistent with a given background knowledge and defines a
strategy to prioritize them using their chance of being true. Another nov-
elty is the introduction of probabilistic integrity constraints rather than
hard ones. Then we propose a strategy that learns model and parame-
ters from data and exploits our Probabilistic Abductive Proof Procedure
to classify never-seen instances. This approach has been tested on some
standard datasets showing that it improves accuracy in presence of cor-
ruptions and missing data.

1 Introduction

In the field of Artificial Intelligence (AI) so far two approaches have been at-
tempted: numerical/statistical on one hand, and relational on the other. Statis-
tical methods are not able to fully seize the complex network of relationships,
often hidden, between events, objects or combinations thereof. In order to apply
AI techniques to learn/reason in the real world, one might be more interested on
producing and handling complex representations of data than flat ones. This first
challenge has been faced by exploiting First-Order Logic (FOL) for representing
the world. This setting is useful when data are certain and complete. However
this is far for being always true, there is the need for handling incompleteness
and noise in data. Uncertainty in relational data makes things even more com-
plex. In particular it can the affect the features, the type or more generally the
identity of an object and the relationships in which it is involved. When putting
together logical and statistical learning, the former provides the representation
language and reasoning strategies, and the latter enforces robustness. This gave
rise to a new research area known as Probabilistic Inductive Logic Programming
[14] (PILP) or Statistical Relational Learning [6] (SRL). Although clearly rele-
vant in complex domains such as Social or Biological data, it inherits well-known



problems from Probabilistic Graphical Models [11] (PGM) (parameter and model
learning, inference).

Furthermore, reasoning in contexts characterized by a high degree of com-
plexity often requires purely deductive reasoning to be supported by a variety
of techniques that cope with the lack or incompleteness of the observations.
Abductive inference can tackle incompleteness in the data by allowing to guess
information that has not been explicitly observed [7]. For instance, if one is
behind a corner and a ball comes out of it, a good explanation might be that
someone has kicked it. However there are many other plausible explanations for
the ball’s movement, and thus that inference provides no certainty that someone
really stroke the ball. While humans are able to discriminate which explana-
tions are consistent with their previous knowledge and which ones have to be
discarded, embedding in machines this capability is not easy.

This work faces two issues: the generation of multiple (and minimal) expla-
nations consistent with a given background knowledge, and the definition of a
strategy to prioritize different explanations using their chance of being true. It
is organized as follows: the next section describes some related works; Section 3
introduces the Abductive Logic Programming framework; our Probabilistic Ab-
ductive Logic Proof procedure is presented in Section 4; then in Section 5 we
propose a strategy to exploit our approach in classification tasks; finally there is
an empirical evaluation on three standard datasets followed by some considera-
tions and future works.

2 Related Work

Abductive reasoning is typically used to face uncertainty and incompleteness.
In the literature there are two main approaches: uncertainty has been faced
by bayesian probabilistic graphical models [13] and incompleteness by means of
the classical approach based on pure logic [7]. Nowadays many works combined
logical abduction and statistical inference, which allows to rank all possible ex-
planations and choose the best one.

One of the earliest approaches is [12] where a program contains non-probabilistic
definite clauses and probabilistic disjoint declarations {h1 : p1, ..., hn : pn} where
an abducible atom hi is considered true with probability pi and i ∈ {1, ..., N}.
That work focuses on the representation language and proposes a simple lan-
guage for integrating logic and probability. It does not integrate any form of
logic-based abductive proof procedure with statistical learning, and considers
hard assumptions for the nature of constraints (i.e. only disjoint declarations)
in order to keep simple the general procedure. This framework does not assign
probabilities to constraints but only to ground literals.

PRISM [16] is a system based on logic programming with multivalued ran-
dom variables. It provides no support for integrity constraints but includes a
variety of top-level predicates which can generate abductive explanations. Since
a probability distribution over abducibles is introduced, the system chooses the
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best explanation using a generalized Viterbi algorithm. Another central feature
of PRISM is its capability to learn probabilities from training data.

Two approaches have merged directed and undirected graphical models with
logic. The former [15] exploits Bayesian Logic Programs [14] (BLPs) as a rep-
resentation language for abductive reasoning and uses the Expectation Maxi-
mization algorithm to learn the parameters associated to the model. The latter
[9], exploiting Markov Logic Networks (MLN), carries out abduction by adding
reverse implications for every rule in the knowledge base (since MLNs provide
only deductive inference). However, the addition of these rules increases the size
and complexity of the model, resulting computationally expensive. It’s worth
noting that like MLNs, most SRL formalisms use deduction for logical inference,
and hence they cannot be used effectively for abductive reasoning.

An approach for probabilistic abductive Logic programming with Constraint
Handling Rules has been proposed in [3]. It differs from other approaches to prob-
abilistic logic programming by having both interaction with external constraint
solvers and integrity constraints. Moreover exploits probabilities to optimize the
search for explanations using Dijkstra’s shortest path algorithm. Hence, the ap-
proach explores always the most probable direction, so that the investigation
of less probable alternatives is suppressed or postponed. Although the knowl-
edge representation formalism is similar to our one, there are several differences
in the approaches. The first difference regards the support for negation. Their
framework do not handle negation, and so they simulate it by introducing new
predicate symbols (eg. haspower(X) → hasnopower(X)). The other difference
involves the definition of the constraints that, due to the lack of negation, might
be tricky. Conversely our ones allow a flexible and intuitive representation with-
out such restrictions. The last difference is the lack of a strategy to learn the
probabilities.

In [1] abduction is conducted with Stochastic Logic Programs [10] (SLP) by
considering a number of possible worlds. Abductive reasoning is carried out by
reversing the deductive flow of proof and collecting the probabilities associated to
each clause. Although this approach is probabilistically consistent with the SLP
language, abduction through reversion of deduction is quite hazardous because
abductive reasoning by means of deduction without constraints may lead to
wrong conclusions.

3 Abductive Logic Programming framework

Our proposal is based on Abductive Logic Programming [7] (ALP), a high-level
knowledge representation framework that allows to solve problems declaratively
based on abductive reasoning. It extends Logic Programming by allowing some
predicates, called abducible predicates, to be incompletely defined. Problem solv-
ing is performed by deriving hypotheses on these abducible predicates (abductive
hypotheses) as solutions of the problems to be solved. These problems can be
either observations that need to be explained (as in classical abduction) or goals
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to be achieved (as in standard logic programming). An abductive logic program
is made up of a triple < P,A, IC >, where:

– P is a standard logic program;
– A (Abducibles) is a set of predicate names;
– IC (Integrity Constraints or domain-specific properties) is a set of first order

formulae that must be satisfied by the abductive hypotheses.

These three components are used to define abductive explanations.

Definition 1 (Abductive explanation). Given an abductive theory T =<
P,A, IC > and a formula G, an abductive explanation ∆ for G is a set of
ground atoms of predicates in A s.t. P ∪∆ |= G (∆ explains G) and P ∪∆ |= IC
(∆ is consistent). When it exists, T abductively entails G, in symbols T |=A G.

Suppose a clause C: h(t1, .., tn) :- l1, ..ln′ , h is the unique literal of the head, n is
its arity, li with i = {1, ..., n′} are the literals in the body and li stands for the
negative literal ¬li. For instance, Example 1 defines a logic program P for the
concept printable(X) that describes the features that a document must own in
order to be printed by a particular printer.

Example 1 (Example theory for paper domain).
c1 : printable(X)← a4(X), text(X)

c2 : printable(X)← a4(X), table(X), black_white(X)

c3 : printable(X)← a4(X), text(X), black_white(X)

A = {image, text, black_white, printable, table, a4, a5, a3}

In this framework, a proof procedure for abductive logic programs has been
presented in [8]. It interleaves phases of abductive and consistency derivations:
an abductive derivation is the standard Logic Programming derivation extended
in order to consider abducibles. When an abducible literal δ has to be proved,
it is added to the current set of assumptions (if not already included). Since the
addition of δ must not violate any integrity constraint, a consistency derivation
starts to check that all integrity constraints containing δ fail. In the consistency
derivation an abductive derivation is used to solve each goal. This might cause
an extension of the current set of assumptions.

More specifically an abductive derivation from (G1 ∆1) to (Gn ∆n) in <
P,A, IC > of a literal from a goal, is a sequence

(G1 ∆1), (G2 ∆2), ..., (Gn ∆n)

such that each Gi has the form← L1, ..., Lk and (Gi+1∆i+1) is obtained accord-
ing to one of the following rules:

1. If Lj is not abducible, then Gi+1 = C and ∆i+1 = ∆i where C is the resolvent of
some clause in P with Gi on the selected literal Lj ;

2. If Lj is abducible and Lj ∈ ∆i, then Gi+1 =← L1, ..., Lj−1, Lj+1, ..., Lk and
∆i+1 = ∆i;

3. If Lj is a ground abducible, Lj 6∈ ∆i and Lj 6∈ ∆i and there exists a consistency
derivation from ({Lj} ∆i∪{Lj}) to({} ∆′) then Gi+1 =← L1, ..., Lj−1, Lj+1, ..., Lk

and ∆i+1 = ∆′
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In the first two steps the logical resolution is performed exploiting: (1) the rules
of P and (2) the abductive assumptions already made. In the last step before
adding a new assumption to the current set of assumption a consistency checking
is performed.

A consistency derivation for an abducible α from (α,∆1) to (Fn ∆n) in
< P,A, IC > is a sequence

(α ∆1), (F1 ∆1), ..., (Fn ∆n)

where:

1. F1 is the union of all goals of the form ← L1, ..., Ln obtained by resolving
the abducible α with the constraints in IC with no such goal being empty;

2. for each i > 1 let Fi have the form {← L1, ..., Lk} ∪ F ′
i , then for some

j = 1, ..., k and each (Fi+1 ∆i+1) is obtained according to one of the following
rules:
(a) If Lj is not abducible, then Fi+1 = C′∪F ′

i where C′ is the set of all resolvents
of clauses in P with ← L1, ..., Lk on literal Lj and the empty goal [] 6∈ C′, and
∆i+1 = ∆

(b) If Lj is abducible, Lj ∈ ∆i and k > 1, then Fi+1 = {← L1, ..., Lk} ∪ F ′
i and

∆i+1 = ∆i

(c) If Lj is abducible, Lj ∈ ∆i then Fi+1 = F ′
i and ∆i+1 = ∆i

(d) If Lj is a ground abducible, Lj 6∈ ∆i and Lj 6∈ ∆i and there exists an abductive
derivation from (← Lj ∆i) to ([] ∆′) then Fi+1 = F ′

i and ∆i+1 = ∆′;
(e) If Lj is equal to A with A a ground atom and there exists an abductive deriva-

tion from (← A ∆i) to ([] ∆′) then Fi+1 = F ′
i and ∆i+1 = ∆′.

In the first case 2a the current branch is split into the number of resolvents
of← L1, ..., Lk with the clauses in P on Lj . If we get the empty clause the whole
check fails. In the second case if Lj belongs to ∆i, it is discarded and if it is
alone, the derivation fails. In case 2c the current branch is consistent with the
assumptions in ∆i and so it is dropped from the checking. In the last two cases
2d and 2e the current branch can be dropped if respectively ← Lj and A are
abductively probable.

The procedure returns the minimal abductive explanation set if any, other-
wise it fails. It is worth noting that according to the implementation in [8] the ∆s
in the abductive explanations must be ground. Thus if a non ground abducible
is encountered it is first unified with a clause in the background knowledge, with
an example or with a previously abduced literal. If this is not possible, it is
grounded with a skolem constant.

4 Probabilistic Abductive Logic Programming

This work extends the technique shown in Section 3 in order to smooth the
classical rigid approach with a statistical one.

In order to motivate our approach we can assume that to abduce a fact, there
is the need for checking if there are constraints that prevent such an abduction.
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The constraints can be either universally valid laws (such as temporal or physical
ones), or domain-specific restrictions. Constraints verification can involve other
hypotheses that have to be abduced, and others that can be deductively proved.
We can be sure that if a hypothesis is deductively verified, it can be surely
assumed true. Conversely, if a hypothesis involves other abductions, there is the
need of evaluating all possible situations before assuming the best one. In this
view each abductive explanation can be seen as a possible world, since each time
one assumes something he conjectures the existence of that situation in a specific
world. Some abductions might be very unlikely in some worlds, but most likely
in other ones. The likelihood of an abduction can be assessed considering what
we have seen in the real world and what we should expect to see.

Moreover, this work handles a new kind of constraints since typically the
constraints are only the nand of the conditions and are not probabilistic. They
allow a more suitable and understandable combination of situations. The first
kind is the classical nand denial where at least one condition must be false,
the type or represent a set of conditions where at least one must be true, and
the type xor requires that only one condition must be true. Moreover, due to
noise and uncertainty in the real world, we have smoothed each constraint with
a probability that reflects the degree of the personal belief in the likelihood of
the whole constraint.

In Example 2 it can be seen that each probabilistic constraint is a triple
〈Pr, S, T 〉 where Pr is a probability and expresses its reliability, or our confidence
on it, T is the type of constraint and represents the kind of denial, and S is the
set of literals of the constraint. For example ic1 states that a document can be
only of one of the three size formats (a3, a4 or a5) and that our personal belief
in the likelihood of this constraint is 0.8, ic2 states that a document can be
composed either of tables, images or text, and so on.

Example 2 (Typed Probabilistic Constraints).
ic1 = 〈0.8, [a3(X), a4(X), a5(X)], xor〉
ic2 = 〈0.9, [table(X), text(X), image(X)], or〉
ic3 = 〈0.3, [text(X), color(X)], nand〉
ic4 = 〈0.3, [table(X), color(X)], nand〉
ic5 = 〈0.6, [black_white(X), color(X)], xor〉

Our probabilistic approach to logical abductive reasoning can be described from
two perspectives: the logical proof procedure and the computation of probabili-
ties.

4.1 ALP perspective

The logical proof procedure consists of an extended version of the classical one
[7, 8]. While the classical procedure resolved the goal by looking for one minimal
abductive explanation set, our approach is to generate different (minimal) ab-
ductive explanations and then evaluate them all. This goal can be achieved by
changing each assumption that may constrain the subsequent abductive explana-
tions. For example, supposing that a document is black and white, all subsequent
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assumptions must be consistent with this. But if we change this assumption, as-
suming that in another world that document is not black and white, we might
obtain another set of hypoteses consistent with this last assumption. Each time
the procedure assumes something two possible worlds can be considered: one
where the assumption holds and another where it does not. The overall view is
analogous to the exploration of a tree in which each interior node corresponds to
a decision (an assumption), as for example changing the truth value of a literal,
an edge represents the consequences of that decision and a leaf is the conclusion
of the abductive reasoning in a particular possibile consistent world. In order to
generate such possible worlds in which a literal holds and others in which it does
not, the classical procedure has been extended by means of introducing two rules
for the derivation procedures. The 4th rule of the abductive derivation will be:

4. If Lj is a ground abducible, Lj 6∈ ∆i and Lj 6∈ ∆i and there exists a consistency
derivation from ({Lj} ∆i∪{Lj}) to ({} ∆′) then Gi+1 =← L1, ..., Lj−1, Lj+1, ..., Lk

and ∆i+1 = ∆′

A corresponding rule 2d* for the consistency derivation is introduced between
2d and 2e, and states:

2d* If Lj is a ground abducible, Lj 6∈ ∆i and Lj 6∈ ∆i and there exists an abductive
derivation from (← Lj ∆i) to ([] ∆′) then Fi+1 = F ′

i and ∆i+1 = ∆′;

It can be noted that the rules 3 and 4 of the abductive derivation are the choice
points on which the procedure can backtrack in order to assume both values
(positive and negative) of a literal. In fact in a possible world Lj is added to the
set of hypoteses by means of 3rd rule, and in the other possible world Lj holds
by means of 4th rule. The analogous choice points in the consistency derivation
are respectively the rules 2d* and 2d.

The choice of the predicate definition, that is the 1st rule of the abductive
derivation, is another choice point where the procedure can backtrack to explore
different explanations and consequently other possible worlds. In fact choosing
different definitions, other literals will be taken into account and thus other con-
straints must be satisfied, and so on. It is worth noting that if some assumptions
do not preserve the consistency, the procedure discards them along with the
corresponding possible worlds. Section 4.2 will present a probabilistic strategy to
choose the most likely explanation among all possible worlds.

Example 3 (Observation o1, Query and Possible Explanations).
a4(o1) ?- printable(o1)
∆1 = {text(o1), table(o1)} Ic1 = {ic2, ic3, ic4}
∆2 = {text(o1), table(o1), image(o1)} Ic2 = {ic2, ic3, ic4}
∆3 = {table(o1), black_white(o1)} Ic3 = {ic2, ic4, ic5}
∆4 = {text(o1), black_white(o1)} Ic4 = {ic2, ic3, ic5}

In order to motivate our point of view, let’s consider Example 3 belonging to
the “paper” domain presented in Section 3. In order to abductively cover o1
by means of the concept definition printable(X) (i.e. query ?- printable(o1)),
there is the need for abducing other literals since the concept definitions ci with
i = {1, ..., 3} need some facts that are not in the knowledge base (KB) (i.e. only
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a4(o1) holds). This is the classical situation in which deductive reasoning fails
and there is the need of abductive one.

The procedure executes an abductive derivation applying the 1st rule and ob-
taining one of the resolvent in P , for instance, the first clause c1 : printable(X)←
a4(X), text(X). In this case a4(o1) holds, and so we can exclude it from the ab-
ductive procedure continuing with the next literal text(o1). This literal does not
hold, and so there is the need of abducing it. This abduction involves the verifi-
cation of ic2 and ic3 by the consistency derivation. Since ic2 is a or constraint
and thus at least one literal must be true, there are two possible ways to satisfy
it considering that text(o1) must not hold (by current hypothesis). Thus there
are two possible worlds, one in which table(o1) holds, and the other in which
table(o1) does not.

In the former world rule 2d* fires and table(o1) is abduced by performing
a consistency derivation on the constraints ic2 and ic4. The former constraint
is already verified by means of the previous abductions (rule 2b). Since ic4 is a
nand constraint and thus at least one literal must be false, it is satisfied because
color is not abducible (see abducible predicates A in Example 1) and does not
hold (if a literal is not abducible, its value depends on background knowledge,
i.e. rule 2a). Thus coming back to the initial abduction text(o1), ic2 is satisfied
abducing table(o1) and ic3 is already satisfied (since it is a nand constraint, it
is falsified by abducing text(o1)). The first abductive explanation ∆1 for the
goal printable(o1) is so formed by the abductions of text(o1) and table(o1) (see
Example 3).

Similarly to the classical procedure that in backtracking returns all minimal
abductive explanations, our procedure comes back to each choice point changing
the truth values of the literals in order to explore different possible explanations
(and thus other possible worlds). The first choice point, as mentioned above,
regards the abduction of table(o1). While in the former possible world table(o1)
holds, now the procedure abduces table(o1) (rule 2d) thus exploring the other
possible worlds. In this world to abduce table(o1) the constraints ic2 and ic4 are
taken into account. The former constraint is verified by abducing image(o1) (i.e.
or constraint) and the latter is satisfied by the initial abduction text(o1) as in
explanation ∆1. Then text(o1) can be abduced also in this world since ic2 has
been just verified and ic3 as before. So ∆2 is the second explanation obtained by
changing the assumption on literal table(o1) and thus exploiting another possible
world.

The explanations ∆1 and ∆2 are the only two possible worlds given the first
clause c1 because other literal configurations are inconsistent. Hence, the proce-
dure comes back to last backtracking point that were the choice of the predicate
definition. This time the 1st rule of the abductive derivation can be applied to ob-
tain the second predicate definition c2 : printable(X)← a4(X), table(X), black_white(X).
So there is the need of abducing table(o1) and black_white(o1). The former can
be abduced because ic2 is satisfied (i.e. or constraint), and ic4 is verified by
means of color(o1). The latter literal can be abduced because ic5 is a xor con-
straint and thus at most one literal must be true. In explanation ∆3 no other
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literals must be abduced by the consistency derivation and so no other worlds
must be explored since the abduced literals table(o1) and black_white(o1) are
constrained by the predicate definition.

Once again the procedure comes back to last backtracking point and chooses
the predicate definition c3 : printable(X) ← a4(X), text(X), black_white(X).
The abductive derivation, similarly to the previous run, returns only one possible
explanation ∆4 as it can been seen in Example 3.

It easy to note that rules (2d) and (2d*) are candidate entry points for
backtracking in the consistency derivation , and rules 1,3 and 4 are the analogues
in the abductive derivation. In this way all possible (minimal) explanations are
obtained along with all possible consistent worlds.

4.2 Probabilistic perspective

After all different explanations have been found by the above abductive proof
procedure, the issue of selecting the best one arises. The simple approach of
choosing the minimal explanation is reliable when there is only one minimal
proof or when there are no ways to assess the reliability of the explanations.
However, Example 3 shows that there might be different explanations for the
same observation and so we need to assess the probability of each explanation in
order to choose the best one. To face this issue, our approach regards each set of
abductions as a possible world and so a chance of being true can be assigned to
it. The abduction probability of each ground literal through the possible worlds
can be obtained considering two aspects: the chance of being true in the real
world and all sets of assumptions made during the consistency derivation in
each possible world.

Let’s introduce some notation: ∆ = {P1 : (∆1, Ic1), ..., PT : (∆T , IcT )} is
the set of the T consistent possible worlds that can be assumed for proving
a goal G (i.e. the observation to be proved). Each (∆i, Ici) is a pair of sets:
∆i = {δ1, ..., δJ} contains the ground literals δj with j ∈ {1, ..., J} abduced in a
single abductive proof, and Ici = {ic1, ..., icK} is the set of the constraints ick
with k = {1, ...,K} involved in the explanation ∆i. Both ∆i and Ici may be
empty. Moreover, we have used the following symbols in our equations: n(δj) is
the number of true grounding of the predicate used in literal δj , n(cons) is total
number of constants encountered in the world, a(δj) is the arity of literal δj and
P (ick) is the probability of the kth-constraint. Thus the chance of being true of
a ground literal δj can be defined as:

P (δj) =
n(δj)

n(cons)!
(n(cons)−a(δj))!

(1)

Then the unnormalized probability of the abductive explanation can be assessed
by Equation 2 and the probability of the abductive explanation normalized over
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all T consistent worlds can be computed as in Equation 3:

P ′
(∆i,Ici)

=

J∏

j=1

P (δj) ∗
K∏

k=1

P (ick) (2) P(∆i,Ici) =
P ′
(∆i,Ici)∑T

t=1 P
′
(∆t,Ict)

(3)

Equation 1 expresses the ratio between true and possible groundings of literal
δj . The intuition behind this equation can be expressed with a simple example:
given a feature f(·) and an item obj that does not have such a feature, if we want
to assess the probability that obj owns f(·) (i.e. P (f(obj))), we should consider
how often we found items that hold f(·) over all items that might own it in real
world.

It is worth noting that we are considering the Object Identity [17] assumption
and so within a clause, terms (even variables) denoted with different symbols
must be distinct (i.e. they must refer to different objects). Thus only literal
groundings without constants repetitions are allowed in Equation 1. It is im-
portant to underline that such a bias does not limit the expressive power of
the language, since for any clause/program it is possible to find an equivalent
version under Object Identity. The first part of the formula 2 encloses the prob-
ability that all abduced literals are true in that particular world. The second
part expresses the reliability of the constraints involved in the i-th abductive
explanation. Although our approach is focused on the computation of the most
probable explanation and hence there is no need of normalizing the probabilities
of the explanations over all possible worlds (i.e some worlds are ruled out due
to the presence of integrity constraints), it follows that Equation 3 is presented
for completeness. The probability of δj is equal to 1− P (δj).

Example 4 (Probability assessment of the Abductive Explanations).
A = {0.2:image, 0.4:text, 0.1:black_white, 0.6:printable, 0.1:table, 0.9:a4, 0.1:a5, 0.1:a3}
P ′(∆1, Ic1) = 0.00486 P ′(∆2, Ic2) = 0.00875
P ′(∆3, Ic3) = 0.00162 P ′(∆4, Ic4) = 0.00648

For the sake of clarity, each abducible literal of the current example has been
labeled with its probability using formula (1) as shown in Example 4. For
instance, the probability of the first explanation using (2) can be computed
as P ′

(∆1,Ic1)
= P (text(o1)) ∗ P (table(o1)) ∗ P (ic2) ∗ P (ic3) ∗ P (ic4) and thus

P ′
(∆1,Ic1)

= 0.6 ∗ 0.1 ∗ 0.9 ∗ 0.3 ∗ 0.3 = 0.00486. Then, Example 4 shows the
probability of all explanations computed using equation (2).

Finally we can state the maximum probability among all abductive explana-
tions. It corresponds to the maximum between all T possible consistent worlds
(in this example T is equal to 4) s.t. P ′(printable(o1)) = max1≤i≤T P ′

i (∆i, Ici),
that is ∆2. It is worth noting that this behaviour claims the need of the log-
ical abductive reasoning to be supported by a probabilistic assessment of all
abductive explanations rather than relying on the minimal one.
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5 Improving Classification Exploiting Probabilistic
Abductive Reasoning

Now the above proof procedure can be exploited to classify never-seen instances.
In particular we first learns from data the model (i.e. the Abductive Logic Pro-
gram < P,A, IC >) and the parameters (i.e. literals probabilities), and then
our Probabilistic Abductive Logic proof procedure can be exploited to classify
new instances. The strategy, presented in Algorithm 1, can be split into two

Algorithm 1 Probabilistic Classification Algorithm
Require: A is the set of abducibles, a couple <Traini, T esti>
Ensure: Predi, the set of examples labelled with most likely class.
1: Ti ← learn_background_theory(Traini)
2: ICi ← learn_integrity_constraints(Traini)
3: ProbLiti ← compute_literals_probabilities(Testi)
4: Predi = ∅
5: for each example e in Testi do
6: R = ∅
7: for each class c in Ti do
8: <P (c, e),∆p> ← probabilistic_abductive_proof(ProbLiti, c, e)
9: <P (¬c, e),∆n> ← probabilistic_abductive_proof(ProbLiti,¬c, e)

10: if P (c, e) > P (¬c, e) then
11: R← R ∪ <P (c, e),∆p>
12: else if P (c, e) < P (¬c, e) then
13: R← R ∪ <P (¬c, e),∆n>
14: else
15: discard e, inconsistency
16: <P (c∗, e),∆∗> ← most_likely_class_in(R)
17: Predi ← Predi ∪ <P (c∗, e),∆∗>

parts: the former prepares the data (model and parameters), and the latter per-
forms the classification. In the former part, given a train set Traini and a set
of abducible literals A (possibly empty) our approach learns the corresponding
Theory Ti (line 1) by exploiting INTHELEX [4], a well-known ILP system, and
then obtains the integrity constraints (line 2) with the procedure described in [5].
Such procedure returns a set of nand constraints of different sizes and descriptor
type domain. This last information can be useful to define a new kind of con-
straint called type_domain that can be dealt as an xor constraint. In fact if the
descriptor type domain for the color property is {blue, red, yellow, black, green},
and the object X is part of an observation, it will be impossible to abduce two
different color descriptors from the above set applied to X. However since our
procedure handles natively a probability value associated to the constraints, and
this procedure does not return those values, the constraints should be manually
labelled or they will be automatically considered true with probability of 1.0. In
any case, the set of abducible A can be left empty, because our system considers
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abducible all predicates without definitions in Ti. The last step of the first part
(line 3) computes the Equation 1 for each literal in Traini before starting the
abductive procedure since those values depend only on Traini.

Hence, the second part of the strategy starts at line 5. As can be seen at lines
8 and 9, our algorithm tries to abductively cover the example considering both
as positive and as negative for the class c. In fact, when an example is considered
negative, our procedure discovers all possibile worlds in which it cannot be ab-
ductively proved as instance of concept c. Specularly if the example is positive, it
discovers all the possibile worlds in which must be abduced something to prove
it. Those two executions return an explanation probability that can be compared
each other in order to choose the best class. Then the algorithm selects the best
classification between all concept probabilities as can be seen at line 16.

It is worth noting that this strategy cannot be performed by a pure abductive
logic proof procedure since in such context we do not need a logical response
(true/false) but we want a probabilistic value.

6 Experimental Evaluation

The evaluation is aimed at assessing the quality of the results obtained by the
probabilistic classification when it faces incomplete and noisy data. All experi-
ments were performed on datasets obtained from UCI [2] machine learning repos-
itory.

A 10-fold split of each dataset has been performed in order to obtain a set
of 10 couples <Train, T est>. Then each test-set has been replaced by a set
of corrupted versions, in which we removed at random a K% of each example
description, with K varying from 10% to 70% with step 10. This procedure has
been repeated 5 times for each corrupted test-set in order to randomize the
example corruption. In this way 35 test-sets for each fold have been obtained
(7 levels of corruption by 5 runs for level). In order to compare the outcomes
with a complete test-set we exploited deductive reasoning on the original test-set
(i.e corruption level 0%). Moreover we exploited only deductive reasoning to the
same corrupted test-set in order to show the improvement of our approach. The
maximum length of constraints has been set to 4 for all datasets. Since we do
not have any previous knowledge on the datasets we assumed true all obtained
constraints with a probability of 1.0 as described in the Section 5.

Then the performances of the system can be evaluated with the aim of un-
derstanding how the approach is sensible to the progressive lack of knowledge
across the 10 folds. The following synthetic descriptions of the datasets refer to
values averaged on the folds.

Breast-Cancer contains 201 instances of the benign class and 85 instances
of the malignant class and each instance is described by 9 literals. There is
the presence of less than 10 instances with missing values. The learned theory
consists of 30 clauses where each one has an average of 6 literals in the body.
The learned integrity constraints are 1784 (55% are constraints of length 4, 35%
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of length 3 and 10% of length 2), and 9 type domain constraints (one for each
literal in the example description language).

Congressional Voting Records contains 435 instances (267 democrats,
168 republicans) classified as democrats or republicans according to their votes.
Each instance is described by 16 literals. The obtained theory consists of 35
clauses where each one has an average of 4.5 literals in the body. The learned
integrity constraints are 4173 (16% are constraints of length 4, 37% of length 3
and 47% of length 2), and 16 type domain constraints (as before).

Tic-Tac-Toe dataset contains 958 end game board configurations of tic-tac-
toe (about 65.3% are positive), where x is assumed to have played first. The
target concept win(x) represents one of the 8 possible ways to create a three-in-
a-row. Thus, each instance is described by 8 literals. The learned theory consists
of 18 clauses where each has an average of 4 literals in the body. The learned
integrity constraints are 1863 (99% are constraints of length 4, 1% of length 3),
and 16 type domain constraints (as before).

Results and Discussion

Figure 1 shows the average accuracy obtained on each dataset with respect to
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Dataset Corr. Abductive Reas. Deductive Reas.
Prec. Rec. F1 Prec. Rec. F1

Breast

0% 0.891 0.870 0.881 0.891 0.870 0.881
10% 0.865 0.835 0.850 0.634 0.454 0.227
20% 0.853 0.411 0.556 0.571 0.118 0.195
30% 0.800 0.188 0.584 0.500 0.029 0.056
40% 1.000 0.059 0.111 —– —– —–
50% 1.000 0.035 0.068 —– —– —–
60% 1.000 0.023 0.046 —– —– —–
70% 1.000 0.012 0.023 —– —– —–

Congress

0% 1.000 0.961 0.980 1.000 0.961 0.980
10% 1.000 0.961 0.981 0.971 0.793 0.873
20% 1.000 0.769 0.869 0.971 0.761 0.853
30% 1.000 0.680 0.809 0.982 0.714 0.827
40% 1.000 0.538 0.700 0.979 0.623 0.761
50% 1.000 0.500 0.667 1.000 0.425 0.596
60% 1.000 0.346 0.514 1.000 0.333 0.500
70% 1.000 0.269 0.424 1.000 0.264 0.418

TikTakToe

0% 1.000 0.983 0.992 1.000 0.983 0.992
10% 1.000 0.833 0.909 0.842 0.743 0.789
20% 1.000 0.730 0.844 0.808 0.531 0.641
30% 1.000 0.508 0.673 0.796 0.387 0.521
40% 1.000 0.302 0.463 0.829 0.261 0.397
50% 1.000 0.127 0.225 0.697 0.103 0.180
60% 1.000 0.048 0.090 0.777 0.031 0.060
70% 1.000 0.016 0.031 1.000 0.004 0.009

Figure 1: Average Accuracy Curves Table 1: Results of the experiments

the corruption levels. The probabilistic classification performed on the first two
datasets allows to assess the strength and robustness of the approach. In fact
their accuracy curves go down less fast than the third’s one and even when the
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70% of each example description has been removed, the system is able to classify
never-seen instances with a mean accuracy of 0.7 and 0.6 respectively.

In order to understand the non-linear trend of the accuracy on the third
dataset we can analyze Table 1. It shows the classification performances averaged
within the same fold (i.e. 5 random corruptions) and between different folds
for each level of corruption. We can find a sharp decay of recall for the third
dataset in correspondence of the descending accuracy curve. This happens for
two reasons: each example is less described than the ones of the other datasets
(8 literals for description) and its background theory consists of an average of 4
literals for clause. Those two aspects make the approach more prone to abduce
few literals (often a single one) to make positive examples never covered by the
class definitions.

Comparing these results with the deductive approach, it can be noted that
in the first dataset after the 30% of corruption, no positive example has been
classified correctly. This deficiency has never affected our approach in all experi-
ments. The performances of the deductive approach on last two datasets degrade
faster compared to the abductive one.

In general if the examples are less described (as in Tic-Tac-Toe and Breast-
Cancer), the number of misclassifications increases due to missing information.
It follows that corruption levels greater than 50% rise up the chance of removing
important object features, and so such experiments have been performed only
for putting stress on the proposed approach.

7 Conclusions

Reasoning in very complex contexts often requires pure deductive reasoning to
be supported by a variety of techniques that can cope with incomplete and
uncertain data. Abductive inference allows to guess information that has not
been explicitly observed. Since there are many explanations for such guesses,
there is the need for assigning a probability to them in order to choose the best
one.

In this paper we propose a strategy to rank all possible minimal explanations
according to their chance of being true. We have faced two issues: the generation
of multiple explanations consistent with the background knowledge, and the
definition of a strategy to prioritize among different ones using their chance of
being true according to the notion of possible worlds. Another novelty has been
the introduction of probabilistic integrity constraints rather than hard ones as
in the classical Abductive Logic Programming framework.

The proposal has been described from two perspectives: the abductive proof
procedure and the computation of the probabilities. The former, extending the
classical one, allows to generate many different explanations for each abduction,
while the latter provides a probabilistic assessment of each explanation in order
to choose the most likely one. Moreover we introduce a strategy to exploit our
Probabilistic Abductive Proof procedure in classification tasks. The approach
has been evaluated on three standard datasets, showing that it is able to cor-
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rectly classify unseen instances in the presence of noisy and missing information.
Further studies will be focused on learning the probabilistic constraints, and on
the use of a richer probabilistic model for the literal probability distribution.
Then we aim to exploit the Probabilistic Abductive Proof Procedure in other
tasks such as natural language understanding and plan recognition.
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Abstract. One of the seminal goals of Explicit Constructive Logic (ECL)
is to provide a constructive formulation of full higher order logic (Clas-
sical Type Theory LKω) that can be seen as a foundation for knowledge
representation. Moreover, the development of this work has produced
the basis of a new approach to constructivism in Logic.ECL is intro-
duced as a sub-system Zω of LKω. Also the first order case Z1 and
the propositional case ZP of ECL are examined. A comparison between
ECL’s constructivism and the corresponding features of Intuitionistic
Logic, and Constructive Paraconsistent Logic is proposed.

Keywords: Constructivism in Logic, Higher Order Logic, Intuitionistic
and Constructive Paraconsistent Logic

1 Introduction

Full higher order logic can be an extremely powerful tool for knowledge represen-
tation if some of its features could be simplified and controlled. A constructive
formulation of it is the goal of Explicit Constructive Logic (ECL) and will be
presented in this paper. We will start from the sequent version LKω of Classical
Type Theory as presented in [7] where the Church formalism is used and logical
connectives are expressed as typed formulas.For the extensive definitions of the
syntax of typed language and the basic notions of proof-theory (sequents, rules,
proof-trees and so on) see [7] Sections 2 and 3. To realize the foundational prin-
ciples of the ECL inference we will define the systems Zω and Z∗ω,(included in
LKω), that, even maintaining a very high expressive power, show strong con-
structivity properties and could admit a new organization of proofs (through
a Normal Form Theorem). Zω could be also seen as a generalization, at the
theoretical level, of the features of Higher Order Uniform Logic, introduced in
[8] to express Higher Order Logic Programming. Indeed, in both cases the very
specific behaviour of proofs is that the principal formula in the conclusion of a
logical rule can be deduced only if some constraints on the introductions of the
auxiliary formulas in the rule premise(s) are respected. We will also examine
the first order case Z1 and the propositional case ZP of ECL. The real novelty



2

of any proposed new logical framework must arise clearly at the propositional
level, and this is the case for Intuitionistic Logic and Paraconsistent Logic. The
Church formalism is maintained also for the first order case and the proposi-
tional case, since it is very convenient for a deep analysis of logical connectives.
A parallel and a comparison between ECL and Intuitionistic Logic and Para-
consistent Logic as different kinds of constructive logics will be often proposed
in this paper. The constructivity of Intuitionistic Logic [10] doesn’t need expla-
nations. As to the constructivity of Paraconsistent Logic we consider only a well
delimited area of paraconsistency, given by the Logics of Formal Inconsistency
(LFI) and the included C-system family, introduced in [2]. The formal notion
of constructive paraconsistent logic is introduced in [6].

2 Explicit Logical Constructivism: Syntactic Environment
and Epistemological Basis

We will now give a short synthesis of the epistemological basis of Explicit Con-
structive Logic: the style will be heuristic and intuitive.

We will use the logical connectives à la Church [3]:

{
¬o→o, ∧o→(o→o), ∨o→(o→o),⊃o→(o→o), ∀(α→o)→o , ∃(α→o)→o , ⊥o , >o

}

where the type subscript is in general omitted in writing formulas. We call
judgments of the epistemic subject the compound logical formulas: we want to
convey the idea that logical information is provided by compound propositions
and is introduced by the subject starting from elementary data, expressed by
atomic formulas. The elementary data reflect the elementary facts that take
place inside a fixed empirical world that is assumed as reference for construct-
ing knowledge. The difference in the logical and epistemic role between atomic
formulas and compound formulas is so relevant, that we introduce for it specific
meta-symbols: thus, latin capital letters A,B,C, ... will indicate arbitrary for-
mulas, whereas latin capital letters with the + superscript A+, B+, C+, ... will
indicate arbitrary atomic formulas. We recall that logical connectives are not
atomic formulas. A formula is atomic if the outermost symbol is not a logical
connective. A formula is an atom if it has not proper Church sub-term. In partic-
ular, the o-typed logical connectives, i.e. the logical constants ⊥o, >o are atoms
but not atomic formulas. The first expresses the judgement which is always ac-
ceptable (for which no criticism is possible) so that the sequent ` > is always
provable; the latter expresses the judgement which is always refutable (for which
no corroboration is possible) so that the sequent ⊥ ` is always provable. (see also
[7], Sec. 2 and 3). A further technical remark is that in this paper we will always
use the sequent version of the considered logical systems. Other foundational
assumptions are the following. In the demonstration (argumentation) produced
by the epistemic subject, judgments are not received from the external world :
they must be explicitly constructed alongside the demonstration itself. Only ele-
mentary data are necessarily provided by the external world. Therefore, logical
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information has to be always reconstructed by the epistemic subject and never
merely acquired; differently, elementary data are merely acquired. Simmetrically,
judgements, alongside a demonstration, cannot be eliminated without an explicit
logical motivation: this must have the form of another explicit judgment of the
espistemic subject, that is by applying a logical rule. The eliminating rules, in a
context where the cut rule in strictly bounded and anyway eliminable (as it hap-
pens in the main logical calculi) are the so called Comprehension rules (Comp
rules) in [7], i.e ∀ − L and ∃ − R. An exhaustive discussion of the elimination
power of Comp Rules is given in [7] Section 3. Thus, the full higher order system
Zω for ECL Logic that we are going to define, is a subsystem of LKω where:

- only atomic formulas occur in the logical axioms;

- weakening rules are admitted only to introduce atomic formulas, i.e. weak-
ening cannot introduce logical information;

- cut rule is admitted only with atomic cut formulas, i.e. cut cannot eliminate
logical information;

- each logical rule is always thought as occurring in some proof P, and have
constraints on its auxiliary formulas that take into account their introduction in
the whole proof-segment above the premise(s) of the rule occurrence in P. That
is, they are global and not local constraints. The underlying idea is that the
construction of a judgment introducing new logical information must be based
only on previously produced logical information which has been itself acceptably
constructed.

We note that the restrictions on weakening and cut rules immediately follow
from the epistemic assumptions mentioned above. The constraints on the logical
rules will be presented and discussed in detail in the next Sections. Moreover, the
constructivity properties we assign to Zω are also justified through the compari-
son with those logics that in the literature are already considered as constructive
(Intuitionistic Logic, Paraconsistent Logic, Uniform Logic).

The constructivism of Intuitionistic Logic LJ is well known. We recall that,
from a merely technical point of view, it is characterized by the refutation of
the excluded middle (or tertium non datur) principle, syntactically expressed by
the schema A ∨ ¬A and , collaterally, also by the refutation of the left double
negation principle, expressed by the schema ¬¬A ⊃ A. The standard sequent
version LJ is characterized by the following condition: each sequent in a proof has
the empty set or a singleton as succedent. However, this is not strictly necessary:
in the sequent version of Maehara [9] p. 52, such condition is replaced by local
contraints on three logical rules, among which, centrally, the negation rule on
the right ¬ − R. Even if intuitionism has many peculiar constructive features,
that cannot be reduced to the mere refutation of tertium non datur, it is a fact
that LJ plus ` A ∨ ¬A ≡ classical LK.

The constructivism of Paraconsistent Logic has been only recently defined
in a formal way, and the set of paraconsistent logics to which the notion can be
applied must be clearly delimited. We consider here the system CI examined
in [6]. Paraconsistent Logic arises form the refutation of the classical (syntactic)
principle ex contraditione quodlibet that can be expressed by the LK-provable
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sequent schema A∧¬A ` which is classically equivalent to the non contradiction
principle ` ¬(A ∧ ¬A). CI and the various systems in the C-system family do
not prove contradictions, but can support axioms of the form B ∧ ¬B without
trivializing, i.e. without proving the empty sequent “ ` ”. Even if the refutation
of ex contradictione quodlibet could seem today a position which is naturally
constructive, in [6] a formal definition of constructive paraconsistent logic is
given, also employing the introduction of antisimmetry connections between C-
system paraconsistency and intuitionistic logic.

The Uniform Logic introduced in [8], that we indicate here with LUω, is
a sub-system of Higher Order Intuitionistic Logic LJω where a particular con-
straint is added for the application of logical rules inside a proof-tree. Essen-
tially, if a logical rule occurrence R has the auxiliary formula(s) in the premise
succedent(s), then it (they) must be the principal formula(s) of the logical rule
occurrence(s) immediately above R in the branch. Uniform Logic specifies the
intuitionism constructivity in the direction of computation: indeed, it expresses
abstract logic programming languages. Moreover, as to the main discussion of
this paper, it must be remarked that the rule-constraint mentioned above is a
first example of global, i.e. referred to the context of the rule-occurrence in the
proof, and not local constraint.

As detailed later, Zω shares relevant specific features with Intuitionistic
Logic, since it does not prove both ℵ0 instances of excluded middle princi-
ple A∨¬A and ℵ0 instances of left double negation principle ¬¬A ⊃ A. It could
be called also a pseudo-intuitionistic system (such notion is formally introduced
in [6]).

Zω shares relevant specific features with Paraconsistent Logic, since it does
not prove ℵ0 instances of non contradiction principle ¬(A ∧ ¬A) and can be
extended by ℵ0 contradictions without trivializing. It could be called also a
paraconsistent system.

Zω shares some properties with Uniform Logic. In fact it does not hold, (in
general, for Zω proof trees), the possibility of any permutation of the order of
propositional rules in a proof branch without changing the end-sequent, even in
those cases where classical logic would admit such a permutation.

We also point out that ECL has a strong expression power. Indeed, besides
the Zω-proof capabilities allowed by the higher order, the following properties
also hold for Z1 and ZP:

Zω proves ℵ0 arbitratrily complex instances of excluded middle principle A∨
¬A that LJω does not prove;

Zω proves ℵ0 arbitratrily complex instances of non contradiction principle
¬(A ∧ ¬A) that CIω does not prove.

3 The Systems Zω, Z1, ZP for Explicit Constructive
Logic (ECL)

In the sequel we briefly call bottom and top the formulas ⊥ and >, recalling that
they are not atomic formulas. Moreover, if Zω proves the sequent ` B we say that
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B is a theorem of Zω, if Zω proves the sequent E ` we say that E is a refuted by
Zω. The language of Zω is that of LKω (see [7] Sec. 2) with the exclusion of all
the equality symbol =o→(o→o) that would express the equality relation between
o-typed formulas, since such relation is not considered by ECL. For the notions
concerning general proof theory, the analysis of proofs as well as the notions of
ancestor, descendant, auxiliary formula, principal formula and so on, we refer to
[7] Section 2 and 6.

The sequent system Zω is the following:

(In a sequent Ω, ∆, Γ , Π, Θ, ... will be used as meta-expressions for finite
and possibly empty sets of o-typed formulas, A,B,C,D, ...for arbitrary isolated
formulas in a sequent, A+, B+, C+, D+, ... for arbitrary atomic isolated formulas.
The writing Ω,∆ denotes Ω ∪ ∆ )

Axioms

Logical axioms A+ ` A+ with the following constraint:

if the atomic A+ is a β-redex, possible repeated application of the λ-rule
does not produce any β-contractum F which is a descendant of A+ and is a
non-atomic formula.

Top axiom ` >
Bottom axiom ⊥ `
Rules

Strong Logical Rules:

Propositional rules:
A,B, Γ ` ∆
A ∧B,Γ ` ∆ ∧ −L

Γ ` ∆,A Λ ` X,B
Γ,Λ ` ∆,X,A ∧B ∧ −R

Γ ` ∆,A,B
Γ ` ∆,A ∨B ∨ −R

A,Γ ` ∆ B,Λ ` X
A ∨B,Γ,Λ ` ∆,X ∨ −L

A, Γ ` ∆,B
Γ ` ∆,A ⊃ B ⊃ −R

Γ ` ∆,A B,Λ ` X
A ⊃ B,Γ,Λ ` ∆,X ⊃ −L

Γ ` ∆,A
¬A,Γ ` ∆¬ − L

A, Γ ` ∆
Γ ` ∆,¬A¬ −R

It can be noted that the forms of ∧ − L and ∨ − R are not the standard
one. This is a specific requirement of the Explicit Constructive Logic that will
be discussed in the next Sections.

Quantifier rules:
[tα/xα]A,Γ ` ∆
∀xαA,Γ ` ∆

∀ − L Γ ` ∆, [bα/xα]A

Γ ` ∆, ∀xαA
∀ −R

[bα/xα]A,Γ ` ∆
∃xαA,Γ ` ∆

∃ − L Γ ` ∆, [tα/xα]A

Γ ` ∆,∃xαA
∃ −R

where: in ∀−L, ∃−R, tα is an arbitrary term and in the corresponding ∀xαA,
∃xαA, tα may still occur, that is tαmay be not fully quantified in ∀xαA, ∃xαA;
on the other hand, in ∀ − R, ∃ − L, the free variable bα occurring in [bα/xα]A
is uniformly replaced in ∀xαA, ∃xαA by the bound variable xα having the same
index, and bα does not occur in Γ, ∆. bα is the proper variable or eigenvariable
of the rule.

λ -rule:
Γ ′ ` ∆′
Γ ` ∆ λ
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where the sets Γ and Γ ′ and the sets ∆ and ∆′ differ only in that zero
or 1 formula in them is replaced by some formula to which it is β-reducible.
Note that the rule is defined so that the β-reduction may work either upwards
or downwards. We observe that differently from the more usual version (see e.g.
[8], [4]) it is imposed here that λ-rule works on 1 auxiliary formula only, and not
simultaneously on any arbitrary set of auxiliary formulas. This option is more
coherent with the ECL perspective and with the inclusion of the rule among the
strong logical rules, where the control of all the origins of the auxiliary formulas
of the rule -occurrence in the above standing proof-segment is required. Finally,
the inclusion of λ-rule among strong logical rules is due to the possibility that a
rule occurrence R in a proof P of Zω may β−reduce a β-redex to a non-atomic
formula D arbitrarily complex, with a main logical connective (the outermost
symbol of D) that can be seen as introduced by R.

Strong logical rules must fulfil the following constraints:
- If R is a 1 premise strong logical rule then each occurrence of R in a

Zω-proof P is such that at least 1 auxiliary formula has at least 1 uppermost
ancestor introduced by an axiom.

- If R is a 2 premise strong logical rule, having i.e. two auxiliary formulas,
then each occurrence of R in a Zω-proof P is such that each auxiliary formula
has at least 1 uppermost ancestor introduced by an axiom.

- If R is a λ-rule then each R- occurrence in a proof P in Zω is such that
its auxiliary formula has at least 1 uppermost ancestor introduced by an axiom.

Weak Logical Rules

bottom rule
⊥ `
⊥ ` A

where A is an arbitrary formula without sub-formulas of the form ∀xo(xo),
∃xo(xo).

top rule:
` >

B ` >
where B is san arbitrary formula without sub-formulas of the form ∀xo(xo),

∃xo(xo).
Structural Rules

Wakening rules:
Γ ` ∆

Γ ` ∆, A+
W1−R Γ ` ∆

A+, Γ ` ∆W1− L
`
` F

W2−R `
F `W2− L

Cut Rules
Γ ` ∆,B+ B+, Γ ` ∆

Γ ` ∆ Cut1
` F F `

` Cut2

Structural rules must fulfil the following constraints:
- Each W1 -principal formula is atomic, and in any W1-rule at least 1 set

of the contex is non-empty.
- Each W2- principal formula may be arbitrary.
- Cut1-formula B+ is atomic, such that if it is a β-redex, possible repeated

application of the λ-rule does not produce any β-contractum G which is a de-
scendant of B+ and is a non-atomic formula. Moreover, at leaast 1 context set
is non-empty.

- Cut2−formula F may be arbitrary.
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3.1 The First Order System Z1 of ECL
The language of Z1 is defined as follows:
The well formed expressions of Z1 are Church-terms with the following con-

straints:
- variables are only of type i;
- λ-abstractions are only over variables of type i and on formulas of type o,

i.e. have only the form λxiAo with type i→ o;
- quantifiers occur only with type (i→ o)→ o , i.e. with the forms ∃(i→o)→o

∀(i→o)→o ;
- if τ is a type occurrence in any Z1-espression, no occurrences of the type o

in τ precede any occurrence of the type i in τ ;
- non-logical constants of Z1 are only of a type τ such that:
either in τ the type o does not occur, or the type o has at most one occurrence

as tail of τ ; τ has a condensed writing of the form: i→ i→ i→ ...→ u, where
u is a primitive type.

Deduction apparatus of Z1:
It is identical to Zω deduction apparatus, with the constraint that rules are

restricted to sequents of Z1-formulas, so that only i-typed terms can be quanti-
fied. The λ-rule could be useful but is not strictly necessary for the expressivity
of the system. Thus, we denote Z1λ the version including λ-rule, Z1 the λ-rule
free version.

3.2 The Propositional Calculus ZP of ECL
The language of ZP is obtained from Z1 with the following restrictions:
-quantifiers, variables, λ-abstraction expressions, do not occur in the lan-

guage;
- the only non logical constants are o-typed atoms, also called propositional

letters.
The deduction apparatus is obtained from that of Z1 by deleting quantifier

rules.
3.3 Immediate Properties and Definitions of Zω, Z1, ZP
In this Section we will focus mainly on the most powerful and expressive

system, which is Zω; however, many definitions and properties naturally extend
to Z1 and ZP.

Remark 1. Weak logical rules are also imposed by the necessity to give a suitable
proof power to ECL systems. For example, in LKω, the axiom ⊥ ` makes
superfluous a rule of the form

⊥ `
⊥, U ` V
U, V arbitrary sets, due to constraint free weakening rules of LKω. In ECL

systems, such approach would not be conceivable.

Definition 1. Let P be a proof tree in Zω. Then we say that the occurrence of
the formula A in P is strongly introduced if it is integral descendant of an axiom
formula or it is integral descendant of the principal formula of a strong logical
rule. We say that the occurrence of the formula A in P is weakly introduced if
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it is integral descendant of the principal formula of a weak logical rule or of a
weakening formula.

For the definition of integral descendant of a formula occurrence in a proof
see [7] Def. 6.5.ii p. 750. Intuitively the integral descendant B of the formula
occurence F in a proof branch is such that B and F are occurrences of the same
formula, i.e. B ≡ F, connected by a proof-path where F (or B) is never an
auxiliary formula of any rule.

Definition 2. Among the strong logical rules we call major (strong) logical rules
those where all auxiliary formulas must be strongly introduced, minor (strong)
logical rules those where at least 1 auxiliary formula may be weakly introduced.

Corollary 1. {∨−L, ∧−R, ⊃ −L, ¬−R, ¬−L, ∀−L, ∀−R, ∃−L, ∃−R,
λ− rule} is the set of major logical rules in Zω, {∨ − R, ∧ − L, ⊃ −R} is the
set of minor logical rules in Zω.

Definition 3. Let P be a proof tree in Zω. Then we say that a sequent S
occurring in P is strongly proven in P if each formula of S is strongly introduced
in P. We say that S is weakly proven in P otherwise.

Caveat: the same S may be strongly proven in a proof P and, simultaneously,
weakly proven in a different proof Q. In ECL logic the proof-context of a sequent
or of a formula has a substantial role, and this is coherent with the fact that
the constraints on the application of a logical rule in ECL are always global and
not local. We also mention these two evident facts: Zω is consistent, since it is
a LKω subsystem; moreover, if P is a Zω-proof, it cannot have an end-sequent
where all formulas are weakly introduced.

4 General Epistemological and Logical Justifications
for Axioms and Rules of Zω, Z1, ZP, and Further
Properties of Connectives and Rules in ECL

4.1 The Formulas Bottom and Top
o-typed logical constants ⊥ and > standardly occur in the Church presentation
of Type Theories ([7], [8], [4]). In the Explicit Constructive Logic ECL > ex-
presses the judgment that the subject thinks as always acceptable, beyond any
possible confutation, and ⊥ expresses the judgment that the subject thinks as
always refutable, beyond any possible corroboration. That’s why, in general, we
can state: if B is a Zω-theorem different from >, then it is not provable in Zω
the sentence (> ⊃ B) ∧ (B ⊃ >) (or B ←→ >), and if E is a Zω-refuted dif-
ferent from ⊥, then it is not provable in Zω the sentence (⊥⊃ E) ∧ (E ⊃⊥) (or
E ←→⊥). In particular, as to the conjunctions that would give the mentioned
Zω-logical equivalences, it is not provable, in general, in the first case the con-
junct > ⊃ B and in the second case the conjunct E ⊃⊥ . Remarkable exceptions
may exist. For example >∧> is a theorem and > ⊃ >∧> is provable. However,
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for each atomic A+, A+ ∨¬A+ is a theorem but > ⊃ A+ ∨¬A+ is not provable.
For example, for each atomic B+, ⊥ ∧B+ is a refuted and ⊥ ∧B+ ⊃⊥ is prov-
able. However, for each atomic B+, B+ ∧ ¬B+ is a refuted but B+ ∧ ¬B+ ⊃⊥
is not provable. These examples suggest that explicit constructivity includes a
criticism to classical implication. Moreover, the usual systems of classical, in-
tuitionistic and paraconsistent logics lack such fine separation capability: all of
them make top particles equivalent to theorems, and bottom particles equivalent
to refuted sentences.
4.2 The Weak Logical Rules
Let’s comment on and justify the weak logical rules, i.e. the top rule and the
bottom rule. They are logical since they realize through an information trans-
formation process the presumed logical content of the logical connectives top and
bottom. Note that, in the foundational perspective of ECL, without such rules,
the presence in the system of the mentioned o-typed logical connectives would
be not motivated and they should be excluded from the language. On the other
side, they are the only rules through which not explicitly constructed logical
information can be introduced in the argumentative discourse. Indeed, they rep-
resent a very constrained and regulated way to partially have that information
introduction power of the standard weakening rule. This is also why they are
called weak, and their principal formulas are qualified as weakly introduced. This
causes inferential limitations. If ⊥` C and D ` > are the conclusions of any
bottom rule and top rule respectively, we cannot apply to them a ⊃ −L rule and
infer C ⊃ D,⊥ ` > , since both the auxiliary formulas are weakly introduced.
As a matter of fact ⊥ ` ⊥ and > ` > are not logical axioms, they are con-
clusions of weak logical rules, so that one of the two cedents ([1] p. 10) is always
weakly introduced. Nevertheless, the contribution of weak logical rules to ECL
inference is substantial; otherwise the information sources of ECL proofs would
be too poor. In addition, their weakly introduced principal formula can anyway
contribute to infer strongly introduced formulas: from D ` >, we can infer `
D ⊃ > that is a strongly introduced formula, as the principal formula of a ⊃ −R
must be. We shall prove in Section 6 that weak logical rules must only occur as
the initial rule in a branch: in addition, their principal formula has not auxiliary
formula, so that it has no predecessor. This justifies the requirement that for-
mulas ∀xo(xo), ∃yo(yo) do not occur as sub-formulas of the principal formula of
any weak logical rule. In a Zω−proof, ∀xo(xo), ∃yo(yo) mark elimination judg-
ments about previously produced logical information. Then, their occurrence is
meaningless in an initial (uppermost) formula of the proof tree.
4.3 The Exclusion of Equational Logic EQω from Zω
In LKω and LJω, Equational Higher Order Logic EQω can be fully included
in the system and works together with the logical part. For the EQω-axioms
see [7], Sec. 2.4. What must be clearly emphasized is that in the higher order
context and inside the Church formalism EQω becomes extremely powerful and
mixes itself with the logical connectives’ deduction action. This is clear if we
consider that each theorem B of LKω and LJω can be provably constricted
to the atomic formula B =o >, and that the equality predicate on type o can
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be provably identified with the logical equivalence between propositions, i.e., in
the ECL perspective, between judgments. From the standpoint of ECL, aiming
to obtain a very fine characterization of logical connectives through a construc-
tive approach, this is not admissible. Equational Logic is explicitly excluded from
ECL. More generally, we point out that, in the context of explicit construc-
tivism, is also inadmissible the confusion between the equality relation =o and
the logical implication ⊃ or double-implication ←→. We think that the equality
relation can be only defined a priori in a platonic universe. In a knowledge repre-
sentation setting, we are not able to imagine an epistemic subject that, inside an
empirical world and through an effective process can establish that two objects
are equal, with the same meaning owned by the statement “these two Euclidean
triangles are equal” affirmed inside a platonic universe. On the contrary, if we
consider the epistemic subject that formulates judgments on the world, the im-
plication or double-implication relation must be established by a construction
which increases the complexity of the judgment through the logical rules, starting
from elementary data. Observe that in Zω theorems that are atomic formulas do
not exist (with the minor exception of possible β-redexes, which are a bit arti-
ficial form both for possible judgments and for possible data), coherently with
the principle that elementary data cannot be judgments. Differently, Equational
Logic EQω produces a multitude of atomic theorems, most of them having a
substantial and non-artificial information content, such as, for example, the as-
sertion B =o F ∧ ¬F , establishing that the arbitrarily complex formula B is
logically equivalent to a contradiction.
4.4 The Strong Logical Rules
The originality of the proposed logic is mainly expressed in these rules. In fact,
the constraints involving these rules are not local, i.e. they do not operate on the
occurrence of the specific rule R in a proof, but are conditions concerning the
whole proof P in which the rule occurs: to apply R it is necessary, in general, to
examine all the introductions of the uppermost ancestors of the auxiliary formu-
las of R in the proof segment of P standing above the R -premise(s). We deem
that relevant innovations in Logic could be obtained by changing the praxis of
imposing only local constraints on a single rule. This lightly changes the usual
notion of performing a proof, and could produce innovative results and situa-
tions, perhaps more than the introduction of new connectives and new rules. By
recalling the Definitions of Section 3, the distinction between strongly introduced
formula in a proof P and weakly introduced formula in a proof P should result
natural. Axioms are the choices of the epistemic subject, on which it decides to
found its reasoning. Weakening and weak logical rules are auxiliary tools, useful
to introduce information. On the other hand, a proof without at least one ax-
iom occurrence cannot exist, while infinite proofs may exist without weakening
or weak rule occurrences. It must be emphasized that the minor strong logical
rules ∨−R , ∧ − L are differently presented w.r.t. the usual standard presenta-
tion, that is both the auxiliary formulas must occur as isolated in the premise.
This reflects two crucial requirements. First, if this would not be the case, the
introduction of one of the maximal disjunct (conjunct) of the principal formula
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would be an arbitrary hidden weakening. Furthermore, since we need to con-
straint all the uppermost ancestors of both the auxiliary formulas in the whole
proof-segment above, both the formulas must explicitly occur in the premise.
4.5 The Structures of Weakening and Cut in Zω
The constraints on the weakening rule, i.e. the imposition on principal formulas
to be atomic, should be quite clear. It is at the basis of Explicit Constructive
Logic: only elementary data can be used without having been constructed. A first
non trivial fact follows immediately, thus clarifying the differences from LKω

and LJω: if X ` Y is Zω-provable, its over-sequents U ` V with X ⊂ U and
Y ⊂ V , are, in general, not Zω-provable. A motivation of the presence of two
rules W1 and W2 is due: while W1 is immediately understandable, less obvious
is the necessity of W2, i.e. of arbitrary weakenings on the empty sequent. The
reason arises from the fact that Zω is supposed to be possibly extended to vari-
ous (countably many) axiomatized theories Tj’s. Some of them are expected to
be absolutely inconsistent, and we usually identify this situation with the prov-
ability of the empty sequent. But this does not work in the ECL-framework,
since from the empty sequent, Zω-rules minus W2, in general, cannot derive all
formulas of the language as theorems. Therefore, W2 is added. The motivations
of Cut2 are also linked to the ones of W2: if a Zω-based theory T has any non
atomic theorem and any non atomic refuted that are identical, i.e. T proves
both B ` and ` B, Zω-rules minus Cut2, in general, cannot derive the empty
sequent. Thus, Cut2 is added. We consider now the substantial restrictions that
are imposed to the cut rule. They reflect the requirements already considered
about the introduction and the elimination of logical information by a reasoning
epistemic subject: logical information is not eliminated by a material deletion,
but only by a logical transformation. The selection of logical information is a
thinking act, requires elaboration, then it must involve logical rules. Thus, cut
at most deletes atomic formulas, i.e. elementary data. On the other hand, the pe-
culiar structure of the cut rule cannot become a clandestine arbitrary weakening,
and this is obtained by imposing the same context for the two premises.

5 Possible New Effective Applicability of ECL-based
Higher Order Logic

It is well known that, in full Higher Order Logic, the unbounded quantification
on o-typed formulas, or on formulas of arbitrary types where o-typed formulas
occur as Church-subterms, makes it extremely difficult to establish any useful
link between the formulas occurring in the root of a cut-free proof-tree P and
the formulas occurring in the overstanding sequents alongside the branches of P.

To find how to exploit the information and proof power of higher order quan-
tification, without chaotic or collapsing phenomena, is a main goal of our con-
structive view of higher order logic. The envisaged road is the following:

to suitably and lightly normalize higher order quantification by a set of
constraints allowing a Normal Form Theorem for the proofs of an adequately
expressive sub-system of LKω.

Explicit Constructive Logic ECL 157



12

A Normal Form Theorem (NFT) for a system V (see [1] or for example [5]
where a NFT for Arithmetic is proposed) is characterized by:

i) an effective description of the transformation of a V-proof into a V-proof
tree with the same root, partitioned in blocks such that each block includes only
homogeneous rules or axioms;

ii) a set of effective procedures such that given a root sequent L, the following
reasonable estimates about the features of a possible proof Q of L in V can be
produced:

an estimate of the possible V-rule instance set occurring in Q
an estimate of the possible V-axiom instance set occurring in Q
an estimate of the length and the width of Q
an estimate of the formula (or term) set occurring in Q.
It is quite clear that an efficient Normal Form Theorem for an adequate and

non redundant LKω sub-system can give a new basis for higher order automated
deduction and knowledge representation. We believe that:

the very strong and peculiar ECL constructivity of the system Zω allows
us to state those normative constraints on its quantification power that can
generate an adequately expressive subsystem Z∗ω that admits a Normal Form
Theorem. We present now a first hint of the system Z∗ω that should exemplify
how further constructive conditions imposed on the quantification judgements of
the epistemic subject may lead to a Normal Form Theorem. As a basic feature of
Z∗ω we introduce the notion of Zω−proof with the witness property. We previously
recall that the language includes, for each type γ, ℵ0 free variables (atoms)

{
bjγ
}

,
univocally individuated by their index j ∈ N, and ℵ0 bound variables (atoms){
yiγ

}
, univocally individuated by their index i ∈ N (see [7] Section 2.2). In the

following definition, the most relevant point is b):

Definition 4. A Zω−proof P has the witness property if the following condi-
tions hold:

a) Each time o-typed formulas/terms Bjo, j = 1, ...,m, m ≥ 1 occur in P as
the auxiliary formula E of a Comp rule, or are included in it as sub-terms, then
the bound variable zo in the corresponding principal formula Qzo(zo), Q ∈{∀,∃}
has as index the gödel number ([7] Section 2.5) of their sequence.

b) Any auxiliary formula of a Comp rule in P may have o-typed sub-terms
only if the quantification is over the type o.

c) In P isolated formulas of the form ao, bo, i.e. free variables of type o which
occur as isolated formulas in a sequent, cannot be auxiliary formulas of quantifier
rules.

Proposition 1. The property “to be a proof with the witness property of the
system Zω” is a recursive relation, it can be expressed by a recursive predicate
inside Primitive Recursive Arithmetic PRA and is a decidable property.

Proof. The Definition above describes exactly effective conditions to get a
Zω − proof with the witness property.

Only as one of the possible example of the effective control on proofs allowed
by the witness property we mention these results:
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Proposition 2. a) Let P be a proof in Zω with the witness property. If in P a
formula of the form Qzo(zo), Q ∈{∀,∃} is introduced, then in the root at least
one formula of the form Hzo(zo), H ∈{∀,∃} occurs.

b) Let P be a proof in Zω with the witness property. Let us suppose that
quantified formulas over the type o do not occur in the P-root. Then each atom
of type o occurring in P occurs also in the root of P.

Definition 5. The weakly normalized system Z∗ω is so defined: a) Axioms, propo-
sitional rules, structural rules of Z∗ω are the same as that of Zω and with the
same constraints; b) Quantifier rules of Z∗ω have the same constraints as the ones
of Zω, and moreover are applied in a proof-tree in a way such that the result-
ing proof has the witness property, i.e. it fulfils all the conditions stated in the
previous Definition of the witness property. c) The λ-rule is omitted from the
deduction aparatus.

Therefore, in Z∗ω all proofs have the witness property. Thus, even if the higher
order quantification power is not dramatically bounded at all, some interesting
links between the formulas occurring in the root and the rule instances and
formulas occurring in the above proof-segments are at disposal. We will see such
links at work in particular in Section 7.

6 Elementary Proof-theory and Expressivity of Zω

Proposition 3. Zω admits cut-elimination.

Proof. The proof is straightforward. Indeed, Cut1-formulas can be only atomic.
Then they can be introduced in any Zω−proof only by weakenings or by logical
axioms. This makes the proof-reductions to get cut-elimination very easy. As
to Cut2 the set of Cut2-occurrences in the Zω−proofs is empty, due to the
consistency of Zω.

In the sequel we assume to work only with cut-free Zω−proofs. Moreover, by
coherence with ECL setting, we will consider only the equality free versions of
type theories LKω LJω, that so have the full cut elimination property. The next
results could seem to have obvious proofs. This would be a misunderstanding,
since in ECL the form of the logical rules is essentially standard, but their
application conditions are not standard at all. For example, if F is not atomic,
then F ` F is not a Zω−logical axioms, and, in general, nobody can easily assert
or deny that it must be a Zω−theorem.

Proposition 4. Zω proves ℵ0 instances both of the excluded middle principle
B ∨ ¬B and of the left double negation principle ¬¬B ⊃ B that Intuitionistic
Higher Order Logic LJω does not prove.

Proof. Let G+, H+ different non logical constants of type o. It is easy to see
that Zω proves the sequent G+ ∧H+ ` G+ ∧H+ with all the formulas strongly
introduced in the proof. Then we produce in Zω the following proof segment:
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G+ ∧H+ ` G+ ∧H+

` G+ ∧H+,¬(G+ ∧H+)
¬ −R

` (G+ ∧H+) ∨ ¬(G+ ∧H+)
∨ −R

where all the rules have strongly introduced auxiliary formulas. Differently, by
applying the cut-elimination property of LJω it is evident that LJω cannot prove
the same end-sequent without breaking the local constraints of each LJω−rule,
imposing at most one formula in each succedent. Analogous considerations hold
for the sequent ` ¬¬H+ ⊃ H+. Moreover, the thesis can be easily extends to
arbitrarily complex instances of the mentioned principles.

Proposition 5. Zω proves ℵ0 instances of the non contradiction principle ¬(A∧
¬A) that equality free paraconsistent type theory CIω, extending the system CI,
cannot prove.

Proof. Let B+ be an atomic formula. It is wellknown that CIω does not prove
` ¬(B+ ∧ ¬B+) (for the details on CI see [6]). The following proof can be
produced in Zω :

B+ ` B+

B+,¬B+ ` ¬ − L

B+ ∧ ¬B+ ` ∧ −R
` ¬(B+ ∧ ¬B+)

¬ −R
where all the auxiliary formulas of the rules are strongly introduced.

In the following, we simply state some lemmas without proofs:

Lemma 1. The weak logical rules top rule and bottom rule can be only initial
rules in a proof branch, i.e. they always occur as the uppermost rules of the
branch.

Lemma 2. Let Q be a proof in Zω with root X ` Y,B where B is the integral

descendant of the principal formulas of a set W ≡
{⊥`
⊥` B Rj

}
of bottom

rules in Q. Then we can replace each element of W in Q with the axiom ⊥`
obtaining a proof P of X ` Y in Zω.

Lemma 3. Analogous to the last Lemma, by replacing “bottom rule” with “top
rule” and the formula bottom ⊥ with the formula top >.

7 What ECL does not want to prove: Z∗
ω, Z1, ZP as

paraconsistent and pseudo-intuitionistic systems

A very remarkable property of ECL is that without imposing any local constraint
on negation rules of its systems, it nevertheless shows simultaneously a relevant
and interesting intuitionistic and paraconsistent behaviour of its proofs. We will
use now the weakly normalized system Z∗ω (Definition 5) that is a convenient
setting of our epistemic consideration. We have the following results3:

3 in the sequel the superscript (.)+ in atomic formulas will be omitted
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Theorem 6. Consider the following instance of non contradiction principle ex-
pressed by the sequent S: ` ¬[(⊥ ∧(B ∧ C)) ∧ ¬(⊥ ∧(B ∧ C))] where B and C
are different o-typed non logical constants. Then S is not Z∗ω−provable. Since
S belongs also to propositional and first order languages the same holds for Z1
and ZP.

Proof. Suppose ad absurdum that S is the root of a proof Q of Z∗ω. If the root
formula B is also the integral descendant of the principal formula of a set of of
bottom rule occcurences in Q, by Lemma 2 we delete such rules and get a proof
Q’ where the root formula B is never introduced by a bottom rule occurrence:
indeed, we exclude that the root of Q’ could result the empty sequent, by the
absolute consistency of Z∗ω. Therefore, by properties of Z∗ω, the end rule of Q’
must be a ¬−L rule having the sequent M ≡ (⊥ ∧(B ∧C))∧¬(⊥ ∧(B ∧C)) `
as premise, and let H be its root formula. In M top formulas do not occur: then,
by Proposition 2 (item b)), in Q’ neither top formulas nor top rules can occur.
Thus, neither H nor H sub-formulas can be integral descendant of principal
formulas of top rule occurrences in Q’. H must be so the conclusion of a ∧ − L
rule, with premise K ≡ (⊥ ∧(B ∧ C)),¬(⊥ ∧(B ∧ C)) ` . By analogous reasons
K is the conclusion of a ¬ − R rule with premise N ≡ (⊥ ∧(B ∧ C)) `
(⊥ ∧(B ∧C)). Let D be the succedent of N . We have to examine the possibility
that D has been introduced by bottom rules in Q’. We have two possible cases.
The first one is that D is exclusively the integral descendant of principal formulas
of bottom rule occurrences in Q’. By Lemma 2 we delete them, and get G ≡
⊥ ∧(B ∧ C) ` as the root of a Z∗ω-proof W. Since top rules do not exist in W,
the premise of G in W must be ⊥, B ∧ C `, that necessarily has ⊥, B,C ` as
premise: this is absurd, since being both B and C obviously weakly introduced,
they cannot be auxiliary formulas of a ∧ − L rule. The second case is that D is
not only the integral descendant of principal formulas of bottom rule occurrences
so that, having deleted these by Lemma 2, we obtain a proof V of the sequent
L ≡ ⊥ ∧(B ∧ C) ` ⊥ ∧(B ∧ C) where no cedent is the integral descendant of
principal formulas of weak logical rule occurrences. L must be the conclusion of
a strong logical rule. Indeed, suppose that the end rule of V is any ∧ − R rule.
Then its premises, that are both necessarily Z∗ω-provable, are J1 ≡⊥ ∧(B∧C) `
⊥ and J2 ≡⊥ ∧(B∧C) ` (B∧C): unfortunately, it is evident that the succedent
of J1 cannot be strongly introduced, so that the ∧−R constraint would not be
respected. We must so assume that the end rule of V is any ∧ − L rule, with
premise J3 ≡⊥, B ∧C ` ⊥ ∧(B ∧C). J3 can be the conclusion either of a ∧−L
or of a ∧−R. In the first case the possible premise is J4 ≡ ⊥, B, C ` ⊥ ∧(B∧C),
in the second case the two possible premises, both necessarily Z∗ω-provable, are
J5 ≡⊥, B ∧ C ` ⊥ and J6 ≡ ⊥, B ∧ C ` B ∧ C. However, the sucedent of J5
can be only weakly introduced and the same problems observed for J1 stop the
examined possibility. Thus, we have to examine the possible provability of J4.
The possibility that J4 is the conclusion of any ∧−R rule gives the same problems
already noted for J1 and J5. We have then to suppose that the succedent of
J4 has been introduced in V only by a set of bottom rule occurrences, and that
the ⊥ in the J4-antecedent is the integral descendant of the premise formulas
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of such bottom rules. By Lemma 2, we delete such bottom rule occurrences and
get a proof Z of the sequent J7 ≡⊥, B,C ` where by construction B,C are the
only integral ancestors of the auxiliary formulas of the ∧ − L with conclusion
J3 ≡⊥, B∧C ` ⊥ ∧(B∧C). But this is absurd, since both B and C in J7 would
be only introduced by weakenings in V, i.e. both are weakly introduced, and the
∧ − L constraints would not be respected4.

Theorem 7. Consider the following instance of excluded middle principle ex-
pressed by the sequent M : ` [>∨∃xiB]∨¬[>∨∃xiB] with B o-typed non logical
constant. Then M is not Z∗ω−provable. Since M belongs also to the first order
language the same holds for Z1.

8 Conclusions

The introduction of the ECL logic and the first results regarding its relations
with intuitionistic and paraconsistent logics are the main topics of the paper.
We stressed the higher order setting since we believe that it is a relevant issue
to find ways to make HOL a foundational setting for knowledge representation
(constructive and with controlled use of instantiations). The future work will be
devoted to further analyze the characteristics of ECL. As some considerations
already present in the paper suggest the constructivity of ECL is not related to
the “not rules” but to some peculiarities of the implication and of the possible
proofs that can be accepted. These properties should be relevant for the use of
ECL as the foundation logic of both Logic Programming and Theorem Proving.
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Abstract. This paper illustrates the design and implementation of a prototype
ASP solver that is capable of exploiting the parallelism offered by general pur-
pose graphical processing units (GPGPUs). The solver is based on a basic conflict-
driven search algorithm. The core of the solving process develops on the CPU,
while most of the activities, such as literal selection, unit propagation, and conflict-
analysis, are delegated to the GPU. Moreover, a deep non-deterministic search,
involving a very large number of threads, is also delegated to the GPU. The initial
results confirm the feasibility of the approach and the potential offered by GPUs
in the context of ASP computations.

1 Introduction

Answer Set Programming (ASP) [22, 20] has gained momentum in the logic program-
ming and artificial intelligence communities as a paradigm of choice for a variety of ap-
plications. In comparison to other non-monotonic logics and knowledge representation
frameworks, ASP is syntactically simpler and, at the same time, very expressive. The
mathematical foundations of ASP have been extensively studied; in addition, there exist
a large number of building block results about specifying and programming using ASP.
ASP has offered novel and highly declarative solutions in several application areas, in-
cluding intelligent agents, planning, software verification, complex systems diagnosis,
semantic web services composition and monitoring, and phylogenetic inference.

An important push towards the popularity of ASP has come from the development
of very efficient ASP solvers, such as CLASP and DLV. In particular, systems like CLASP
and its variants have been shown to be competitive with the state of the art in several
domains, including competitive performance in SAT solving competitions. In spite of
the efforts in developing fast execution models for ASP, execution of large programs re-
mains a challenging task, limiting the scope of applicability of ASP in certain domains
(e.g., planning). In this work, we offer parallelism as a viable approach to enhance
performance of ASP inference engines. In particular, we are interested in devising tech-
niques that can take advantage of recent architectural developments in the field of Gen-
eral Purpose Graphical Processing Units (GPGPUs). Modern GPUs are multi-core
platforms, offering massive levels of parallelism; vendors like NVIDIA have started

? Research partially supported by GNCS-13 project.



supporting the use of GPUs for applications different from graphical operations, provid-
ing dedicated APIs and development environments. Languages and language extensions
like OpenCL [16] and CUDA [29] support the development of general purpose applica-
tions on GPUs, beyond the limitations of graphical APIs. To the best of our knowledge,
the use of GPUs for ASP computations has not been explored and, as demonstrated in
this paper, it opens an interesting set of possibilities and issues to be resolved.

The work proposed in this paper builds on two existing lines of research. The ex-
ploitation of parallelism from ASP computations has been explored in several research
works, starting with seminal papers by Pontelli et al. and Finkel et al. [25, 9], and
later continued in several other projects (e.g., [26, 12, 24]). Most of the existing pro-
posals have primarily focused on parallelization of the search process underlying the
construction of answer sets, by distributing parts of the search tree among different
processors/cores; furthermore, the literature focused on parallelization on traditional
multi-core or Beowulf architectures. These approaches are not applicable in the con-
text of GPGPUs—the models of parallelization used on GPGPUs are deeply different
(e.g., GPGPUs are designed to operate with large number of threads, operating in a syn-
chronous way; GPGPUs have significantly more complex memory organizations, that
have great impact on parallel performance) and existing parallel ASP models are not
scalable on GPGPUs. Furthermore, our focus on this work is not primarily on search
parallelism, but on parallelization of the various operations associated to unit propaga-
tion and management of nogoods.

The second line of research that supports the effort proposed in this paper is the
recent developments in the area of GPGPUs for SAT solving and constraint program-
ming. The work in [6] illustrates how to parallelize the search process employed by
the DPLL procedure in solving a SAT problem on GPGPUs; the outcomes demonstrate
the potential benefit of delegating to GPGPUs the tails of the branches of the search
tree—an idea that we have also applied in the work presented in this paper. Several
other proposals have appeared in the literature suggesting the use of GPGPUs to par-
allelize parts of the SAT solving process—e.g., the computation of variable heuristics
[18]. The work presented in [4] provides a preliminary investigation of parallelization
of constraint solving (applied to the specific domain of protein structure prediction) on
GPGPUs. The work we performed in [4] provided inspiration for the ideas used in this
paper to parallelize unit propagation and other procedures.

The main contribution of the research presented in this paper is the analysis of a
state of the art algorithm for answer set computation (i.e., the algorithm underlying
CLASP) to identify potential sources of parallelism that are suitable to the peculiar par-
allel architecture provided by CUDA.

2 Background

2.1 Answer Set Programming

Syntax. In this section we will briefly review the foundations of ASP, starting with its
syntax. Let us consider a language composed of a set of propositional symbols (atoms)
P . An ASP rule has the form

p0 ← p1, . . . , pm, not pm+1, . . . , not pn (1)
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where pi ∈ P .5 Given a rule r of type (1), p0 is referred to as the head of the rule
(head(r)), while the set of atoms {p1, . . . , pm, not pm+1, . . . , not pn} is referred to as
the body of the rule (body(r)). In particular, body+(r) = {p1, . . . , pm} and body−(r) =
{pm+1, . . . , pn}. We identify particular types of rules: a constraint is a rule of the form

← p1, . . . , pm, not pm+1, . . . , not pn (2)

while a fact is a rule of the form p0 ←. A program Π is a collection of ASP rules.
We will use the following notation: atom(Π) denotes the set of all atoms present in Π ,
while bodyΠ(p) denotes the set {body(r) | r ∈ Π, head(r) = p}.

LetΠ be a program; its positive dependence graphD+
Π = (V,E) is a directed graph

satisfying the following properties:
- The set of nodes V = atom(Π);
- E = {(p, q) | r ∈ Π,head(r) = p, q ∈ body+(r)}.

In particular, we are interested in recognizing cycles in D+
Π ; the number of non-self

loops in D+
Π is denoted by loop(Π). A program Π is tight (non-tight) if loop(Π) = 0

(loop(Π) > 0). A strongly connected component (scc) of D+
Π is a maximal subgraph

of X of D+
Π such that there exists a path between each pair of nodes in X .

Semantics. The semantics of ASP programs is provided in terms of answer sets. Intu-
itively, an answer set is a minimal model of the program which supports each atom in
the model—i.e., for each atom there is a rule in the program that has such atom in the
head and whose body is satisfied by the model. Formally, a set of atomsM is an answer
set of a program Π if M is the minimal model of the reduct program ΠM , where the
reduct is obtained from Π as follows:

- remove from Π all rules r such that M ∩ body−(r) 6= ∅;
- remove all negated atoms from the remaining rules.

ΠM is a definite program, i.e., a set of rules that does not contain any occurrence of
not. Definite programs are characterized by the fact that they admit a unique minimal
model. Each answer set of a program Π is, in particular, a minimal model of Π .

Example 1. The following program Π has two answer sets: {a, c} e {a, d}.
Π =

{
a← c← a, not d e← b
b← ¬a d← not c, not e e← e

}

Answer Set Computation. In the rest of this section, we provide a brief overview
of techniques used in the computation of the answer sets of a program; the mate-
rial presented is predominantly drawn from the implementation techniques used in
CLASP [11, 10].

Several ASP solvers rely directly or indirectly on techniques drawn from the domain
of SAT solving, properly extended to include procedures to determine minimality and
stability of the models (these two procedures can be quickly performed in time linear
in the number of occurrences of atoms in the program, namely |Π|)). Several ASP

5 A rule that includes first-order atoms with variables is simply seen as a syntactic sugar for all
its ground instances.
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solvers (e.g., CMODELS [13]) rely on a translation of Π into a SAT problem and on
the use of SAT solvers to determine putative answer sets. Other systems (e.g., CLASP)
implement native ASP solvers, that combine search techniques with backjumping along
with techniques drawn from the field of constraint programming [27].

The CLASP system relies on a search in the space of all truth value assignments to
the atoms in Π , organized as a binary tree. The successful construction of a branch in
the tree corresponds to the identification of an answer set of the program. If a, possibly
partial, assignment fails to satisfy the rules in the program, then backjumping proce-
dures are used to backtrack to the node in the tree that caused the failure. The design
of the tree construction and the backjumping procedure in CLASP is implemented in
such a way to guarantee that if a branch is successfully constructed, then the outcome
is indeed an answer set of the program. CLASP’s search is also guided by special as-
signments of truth values to subsets of atoms that are known not to be extendable into
an answer set—these are referred to as nogoods [7, 27]. Assignments and nogoods are
sets of assigned atoms—i.e., entities of the form Tp (Fp) denoting that p has been
assigned true (false). For assignments it is also required that for each atom p at
most one between Tp and Fp is contained. Given an assignment A, we denote with
AT = {p |Tp ∈ A} and AF = {p |Fp ∈ A}. A is total if it assigns a truth value to ev-
ery atom, otherwise it is partial. Given a (possibly partial) assignment A and a nogood
δ, we say that δ is violated if δ ⊆ A. In turn, a partial assignment A is a solution for a
set of nogoods ∆ if no δ ∈ ∆ is violated by A.

The concept of nogood can be also used during deterministic propagation phases
(a.k.a. unit propagation) to determine additional assignments. Given a nogood δ and a
partial assignmentA such that δ\A = {Fp} (δ\A = {Tp}), then we can infer the need
to add Tp (Fp) toA in order to avoid violation of δ. In the context of ASP computation,
we distinguish two types of nogoods: completion nogoods [8], which are derived from
Clark’s completion of a logic program (we will denote with ∆Πcc the set of completion
nogoods for the program Π), and loop nogoods [17], which are derived from the loop
formula of Π (denoted by ΛΠ ). Before proceeding with the formal definitions of these
two classes of nogoods, let us review the two fundamental results associated to them
(see [10]). Let Π be a program and A an assignment:

– If Π is a tight program then: atom(Π) ∩ AT is an answer set of Π iff A satisfies
all the nogoods in ∆Πcc .

– If Π is a non-tight program, then: atom(Π) ∩ AT is an answer set of Π iff A
satisfies all the nogoods in ∆Πcc ∪ ΛΠ .

Let us now proceed in the formal definitions of nogoods. Let us start by recalling the
notion of Clark completion of Π (Π):

Πcc =
{
βr ↔

∧
a∈body+(r) a ∧

∧
b∈body−(r) ¬b | r ∈ Π

}
∪{

p↔ ∨
r∈bodyΠ(p) βr | p ∈ atom(Π)

} (3)

Where βr is a new variable, introduced for each rule r ∈ Π , logically equivalent to the
body of r. Assignments need to deal with βr variables, as well. The completion nogoods
reflect the structure of the implications present in the definition of Πcc. In particular:
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• the implication present in the original rule p← body(r) implies the nogood {Fβr}∪
{Ta | a ∈ body+(r)} ∪ {Fb | b ∈ body−(r)}.

• the implication in each rule also implies that the body should be false if any of its
element is falsified, leading to the set of nogoods of the form: {Tβr, Fa} for each
a ∈ body+(r) and {Tβr, T b} for each b ∈ body−(r).

• the closure of an atom definition (as disjunction of the rule bodies supporting
it) leads to a nogood expressing that the atom is true if any of its rule is true:
{Fp, Tβr} for each r ∈ bodyΠ(p).

• similarly, the atom cannot be true if all its rules have a false body. This yields the
nogood {Tp} ∪ {Fβr | r ∈ bodyΠ(p)}.

∆Πcc is the set of all the nogoods defined as above.
The loop nogoods derive instead from the need to capture loop formulae, thus

avoiding cyclic support of truth. Let us provide some preliminary definitions. Given
a set of atoms U , we define the external bodies of U (denoted by EBΠ(U)) as the set
{βr | r ∈ Π, body+(r) ∩ U = ∅}. Furthermore, let us define U to be an unfounded set
with respect to an assignment A if, for each rule r ∈ Π , we have (i) head(r) 6∈ U , or
(ii) body(r) is falsified by A, or (iii) body+(r) ∩ U 6= ∅. The loop nogoods capture the
fact that, for each unfounded set U , its elements have to be false. This is encoded by the
following nogoods: for each set of atoms U and for each p ∈ U , we create the nogood
{Tp} ∪ {Fβr | βr ∈ EBΠ(U)}. We denote with ΛΠ the set of all loop nogoods, and
with ∆Π the whole set of nogoods: ∆Π = ∆Πcc ∪ ΛΠ .

2.2 CUDA

Our proposal focuses on exploring the use GPGPU parallelism in ASP solving.
GPGPU is a general term indicating the use of the multicores available within modern
graphical processing units (GPUs) for gen-
eral purpose parallel computing. NVIDIA is
one of the pioneering manufacturers in pro-
moting GPGPU computing, especially thanks
to its Computing Unified Device Architec-
ture (CUDA) [29]. The underlying conceptual
model of parallelism supported by CUDA is
Single-Instruction Multiple-Thread (SIMT), a
variant of the SIMD model, where, in general,
the same instruction is executed by differ-
ent threads that run on identical cores, while
data and operands may differ from thread to
thread. CUDA’s architectural model is repre-
sented in Figure 1.

HOST
GLOBAL MEMORY

CONSTANT MEMORY

Shared 
memory

Thread Thread

regs regs

Block

Shared 
memory

Thread Thread

regs regs

Block

GRID

Fig. 1: CUDA Logical Architecture

Different NVIDIA GPUs are distinguished by the number of cores, their organization,
and the amount of memory available. The GPU is composed of a series of Streaming
MultiProcessors (SMs); the number of SMs depends on the specific characteristics of
each family of GPU—e.g., the Fermi architecture provides 16 SMs. In turn, each SM
contains a collection of computing cores; the number of cores per SM may range from

CUD@ASP: Experimenting with GPGPUs in ASP solving 167



8 (in the older G80 platforms) to 32 (e.g., in the Fermi platforms). Each GPU provides
access to both on-chip memory (used for thread registers and shared memory—defined
later) and on-chip memory (used for L2 cache, global memory and constant memory).
Notice that the architecture of the GPU also determines both the GPU Clock and the
Memory Clock rates. A logical view of computations is introduced by CUDA, in order
to define abstract parallel work and to schedule it among different hardware configura-
tions (see Figure 1). A typical CUDA program is a C/C++ program that includes parts
meant for execution on the CPU (referred to as the host) and parts meant for parallel
execution on the GPU (referred as the device). A parallel computation is described by a
collection of kernels—each kernel is a function to be executed by several threads.

The host program contains all instructions to initialize the data in GPUs, to define the
threads number and to manage the kernel. Instead, a kernel is a set of instruction per-
formed in GPUs across a set of concurrent threads. The programmer or compiler or-

Fig. 2: Generic workflow in CUDA

ganizes these threads in thread blocks and
grids of thread blocks. A grid is an array
of thread blocks that execute the same ker-
nel, read data input from global memory,
write results to global memory. Each thread
within a thread block executes an instance
of the kernel, and has a thread ID within
its thread block. When a CUDA program
on the host CPU invokes a kernel grid, the
blocks of the grid are enumerated and dis-
tributed to multiprocessors with available
execution capacity; the kernel is executed
in N blocks, each consisting of M threads.
The threads in the same block can share
data, using shared high-throughput on-chip
memory; on the other hand, the threads be-

longing to different blocks can only share data through global memory. Thus, the block
size allows the programmer to define the granularity of threads cooperation. Figure 1
shows the CUDA threads hierarchy [23].

CUDA provides an API to interact with GPU and C for CUDA, an extension of C
language to define kernels. Referring to Figure 2, a typical CUDA application can be
summarized as follow:

Memory data allocation and transfer: The data before being processed by kernels, must
be allocated and transferred to Global memory. The CUDA API supports this operations
through the functions cudaMalloc() and cudaMemcpy(). The call cudaMalloc()
allows the programmer to allocate the space needed to store the data while the call
cudaMemcpy() transfers the data from the memory of the host to the space previously
allocated in Global Memory, or vice versa. The transfer rate is dependent on the bus
bandwidth where the Graphics Card is physically connected.

Kernels definition: Kernels are defined as standard C functions; the annotation used to
communicate to the CUDA compiler that a function should be treated as kernel has the
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form: global void kernelName (Formal Arguments) where global is
the qualifier that shows to the compiler that the next statement is a kernel code.
Kernels execution: A kernel can be launched from the host program using a new:
kernelName <<< GridDim, ThreadsPerBlock >>> (Actual Arguments)

execution configuration syntax where kernelName is the specified name in kernel
function prototype, GridDim is the number of blocks of the grid and ThreadsPerBlock
specifies the number of threads in each block. Finally, the Actual Arguments are typ-
ically pointer variables, referring to the previously allocated data in Global Memory.
Data retrieval: After the execution of the kernel, the host needs to retrieve the data—
representing results of the kernel. This is performed with another transfer operation
from Global Memory to Host Memory, using the function cudaMemcpy().

3 Design of an conflict-based CUDA ASP Solver

In this section, we will present the CUD@ASP procedure. This procedure is based on the
CDNL-ASP procedure adopted in the CLASP system [11, 10]. The procedure assumes
that the input is a ground ASP program. The novelty of CUD@ASP is the off-loading
of several time consuming operations to the GPU—with particular focus on conflict
analysis, exploration of the set of possible assignments and execution of the phases of
unit-propagation. The rest of this section is organized as follows: we will start with
an overview of the serial structure of the CUD@ASP procedure (Subsection 3.1). In
the successive subsections, we will illustrate the parallel versions of the key procedures
used in CUD@ASP: literal selection (Subsection 3.2), nogoods analysis (Subsection 3.3),
unit propagation (Subsection 3.4), conflict analysis (Subsection 3.5), and analysis of
stability (Subsection 3.7). In addition, we illustrate a method to use the GPU to handle
the search process in the tail part of the search tree (Subsection 3.6).

3.1 The General CUD@ASP Procedure

The overall CUD@ASP procedure is summarized in Algorithm 3.2. The procedures that
appear underlined in the algorithm are those that are delegated to the GPU for paral-
lel execution. The algorithm makes use of the following notation. The input (ground)
program is denoted by Π; Πcc denotes the completion of Π (eq. 3). The overall set
of nogoods is denoted by ∆Π , composed of the completion nogoods and the loop no-
goods. For each program atom p, the notation p represents the atom with a truth value
assigned; ¬p denotes, instead, the complement truth value with respect to p.

Lines 1–5 of Algorithm 3.2 represent the initialization phase of the ASP compu-
tation. In particular, the Parsing procedure (Line 5) is in charge of computing the
completion of Π and extracting the nogoods. The set A will keep track of the atoms
that have already been assigned a truth value. It is initialized to the empty set in Line 1
and updated by the Selection procedure at Line 22. Two variables (current dl
and k) are introduced to support the rest of the computation. In particular, the vari-
able current dl represents the decision level; this variable acts as a counter that keeps
track of the number of “choices” that have been made in the computation of an an-
swer set. Line 6 invokes the procedure StronglyConnectedComponent, which
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Algorithm 3.2 CUD@ASP
Input Π ground ASP program
Output An answer set, or null
1: A := ∅ . Atoms assignment
2: ∆Π := ∅ . Nogoods
3: current dl := 0 . Current Decision Level
4: k := 32 . Threshold for Exhaustive Procedure
5: (∆Π , k,Πcc) := Parsing(Π) . Initialize ∆Π as ∆Πcc

6: scc := StronglyConnectedComponent(Π)
7: loop
8: Violation := NoGoodCheck(A,∆Π)
9: if (Violation is true) ∧ (current dl = 0) then return no answer set

10: end if
11: if Violation is true then
12: (current dl, δ) = ConflictAnalysis(∆Π , A)
13: ∆Π = ∆Π ∪ {δ}
14: A := A \ {p ∈ A | current dl < dl(p)}
15: else
16: if ∃ δ ∈ ∆Π such that δ \A = {p} and p /∈ A then
17: A := UnitPropagation(A,∆Π)
18: end if
19: end if
20: if There are atoms not assigned then
21: if Number of atoms to assign > k then
22: p := Selection(Πcc, A)
23: current dl := current dl + 1
24: dl(p) := current dl
25: A := A ∪ {p}
26: else . At most k unassigned atoms: Non-deterministic GPU computation
27: if There is a successful thread for Exhaustive(A) then
28: for each successful thread returning A := Exhaustive(A) do
29: if StableTest(A,Πcc) is true then return AT ∩ atom(Π)
30: end if
31: end for
32: end if
33: end if
34: else return AT ∩ atom(Π)
35: end if
36: end loop

determines the positive dependence graph and its strongly connected components; in
absence of loops, the program Π is tight, thus not requiring the use of loop nogoods
(ΛΠ ). We have implemented the classical Tarjan’s algorithm, running in O(n+e), on
CPU (where n and e are the numbers of nodes and edges, respectively). The loop in
Lines 7–36 represents the core of the computation. It alternates the process of testing
consistency and propagating assignments (through the nogoods), and of guessing a pos-
sible assignment to atoms that are still undefined. Each cycle starts with a call to the
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procedure NoGoodCheck (Line 8)—which, given a partial assignment A, validates
whether all the nogoods in ∆Π are still satisfied. If a violation is detected, then the
procedure ConflictAnalysis is used to determine the decision level causing the
nogood violation, backtrack to such point in the search tree, and generate an additional
nogood to prune that branch of the search space (Lines 11–14). If p is the assignment at
the decision level determined by ConflictAnalysis, then the nogood will prompt
the unit propagation process to explore the branch starting with the truth assignment ¬p
(thus ensuring completeness of the computation [10]).

If the ConflictAnalysis procedure does not detect nogood violations, then the
procedure might be in one of the following situations:

- If there is a nogood that is completely covered by A except for one element p,
then the UnitPropagation procedure is called to determine assignments that
are implied by the nogoods (starting with the assignment ¬p) (Lines 16–17). Note
that this procedure does not modify the decision level. In the case of non-tight
programs, the UnitPropagation procedure will also execute a subroutine in
charge of validating the loop nogoods.

- If there are atoms left to assign (Line 20), then additional selections will need to
be performed. We distinguish two possibilities. If the number of unassigned atoms
is larger than a threshold k, then one of them, say p, is selected and the current
decision level is recorded (by setting the value of the variable dl(p)—see Line 24).
The Selection procedure is in charge for selecting a literal. The assignment
is extended accordingly and the current decision level is increased (Lines 23–25).
If the number of unassigned atoms is small, then a specialized parallel procedure
(Exhaustive) systematically explores all the possible missing assignments. For
each possible assignment of the remaining atoms, the procedure StableTest
validates that all nogoods are satisfied and that the overall assignment A is stable
(necessary test in the case of non-tight programs). This is described in Lines 27–32.

3.2 Selection Procedure

The purpose of this procedure is to determine an unassigned atom in the program and a
truth value for it. A number of heuristic strategies have been studied to determine atom
and assignment, often derived from analogous strategies developed in the context of
SAT solving or constraint solving [27, 2]. As soon as an atom has been selected, it is
necessary to assign a truth value to it. A traditional strategy [10] consists of assigning
at the beginning the value true to bodies of rules, while atoms are initially assigned
false—aiming at maximizing the number of resulting implications.

There is no an optimal strategy for all problems, of course. In the current imple-
mentation, we provide three selection strategies: the most frequently occurring literal
strategy which selects the atom that appears in the largest number of nogoods (that aims
at determining violations as soon as possible or to lead to early propagations through
the nogoods), the leftmost-first strategy (which selects the first unassigned atom found),
and the Jeroslow-Wang strategy (also based on the frequency of occurrence of an atom,
but placing a greater value on smaller nogoods). All the three strategies are implemented
by allowing kernels on the GPU to concurrently compute the rank of each atom; these
rankings are re-evaluated at each backjump.
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Algorithm 3.3 NoGoodCheck . Kernel executed by thread i
Input A, ∆Π = {δ1, . . . , δm} . An assignment A and a set of nogoods ∆Π

Output True or False
1: if i ≤ m then
2: state := 0
3: covered := 0
4: Atom to propagate := NULL
5: for all p ∈ δi do
6: if ¬p ∈ A then state := 1
7: else if p ∈ A then covered := covered+ 1
8: else Atom to propagate := p
9: end if

10: end for
11: if covered = |δi| then return V iolation := True
12: else if covered = |δi| − 1 and state = 0 then
13: Make Atom to propagate global
14: end if
15: return V iolation := False
16: end if

3.3 NoGoodCheck Procedure

The NoGoodCheck procedure (see Algorithm 3.3) is primarily used to verify whether
the current partial assignmentA violates any of the nogoods in a given set∆Π . The pro-
cedure plays also the additional rôle of identifying opportunities for unit propagation—
i.e., recognizing nogoods δ such that δ \A = {p} and ¬p 6∈ A. In this case, the element
p will be the target of a successive unit propagation phase.

The pseudocode in Algorithm 3.3 describes a CUDA kernel (i.e., running on GPU)
implementing the NoGoodCheck. Each thread handles one of the nogoods in ∆Π and
performs a linear scan of its assigned atoms (Lines 5–10). The local flag state keeps
track of whether the nogood is satisfied by the assignment (state equal to 1). The
counter covered keeps track of how many elements of δi have already been found
in A. The condition of state equal to zero and the covered counter equal to the
size of the nogood implies that the nogood is violated by A. The first thread to detect a
violation will communicate it to the host by setting a variable (Violation—Line 11)
in global memory (used in Lines 9 and 11 of the general CUD@ASP procedure).

Lines 12–13 implement the second functionality of the NoGoodCheck procedure—
by identifying and making global the single element of the nogood that is not covered by
the A assignment. Note that the identification of the element Atom to Propagate
can be conveniently performed in NoGoodCheck since the procedure is already per-
forming the scanning of the nogood to check its validity.

3.4 UnitPropagation Procedure

The UnitPropagation procedure is performed only if the NoGoodCheck has de-
tected no violations and has exposed at least one atom for propagation (as in Lines
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12–13 of Algorithm 3.3). UnitPropagation is implemented as a CUDA kernel—
which allows us to distribute the different nogoods among threads, each in charge of
extending the partial assignment A with one additional assignment. The procedure is
iterated until a fixpoint is reached. The extension of A is an immediate consequence
of the work done in NoGoodCheck: if the check of a nogood δi identifies p as the
only element in δi not covered by A (i.e., {p,¬p} ∩ A = ∅), then A is extended as
A := A ∪ {¬p}.

If the program Π is non-tight, then the UnitPropagation procedure includes
an additional phase aimed at performing the computation of the unfounded sets deter-
mined by the partial assignment A and the corresponding loop nogoods ΛΠ . This pro-
cess is implemented by the procedure UnfoundedSetCheck and follows the gen-
eral structure of the analogous procedure used in the implementation of CLASP [10].
This procedure performs an analysis of the strongly connected components of the pos-
itive dependence graph D+

Π (already computed at the beginning of the computation of
CUD@ASP—Line 6). For each p ∈ atoms(Π), scc(p) denotes the set of atoms that
belong to the same strongly connected component as p. An atom p is said to be cyclic if
there exists a rule r ∈ Π such that: head(r) ∈ scc(p) and body+(r)∩ scc(p) 6= ∅, oth-
erwise p is acyclic. Cyclic atoms are the core of the search for unfounded sets—since
they are the only ones that can appear in the unfounded loops. Cyclic atoms along with
the knowledge of elements assigned by A allow the computation of unfounded sets, as
discussed in [17, 10]. In the current implementation UnfoundedSetCheck runs on
the host. Some parts are inherently parallelizable (e.g., the computation of the external-
support, or a splitting to different threads of the analysis of each scc component)—their
execution on the device is work in progress.

3.5 ConflictAnalysis Procedure

The ConflictAnalysis procedure is used to resolve a conflict detected by the
NoGoodCheck by identifying a level dl and assignment p the computation should
backtrack to, in order to remove the nogood violation. This process allows classical
backjumping in the search tree generated by the Algorithm 3.2 [28, 27]. In addition
to this, the procedure produces a new nogood to be added to the nogoods set, in or-
der to prevent the same assignments in future. This procedure is implemented by a
sequence of kernels, and it is executed after some nogood violations have been detected
by NoGoodCheck. This procedure works as follows:
• Each thread is assigned to a unique nogood (δ).
• The thread determines the last two assigned literals in δ, say `M (δ) and `m(δ).

The two (not necessarily distinct) decision levels of these assignments are stored in
dlM (δ) = dl(`M (δ)) and dlm(δ) = dl(`m(δ)), respectively.

• The thread verifies whether δ is violated.
• Then, the violated nogood δ with lowest value of dlM is determined.

At this point, a nogood learning procedure is activated. A kernel function (again, one
thread for each existing nogood) determines each nogood ε, such that: (a) ¬`M (δ) ∈ ε
and (b) ε \ {¬`M (δ)} ⊆ A. Heuristic functions (see, e.g., [1]) can be applied to select
one of these ε. Currently, the smallest one is selected in order to generate small new
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nogoods—as future work, we will consider all the set of these nogoods. The next step
performs a sequence of steps, by repeatedly setting δ := (ε\{¬`M (δ)})∪(δ\{`M (δ)})
and coherently updating the values of dlM (δ) and dlm(δ), until dlM (δ) 6= dlm(δ). This
procedure ends with the identification of a unique implication point (UIP [21]) that de-
termines the lower decision level/literal among those causing the detected conflicts. We
use such value for backjumping (Line 14 of Algorithm 3.2). The last nogood obtained
in this manner is also added to the set of nogoods.

3.6 Exhaustive Procedure

GPU are typically employed for data parallelism. However, as shown in [6], when the
size of the problem is manageable, it is possible to use them for massive search paral-
lelism. We have developed the Exhaustive procedure for this task. It is called when
at most k atoms remains undecided—where k is a parameter that can be set by the user
(by default, k = 32). The nogood set is simplified using the current assignment (this is
done in parallel by a kernel that assigns each nogood to a thread). This simplified sets
will be then processed by a second kernel with 2k threads, that non-deterministically
explores all of the possible assignments. Each thread verifies that the assignments do
not violate the nogoods set. If this happens, in case of a tight program, we have found
an answer set. Otherwise the StableTest procedure (Sect. 3.7) is launched (Lines
27–28 of Algorithm 3.2). The efficiency of this procedure is obtained by a careful use of
low-level data-structures. For example, the Boolean assignment of 32 atoms is stored in
a single integer variable. Similarly, the nogood representation is stored using bit-strings,
and violation control is managed by low-level bit operations.

3.7 StableTest Procedure

In order to verify whether an assignment found by the Exhaustive procedure is a
stable model, we have implemented a GPU kernel that behaves as follows:
• It computes the reduct of the program: each thread takes care of an individual rule;

as result, some threads may become inactive due to rule elimination, threads dealing
with rules with all negative literals not in the model simply ignore them, while all
other threads are idle.
• A computation of the minimum fixpoint is performed. Each thread handles one rule

(internally modified by the first step above) and, if the body is satisfied, updates the
sets of derived atoms. Once a rule is triggered, it becomes inactive, speeding-up the
consecutive computations.
• When a fixpoint is reached, the computed and the guessed models are compared.

4 Concluding discussion

We have reported on our working project of developing an ASP solver running (par-
tially) on GPGPUs. We implemented a working prototypical solver. The first results
in experimenting with different GPU architectures are encouraging. Table 1 shows an
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excerpt of the results obtained on some instances (taken from the Second ASP Compe-
tition). The differences between the performance obtained by exploiting different GPUs
are evident and indicates the strong potential for enhanced performance and the scala-
bility of the approach.

Table 2 reports on the performance of different serial ASP solvers, on the same col-
lection of instances. Far from being a deep and fair comparison of these solvers against
the GPU-based prototype, these results show that even at this stage of its development,
the parallel prototype can compete, in some cases, with the existing and highly op-
timized serial solvers. Notice that the GPU-based prototype does not benefit from a
number of refined heuristics and search/decision strategies exploited, for instance, by
the state of the art solver CLASP.

It should be noticed that, in order to profitably exploit in full the computational
power of the GPUs, one has to carefully tune its parallel application w.r.t. the charac-
teristics of the specific device at hand. The architectural features and characteristics of
the specific GPU family has to be carefully taken into account. Moreover, even consid-
ering a given GPU, different options can be adopted both in partitioning tasks among
threads/warps and in allocating/transferring data on the device’s memory. Clearly, such
choices sensibly affect the performance of the whole application. This can be better ex-
plained by considering Table 3. It shows the performance obtained by three versions of
the GPU-based solver, differing in the way the device’s global memory is used. Apart
from the default allocation mentioned in Sect. 2.2, CUDA provides two other basic
kind of memory allocation. A first possibility uses page-locking to speed up address
resolution. Mapped allocation allows one to map a portion of host memory into the
device global memory. In this way the data transfer between host and device is im-
plicitly ensured by the system and explicit memory transfers (by means of the function
cudaMemcpy()) can be avoided. The first column of Table 3 shows the performance of
a version of the prototype that allocates all data by using mapped memory. The behavior
of a faster version of the solver which exploits page-locking to deal with the main data
structures (essentially those representing the set of nogoods), is shown in the second
column. Clearly, this approach requires additional programming effort (in optimizing
and keeping track of memory transfers). Even better performance has been achieved by
a third version of the solver that adopts page-locking to allocate all data structures, only
on the device. This solution may appear, in some sense, unappealing, because it im-
poses to implement on the device also some intrinsically-serial functionalities. Even if
these functions cannot fully exploit the parallelism of the cores, considerable advantage
is achieved by avoiding most of the memory transfer between host and device.

In this work we made initial steps towards the creation of a GPU-based ASP-
solver; however, further effort is needed to improve the solver. In particular, some pro-
cedures need to be optimized in order to take greater advantage from the high data-
/task-parallelism offered by GPGPUs and the different types of available memories.
Moreover, some parts of the solver currently running on the host, should be replaced by
suitable parallel counterparts (examples are the computation of the strongly connected
components of the dependence graph and the computation of the unfounded sets). We
plan to develop the stability test that avoids analyzing the whole program and the im-
plementation of the NoGoodCheck that makes use of watched literals.
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Instance GT520 GT640 GTX580
channelRoute 3 5.44 1.73 0.37
knights 11 11 0.70 0.23 0.06
knights 13 13 1.70 0.51 0.12
knights 15 15 1.71 0.51 0.12
knights 17 17 2.40 0.69 0.16
knights 20 20 8.57 2.34 0.46
labyrinth.0.5 0.08 0.08 0.05
schur 4 41 0.24 0.16 0.07
schur 4 42 0.31 0.20 0.07

Table 1. Results obtained with three different Nvidia GeForce GPUs: GT520 (48 cores, capability
2.0, GPU clock 1.62 GHz, memory clock rate 0.50 GHz, global memory 1GB), GT640 (384
cores, capability 3.0, GPU clock 0.90 GHz, memory clock rate 0.89 GHz, global memory 2GB),
GTX580 (512 cores, capability 2.0, GPU clock 1.50 GHz, memory clock rate 2.00 GHz, global
memory 1.5GB). The timing is in seconds.
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Instance All data mapped ∆Π page-locked All data page-locked
knights 11 11 0.87 0.16 0.06
knights 13 13 2.50 0.34 0.12
knights 15 15 2.49 0.35 0.12
knights 17 17 3.60 0.50 0.16
knights 20 20 14.14 1.60 0.46
labyrinth.0.5 0.82 0.03 0.05
schur 4 41 19.71 0.09 0.07
schur 4 42 24.75 0.12 0.07

Table 3. Results obtained with GTX580 with different use of memory resources.
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Abstract. Incompleteness and vagueness are inherent properties of knowl-
edge in several real world domains and are particularly pervading in those
domains where entities could be better described in natural language. In
order to deal with incomplete and vague structured knowledge, several
fuzzy extensions of Description Logics (DLs) have been proposed in the
literature. In this paper, we address the issues raised by incomplete and
vague knowledge in Inductive Logic Programming (ILP). We present a
novel ILP method for inducing fuzzy DL inclusion axioms from crisp DL
knowledge bases and discuss the results obtained in comparison with re-
lated works.

1 Introduction

Incompleteness and vagueness are inherent properties of knowledge in several real
world domains and are particularly pervading in those domains where entities
could be better described in natural language. The issues raised by incomplete
and vague knowledge have been traditionally addressed in the field of Knowledge
Representation (KR).

Incomplete knowledge. The Open World Assumption (OWA) is used in KR to
codify the informal notion that in general no single agent or observer has complete
knowledge. The OWA limits the kinds of inference and deductions an agent can
make to those that follow from statements that are known to the agent to be
true. In contrast, the Closed World Assumption (CWA) allows an agent to infer,
from its lack of knowledge of a statement being true, anything that follows from
that statement being false. Heuristically, the OWA applies when we represent
knowledge within a system as we discover it, and where we cannot guarantee that
we have discovered or will discover complete information. In the OWA, statements
about knowledge that are not included in or inferred from the knowledge explicitly
recorded in the system may be considered unknown, rather than wrong or false.
Description Logics (DLs) are KR formalisms compliant with the OWA, thus
turning out to be particularly suitable for representing incomplete knowledge [1].

Vague knowledge. It is well known that “classical” DLs are not appropriate to
deal with vague knowledge [20]. We recall for the inexpert reader that there has
been a long-lasting misunderstanding in the literature of artificial intelligence and



uncertainty modelling, regarding the role of probability/possibility theory and
vague/fuzzy theory. A clarifying paper is [5]. Specifically, under uncertainty theory
fall all those approaches in which statements are true or false to some probability
or possibility (for example, “it will rain tomorrow”). That is, a statement is true
or false in any world/interpretation, but we are “uncertain” about which world to
consider as the right one, and thus we speak about, e.g., a probability distribution
or a possibility distribution over the worlds. On the other hand, under fuzzy theory
fall all those approaches in which statements (for example, “the car is long”) are
true to some degree, which is taken from a truth space (usually [0, 1]). That is,
an interpretation maps a statement to a truth degree, since we are unable to
establish whether a statement is entirely true or false due to the involvement
of vague concepts, such as “long car” (the degree to which the sentence is true
depends on the length of the car). Here, we shall focus on fuzzy logic only.

Learning in fuzzy DLs. Although a relatively important amount of work has
been carried out in the last years concerning the use of fuzzy DLs as ontology
languages [20] and the use of DLs as representation formalisms in Inductive Logic
Programming (ILP) [13], the problem of automatically managing the evolution of
fuzzy ontologies by applying ILP algorithms still remains relatively unaddressed.
Konstantopoulos and Charalambidis [9] propose an ad-hoc translation of fuzzy
 Lukasiewicz ALC DL constructs into LP in order to apply a conventional ILP
method for rule learning. However, the method is not sound as it has been recently
shown that the mapping from fuzzy DLs to LP is incomplete [17] and entailment
in  Lukasiewicz ALC is undecidable [4]. Iglesias and Lehmann [7] propose an
extension of DL-Learner [10] with some of the most up-to-date fuzzy ontology
tools, e.g. the fuzzyDL reasoner [2]. Notably, the resulting system can learn fuzzy
OWL DL 3 equivalence axioms from FuzzyOWL 2 ontologies. 4 However, it has
been tested only on a toy problem with crisp training examples and does not build
automatically fuzzy concrete domains. Lisi and Straccia [14] present SoftFoil, a
logic-based method for learning fuzzy EL inclusion axioms from fuzzy DL-Lite
ontologies (also, SoftFoil has not been implemented and tested).

Contribution of this paper. In this paper, we describe a novel method, named
Foil-DL, for learning fuzzy EL(D) inclusion axioms from any crisp DL knowl-
edge base. 5 Similarly to SoftFoil, it adapts the popular rule induction method
Foil [18]. However, Foil-DL differs from SoftFoil mainly by the fact that the
latter learns fuzzy EL inclusion axioms from fuzzy DL-Lite ontologies, while the
former learns fuzzy EL(D) inclusion axioms from any crisp DL ontology.

Structure of the paper. The paper is structured as follows. For the sake of self-
containment, Section 2 introduces some basic definitions we rely on. Section 3
describes the learning problem and the solution strategy of Foil-DL. Section 4
illustrates some results obtained in a comparative study between Foil-DL and

3 http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
4 http://www.straccia.info/software/FuzzyOWL
5 DL stands for any DL.
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Fig. 1. (a) Trapezoidal function trz (a, b, c, d), (b) triangular function tri(a, b, c), (c)
left-shoulder function ls(a, b), and (d) right-shoulder function rs(a, b).

DL-Learner on the popular ILP problem of Michalski’s trains. Section 5 concludes
the paper by discussing limits of the current work, related work and possible
directions of future work.

2 Preliminaries

Mathematical Fuzzy Logic. Fuzzy Logic is the logic of fuzzy sets. A fuzzy set A
over a countable crisp set X is a function A : X → [0, 1]. Let A and B be two fuzzy
sets. The standard fuzzy set operations conform to (A∩B)(x) = min(A(x), B(x)),
(A ∪ B)(x) = max(A(x), B(x)) and Ā(x) = 1− A(x), while the inclusion degree
between A and B is defined typically as

deg(A,B) =

∑
x∈X(A ∩B)(x)∑

x∈X A(x)
. (1)

The trapezoidal (Fig. 1 (a)), the triangular (Fig. 1 (b)), the left-shoulder func-
tion, Fig. 1 (c)), and the right-shoulder function, Fig. 1 (d)) are frequently used
to specify membership functions of fuzzy sets. Although fuzzy sets have a greater
expressive power than classical crisp sets, their usefulness depend critically on
the capability to construct appropriate membership functions for various given
concepts in different contexts. The problem of constructing meaningful member-
ship functions is a difficult one (see, e.g., [8, Chapter 10]). However, one easy
and typically satisfactory method to define the membership functions is to uni-
formly partition the range of values into 5 or 7 fuzzy sets using either trapezoidal
functions, or triangular functions. The latter is the more used one, as it has less
parameters and is also the approach we adopt. For instance, the figure below il-
lustrates salary values (bounded by a minimum and maximum value), partitioned
uniformly into 5 fuzzy sets.

In Mathematical Fuzzy Logic [6], the convention prescribing that a statement is
either true or false is changed and is a matter of degree measured on an ordered
scale that is no longer {0, 1}, but e.g. [0, 1]. This degree is called degree of truth
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Table 1. Syntax and semantics of constructs for the ALC DL.

bottom (resp. top) concept ⊥ (resp. >) ∅ (resp. ∆I)
atomic concept A AI ⊆ ∆I

role R RI ⊆ ∆I ×∆I
individual a aI ∈ ∆I

concept negation ¬C ∆I \ CI
concept intersection C1 u C2 CI1 ∩ CI2

concept union C1 t C2 CI1 ∪ CI2
value restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}

existential restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}
general concept inclusion C1 v C2 CI1 ⊆ CI2

concept assertion a : C aI ∈ CI
role assertion (a, b) : R (aI , bI) ∈ RI

of the logical statement φ in the interpretation I. For us, fuzzy statements have
the form 〈φ, α〉, where α∈ (0, 1] and φ is a statement, encoding that the degree
of truth of φ is greater or equal α.

A fuzzy interpretation I maps each atomic statement pi into [0, 1] and is then
extended inductively to all statements: I(φ ∧ ψ) = I(φ) ⊗ I(ψ), I(φ ∨ ψ) =
I(φ) ⊕ I(ψ), I(φ → ψ) = I(φ) ⇒ I(ψ), I(¬φ) = 	I(φ), I(∃x.φ(x)) =
supy∈∆I I(φ(y)), I(∀x.φ(x)) = infy∈∆I I(φ(y)), where ∆I is the domain of I,
and ⊗, ⊕, ⇒, and 	 are so-called t-norms, t-conorms, implication functions,
and negation functions, respectively, which extend the Boolean conjunction, dis-
junction, implication, and negation, respectively, to the fuzzy case. One usually
distinguishes three different logics, namely  Lukasiewicz, Gödel, and Product log-
ics [6]. Any other continuous t-norm can be obtained from them. The combination
functions in Gödel logic are defined as follows:

a⊗b = min(a, b), a⊕b = max(a, b), a⇒ b =

{
1 if a ≤ b
b otherwise

,	 a =

{
1 if a = 0

0 otherwise
. (2)

The notions of satisfiability and logical consequence are defined in the standard
way, where a fuzzy interpretation I satisfies a fuzzy statement 〈φ, α〉 or I is a
model of 〈φ, α〉, denoted as I |= 〈φ, α〉, iff I(φ) ≥ α.

Fuzzy Description Logics. Description Logics (DLs) are a family of decidable First
Order Logic (FOL) fragments that allow for the specification of structured knowl-
edge in terms of classes (concepts), instances (individuals), and binary relations
between instances (roles) [1]. Complex concepts (denoted with C) can be defined
from atomic concepts (A) and roles (R) by means of the constructors available
for the DL in hand. The set of constructors for the ALC DL is reported in Table
1. A DL Knowledge Base (KB) K = 〈T ,A〉 is a pair where T is the so-called
Terminological Box (TBox) and A is the so-called Assertional Box (ABox). The
TBox is a finite set of General Concept Inclusion (GCI) axioms which represent
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is-a relations between concepts, whereas the ABox is a finite set of assertions (or
facts) that represent instance-of relations between individuals (resp. couples of
individuals) and concepts (resp. roles). Thus, when a DL-based ontology language
is adopted, an ontology is nothing else than a TBox, and a populated ontology
corresponds to a whole KB (i.e., encompassing also an ABox).

The semantics of DLs can be defined directly with set-theoretic formalizations
(as shown in Table 1 for the case of ALC) or through a mapping to FOL (as
shown in [3]). An interpretation I = (∆I , ·I) for a DL KB consists of a domain
∆I and a mapping function ·I . For instance, I maps a concept C into a set of
individuals CI ⊆ ∆I , i.e. I maps C into a function CI : ∆I → {0, 1} (either
an individual belongs to the extension of C or does not belong to it). Under the
Unique Names Assumption (UNA) [19], individuals are mapped to elements of
∆I such that aI 6= bI if a 6= b. However UNA does not hold by default in DLs.
An interpretation I is a model of a KB K iff it satisfies all axioms and assertions
in T and A . In DLs a KB represents many different interpretations, i.e. all its
models. This is coherent with the OWA that holds in FOL semantics. A DL KB
is satisfiable if it has at least one model.

The main reasoning task for a DL KB K is the consistency check which
tries to prove the satisfiability of K. Another well known reasoning service in
DLs is instance check, i.e., the check of whether an ABox assertion is a logical
implication of a DL KB. A more sophisticated version of instance check, called
instance retrieval, retrieves, for a DL KB K, all (ABox) individuals that are
instances of the given (possibly complex) concept expression C, i.e., all those
individuals a such that K entails that a is an instance of C.

Concerning fuzzy DLs, several fuzzy extensions of DLs have been proposed
(see the survey in [15]). We recap here the fuzzy variant of the DL ALC(D) [21].

A fuzzy concrete domain or fuzzy datatype theory D = 〈∆D, ·D〉 consists of
a datatype domain ∆D and a mapping ·D that assigns to each data value an
element of ∆D, and to every n-ary datatype predicate d an n-ary fuzzy relation
over ∆D. We will restrict to unary datatypes as usual in fuzzy DLs. Therefore, ·D
maps indeed each datatype predicate into a function from ∆D to [0, 1]. Typical
examples of datatype predicates d are the well known membership functions

d := ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | ≥v | ≤v | =v ,

where e.g. ls(a, b) is the left-shoulder membership function and ≥v corresponds
to the crisp set of data values that are greater or equal than the value v.

In ALC(D), each role is either an object property (denoted with R) or a
datatype property (denoted with T ). Complex concepts are built according to the
following syntactic rules:

C → > | ⊥ | A | C1 uC2 | C1 tC2 | ¬C | C1 → C2 | ∃R.C | ∀R.C | ∃T.d | ∀T.d . (3)

Axioms in a fuzzy ALC(D) KB K = 〈T ,A〉 are graded, e.g. a GCI is of the form
〈C1 v C2, α〉 (i.e. C1 is a sub-concept of C2 to degree at least α). We may omit
the truth degree α of an axiom; in this case α = 1 is assumed.

Concerning the semantics, let us fix a fuzzy logic. In fuzzy DLs, I maps
C into a function CI : ∆I → [0, 1] and, thus, an individual belongs to the
extension of C to some degree in [0, 1], i.e. CI is a fuzzy set. Specifically, a fuzzy
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interpretation is a pair I = (∆I , ·I) consisting of a nonempty (crisp) set ∆I

(the domain) and of a fuzzy interpretation function ·I that assigns: (i) to each
atomic concept A a function AI : ∆I → [0, 1]; (ii) to each object property R a
function RI : ∆I × ∆I → [0, 1]; (iii) to each data type property T a function
T I : ∆I ×∆D → [0, 1]; (iv) to each individual a an element aI ∈ ∆I ; and (v) to
each concrete value v an element vI ∈ ∆D.

Now, ·I is extended to concepts as specified below (where x ∈ ∆I):

⊥I(x) = 0, >I(x) = 1,

(C uD)I(x) = CI(x)⊗DI(x), (C tD)I(x) = CI(x)⊕DI(x),

(¬C)I(x) = 	CI(x), (C → D)I(x) = CI(x)⇒ DI(x),

(∀R.C)I(x) = infy∈∆I{RI(x, y)⇒ CI(y)}, (∃R.C)I(x) = supy∈∆I{RI(x, y)⊗ CI(y)},
(∀T.d)I(x) = infy∈∆D{T I(x, y)⇒ dD(y)}, (∃T.d)I(x) = supy∈∆D{T I(x, y)⊗ dD(y)} .

Hence, for every concept C we get a function CI : ∆I → [0, 1].
The satisfiability of axioms is then defined by the following conditions: (i) I

satisfies an axiom 〈a:C,α〉 if CI(aI) ≥ α; (ii) I satisfies an axiom 〈(a, b):R,α〉
if RI(aI , bI) ≥ α; (iii) I satisfies an axiom 〈C v D,α〉 if (C v D)

I ≥ α where

(C v D)
I

= infx∈∆I{CI(x) ⇒ DI(x)}. I is a model of K iff I satisfies each
axiom in K. We say that K entails an axiom 〈τ, α〉, denoted K |= 〈τ, α〉, if any
model of K satisfies 〈τ, α〉. The best entailment degree of τ w.r.t. K, denoted
bed(K, τ), is defined as

bed(K, τ) = sup{α | K |= 〈τ, α〉} . (4)

3 Learning fuzzy EL(D) axioms with Foil-DL
3.1 The problem statement

The problem considered in this paper concerns the automated induction of fuzzy
EL(D) 6 GCI axioms providing a sufficient condition for a given atomic concept
H. It can be cast as a rule learning problem, provided that positive and negative
examples of H are available. This problem can be formalized as follows.

Given:

– a consistent crisp DL KB K = 〈T ,A〉 (the background theory);
– an atomic concept H (the target concept);
– a set E = E+ ∪ E− of crisp concept assertions labelled as either positive or

negative examples for H (the training set);
– a set LH of fuzzy EL(D) GCI axioms (the language of hypotheses)

the goal is to find a set H ⊂ LH (a hypothesis) such that: ∀e ∈ E+,K ∪ H |= e
(completeness), and ∀e ∈ E−,K ∪H 6|= e (consistency).

Here we assume that K∩ E = ∅. Also, the language LH is given implicitly by
means of syntactic restrictions over a given alphabet. In particular, the alphabet
underlying LH is a subset of the alphabet for the language LK of the background

6 EL(D) is a fragment of ALC(D).
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theory. However, LH differs from LK as for the form of axioms. Please note that
we do not make any specific assumption about the DL the background theory
refers to. Two further restrictions hold naturally. One is that K 6|= E+ since, in
such a case,H would not be necessary to explain E+. The other is that K∪H 6|= ⊥,
which means that K∪H is a consistent theory, i.e. has a model. An axiom φ ∈ LH
covers an example e ∈ E iff K ∪ {φ} |= e.

The training examples. Given the target conceptH, the training set E consists
of concept assertions of the form a:H, where a is an individual occurring in K.
Note that both K and E is crisp. Also, E is split into E+ and E−. Note that, under
OWA, E− consists of all those individuals which can be proved to be instance of
¬H. On the other hand, under CWA, E− is the collection of individuals, which
cannot be proved to be instance of H.

The language of hypotheses. Given the target concept H, the hypotheses to
be induced are fuzzy GCIs of the form

B v H , (5)

where the left-hand side is defined according to the following EL(D) syntax

B −→ > | A | ∃R.B | ∃T.d | B1 uB2 . (6)

The language LH generated by this syntax is potentially infinite due, e.g., to the
nesting of existential restrictions yielding to complex concept expressions such as
∃R1.(∃R2 . . . .(∃Rn.(C)) . . .). LH is made finite by imposing further restrictions
on the generation process such as the maximal number of conjuncts and the depth
of existential nesting allowed in the left-hand side. Also, note that the learnable
GCIs do not have an explicit truth degree. However, as we shall see later on,
once we have learned a fuzzy GCI of the form (5), we attach to it a confidence
degree that is obtained by means of the cf function (see Eq. (8)). Finally, note
that the syntactic restrictions of Eq. (6) w.r.t. Eq. (3) allow for a straightforward
translation of the inducible axioms into rules of the kind “if x is a C1 and . . . and
x is a Cn then x is an H”, which corresponds to the usual pattern in fuzzy rule
induction (in our case, B v H is seen as a rule “if B then H”) .

3.2 The solution strategy

The solution proposed for the learning problem defined in Section 3.1 is inspired
by Foil. Foil is a popular ILP algorithm for learning sets of rules which performs
a greedy search in order to maximise a gain function [18].

In Foil-DL, the learning strategy of Foil (i.e., the so-called sequential cover-
ing approach) is kept. The function Learn-Sets-of-Axioms (reported in Figure
2) carries on inducing axioms until all positive examples are covered. When an
axiom is induced (step 3.), the positive examples covered by the axiom (step
5.) are removed from E (step 6.). In order to induce an axiom, the function
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function Learn-Sets-of-Axioms(K, H, E+, E−, LH): H
begin
1. H := ∅;
2. while E+ 6= ∅ do
3. φ := Learn-One-Axiom(K, H, E+, E−, LH);
4. H := H ∪ {φ};
5. E+φ := {e ∈ E+|K ∪ φ |= e};
6. E+ := E+ \ E+φ ;

7. endwhile
8. return H
end

Fig. 2. Foil-DL: Learning a set of GCI axioms.

Learn-One-Axiom (reported in Figure 3) starts with the most general axiom
(i.e. > v H) and specializes it by applying the refinement rules implemented in
the function Refine (step 7.). The iterated specialization of the axiom continues
until the axiom does not cover any negative example and its confidence degree is
greater than a fixed threshold (θ). The confidence degree of axioms being gener-
ated with Refine allows for evaluating the information gain obtained on each
refinement step by calling the function Gain (step 9.).

Due to the peculiarities of the language of hypotheses in Foil-DL, necessary
changes are made to Foil as concerns the functions Refine and Gain. Details
about these novel features are provided in the next two subsections.

The refinement operator. The function Refine implements a specialization
operator with the following refinement rules:

AddA: adds an atomic concept A
Add∃R.>: adds a complex concept ∃R.> by existential role restriction
Add∃T.d: adds a complex concept ∃T.d by existential role restriction
SubstA: replaces an atomic conceptA with another atomic conceptA′ s.t.A′ v A

At each refinement step (i.e. at each call of Refine), the rules are applied first
to the left-hand side of the axiom being specialized and then recursively to the
range of all the conjuncts defined with existential role restriction. For example,
let us consider that H is the target concept, A, A′, B, R,R′, T are concepts and
properties occurring in K, and A′ v A holds in K. Under these assumptions, the
axiom ∃R.B v H is specialized into the following axioms:

– A u ∃R.B v H, B u ∃R.B v H, A′ u ∃R.B v H;
– ∃R′.> u ∃R.B v H, ∃T.d u ∃R.B v H;
– ∃R.(B uA) v H, ∃R.(B uA′) v H;
– ∃R.(B u ∃R.>) v H, ∃R.(B u ∃R′.>) v H, ∃R.(B u ∃T.d) v H.

The application of the refinement rules is not blind. It takes the background
theory into account in order to avoid the generation of redundant or useless
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function Learn-One-Axiom(K, H, E+, E−, LH): φ
begin
1. B := >;
2. φ := B v H;
3. E−φ := E−;

4. while cf(φ) < θ or E−φ 6= ∅ do
5. Bbest := B;
6. maxgain := 0;
7. Φ := Refine(φ,LH)
8. foreach φ′ ∈ Φ do
9. gain := Gain(φ′, φ);
10. if gain ≥ maxgain then
11. maxgain := gain;
12. Bbest := B′;
13. endif
14. endforeach
15. φ := Bbest v H;
16. E−φ := {e ∈ E−|K ∪ φ |= e};
17. endwhile
18. return φ
end

Fig. 3. Foil-DL: Learning one GCI axiom.

hypotheses. For example, if the concept B′ is the range of R′ in K, the func-
tion Refine adds the conjunct ∃R′.B′ instead of ∃R′.>. One such “informed”
refinement operator is able to perform “cautious” big steps in the search space.

Note that a specialization operator reduces the number of examples covered
by a GCI. More precisely, the aim of a refinement step is to reduce the number
of covered negative examples, while still keeping some covered positive examples.
Since learned GCIs cover only positive examples, K will remain consistent after
the addition of a learned GCI.

The heuristic. The function Gain implements an information-theoretic crite-
rion for selecting the best candidate at each refinement step according to the
following formula:

Gain(φ′, φ) = p ∗ (log2(cf(φ′))− log2(cf(φ))) , (7)

where p is the number of positive examples covered by the axiom φ that are still
covered by φ′. Thus, the gain is positive iff φ′ is more informative in the sense
of Shannon’s information theory, i.e. iff the confidence degree (cf) increases. If
there are some refinements, which increase the confidence degree, the function
Gain tends to favour those that offer the best compromise between the confidence
degree and the number of examples covered. Here, cf for an axiom φ of the form
(5) is computed as a sort of fuzzy set inclusion degree (see Eq. (1)) between the
fuzzy set represented by concept B and the (crisp) set represented by concept
H. More formally:
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cf(φ) = cf(B v H) =

∑
a∈Ind+H(A) bed(K, a:B)

|IndH(A)| (8)

where Ind+H(A) (resp., IndH(A) ) is the set of individuals occurring in A and
involved in E+φ (resp., E+φ ∪E−φ ) such that bed(K, a:B) > 0. We remind the reader

that bed(K, a:B) denotes the best entailment degree of the concept assertion a:B
w.r.t. K as defined in Eq. (4). Note that for individuals a ∈ Ind+H(A), K |= a:H
holds and, thus, bed(K, a:B uH) = bed(K, a:B). Also, note that, even ifK is crisp,
the possible occurrence of fuzzy concrete domains in expressions of the form ∃T.d
in B may imply that both bed(K, B v H) 6∈ {0, 1} and bed(K, a:B) 6∈ {0, 1}.

3.3 The implementation

A variant of Foil-DL has been implemented in the fuzzyDL-Learner 7 system
and provided with two GUIs: One is a stand-alone Java application, the other is
a tab widget plug-in for the ontology editor Protégé 8 (release 4.2).

Several implementation choices have been made. Notably, fuzzy GCIs in LH
are interpreted under Gödel semantics (see Eq. (2)). However, since K and E are
represented in crisp DLs, we have used a classical DL reasoner, together with
a specialised code, to compute the confidence degree of fuzzy GCIs. Therefore,
the system relies on the services of DL reasoners to solve all the deductive infer-
ence problems necessary to Foil-DL to work, namely instance retrieval, instance
check and subclasses retrieval. In particular, the sets Ind+H(A) and IndH(A) are
computed by posing instance retrieval problems to the DL reasoner. Conversely,
bed(K, a:∃T.d) can be computed from the derived T -fillers v of a, and applying
the fuzzy membership function of d to v. The examples covered by a GCI, and,
thus, the entailment tests in Learn-Sets-of-Axioms and Learn-One-Axiom,
have been determined in a similar way.

The implementation of Foil-DL features several optimizations w.r.t. the so-
lution strategy presented in Section 3.2. Notably, the search in the hypothesis
space can be optimized by enabling a backtracking mode. This option allows to
overcome one of the main limits of Foil, i.e. the sequential covering strategy.
Because it performs a greedy search, formulating a sequence of rules without
backtracking, Foil does not guarantee to find the smallest or best set of rules
that explain the training examples. Also, learning rules one by one could lead
to less and less interesting rules. To reduce the risk of a suboptimal choice at
any search step, the greedy search can be replaced in Foil-DL by a beam search
which maintains a list of k best candidates at each step instead of a single best
candidate. Additionally, to guarantee termination, we provide two parameters to
limit the search space: namely, the maximal number of conjuncts and the maxi-
mal depth of existential nesting allowed in a fuzzy GCI. In fact, the computation
may end without covering all positive examples.

7 http://straccia.info/software/FuzzyDL-Learner
8 http://protege.stanford.edu/
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Fig. 4. Michalski’s example of eastbound trains (left) and westbound trains (right)
(illustration taken from [16]).

4 Comparing Foil-DL and DL-Learner

In this section we report the results of a comparison between Foil-DL and DL-
Learner on a very popular learning task in ILP proposed 20 years ago by Ryszard
Michalski [16] and illustrated in Figure 4. Here, 10 trains are described, out of
which 5 are eastbound and 5 are westbound. The aim of the learning problem is
to find the discriminating features between these two classes.

For the purpose of this comparative study, we have considered two slightly
different versions, trains2 and trains3, of an ontology encoding the original Trains
data set. 9 The former has been adapted from the version distributed with DL-
Learner in order to be compatible with Foil-DL. Notably, the target classes
EastTrain and WestTrain have become part of the terminology and several
class assertion axioms have been added for representing positive and negative
examples. The metrics for trains2 are reported in Table 2. The ontology does
not encompass any data property. Therefore, no fuzzy concept can be generated
when learning GCIs from trains2 with Foil-DL. However, the ontology can be
slightly modified in order to test the fuzzy concept generation feature of Foil-
DL. Note that in trains2 cars can be classified according to the classes LongCar

and ShortCar. Instead of one such crisp classification, we may want a fuzzy
classification of cars. This is made possible by removing LongCar and ShortCar

(together with the related class assertion axioms) from trains2 and introducing
the data property hasLenght with domain Car and range double (together with
several data property assertions). The resulting ontology, called trains3, presents
the metrics reported in Table 2.

DL-Learner 10 features several algorithms. Among them, the closest to Foil-
DL is ELTL since it implements a refinement operator for concept learning in
EL [12]. Conversely, CELOE learns class expressions in the more expressive OWL
DL [11]. Both work only under OWA and deal only with crisp DLs.

4.1 Results on the ontology trains2

Trial with Foil-DL. The settings for this experiment allow for the generation
of hypotheses with up to 5 conjuncts and 2 levels of existential nestings. Under

9 http://archive.ics.uci.edu/ml/datasets/Trains
10 http://dl-learner.org/Projects/DLLearner
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Table 2. Ontology metrics for trains2.owl and trains3.owl according to Protégé.

# logical axioms # classes # object prop. # data prop. # individuals DL expressivity
trains2 345 32 5 0 50 ALCO
trains3 343 30 5 1 50 ALCO(D)

these restrictions, the GCI axioms learned by Foil-DL for the target concept
EastTrain are:

Confidence Axiom
1,000 3CarTrain and hasCar some (2LoadCar) subclass of EastTrain
1,000 3CarTrain and hasCar some (3WheelsCar) subclass of EastTrain
1,000 hasCar some (ElipseShapeCar) subclass of EastTrain
1,000 hasCar some (HexagonLoadCar) subclass of EastTrain

whereas the following GCI axioms are returned by Foil-DL for WestTrain:

Confidence Axiom
1,000 2CarTrain subclass of WestTrain
1,000 hasCar some (JaggedCar) subclass of WestTrain

The algorithm returns the same GCIs under both OWA and CWA. Note that an
important difference between learning in DLs and standard ILP is that the former
works under OWA whereas the latter under CWA. In order to complete the Trains
example we would have to introduce definitions and/or assertions to model the
closed world. However, the CWA holds naturally in this example, because we
have complete knowledge of the world, and thus the knowledge completion was
not necessary. This explains the behaviour of Foil-DL which correctly induces
the same hypotheses in spite of the opposite semantic assumptions.

Trial with ELTL. For the target concept EastTrain, the class expression learned
by ELTL is the following :

EXISTS hasCar.(ClosedCar AND ShortCar) (accuracy: 1.0)

whereas the following finding has been returned for the target concept WestTrain:

EXISTS hasCar.LongCar (accuracy: 0.8)

The latter is not fully satisfactory as for the example coverage.

Trial with CELOE. For the target concept EastTrain, CELOE learns several
class expressions of which the most accurate is:

hasCar some (ClosedCar and ShortCar) (accuracy: 1.0)

whereas, for the target concept WestTrain, the most accurate among the ones
found is the following:

hasCar only (LongCar or OpenCar) (accuracy: 1.0)

Note that the former coincide with the corresponding result obtained with ELTL
while the latter is a more accurate variant of the corresponding class expression
returned by ELTL. The increase in example coverage is due to the augmented
expressive power of the DL supported in CELOE.
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- hasLenght_low: hasLenght, triangular(23.0,32.0,41.0)
- hasLenght_fair: hasLenght, triangular(32.0,41.0,50.0)
- hasLenght_high: hasLenght, triangular(41.0,50.0,59.0)
- hasLenght_veryhigh: hasLenght, rightShoulder(50.0,59.0)
- hasLenght_verylow: hasLenght, leftShoulder(23.0,32.0)

Fig. 5. Fuzzy concepts derived by Foil-DL from the data property hasLenght.

4.2 Results on the ontology trains3

Trial with Foil-DL. The outcomes for the target concepts EastTrain and
WestTrain remain unchanged when Foil-DL is run on trains3 with the same
configuration of the first trial. Yet, fuzzy concepts are automatically generated
by Foil-DL from the data property hasLenght (see Figure 5). However, from
the viewpoint of discriminant power, these concepts are weaker than the other
crisp concepts occurring in the ontology. In order to make the fuzzy concepts
emerge during the generation of hypotheses, we have appropriately biased the
language of hypotheses. In particular, by enabling only the use of object and
data properties in LH, Foil-DL returns the following axiom for EastTrain:

Confidence Axiom
1,000 hasCar some (hasLenght_fair) and hasCar some (hasLenght_veryhigh)

and hasCar some (hasLenght_verylow) subclass of EastTrain

Conversely, for WestTrain, a lighter bias is sufficient to make fuzzy concepts
appear in the learned axioms. In particular, by disabling the class 2CarTrain in
LH, Foil-DL returns the following axioms:

Confidence Axiom
1,000 hasCar some (2WheelsCar and 3LoadCar) and hasCar some (3LoadCar and CircleLoadCar)

subclass of WestTrain
1,000 hasCar some (0LoadCar) subclass of WestTrain
1,000 hasCar some (JaggedCar) subclass of WestTrain
1,000 hasCar some (2LoadCar and hasLenght_high) subclass of WestTrain
1,000 hasCar some (ClosedCar and hasLenght_fair) subclass of WestTrain

Trial with ELTL. For the target class EastTrain, ELTL returns a class expression
which leaves some positive example uncovered (incomplete hypothesis):

(EXISTS hasCar.TriangleLoadCar AND EXISTS hasCar.ClosedCar) (accuracy: 0.9)

whereas, for the target concept WestTrain, it returns an overly general hypothesis
which covers also negative examples (inconsistent hypothesis):

TOP (accuracy: 0.5)

This bad performance of ELTL on trains3 is due to the low expressivity of EL
and to the fact that the classes LongCar and ShortCar, which appeared to be
discriminant in the first trial, do not occur in trains3 and thus can not be used
anymore for building hypotheses.

Trial with CELOE. The most accurate class expression found by CELOE for the
target concept EastTrain is:

((not 2CarTrain) and hasCar some ClosedCar) (accuracy: 1.0)

However, interestingly, CELOE learns also the following class expressions contain-
ing classes obtained by numerical restriction from the data property hasLenght:
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hasCar some (ClosedCar and hasLenght <= 48.5) (accuracy: 1.0)
hasCar some (ClosedCar and hasLenght <= 40.5) (accuracy: 1.0)
hasCar some (ClosedCar and hasLenght <= 31.5) (accuracy: 1.0)

These “interval classes” are just a step back from the fuzzification which, con-
versely, Foil-DL is able to do. It is acknowledged that using fuzzy sets in place of
“intervall classes” improves the readability of the induced knowledge about the
data. As for the target concept WestTrain, the most accurate class expression
among the ones found by CELOE is:

(2CarTrain or hasCar some JaggedCar) (accuracy: 1.0)

Once again, the augmented expressivity increases the effectiveness of DL-Learner.

5 Conclusions and future work

We have described a novel method, named Foil-DL, which addresses the prob-
lem of learning fuzzy EL(D) GCI axioms from crisp DL assertions. The method
extends Foil in a twofold direction: from crisp to fuzzy and from rules to GCIs.
Notably, vagueness is captured by the definition of confidence degree reported in
(8) and incompleteness is dealt with the OWA. Also, thanks to the variable-free
syntax of DLs, the learnable GCIs are highly understandable by humans and
translate easily into natural language sentences. In particular, Foil-DL present
the learned axioms according to the user-friendly presentation style of the Manch-
ester OWL syntax 11 (the same used in Protégé).

We would like to stress the fact that Foil-DL provides a different solution
from SoftFoil [14] as for the KR framework, the refinement operator and the
heuristic. Also, unlike SoftFoil, Foil-DL has been implemented and tested.
The experimental results are quite promising and encourage the application of
Foil-DL to more challenging real-world problems. Notably, in spite of the low
expressivity of EL, Foil-DL has turned out to be robust mainly due to the re-
finement operator and to the fuzzification facilities. Note that a fuzzy OWL 2
version of the trains’ problem (ontology fuzzytrains v1.5.owl) 12 has been de-
veloped by Iglesias for testing the fuzzy extension of CELOE proposed in [7].
However, Foil-DL can not handle fuzzy OWL 2 constructs such as fuzzy classes
obtained by existential restriction of fuzzy datatypes, fuzzy concept assertions,
and fuzzy role assertions. Therefore, it has been necessary to prepare an ad-hoc
ontology (trains3) for comparing Foil-DL and DL-Learner.

For the future, we intend to conduct a more extensive empirical evaluation of
Foil-DL, which could suggest directions of improvement of the method towards
more effective formulations of, e.g., the information gain function and the refine-
ment operator as well as of the search strategy and the halt conditions employed
in Learn-One-Axiom. Also, it can be interesting to analyse the impact of the
different fuzzy logics on the learning process. Eventually, we shall investigate
about learning fuzzy GCI axioms from FuzzyOWL 2 ontologies, by coupling the
learning algorithm to the fuzzyDL reasoner, instead of learning from crisp OWL
2 data by using a classical DL reasoner.

11 http://www.w3.org/TR/owl2-manchester-syntax/
12 Available at http://wiki.aksw.org/Projects/DLLearner/fuzzyTrains.
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Abstract. Modeling the policy making process is a very challenging
task. To the best of our knowledge the most widely used technique in
this setting is agent-based simulation. Each agent represents an individ-
ual entity (e.g., citizen, stakeholder, company, public association, public
body). The agent interaction enables emerging behaviours to be observed
and taken into account in the policy making process itself. We claim that
another perspective should be considered in modeling policy issues, that
is the global perspective. Each public body has global objectives, con-
straints and guidelines that have to be combined to take decisions. The
policy making process should be at the same time consistent with con-
straints, optimal with respect to given objectives and assessed to avoid
negative impacts on the environment, economy and society. We propose
in this paper a constraint-based model for the global policy making pro-
cess and we apply the devised model to the regional planning activity.
A case study in the field of energy plan is used to evaluate the proposed
model. Clearly an interaction with agent-based simulation is desirable
and could provide important feedback to the global model. This aspect
is the subject of current research.

1 The problem

Public policy issues are extremely complex, occur in rapidly changing environ-
ments characterized by uncertainty, and involve conflicts among different inter-
ests. Our society is ever more complex due to globalisation, enlargement and the
changing geo-political situation. This means that political activity and interven-
tion become more widespread, and so the effects of its interventions become more
difficult to assess, while at the same time it is becoming ever more important
to ensure that actions are effectively tackling the real challenges that this in-
creasing complexity entails. Thus, those responsible for creating, implementing,
and enforcing policies must be able to reach decisions about ill-defined problem
situations that are not well understood, have no single correct answer, involve

? An extended version of this paper appeared in [9].



many competing interests and interact with other policies at multiple levels.
It is therefore increasingly important to ensure coherence across these complex
issues.

In this paper we consider policy issues related to regional planning, the sci-
ence of the efficient placement of activities and infrastructures for the sustainable
growth of a region. Regional plans are classified into types, such as Agriculture,
Forest, Fishing, Energy, Industry, Transport, Waste, Water, Telecommunication,
Tourism, Urban Development and Environment to name a few. Each plan de-
fines activities that should be carried out during the plan implementation. On
the regional plan, the policy maker has to take into account impacts on the
environment, the economy and the society. The procedure aimed to assess the
impacts of a regional plan is called Strategic Environmental Assessment [15] and
relates activities defined in the plan to environmental and economic impacts.
This assessment procedure is now manually implemented by environmental ex-
perts, but it is never applied during the plan/program construction. In addition,
this procedure is applied on a given, already instantiated plan. Taking into ac-
count impacts a posteriori enables only corrective interventions that can at most
reduce the negative effect of wrong planning decisions.

One important aspect to be considered for supporting policy makers with
Computational Intelligence approaches is the definition of formal policy models.
In the literature, the majority of policy models rely on agent based simulation
[11, 14, 18] where agents represent the parties involved in the decision making and
implementation process. The idea is that agent-based modeling and simulation is
suitable for modeling complex systems. In particular, agent-based models permit
carrying out computer experiments to support a better understanding of the
complexity of economic, environmental and social systems, structural changes,
and endogenous adjustment reactions in response to a policy change.

In addition to agent-based simulation models, which provide “individual level
models”, we claim that the policy planning activity needs a global perspective:
in the case of regional planning, we need “a regional perspective” that faces
the problem at a global level while tightly interacting with the individual level
model. Thus rather than proposing an alternative approach with respect to sim-
ulation, we claim that the two approaches should be properly combined as they
represent two different perspectives of the same problem: the individual and
the global perspective. This integration is the subject of our current research
activity. In this setting, regional planning activities can be cast into complex
combinatorial optimization problems. The policy maker has to take decisions
satisfying a set of constraints while at the same time achieving a set of (possibly
conflicting) objectives such as reducing negative impacts and enhancing positive
impacts on the environment, the society and the economy. For this reason, im-
pact assessment should be integrated into the policy model so as to improve the
current procedure performed a posteriori.

In previous work [8], we experimented two different technologies to address
the Strategic Environmental Assessment (SEA) of a regional plan. The tech-
nologies we applied were Constraint Logic Programming (CLP) [13] and Causal
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Probabilistic Logic Programming [19]; Logic Programming is common to both
models, so the user could use one or the other from a same environment, and
possibly hybridize them. In [10] we proposed a fuzzy model for the SEA. While
being far more expressive than a traditional CLP approach, it is less usable
within a Regional planning decision support system. We evaluated a previous
regional plan with the two models, and proposed the outputs to an environmen-
tal expert. The expert compared the two outputs and chose the CLP model as
the closest to a human-made assessment.

In this work, we extend the CLP model used for the assessment, and apply it
to the planning problem, i.e., deciding which actions should be taken in a plan.
In the model, decision variables represent political decisions (e.g., the magnitude
of a given activity in the regional plan), potential outcomes are associated with
each decision, constraints limit possible combination of assignments of decision
variables, and objectives (also referred to as criteria) can be either used to evalu-
ate alternative solutions or translated into additional constraints. The model has
been solved with CLP [13] techniques, and tested on the Emilia-Romagna re-
gional energy plan. The results have been validated by experts in policy making
and impact assessment to evaluate the accuracy of the results.

Further constraint based approaches have been proposed for narrower prob-
lems in the field of energy, such as locating biomass power plants in positions
that are both economically affordable [6, 2, 5] and environmentally sustainable
[4]. Other approaches have been applied to wind turbine placement [12]. The
problem faced in this paper is much broader, as the Region should decide which
strategic investments to perform in the next two-three years (with a longer vision
to 2020) in the energy field. All specific details are left to the implementation
of the plan, but are not considered at the Regional Planning stage. To the best
of our knowledge, this is the first time constraint-based reasoning is applied to
such a wide and strategic perspective.

1.1 Regional Planning and Impact assessment

Regional Planning is the result of the main policy making activity of European
regions. Each region has a budget distributed by the Operational Programme
(OP): an OP sets out each region’s priorities for delivering the funds. On the
basis of these funds, the region has to define its priorities: in the field of energy,
one example of priority is increasing the use of renewable energy sources. Then,
a region should decide which activities to insert in the plan. Activities may be
roughly divided into six types: infrastructures and plants; buildings and land use
transformations; resource extraction; modifications of hydraulic regime; indus-
trial transformations; environmental management. Also, a magnitude for each
activity should be decided describing how much of a given activity is performed.

Each activity has an outcome (such as the amount of energy produced or con-
sumed) and a cost. We have two vectors O = (o1, . . . , oNa

) and C = (c1, . . . , cNa
)

where each element is associated to a specific activity and represents the outcome
and cost per unit of an activity.
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There are constraints linking activities: for instance if a regional plan decides
to build three biomass power plants (primary activities for an energy plan), each
of these plants should be equipped with proper infrastructures (streets, sewage
or possibly a small village nearby, power lines) also called secondary activities.
We thus have a matrix of dependencies between activities. In particular, we have
a Na×Na square matrix D where each element dij represents the magnitude of
activity j per unit of activity i.

Taking as an example the Emilia-Romagna Regional Energy Plan approved in
2007, some objectives of the policy makers are the production of a given amount
of energy (400 additional MW from renewable energy sources), while reducing
the current greenhouse gas emission percentage by 6.5% with respect to 2003. In
addition, the budget constraint limiting the amount of money allocated to the
energy plan by the Regional Operational Programme was 30.5Me in 2007.

The policy maker also takes into account impacts on the environment, the
economy and the society, as defined by a Strategic Environmental Assessment
that relates activities defined in the plan to environmental and economic impacts.
Each activity has impacts on the environment in terms of positive and negative
pressures. An example of positive pressure is the increased availability of energy,
while an example of a negative pressure is the production of pollutants. Pressures
are further linked to environmental receptors such as the quality of the air or
of surface water. On both pressures and receptors, there are constraints: for
example the maximum amount of greenhouse gas emissions of the overall plan.

One of the instruments used for assessing a regional plan in Emilia-Romagna
are the so called coaxial matrices [3], a development of the network method [17].

One matrix M defines the dependencies between the above mentioned ac-
tivities impacts (also called pressures) on the environment. Each element mi

j of
the matrix M defines a qualitative dependency between the activity i and the
impact j. The dependency can be high, medium, low or null. Examples of nega-
tive impacts are energy, water and land consumption, variation of water flows,
water and air pollution and so on. Examples of positive impacts are reduction
of water/air pollution, reduction of greenhouse gas emission, reduction of noise,
natural resources saving, creation of new ecosystems etc.

The second matrix N defines the dependencies between the impacts and en-
vironmental receptors. Each element nij of the matrix N defines a qualitative
dependency between the impact i and an environmental receptor j. Again the
dependency can be high, medium, low or null. Examples of environmental recep-
tors are the quality of surface water and groundwater, the quality of landscapes,
energy availability, wildlife wellness and so on.

The matrices used in Emilia-Romagna contain 93 activities, 29 negative im-
pacts, 19 positive impacts and 23 receptors, and assess 11 types of plans.

2 Why constraint based approaches

The regional planning activity is now performed by human experts that build
a single plan, considering strategic regional objectives that follow national and
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EU guidelines. After the plan has been devised, the agency for environmental
protection is asked to assess the plan from an environmental point of view. Typ-
ically, there is no feedback: the assessment can state that the devised plan is
environmentally friendly or not, but it cannot change the plan. In rare cases,
it can propose corrective countermeasures, that can only mitigate the negative
impact of wrong planning decisions. Moreover, although regulations state that a
significant environmental assessment should compare two or more options (dif-
ferent plans), this is rarely done in Europe, because the assessment is typically
hand made and requires a long work. Even in the few cases in which two options
are considered, usually one is the plan and the other is the absence of a plan.

Constraint based modeling overcomes the limitation of a hand made process
for a number of reasons. First, it provides a tool that automatically performs
planning decisions, considering both the budget allocated to the plan by the
Regional Operative Plan, and national/EU guidelines.

Second, it takes environmental aspects into consideration during plan con-
struction, avoiding trial-and-error schemes.

Third, constraint reasoning provides a powerful tool in the hand of a policy
maker as the generation of alternative scenarios is extremely easy and their
comparison and evaluation comes for free. Adjustments can be performed on-
the-fly in the case that the results do not satisfy policy makers or environmental
experts. For example, in the field of energy regional plan, by changing the bounds
on the amount of energy each source can provide, we can adjust the plan by
considering market trends and also the potential receptivity of the region.

3 A CLP model

To design a constraint-based model for the regional planning activity, we have
to define variables, constraints and objectives. Variables represent decisions that
have to be taken. Given a vector of activities A = (a1, . . . , aNa), we associate to
each activity a variable Gi that defines its magnitude. The magnitude could be
represented either in an absolute way, as the amount of a given activity, or in a
relative way, as a percentage with respect to the existing quantity of the same
activity. We use in this paper the absolute representation.

As stated above, we distinguish primary from secondary activities: let AP be
the set of indexes of primary activities and AS the set of indexes of secondary
activities. The distinction is motivated by the fact that some activities are of
primary importance in a given plan. Secondary activities are those supporting
the primary activities by providing the needed infrastructures. The dependencies
between primary and secondary activities are considered by the constraint:

∀j ∈ AS Gj =
∑

i∈AP

dijGi
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Given a budget BPlan available for a given plan, we have a constraint limiting
the overall plan cost as follows

Na∑

i=1

Gi ci ≤ BPlan (1)

Such constraint can be imposed either on the overall plan or on parts of it. For
example, if the budget is partitioned into chapters, we can impose constraint (1)
on activities of a given chapter.

Moreover, given an expected outcome oPlan of the plan, we have a constraint
ensuring to reach the outcome:

Na∑

i=1

Gi oi ≥ oPlan.

For example, in an energy plan the outcome can be to have more energy
available in the region, so oPlan could be the increased availability of electrical
power (e.g., in kilo-TOE, Tonnes of Oil Equivalent). In such a case, oi will be
the production in kTOE for each unit of activity ai.

Concerning the impacts, we sum up the contributions of all the activities and
obtain the estimate of the impact on each environmental pressure:

∀j ∈ {1, . . . , Np} pj =

Na∑

i=1

mi
j Gi. (2)

The qualitative values in the matrices have been converted into quantitative
values mi

j in the [0, 1] range for positive impacts and in the [−1, 0] range for
negative ones. The actual values were suggested by an environmental expert.

In the same way, given the vector of environmental pressures P = (p1, . . . , pNp
),

one can estimate their influence on the environmental receptor ri by means of
the matrix N , that relates pressures with receptors:

∀j ∈ {1, . . . , Nr} rj =

Np∑

i=1

nijpi. (3)

Moreover we can have constraints on receptors and pressures. For example,
“Greenhouse gas emission” (that is a negative pressure) should not exceed a
given threshold.

Concerning objectives, there are a number of possibilities suggested by plan-
ning experts. From an economic perspective, one can decide to minimize the
overall cost of the plan (that is anyway subject to budget constraints). Clearly
in this case, the most economic energy sources are preferred, despite their poten-
tially negative environmental effects (which could be anyway constrained). On
the other hand, one could maintain a fixed budget and maximize the produced
energy. In this case, the most efficient energy sources will be pushed forward.
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Or the planner could prefer a green plan and optimize environmental receptors.
For example, one can maximize, say, the air quality, or the quality of the surface
water. In this case, the produced plan decisions are less intuitive and the system
we propose is particularly useful. The link between decisions on primary and sec-
ondary activities and consequences on the environment are extremely complex
to be manually considered. Clearly, more complex objectives can be pursued, by
properly combining the above mentioned aspects.

3.1 The regional energy plan

We can now describe how to cast the general model for regional planning de-
scribed above into the model for designing a regional energy plan. The first step
is to identify primary and secondary activities. In the context of a regional energy
plan, the environmental and planning experts defined the following distinction.
Primary activities are those capable of producing energy, namely renewable and
non-renewable power plants. Secondary activities are those supporting the en-
ergy production, such as activities for energy transportations (e.g., power lines),
and infrastructures supporting the primary activities (e.g., dams, yards).

One important aspect to be taken into account when designing a regional
energy plan is the energy source diversification: this means that funds should
not be directed toward a single energy source, but should cover both renewable
and non renewable energy sources. This requirement comes from fluctuations
of the price and availability of the various resources. For this reason, we have
constraints on the minimal fraction Fi of the total energy produced by each
source i:

∀i ∈ AP Gioi ≥ FiT
o

where the total outcome T o is simply obtained as

T o =
∑

j∈AP

Gjoj .

In addition, each region has its own geo-physical characteristics. For instance,
some regions are particularly windy, while some others are not. Hydroelectric
power plants can be built with a very careful consideration of environmental
impacts, the most obvious being the flooding of vast areas of land. This poses
constraints on the maximum energy Ui that can be produced by a given energy
source i

∀i ∈ AP Gioi ≤ Ui.

Finally, the region priorities should be compliant with European guidelines, such
as the 20-20-20 initiative, that aims at achieving three ambitious targets by 2020:
reducing by 20% greenhouse gas emissions, having a 20% share of the final energy
consumption produced by renewable sources, and improving by 20% its energy
efficiency. For this reason, we can impose constraints on the minimum amount
of energy Lren produced by renewable energy sources whose set of activities is
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referred to as AP
ren. The constraint that we can impose is

∑

i∈AP
ren

Gioi ≥ Lren.

4 The Regional Energy Plan 2011-2013

The constraint-based model described in previous sections has been used in the
planning of the regional energy plan for 2011-2013. The system is implemented
in the Constraint Logic Programming language ECLiPSe [1], and in particular
uses its Eplex library [16], that interfaces ECLiPSe with a (mixed-integer) linear
programming solver. Nowadays, linear solvers are able to solve problems with
millions of variables, while our problem is much smaller (see end of Section 1.1).
In fact, the computation time was hardly measurable on a modern computer.

The regional energy plan had the objective of paving the way to reach the
ambitious goal of the 20-20-20 directive, in particular having 20% of energy in
2020 produced by renewable sources. This amount does not consider only electric
power, but the whole energy balance in the region, including thermal energy, and
transports.

Transports can use renewable energy by using renewable fuels, like biogas
(methane produced from the fermentation of vegetable or animal wastes) or oil
produced from various types of crops. Currently, we do not consider this issue.

Thermal energy can be used e.g. for home heating; renewable sources in
this case are thermal solar panels (that produce hot water for domestic use),
geothermal pumps (that are used to heat or to refresh houses), biomass plants,
that produce hot water used to heat neighboring houses during winter.

The considered electric power plants that produce energy from renewable
sources are hydroelectric plants, photovoltaic plants, thermodynamic solar plants,
wind generators and, again, biomass power plants.

For each energy source, the plan should provide: the installed power, in MW;
the total energy produced in a year, in kTOE (TOE stands for Tonne of Oil
Equivalent); the total cost, in Me. The ratio between installed power and total
produced energy is mainly influenced by the availability of the source: while a
biomass plant can (at least in theory) produce energy 24/7, the sun is available
only during the day, and the wind only occasionally. For unreliable sources an
average for the whole year is taken.

The cost of the plant, instead, depends mainly on the installed power: a solar
plant has an installation cost that depends on the square meters of installed
panels, which on their turn can provide some maximum power (peak power).

It is worth noting that the considered cost is the total cost of the plant for
the regional system, which is not the same as the cost for the taxpayers of the
Emilia-Romagna region. In fact, the region can enforce policies in many ways,
convincing private stakeholders to invest in power production. This can be done
with financial leverage, or by giving favorable conditions (either economic or
other) to investors. Some power sources are economically profitable, so there is
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no need for the region to give subsidies. For example, currently in Italy biomasses
are economically advantageous for investors, so privates are proposing projects to
build biomasses plants. On the other hand, biomasses also produce pollutants,
they are not always sustainable (see [4] for a discussion) so local committees
are rather likely to spawn a protest against the construction of new plants. For
these reasons, there is a limit on the number of licenses the region gives to private
stakeholders for building biomass-based plants.

Technicians in the region estimated (considering current energy requirements,
growth trends, foreseen energy savings) the total energy requirements for 2020;
out of this, 20% should be provided by renewable sources. They also proposed
for this amount a percentage to be provided during the plan 2011-2013: about
177kTOE of electrical energy and 296kTOE of thermal energy.

Starting from these data, they developed a plan for electrical energy and one
for thermal energy.

We used the model presented in Section 3 considering initially only “ex-
treme” cases, in which only one type of energy source is used. The application
provides the optimal plan, together with its environmental assessment, namely
an evaluation of the environmental receptors used by the environmental protec-
tion agency.

In order to understand the individual contributions of the various energy
forms, we plotted all the plans that use a single type of energy in Figure 1,
together with the plan developed by the region’s experts (we consider here elec-
trical energy sources). On the x-axis, we chose the receptor Air quality because
it is probably the most sensitive receptor in the Emilia-Romagna region. On the
y-axis we plotted the cost of the plan. As explained previously, all plans provide
the same energy in kTOE, while they can require different installation power (in
MW).

First of all, we notice that some of the energy types improve the air qual-
ity (positive values on the x-axis), while others worsen it (negative values). Of
course, no power plant can improve the air quality by itself (as it cannot remove
pollutants from the air). The point is that the plant provides electrical energy
without introducing new pollutants; if such energy would not have been pro-
vided to the electrical network, it would have been imported from neighboring
regions. In such a case, the required energy would be produced with the same
mixture of energy sources as in the national production, including those emitting
pollutants, so the net contribution is positive for the air quality. Note also that
the different energy sources have different impacts on the air quality not only
due to the emissions of the power plants, but also to the impact of the secondary
activities required by the various sources.

Finally, the “extreme” plans are usually not feasible, in the sense that the
constraint on the real availability of the energy source in the region was relaxed.
For example, wind turbines provide a very good air quality at a low cost, but the
amount required in the corresponding extreme plan is not possible in the region
considering the average availability of wind and of land for installing turbines.
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Fig. 1. Plot of the extreme plans using only one energy source, compared with the plan
by the region’s experts.

The plan proposed by the region’s experts is more balanced: it considers the
real availability of the energy source in the region, and provides a mixture of
all the different renewable types of energy. This is very important in particular
for renewable sources, that are often discontinuous: wind power is only available
when the wind is blowing at a sufficient speed, solar power is only available
during sunny days, etc., so having a mixture of different sources can provide an
energy availability more continuous during the day.

Beside assessing the plan proposed by the experts, we also provided new,
alternative plans. In particular, we searched for optimal plans, both with respect
to the cost, and to the air quality. Since we have two objective functions, we
plotted the Pareto-optimal frontier: each point of the frontier is a point such
that one cannot improve one of the objectives without sacrificing the other.
In our case, the air quality cannot be improved without raising the cost, and,
vice-versa, it is impossible to reduce the cost without sacrificing the air quality.
The Pareto frontier is shown in Figure 2, together with the experts’ plan. The
objective function is a weighted sum of single criteria so our formulation of the
problem is linear and we can compute the Pareto frontier by changing coefficients
in the weighted sum.

The picture shows that, although the plan devised by the experts is close to
the frontier, it can be improved. In particular, we identified on the frontier two
solutions that dominate the experts’ plan: one has the same cost, but better air
quality, while the other has same air quality, but a lower cost.

Table 1 contains the plan developed by the region’s experts, while Table 2
shows the plan on the Pareto curve that has the same air quality as the plan
of the experts. The energy produced by wind generators is almost doubled (as
they provide a very convenient ratio (air quality)/cost, see Figure 1), we have a
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Fig. 2. Pareto frontier of the air quality against cost.

Power 2010 Power 2013 Energy 2013 Investments
Electrical power plants (MW) (MW) (kTOE) (Me)

Hydroelectric 300 310 69.3 84
Photovoltaic 230 850 87.7 2170
Thermodyn. solar 0 10 1 45
Wind generators 20 80 10.3 120
Biomasses 430 600 361.2 595

Total 980 1850 529.5 3014

Table 1. Energy plan developed by the region’s experts

slight increase in the cheap biomass energy, while the other energy sources reduce
accordingly. Extracting plans from the solution of the CLP model is trivial: we
simply extract the values assigned to decision variables by the linear solver.

Concerning the environmental assessment, we plot in Figure 3 the value of
the receptors in significant points of the Pareto front. Each bar represents a
single environmental receptor for a specific plan on the Pareto frontier of Fig-
ure 2. In this way it is easy to compare how receptors are impacted by different
plans. In the Figure, the white bar is associated to the plan, on the frontier,
that has the highest air quality, while bars with dark colors are associated to
plans that have a low cost (and, thus, a low quality of the air). Notice that the
receptors have different trends: some of them improve as we move in the fron-
tier towards higher air quality (like climate quality, mankind wellness, value of
material goods), while others improve when moving to less expensive solutions
(like quality of sensitive landscapes, wellness of wildlife, soil quality). This is due
to several reasons, depending both on the type of power plants installed and on
the secondary activities.
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Power 2010 Power 2013 Energy 2013 Investments
Electrical power plants (MW) (MW) (kTOE) (Me)

Hydroelectric 300 303 67.74 25.2
Photovoltaic 230 782.14 80.7 1932.51
Thermodyn. solar 0 5 0.5 22.5
Wind generators 20 140 18.03 240
Biomasses 430 602.23 362.54 602.8

Total 980 1832.37 529.5 2823

Table 2. Energy plan that dominates the experts’ plan, retaining same air quality but
with lower cost

5 Added value of CLP

The application (including both the assessment and the planning) was developed
in few person-months by a CLP expert. It does not have a graphical user inter-
face yet, and it is currently usable only by CLP experts; however it produces
spreadsheet files with tables having the same structure as those used for years by
the region’s experts, so the output is easily understandable by the end user. We
are currently developing a web-based application, to let users input the relevant
data, and try themselves producing plans on-the-fly.

The assessment module [8] was first tested on a previously developed plan,
then used during the planning of the 2011-2013 regional energy plan. The various
alternatives have been submitted to the regional council, that could choose one
of them, instead of accepting/rejecting the only proposal, as in previous years.

One of the results is the ability to generate easily alternative plans with their
assessment; this is required by the EU regulations, but it is widely disregarded.

Another result is the possibility to provide plans that are optimal; the op-
timization criteria can include the cost, or one of the various environmental
receptors. The user can select two objectives, and in this case the application
generates a Pareto front. This helps the experts or the regional council in doing
choices that are more grounded.

We still do not know which plan the regional council will choose, neither
we know if and how the directives given in the regional plan will be indeed
implemented. More refined plans (at the province or municipality level) should
follow the guidelines in the regional plan, but it is also possible to introduce
modifications during the plan execution. However, in a perfect world, in which
everything is implemented as expected, the added value of CLP in monetary
terms could be the difference of the investment columns in the plans in Tables 1
and 2: 191Me saved (by the various actors, public and private, in the whole
region) in three years.

Finally, the choice of Constraint Programming greatly enables model flexi-
bility. Discussing with experts, it is often the case that they change their mind
on some model constraints or on objectives. Therefore, the flexibility in deal-
ing with side constraints and in dealing with non linear constraints facilitates
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Fig. 3. Value of the receptors on the Pareto front

knowledge acquisition making Constraint Programming the technique of choice
for the problem and its future extensions.

6 Conclusion and Future Open Issues

Global public policy making is a complex process that is influenced by many
factors. We believe that the use of constraint reasoning techniques could greatly
increase the effectiveness of the process, by enabling the policy maker to analyze
various aspects and to play with parameters so as to obtain alternative solu-
tions along with their environmental assessment. Given the amount of financial,
human and environmental resources that are involved in regional plans, even a
small improvement can have a huge effect.

Important features of the system are: its efficiency, as a plan is returned in
few milliseconds, its wide applicability to many regional plans, to provincial and
urban plans and also to private and public projects. The system was used for
the environmental assessment of the regional energy plan of the Emilia-Romagna
region of Italy. Beside performing automatically the assessment (that was per-
formed by hand in previous years), the assessment for the first time includes the
evaluation of alternative plans: this is a requirement of EU regulations that is
largely disregarded in practice. Moreover, the alternative plans were produced
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by optimizing the quality of the environmental receptors, together with the cost
for the community of the plan itself.

This work is a first step towards a system that fully supports the decision
maker in designing public policies. To achieve this objective, the method must be
extended to take into account the individual level, by investigating the effect of
a policy over the parties affected by it. This can be achieved by integrating con-
straint reasoning with simulation models that reproduce the interactions among
the parties. In our current research, we are studying how the region can choose
the form of incentives and calibrate them in order to push the energy market to
invest in the directions foreseen by the Regional Energy plan [7].

In turn these models can be enriched by adopting e-Participation tools that
allow citizens and stakeholders to voice their concerns regarding policy decisions.
To fully leverage e-Participation tools, the system must also be able to extract in-
formation from all the available data, including natural language. Thus, opinion
mining techniques will be useful in this context.

At the moment the system can only be used by IT expert people. In order to
turn it into a practical tool that is routinely used by decision makers, we must
equip it with a user-friendly interface. In particular, we are in the process of
developing a web interface to the constraint solver, in order to make it easy to
use and widely accessible.

Finally, economic indicators will be used to assess the economic aspect of
the plan. Up to now, only budget and few economic pressures and receptors are
considered. We believe that a comprehensive system should fully incorporate
this aspect. We will integrate a well established approach (UN and Eurostat
Guidelines) and robust data from official statistics into the system to combine
economic accounts (measured in monetary terms) and environmental accounts
(measured in physical units) into a single framework useful for the evaluation
of the integrated economic, environmental-social performance of regions. If the
relations with economic indicators are linear, then the solution time should not
increase significantly.
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Abstract. JSetL is a Java library that endows Java with a number of
facilities that are intended to support declarative and constraint (logic)
programming. In this paper we show how JSetL can be used to support
general forms of nondeterministic programming in an object-oriented
framework. This is obtained by combining different but related facili-
ties such as logical variables, set data structures, unification, along with
a constraint solver that allows the user to solve nondeterministic con-
straints, as well as to define new constraints using the nondeterminism
handling facilities provided by the solver itself. Thus, the user can de-
fine her/his own general nondeterministic procedures as new constraints,
letting the constraint solver handle them. The proposed solutions are il-
lustrated by showing a number of concrete Java implementations using
JSetL, including the implementation of simple Definite Clause Gram-
mars.

Keywords. Nondeterministic programming, Constraint Programming, Set-based
Programming, Java language.

1 Introduction

The problem of incorporating constructs to support nondeterminism into pro-
gramming languages has been discussed at length in the past. Early references
to this topic are [4] for a general overview, and [11] for an analysis of the prob-
lem in the context of functional programming languages. Logic programming
languages, notably Prolog, strongly rely on nondeterminism. Their computa-
tional model is inherently nondeterministic (at each computation step, one of
the clauses unifying a given goal is selected nondeterministically) and the pro-
grammer can exploit and control nondeterminism using the language features
when defining her/his own procedures.

As regards imperative programming, however, only relatively few languages
provide primitive constructs to support nondeterminism. An early example is
SETL [10], a Pascal-like language endowed with sets, which provides, among
others, a few built-in features to support backtracking (e.g., the ok and fail

primitives). More recently, the programming language Alma-0 [1] [2] provides
a comprehensive collection of primitive constructs to support nondeterministic



programming, such as the statements orelse, some, forall, commit, for creating
choice points and handling backtracking. Also Python’s yield mechanism—and,
more generally, the coroutining mechanisms present in various programming lan-
guages—can be used as a way to explore the computation tree associated with
a nondeterministic program.

Our goal in this paper is to explore the feasibility of a library-based ap-
proach to support nondeterministic programming in an object-oriented language.
Specifically, our proposal is to exploit the nondeterministic constraint solver pro-
vided by JSetL [9], a Java library that combines the object-oriented program-
ming paradigm of Java with valuable concepts of CLP languages, such as logical
variables, partially specified list data structures, unification, constraint solving.
Using this library the programmer can define nondeterministic procedures by
exploiting either the nondeterminism embedded in the predefined constraints
(in particular, in set constraints), or the possibility to define new user-defined
nondeterministic constraints and handle them through the built-in constraint
solver. We will illustrate our solution with a number of simple examples using
Java with JSetL.

The paper is organized as follows. In Section 2 we show how JSetL can
support nondeterminism through the use of built-in nondeterministic features,
such as set constraints and the labeling mechanism. Section 3 briefly introduces
general nondeterministic control structures and the relevant language constructs.
In Section 4 we show how different nondeterministic control structures can be
implemented in Java using the facilities for defining new constraints provided
by JSetL. Finally, in Section 5 we show a more complete example of application
of the facilities offered by JSetL to support nondeterministic control structures:
the implementation of Definite Clause Grammars.

2 Embedded Nondeterminism

A convenient way to express nondeterminism in JSetL is by means of set con-
straints. As a matter of fact, nondeterminism is strongly related to the notion
of set and set operations (see, e.g., [13] and [7]).

Sets can be defined in JSetL as instances of the class LSet. Elements of a
LSet object can be of any type, including other LSet objects (i.e., nested sets
are allowed). Moreover, sets denoted by LSet (also referred to as logical sets)
can be partially specified, i.e., they can contain unknown elements, as well as an
unknown part [3]. Single unknown elements are represented by unbound logical
variables (i.e., uninitialized objects of the class LVar), whereas the unknown part
of the set is represented by an unbound logical set (i.e., an uninitialized object
of the class LSet). For example, the three statements:

LVar x = new LVar();

LSet r = new LSet();

LSet s = r.ins(x);
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create an unbound logical variable x, an unbound logical set r, and a partially
specified logical set s with an unknown element x and an unknown rest r (i.e.,
{x | r}, using a Prolog-like notation).

JSetL provides the basic operations on this kind of sets, such as equality
(viz., set unification [6]), inequality, membership, cardinality, union, etc., in the
form of primitive constraints, similarly to what provided by the Constraint Logic
Programming language CLP(SET ) [5]. A JSetL constraint solver is an instance
of the class SolverClass. Basically, it provides methods for adding constraints
to its constraint store (e.g., the method add) and to prove satisfiability of a
given constraint (methods check and solve). If solver is a solver, Γ is the
constraint stored in its constraint store (possibly empty), and c is a constraint,
then solver.check(c) returns false if and only if Γ ∧ c is unsatisfiable.

Solving equalities, as well as other basic set-theoretical operations, over par-
tially specified sets may involve nondeterminism. For example, the equation
{x, y} = {1, 2}, where x and y are unbound logical variables, admits two dis-
tinct solutions: x = 1 ∧ y = 2 and x = 2 ∧ y = 1. In JSetL, these solutions are
computed nondeterministically by the constraint solver, using choice points and
backtracking.

In the following example we exploit the nondeterminism embedded in set
operations to provide a nondeterministic solution to the problem of printing all
permutations of a set of integer numbers s. The problem can be modelled as
the problem of unifying a (partially specified) set of n = |s| logical variables
{x1, . . . , xn} with the set s, i.e., {x1, . . . , xn} = s. Each solution to this problem
yields an assignment of (distinct) values to variables x1, . . . , xn that represents
a possible permutation of the integers in s.

Example 1. (Permutations)

public static void allPermutations(LSet s) {
int n = s.getSize(); // the cardinality of s

LSet r = LSet.mkLSet(n); // r = {x1,x2,...,xn}
solver.check(r.eq(s)); // r = s

do {
r.printElems(’ ’);
System.out.println();

} while (solver.nextSolution());

}

The invocation LSet.mkLSet(n) creates a set consisting of n unbound logical
variables. This set is unified, through the constraint eq, with the set of n integers
s. This is done by invoking the method check of the current constraint solver
solver (solver is assumed to be created outside the method allPermutations).
The invocation check(r.eq(s)) causes a viable assignment of values from s to
variables in r to be computed. Values in r are then printed on the standard
output by calling the method printElems.

Calling the method nextSolution allows checking whether the current con-
straint admits further solutions and possibly computing the next one. This
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method exploits the backtracking mechanism embedded in the constraint solver:
calling nextSolution forces the computation to go back until the nearest open
choice point is encountered. Specifically, in the above example, solving r.eq(s)

nondeterministically computes a solution to the set unification problem involv-
ing the two sets r and s. Thus, all possible rearrangements of the values in the
given sets (i.e., all possible permutations) are computed and printed, one at a
time.

The example illustrates also how the nondeterminism of the JSetL solver
interacts with the usual features of the underlying imperative Java language.

Note that in this example nondeterminism is implemented simply by oper-
ations on sets and the nondeterministic search is completely embedded in the
constraint solver. Since the semantics of set operations is usually well under-
stood and quite intuitive, making nondeterministic programming the same as
programming with sets can contribute to make the (non-trivial) notion of non-
determinism easier to understand and to use.

Whenever the problem at hand can be formulated as a Constraint Satisfaction
Problem (CSP) over Finite Domains, solutions can be computed nondeterminis-
tically by exploiting the so-called labeling mechanism. Values to be assigned to
variables of the CSP are picked up nondeterministically from the variable do-
mains: if the selected assignment turns out to be not suitable, another alternative
is then explored.

In JSetL this is obtained by using the constraint label. Solving the constraint
s.label(), where s is a collection of logical variables, forces the program to
nondeterministically generate an admissible assignment of values to variables in
s, starting from the first variable in s and the first value in its domain (default
labeling strategy in JSetL). This assignment is propagated to all the constraints
in the constraint store and if none of them turns out to be unsatisfiable, then an
assignment for the next variable in s is computed and propagated, and so on.
As soon as a constraint in the store turns out to be unsatisfiable, backtracking
occurs and a new assignment for the lastly assigned variable is computed. If a
viable assignment for all the variables in s is finally found, then it represents a
solution for the given CSP.

For example, the well-known n-queens problem, very often used as a sample
problem for illustrating nondeterministic programming, can be easily modelled
as a CSP and solved using constraints over Finite Domains and a final labeling
phase to nondeterministically generate all possible solutions.

Unfortunately, not all problems whose solutions are naturally formulated as
nondeterministic algorithms are also easily modelled as CSP. There are situations
in which, in particular, the variable domains are difficult to bring under those
supported by existing CP solvers, making the programming effort to model them
in terms of the existing ones too cumbersome and sometimes quite ad hoc. On
the other hand, the use of sets and set operations to model nondeterministic
computations, as shown in this section, is not always feasible and/or convenient.
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In conclusion, there are cases in which some more general programming ab-
stractions to express and handle nondeterminism are required. We address this
problem in the next sections.

3 Nondeterministic Control Structures

Dealing with general nondeterministic control structures requires primarily the
ability to express and handle choice points and backtracking. This implies, first of
all, that the notion of program computation is extended to allow distinguishing
between computations that terminate with success and computations that ter-
minate with failure. Basically, a computation fails whenever it executes, either
implicitly or explicitly, a fail statement. Conversely, a finite, error-free com-
putation succeeds if it does not fail. In response to a failure, the computation
backtracks to the last open choice point. Choice points may be created by the
programmer using suitable language constructs, such as the following orelse

statement (borrowed from [1]):

either S1 orelse S2 . . . orelse Sn end

which expresses a nondeterministic choice from among n statements S1. . . Sn.
More precisely, the computation of the orelse goes as follows: statement S1 is
executed first; if, at some point of the computation (possibly beyond the end
of the orelse statement) a failure occurs, then backtracking takes place and
the computation resumes with S2 in the state it had when entering S1; if a new
failure occurs, then the computation backtracks and it resumes with S3, and so
on; if a failure occurs after executing Sn and no other open choice points do exist,
then the computation definitively fails.

Let us briefly illustrate how to deal with general nondeterministic control
structures with a simple example written using a C-like pseudo-language en-
dowed with the orelse statement and a few other facilities to support nonde-
terministic programming. In the next section we will show how the same control
structures can be implemented in Java with JSetL.

Given a list l of strings, split (all) the elements of l into two lists l1 and
l2, such that the total length of the strings in l1 is equal to the total length of
the strings in l2. For example, if l is ["I","you","she","we","you","they"]

a possible splitting of l is l1 = ["I","they","you"] (total length = 8) and l2 =
["she","we","you"] (total length = 8), whereas if "she" is replaced by "he"

no splitting is feasible. Note that we are assuming that l can contain repeated
elements and that strings can be picked up from l in any order. The problem
can be solved by defining a function split that nondeterministically splits l
into two lists l1 and l2, and then forcing split to generate (via backtracking)
all possible pairs of lists l1 and l2 until a pair respecting the given condition
is found. An implementation of this algorithm written in pseudo-code using the
orelse construct is shown in Example 2.

Example 2. (List splitting—in pseudo-code)
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split(l):
either

l is [];
return 〈[],[]〉;

orelse

x is the first element and r the rest of l;
〈r1, l2〉 = split(r);
return 〈[x | r1], l2〉;

orelse

x is the first element and r the rest of l;
〈l1, r2〉 = split(r);
return 〈l1, [x | r2]〉;

end;

where [x | r1] (resp., [x | r2]) represents the list which is obtained by adding x
as the first element to the list r1 (resp., r2). Therefore, if l is not the empty
list, its first element is nondeterministically added to either the first sublist
(second orelse alternative) or to the second sublist (third orelse alternative).
If sumLength(l) is a function that computes the total length of all the strings in
the list l, then the given problem is simply solved by calling split(l) and then
requiring that the results of sumLength(l1) and sumLength(l2) are equal, that
is:

〈l1, l2〉 = split(l);
sumLength(l1) == sumLength(l2);

Note that we are assuming that, in our pseudo-language, whenever an ex-
pression e is used as a statement, such as, for instance, sumLength(l1) ==
sumLength(l2) or l is [], the following operational semantics is enforced: if e
evaluates to true then continue; else fail.1 Therefore, if the pair 〈l1, l2〉 computed
by split(l) does not satisfy the condition sumLength(l1) == sumLength(l2),
then the computation backtracks to split and tries another open alternative
created by the orelse statement, as long as at least one such alternative does
exist.

This example shows also the typical interleaving between nondeterminism
and recursion: each recursive call to split opens three branches in the nonde-
terministic computation of split. Executing the first orelse alternative, which
represents the base of the recursion, corresponds to reaching a leaf in the com-
putation tree, i.e. a possible solution.

The domain of discourse, in this example, is that of lists of strings. Moreover
we do not make any assumption on the length of the lists, on the presence of
duplicated elements in them, and on the length of the strings composing them.
Trying to encode this domain in terms of the usual constraint domains and trying
to restate the problem as a CSP, e.g. over the domain of integer numbers, though
feasible in principle, may lead to rather involved programs in practice. On the
other hand, trying to restate that problem as a set-theoretical one, in order to

1 This goes much like the “boolean expressions as statement” feature of Alma-0 [1].
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exploit the nondeterminism involved in set constraints as shown in Section 2,
may be hindered, at least, by the presence of duplicates in the input sequence.

As mentioned in Section 1, very few programming languages support the
above mentioned nondeterministic constructs as primitive features. Extending
the language with primitive constructs that offer such support is, indeed, quite
demanding in general. Our goal in this paper is to explore the feasibility of a
library-based approach, where features to support nondeterministic programming
are implemented on the top of an high-level language, namely Java, by exploiting
the language abstraction mechanisms, without requiring any modification to the
language itself.

We will illustrate this solution in the next sections with a number of simple
examples, using the Java library JSetL.

4 Implementing Nondeterministic Control Structures in
JSetL

As shown in Section 2, JSetL embeds nondeterminism at various levels. In par-
ticular, set constraints, as well as the labeling mechanism, are inherently nonde-
terministic. Availability of built-in nondeterministic constraints, however, is not
sufficient to ensure the general kind of nondeterminism we would like to have.

The solution that we propose in order to circumvent such difficulties is based
on the availability in JSetL of a nondeterministic constraint solver and the pos-
sibility for the programmer to define her/his own (nondeterministic) constraints.
Those methods that require the use of nondeterminism are defined as new user-
defined constraints. Within these methods the programmer can exploit facilities
offered by JSetL for creating and handling choice-points. When solving these
constraints the solver will explore the different alternatives using backtracking.

User-defined constraints in JSetL are defined as part of a user class that
extends the abstract class NewConstraintsClass. The actual implementation of
user-defined constraints requires some programming conventions to be respected,
as shown in the following example.

Example 3. (Implementing new constraints) Define a class MyOps which offers
two new constraints c1(o1,o2) and c2(o3), where o1, o2, o3 are objects of type
t1, t2, and t3, respectively.

public class MyOps extends NewConstraintsClass {

public MyOps(SolverClass currentSolver) {

super(currentSolver);

}

public Constraint c1(t1 o1, t2 o2) {

return new Constraint("c1", o1, o2);

}

public Constraint c2(t3 o3) {

return new Constraint("c2", o3);
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}

protected void user_code(Constraint c)

throws Failure, NotDefConstraintException {

if (c.getName().equals("c1")) c1(c);

else if(c.getName().equals("c2")) c2(c);

else throw new NotDefConstraintException();

}

private void c1(Constraint c) {

t1 x = (t1)c.getArg(1);

t2 y = (t2)c.getArg(2);

//implementation of constraint c1 over objects x and y

}

private void c2(Constraint c) {

t3 x = (t3)c.getArg(1);

//implementation of constraint c2 over object x

}

}

The one-argument constructor of the class MyOps initializes the field solver

of the super class NewConstraintsClass with (a reference to) the solver cur-
rently in use by the user program.

The other public methods simply construct and return new objects of class
Constraint. This class implements the atomic constraint data type. All built-in
constraint methods implemented by JSetL (e.g., eq, neq, in, etc.) return an ob-
ject of class Constraint. Each different constraint is identified by a string name
(e.g., "c1"), which can be specified as a parameter of the constraint constructor.

The method user code, which is defined as abstract in NewConstraints-

Class, implements a “dispatcher” that associates each constraint name with
the corresponding user-defined constraint method. It will be called by the solver
during constraint solving.

Finally, the private methods, such as c1 and c2, provide the implementation
of the new constraints. These methods must, first of all, retrieve the constraint
arguments, whose number and type depend on the constraint itself. We will show
possible implementations of such methods (using nondeterminism) in Examples
4 and 6.

Once objects of the class containing user-defined constraints have been cre-
ated, one can use these constraints in the same way as the built-in ones: user-
defined constraints can be added to the constraint store using the method add

and solved using the SolverClass methods for constraint solving. For example,
executing the statements

MyOps myOps = new MyOps(solver);

solver.solve(myOps.c1(o1,o2));

first creates an object of type MyOps, called myOps, then it creates the constraint
"c1" over two objects o1 and o2 by calling myOps.c1(o1,o2), finally it adds
this constraint to the constraint store and solves it by calling the method solve
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of solver. Solving the constraint "c1" will cause the solver to call the concrete
implementation of the method user code provided by myOps, and consequently
to execute its method c1.2

User-defined constraints in JSetL can implement nondeterministic procedures
by exploiting special features offered by the JSetL constraint solver. Defining
nondeterministic constraints in JSetL, however, requires some additional con-
siderations to be taken into account.

First of all note that methods defining user-defined constraints must nec-
essarily return an object of type Constraint. Thus, any other result possibly
computed by the method must be returned through parameters. The use of
unbound logical objects, i.e., logical variables as well as logical sets and lists,
as arguments of the user-defined constraints provides a simple solution to this
problem.

More generally, the use of logical objects is fundamental in JSetL when deal-
ing with nondeterminism. As a matter of fact, if an object is involved in a
nondeterministic computation then it is necessary to restore the status it had
before the last choice point whenever the computation backtracks and tries a
different alternative. In JSetL this is obtained by allowing the solver to auto-
matically save and restore the global status of all logical objects involved in the
computation. Since a logical object is characterized by the fact that its value,
if any, can not be changed through side-effects, saving and restoring the status
of logical objects is a relatively simple task for the solver. Hence, we will always
use logical objects, in particular logical variables, for all those objects that are
involved in nondeterministic computations.

As a consequence of this choice we can not manipulate logical objects by
using the usual imperative statements (e.g., the assignment), but we will always
need to use constraints to deal with them. In particular, the equality constraint
l.eq(v) is used to unify a logical variable l with a value v. If l is unbound, this
simply amounts to binding l to v. Once assigned, however, the value v is no
longer modifiable.

As an example let us consider the implementation of the nondeterministic
function split(l) shown in Example 2. This function can be implemented in
JSetL by a user-defined constraint split(l,l1,l2). Note that, here we are
replacing a function with the corresponding relation: in fact, split(l,l1,l2)
defines a ternary relation whose elements are those triples 〈l,l1,l2〉, with l, l1
and l2 belonging to the domain of lists, such that all elements of l are split into
two lists l1 and l2.

As noted above, variables dealt with by nondeterministic constraints are
conveniently represented in JSetL as logical objects. Thus, we represent the lists
l, l1, and l2 of the constraint split as JSetL’s logical lists (i.e., objects of the
class LList) and we manipulate them through constraints over lists.

2 Note that the constructor of the super class NewConstraintsClass, which is invoked
when myOps is created, provides for storing (a reference to) itself within the specified
solver, so making the latter able to invoke the method user code of the created
object myOps.
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Example 4. (split in JSetL) Define a constraint split(l,l1,l2) which is true
if all elements of the list l are split into two lists l1 and l2.

public Constraint split(LList l,LList l1,LList l2) {

return new Constraint("split",l,l1,l2);

}

private void split(Constraint c) throws Failure {

LList l = (LList)c.getArg(1);

LList l1 = (LList)c.getArg(2);

LList l2 = (LList)c.getArg(3);

switch(c.getAlternative()) {

case 0:

solver.addChoicePoint(c);

solver.add(l.eq(LList.empty())); // l is []

solver.add(l1.eq(LList.empty())); // l1 is []

solver.add(l2.eq(LList.empty())); // l2 is []

break;

case 1: {

solver.addChoicePoint(c);

LVar x = new LVar();

LList r = new LList();

LList r1 = new LList();

solver.add(l.eq(r.ins(x))); // 1st element (x) and rest (r) of l

solver.add(split(r,r1,l2)); // split r into two lists r1 and l2

solver.add(l1.eq(r1.ins(x))); // l1 is [x|r1]

break; }

case 2: {

LVar x = new LVar();

LList r = new LList();

LList r2 = new LList();

solver.add(l.eq(r.ins(x))); // 1st element (x) and rest (r) of l

solver.add(split(r,l1,r2)); // split r into two lists l1 and r2

solver.add(l2.eq(r2.ins(x))); // l2 is [x|r2]

break; }

}

}

split implements the nondeterministic construct orelse by using the meth-
ods getAlternative and addChoicePoint. The invocation c.getAlternative()

returns an integer associated with the constraint c that can be used to count
the nondeterministic alternatives within this constraint. Its initial value is 0.
Each time the constraint c is re-considered due to backtracking, the value re-
turned by c.getAlternative() is automatically incremented by 1. The invo-
cation solver.addChoicePoint(c) adds a choice point to the alternative stack
of the current solver. This allows the solver to backtrack and re-consider the
constraint c if a failure occurs subsequently.

Note that the JSetL implementation of the method split closely resembles
the abstract definition in pseudo-code of the function split given in Section 3. In
particular, lists are implemented as LList objects, and the addition and extrac-
tion of elements from such lists is performed through the JSetL constraint eq.
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Specifically, l.eq(r.ins(x)) is true if l is the list composed by an element x and
a remaining part r. If l is known and x and r are not, solving l.eq(r.ins(x))

amounts to computing the first element x and the rest r of the list l, whereas if
x and r are known and l is not, l.eq(r.ins(x)) can be used to build the list
l out of its parts x and r.

Finally, note that the recursive call to split(r) in the abstract definition
of the function split is replaced by the (recursive) posting of the constraint
split(r,r1,l2) (or split(r,l1,r2)) in the above concrete implementation.

As a sample use of split, if l is the LList with value ["I","you","she","we",
"you","they"], sumLength(l,n) is a user-defined (deterministic) constraint
that implements the function sumLength(l) of Example 2, listOps is an in-
stance of the class that extends NewConstraintsClass containing split and
sumLength, and l1, l2 are unbound logical lists and n, m are unbound logical
variables, then executing the following fragment of code

solver.add(listOps.split(l,l1,l2));

solver.add(listOps.sumLength(l1,n));

solver.add(listOps.sumLength(l2,m));

solver.check(m.eq(n));

will bind l1 to ["you","I","they"], l2 to ["she","you","we"], and n and m

to 8.

Remark 1. The use of relations in place of functions, along with the use in their
implementation of a number of specific features provided by JSetL, have another
important consequence on the usability of user-defined constraint methods.

Let us consider a function y = f(x) and a possible call to it, z = f(a). In
JSetL one can define a constraint cf (x, y) which represents the relation Rf =
{〈x, y〉 : y = f(x)} and then solve the constraint cf (a, z). Solving this constraint
actually amounts to checking whether 〈a, z〉 ∈ Rf , for some z. While calling
f(x) to compute y implies assuming x to be the input parameter and y the
output, solving cf (x, y) does not make any assumption on the “direction” of
their parameters. Thus, one can compute y out of a given x, or, vice versa, x out
of a given y, or one can test whether the relation among two given values x and
y holds, or one can compute any of the pairs 〈x, y〉 belonging to Rf . Hence, the
same method can be used to implement different, though related, functions.3

This general use of user-defined constraints in JSetL is made possible thanks
to the availability of a number of different facilities to be used in the constraint
implementation. Specifically,

– the use of logical variables as parameters
– the use of unification in place of equality and assignment
– the use of nondeterminism to compute multiple solutions for the same con-

straint.

3 It worth emphasizing here the similarity with Prolog or, more to the point, with
Prolog-based CP languages.
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Note that the fact that a logical variable acts as an input or as an output
parameter depends on the fact it is bound or not when the method is called. In
particular, unbound variables can be easily used to obtain output parameters.

Moreover, if the value bound to a variable is a partially specified aggregate,
e.g. a logical list, then it can act simultaneously as input and as output, i.e. as
an input-output parameter. For example, let us consider the fragment of code
shown at the end of Example 4. If we want to say, for instance, that l2 must
contain two repeated elements, then the above statements can be preceded by
the following declarations

LVar x = new LVar();

LList l2 = new LList().ins(x).ins(x);

In this way split is called with its third argument bound to the partially spec-
ified list [x,x| ] instead of being left unbound. Thus, solving split(l,l1,l2)

will bind l1 to ["I","she","they"] and l2 to ["you","you","we"].

5 Implementing DCGs

In this section we show a more complete example of application of the facilities
offered by JSetL to support nondeterminism: the implementation of Definite
Clause Grammars [8].

A Definite Clause Grammar (DCG) is a way to represent a context-free
grammar as a set of first-order logic formulae in the form of definite clauses. As
such, DCGs are closely related to Logic Programming, and tools for dealing with
DCGs are usually provided by current Prolog systems. Given the DCG repre-
sentation of a grammar one can immediately obtain a parser for the language it
describes by viewing the DCG as a set of Prolog clauses and using the Prolog
interpreter to execute them.

In this section we show how DCGs can be conveniently used also in the
context of more conventional languages, such as Java, provided the language is
equipped with a few features that are fundamental to support DCGs processing,
namely (logical) lists and nondeterminism. We prove this claim by showing how
DCGs can be encoded and processed using Java with JSetL.

Consider the following excerpt of a grammar of constant arithmetic expres-
sions

〈expr〉 ::= 〈num〉|〈num〉+ 〈expr〉|〈num〉 − 〈expr〉
Assume that input to be parsed is represented as a list of numerals and

symbols. For example, [8, +, 2, -, 7] is a valid 〈expr〉.
This grammar may be encoded in terms of first-order logic formulae in clausal

form in the following way: create one predicate for each non-terminal in the
grammar and define each predicate using one clause for each alternative form
of the corresponding non-terminal. Each predicate takes two arguments, the
first being the list representation of the input stream, and the second being
instantiated to the list of input elements that remain after a complete syntactic
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structure has been found. As an example, the above grammar can be written as
a DCG as follows (using a pure Prolog notation).

Example 5. (A DCG for 〈expr〉)

expr(L, Remain) :-

num(L, Remain).

expr(L, Remain) :-

num(L, L1), L1 = [+|L2], expr(L2, Remain).

expr(L, Remain) :-

num(L, L1), L1 = [-|L2], expr(L2, Remain).

num(L, Remain) :-

L = [D|Remain], number(D).

where the predicate number(D) is true if D is a numeric constant.4

This grammar representation constitutes an executable Prolog program that
can be immediately used as a top-down parser for the denoted language. Using
this program we can prove that, for example,

expr([1, +, 2, -, 3], [])

is true (i.e., 1+2-3 is a valid arithmetic expression), while
expr([1, +, 2, -], [])

is false.

The DCG shown in Example 5, that we have written as a Prolog program,
can be implemented with a relatively little effort as a JSetL program as well.
Each predicate corresponding to a non-terminal in the grammar is implemented
as a new JSetL constraint, that is a method of a class extending the class
NewConstraintsClass. These methods exploit the nondeterministic features
provided by JSetL to support the nondeterministic choice from among differ-
ent clauses for the same predicate. List data structures are implemented using
JSetL logical lists, that is objects of the class LList. In particular, partially
specified lists with an unknown rest (i.e., [o | l], l unbound) can be constructed
using the method ins and accessed through unification. The complete JSetL
implementation of the DCG shown above is given in Example 6.

Example 6. (Implementing the DCG for 〈expr〉 in JSetL)

public class ExprParser extends NewConstraintsClass {

public ExprParser(SolverClass currentSolver) {

super(currentSolver);

}

public Constraint expr(LList L, LList Remain) {

return new Constraint("expr", L, Remain);

}

4 Special syntax exists in current Prolog systems that allows EBNF-like specification
of DCGs. For instance, the second clause of Example 5 can be written in Prolog
alternatively as expr --> num, [+], expr. The Prolog interpreter automatically
translates this special form to the pure clausal form used in Example 5.
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public Constraint num(LList L, LList Remain) {

return new Constraint("num", L, Remain);

}

public Constraint number(LVar n) {

return new Constraint("number", n);

}

protected void user_code(Constraint c)

throws NotDefConstraintException {

if (c.getName().equals("expr"))

expr(c);

else if (c.getName().equals("num"))

num(c);

else if (c.getName().equals("number"))

number(c);

else {

throw new NotDefConstraintException();

}

}

private void expr(Constraint c) {

LList L = (LList)c.getArg(1);

LList Remain = (LList)c.getArg(2);

switch (c.getAlternative()) {

// expr(L, Remain) :- num(L, Remain).

case 0: {

solver.addChoicePoint(c);

solver.add(num(L, Remain));

break;

}

// expr(L, Remain) :- num(L, L1), L1 = [+|L2], expr(L2, Remain).

case 1: {

solver.addChoicePoint(c);

LList L1 = new LList();

LList L2 = new LList();

solver.add(num(L, L1));

solver.add(L1.eq(L2.ins(’+’)));

solver.add(expr(L2, Remain));

break;

}

// expr(L, Remain) :- num(L, L1), L1 = [-|L2], expr(L2, Remain).

case 2: {

LList L1 = new LList();

LList L2 = new LList();

solver.add(num(L, L1));

solver.add(L1.eq(L2.ins(’-’)));

solver.add(expr(L2, Remain));

}

}

}
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private void num(Constraint c) {

LList L = (LList)c.getArg(1);

LList Remain = (LList)c.getArg(2);

LVar D = new LVar();

solver.add(L.eq(Remain.ins(D)));

solver.add(number(D));

}

private void number(Constraint c) {

LVar n = (LVar)c.getArg(1);

if (n.getValue() instanceof Integer)

return;

else

c.fail();

}

}

If, for example, the expression to be parsed is 5 + 3− 2, which is represented
by a logical list tokenList with value [’5’,’+’,’3’,’-’,’2’], and sampleParser

is an instance of the class ExprParser, then the invocation

solver.check(sampleParser.expr(tokenList,LList.empty()))

will return true, while, if tokenList has value [’5’,’+’,’3’,’-’], the same invo-
cation to sampleParser.expr will return false.

Actions to be performed when a non-terminal has been successfully reduced
(e.g., in order to evaluate the parsed expression or to generate the correspond-
ing target code) can be easily added to a DCG by adding new arguments to
predicates defining non-terminals and new atoms at the end of the body of the
corresponding clauses. Accordingly, the JSetL implementation of a DCG can
be easily extended by adding new arguments and suitable statements to the
user-defined constraints implementing the non-terminals.

6 Conclusions and future work

In this paper we have made evident, through a number of simple examples, that
nondeterministic programming is conveniently exploitable also within conven-
tional O-O languages such as Java. We have obtained this by combining a num-
ber of different features offered by the Java library JSetL: set data abstractions,
nondeterministic constraint solving, logical variables, unification, user-defined
constraints. In particular, general nondeterministic procedures can be defined
in JSetL as new user-defined constraints, taking advantage of the facilities for
expressing and handling nondeterminism provided by the solver.

The JSetL library, along with the source code of all the sample programs
shown in this paper, can be downloaded from the JSetL’s home page at http:

//cmt.math.unipr.it/jsetl.html.
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As a future work we plan to identify the minimal extensions to be made to
the JSetL’s solver to make it capable of supporting, with the same approach
outlined in this paper, other nondeterministic control structures e.g. the ones
described in [1] and [12].
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Abstract. We developed, and computer-checked by means of the Ref
verifier, a formal proof that every weakly extensional, acyclic (finite)
digraph can be decorated injectively à la Mostowski by finite sets so that
its arcs mimic membership. We managed to have one sink decorated with
∅ by this injection.
We likewise proved that a graph whatsoever admits a weakly extensional
and acyclic orientation; consequently, and in view of what precedes, one
can regard its edges as membership arcs, each deprived of the direction
assigned to it by the orientation.
These results will be enhanced in a forthcoming scenario, where every
connected claw-free graph G will receive an extensional acyclic orienta-
tion and will, through such an orientation, be represented as a transitive
set T so that the membership arcs between members of T will correspond
to the edges of G.

Key words: Theory-based automated reasoning; proof checking; Referee
aka ÆtnaNova; graphs and digraphs; Mostowski’s decoration.

1 Can graphs be represented as membership digraphs?

One usually views the edges of a graph as vertex doubletons;4 but various ways
of representing graphs can be devised (as quickly surveyed in [5, Sec. 2]). Thanks
to a convenient choice on how to represent connected claw-free graphs, Milanič
and Tomescu [2] proved with relative ease two classical results on graphs of that
kind, namely that any such graph owns a near-perfect matching and has a Hamil-
tonian cycle in its square. Those results are, in fact, legitimately transferred to
a special class of digraphs, whose vertices are hereditarily finite sets and whose

? Work partially supported by the INdAM/GNCS 2013 project “Strumenti basati sulla
teoria degli insiemi per la verifica di algoritmi”

4 We call undirected graphs simply graphs, and directed graphs, digraphs.



arcs reflect the membership relation. Under this change of perspective, a fully
formal reconstruction of those results became affordable and, once carried out,
was certified correct with the Ref proof-checker [3,4].

Can we, with equal ease, formalize in Ref the Milanič-Tomescu representation
result per se? That result is the claim that for every connected claw-free graph
G there exist a set νG ⊇

⋃
νG and an injection f from the vertices of G onto νG

such that {x, y} is an edge of G if and only if either fx ∈ fy or fy ∈ fx holds.
The proof articulates as follows:

1. One shows that for any graph G = (V,E) as said, there is a D ⊆ V × V
such that E =

{
{x, y} : [x, y] ∈ D

}
and (V,D) is an acyclic digraph which

is extensional: i.e., no two vertices in V have the same out-neighbors.
2. One decorates vertices by putting f v = {f w : [v, w] ∈ D} à la Mostowski,

for all v ∈ V . Acyclicity ensures that this recursion makes sense; extension-
ality ensures the injectivity of f .

As a preparatory, simpler formalization task, we have proved with Ref that
a graph G whatsoever admits a set νG and an injection f from the vertices of G
onto νG such that {x, y} is an edge of G if and only if either fx ∈ fy or fy ∈ fx
holds. We could not have insisted on the transitivity condition νG ⊇

⋃
νG here,

because we have nohow restrained G. The proof now articulates as follows:

1′. For any G = (V,E), there is a D ⊆ V × V s.t. E =
{
{x, y} : [x, y] ∈ D

}

and (V,D) is an acyclic digraph which is weakly extensional: i.e., any
two vertices that share the same out-neighbors have no out-neighbors.

2′. We decorate vertices by putting: f v = {f w : [v, w] ∈ D } for each
v ∈ V endowed with out-neighbors, f z = ∅ for one sink z, and f u ={
{V } ∪ V \ {u}

}
for each sink u 6= z.

(Notice that 2′. subsumes 2. altogether, because an extensional digraph has
exactly one sink.)

2 Ingredients of a Ref’s scenario

What one submits to the Ref checker, to have its correctness verified, is a sce-
nario: namely, a script file consisting of definitions and of theorems endowed
with their proofs; a construct, named Theory , enables one to package def-
initions and theorems into reusable proofware components. A variant of the
Zermelo-Fraenkel set theory, postulating global choice, regularity, and infinity,
underlies the logical armory of Ref: this is apparent from the fifteen or so in-
ference rules available in the proof-specification language (see [5, Sec. 3]), of
which only a few sprout directly from first-order predicate calculus, while most
embody some form of set-theoretic reasoning. Multi-level syllogistic [1] acts as
a ubiquitous inference mechanism, while Theorys add a touch of second-order
reasoning ability to Ref’s overall machinery.

Our figures offer a glimpse of the Ref’s language. Fig. 1 shows the definitions
of graph-theoretic notions relevant to the proof-checking experiment on which
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Def acyclic: [Acyclicity] Acyclic(V,D) ↔Def

〈∀w ⊆ V | w 6= ∅→ 〈∃t ∈ w | ∅= {y ∈ w | [t, y] ∈ D} 〉〉
Def xtens0: [Extensionality] Extensional(V,D) ↔Def

〈∀x ∈ V, y ∈ V,∃z | ([x, z] ∈ D↔ [y, z] ∈ D)→ x = y〉
Def xtens1: [Weak extensionality] WExtensional(V,D) ↔Def

Extensional
(
V ∩ domain(D ∩ (V×V)),D ∩ (V×V)

)

Def orien: [Orientation of a graph] Orientates(D,V,E) ↔Def

E ∩ {{x, y} : x ∈ V, y ∈ V\ {x}} =
{{

p[1], p[2]
}

: p ∈ D | p =
[
p[1], p[2]

]}

Def Finite : [Finitude] Finite(F) ↔Def

〈∀g ∈ P(PF)\ {∅} ,∃m | g ∩ Pm = {m} 〉
Def maps5: [Map predicate] Is map(F) ↔Def

〈∀p ∈ F | p =
[
p[1], p[2]

]
〉

Def maps6: [Single-valued map] Svm(F) ↔Def

Is map(F) & 〈∀p ∈ F, q ∈ F | p[1] = q[1]→ p = q〉

Fig. 1. Four properties refer to digraphs, the other three to generic sets

Theorem part whole0. Svm(F)→
(
Finite(F)↔ Finite(domain(F))

)
. Proof:

Suppose not(f1)⇒ Auto
Suppose⇒ Finite(f1)

APPLY 〈 〉 finiteImage
(
s0 7→ f1, f(X) 7→ X[1]

)⇒ Finite
({

x[1] : x ∈ f1
})

Use def(domain)⇒ false
Discharge⇒ Auto

〈f1〉↪→T svm2⇒ f1 = {[x, f1�x] : x ∈ domain(f1)}
APPLY 〈 〉 finiteImage

(
s0 7→ domain(f1), f(X) 7→ [x, f1�x]

)⇒
Finite({[x, f1�x] : x ∈ domain(f1)})

EQUAL⇒ false
Discharge⇒ Qed

Fig. 2. Example of a theorem proved in the Ref language

we report, and introduces finitude and the notion of mapping (‘Svm’).5 Fig. 2

5 To enforce a useful distinction, we denote by G(x) the application of a global function
G to an argument x (‘global’ meaning that the domain of G is the class of all sets),
while denoting by f�x the application to x of a map f (typically single-valued),
viewed as set of pairs.
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shows the formal development of a proof, consisting of nine steps, each indicat-
ing which inference rule is employed to get the corresponding statement. This
proof invokes twice a Theory named finiteImage, whose interface is displayed in
Fig. 3. While finiteImage does not return any symbol, the other, subtler The-
ory displayed in the same figure, namely finiteInduction, returns a symbol, finΘ,
representing an ⊆-minimal set which meets P—given that at least one finite
set satisfying property P exists. Likewise, the Theory finiteAcycLabeling shown
in Fig. 4 returns a labeling of a given acyclic digraph, thereby furnishing the
technique for decorating the graph à la Mostowski.

Theory finiteImage
(
s0, f(X)

)

Finite(s0)
⇒

Finite
(
{f(x) : x ∈ s0}

)

End finiteImage

Theory finiteInduction
(
s0,P(S)

)

Finite(s0) & P(s0)
⇒ (finΘ)

〈∀S | S⊆ finΘ→ Finite(S) &
(
P(S)↔ S = finΘ

)〉
End finiteInduction

Fig. 3. Interfaces of two Theorys regarding finitude

Theory finAcycLabeling
(
v0, d0, h(s, x)

)

Acyclic(v0, d0) & Finite(v0)
⇒ (labΘ)

Svm(labΘ) & domain(labΘ) = v0

〈∀x ∈ v0 | labΘ�x = h
({

labΘ�p[2] : p ∈ d0|{x} | p[2] ∈ v0
}
, x
)
〉

End finAcycLabeling

Fig. 4. Interface of a Theory usable to label an acyclic digraph

3 Our experiment in a nutshell

The two Theorys in which our experiment culminates are shown in Fig. 5; the
key theorem which makes the second of them derivable from the first was stated
in Ref as follows:

Theorem weaXtensionalization0. Finite(V) & S ∈ V→
〈∃d | Orientates(d,V,E) & Acyclic(V, d) & WExtensional(V, d) & S /∈ range(d)〉.
Due to its centrality in our scenario, we wish to briefly sketch the proof of the

orientability theorem just cited. Arguing by contradiction, suppose that there
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Theory finMostowskiDecoration(v0, d0)
v0× v0 ⊇ d0 & v0 6= ∅ & Finite(v0) & Acyclic(v0, d0) & WExtensional(v0, d0)
⇒ (mskiΘ)

Svm(mskiΘ) & domain(mskiΘ) = v0

〈∀w | w ∈ domain(d0)→ mskiΘ�w =
{

mskiΘ�p[2] : p ∈ d0|{w}
}

& mskiΘ�w 6= ∅〉
∅ ∈ range(mskiΘ) & 〈∀y | y ∈ range(mskiΘ)→ Finite(y)〉
〈∀x, y | {x, y} ⊆ v0 & mskiΘ�x = mskiΘ�y→ x = y〉
〈∀y | y ∈ v0→ (mskiΘ�y ∈ mskiΘ�x↔ [x, y] ∈ d0)〉

End finMostowskiDecoration

Theory finGraphRepr(v0, e0)
e0 ⊆ {{x, y} : x ∈ v0, y ∈ v0\ {x}} & v0 6= ∅ & Finite(v0)
⇒ (wskiΘ)

Svm(wskiΘ) & domain(wskiΘ) = v0 & ∅ ∈ range(wskiΘ)

〈∀y | y ∈ range(wskiΘ)→ Finite(y)〉
〈∀x, y | {x, y} ⊆ v0 & wskiΘ�x = wskiΘ�y→ x = y〉
〈∀x, y | {x, y} ⊆ v0→

(
(wskiΘ�y ∈ wskiΘ�x ∨ wskiΘ�x ∈ wskiΘ�y)↔ {x, y} ∈ e0

)〉
〈∀x | wskiΘ�x ∩ range(wskiΘ) 6= ∅→ wskiΘ�x⊆ range(wskiΘ)〉

End finGraphRepr

Fig. 5. Theorys on Mostowski’s decoration and on graph representation

is a counterexample; then, exploiting the finiteness hypothesis, take a minimal
counterexample v1, s1, e0. We are supposing that there is no acyclic, weakly
extensional orientation of the graph

(
v1, e0 ∩

{
{x, y} : x ∈ v1, y ∈ v1 \ {x}

})

having s1 as a source; whereas, for every v0 ( v1, one can orient
(
v0, e0∩

{
{x, y} :

x ∈ v0, y ∈ v0 \ {x}
})

in an acyclic and weakly extensional way, for any vertex
t ∈ v0, so that t plays the role of a source. Let, in particular, v0 = v1 \ {s0}.
Unless s1 is an isolated vertex, an acyclic and weakly extensional orientation
of v0 exists that has as a source a chosen neighbor t1 of s1. However, that
orientation could trivially be extended to the graph with vertices v1 so that s1
becomes a source; this contradiction shows that s1 cannot have neighbors in v1,
which is also untenable: if so, any orientation for v0 would in fact work also as
an orientation for v1 and, as such, would have s0 as a source.

The full Ref scenario can be seen at http://www2.units.it/eomodeo/wERS.
pdf (cf. also http://www2.units.it/eomodeo/ClawFreeness.html).

4 Planned work on representing claw-free graphs

The larger experiment we have in mind will associate with each connected claw-
free graph G = (V,E) an injection f from V onto a transitive, hereditarily finite
set νG so that {x, y} ∈ E if and only if either f x ∈ f y or f y ∈ f x.
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The new notions entering into play can be rendered formally as follows:

ClawFreeG(V,E) ↔Def 〈∀w, x, y, z | {w, x, y, z} ⊆ V & {{w, y} , {y, x} , {y, z}} ⊆ E →
(x = z ∨ w ∈ {z, x} ∨ {x, z} ∈ E ∨ {z,w} ∈ E ∨ {w, x} ∈ E)〉 ,

Connected(E) ↔Def ∅ /∈ E ∧
〈∀ p |

(⋃
p = E ∧ 〈∀b ∈ p, c ∈ p | ⋃ b ∩⋃ c 6= ∅ ↔ b = c〉

)
→ p = {E}〉 ,

HerFin(S) ↔Def Finite(S) & 〈∀x ∈ S | HerFin(x)〉 .
Here, the first definiens requires that no subgraph of (V,E) induced by four
vertices has the shape of a ‘Y’. The second definiens requires that the set E of
edges can nohow be split into multiple disjoint blocks so that no edge acts as a
‘bridge’ by sharing endpoints with edges in distinct blocks. Hereditary finitude
is a recursive notion.

We aim at getting the analogue, shown in Fig. 6, of Theory finGraphRepr
(cf. Fig. 5). For that, we must again exploit Theory finMostowskiDecoration;
in addition, a key theorem will ensure the acyclic extensional orientability of a
connected and claw-free graph:

Theorem cClawFreeG2. Finite(V) & Connected(V,E) &

ClawFreeG(V,E) & E⊆ {{x, y} : x ∈ V, y ∈ V\ {x}}→
〈∃d⊆ V×V | Orientates(d,V,E) & Acyclic(V, d) & Extensional(V, d)〉.

Theory herfinCCFGraphRepr(v0, e0)
e0 ⊆ {{x, y} : x ∈ v0, y ∈ v0\ {x}} & Finite(v0)
Connected(v0, e0) & ClawFreeG(v0, e0)

⇒ (transΘ)
Svm(transΘ) & domain(transΘ) = v0
〈∀x, y | {X,Y} ⊆ v0 & transΘ�X = transΘ�Y→ X = Y〉
〈∀x, y | {X,Y} ⊆ v0→

(transΘ�Y ∈ transΘ�X ∨ transΘ�X ∈ transΘ�Y↔ {X,Y} ∈ e0)〉
{y ∈ range(transΘ) | y 6⊆ range(transΘ)} = ∅
range(transΘ) 6= ∅ & HerFin(range(transΘ))

End herfinCCFGraphRepr

Fig. 6. Theory on representing a connected claw-free graph via membership

Another fact we must exploit is that every connected graph has a vertex
whose removal (along with all edges incident to it) does not disrupt connectivity.
The existence of such a non-cut vertex is easily proved for a tree. So, in order
to cheaply achieve our goal, we will define

HankFree(T) ↔Def 〈∀e ⊆ T | e = ∅ ∨ 〈∃ a ∈ e | a 6⊆ ⋃(e \ {a})〉〉 ,
Is tree(T) ↔Def Connected(T) ∧ HankFree(T)
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and—if only provisionally—recast the connectivity assumption, Connected(v0, e0),
of Theory herfinCCFGraphRepr as the assumption that (v0, e0) has a ‘spanning
tree’:

〈∃t | Is tree(t) &
⋃

t = v0 & (v0 = {arb(v0)} ∨ t⊆ e0)〉 .
This eases things: for, any vertex with fewer than 2 incident edges in the spanning
tree of a connected graph will be a non-cut vertex of the graph.
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Abstract. We will present some results and open problems on an exten-
sion of the Ackermann encoding of Hereditarily Finite Sets into Natural
Numbers. In particular, we will introduce and discuss a simple modifica-
tion of the above mentioned Ackermann encoding, that should naturally
generalize from Hereditarily Finite Sets to Hereditarily Finite Hypersets.
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Introduction

This work is related with an attempt to (sensibly) extend the following function
(map) introduced by Ackermann in 1937 (see [Ack37]) :

Definition 1.

NA(x) = Σy∈x2NA(y) (1)

The above map is a bijection between Hereditarily Finite Sets (denoted by HF:
the collection of sets obtained starting from ∅ and closing with respect to finite
set formation) and Natural Numbers (denoted by N).

The usage of 2 as base for the exponentiations in Definition 1 allows us to see
the binary expansion of the natural number NA(x) as a full description—that is
the list of its elements—of x in terms of NA: the presence of a 1 in position i of
the binary expansion of NA(x) is equivalent to saying that the element y such
that NA(y) = i belongs to x.

Example 1. NA(∅) = 0,NA({∅}) = 20 = 1,NA({∅, {∅}}) = 20 + 21 = 3, the
binary code of NA({∅, {∅, {∅}}}) is 1001, that is 9.

NA is a simple and natural encoding of sets, hence a powerful tool for rep-
resenting and manipulating objects that are suitable to represent any kind of
mathematical information.

Two sets are equal if and only if they have the same elements and the “trans-
lation” of this in terms of NA corresponds to observing that two natural numbers
are equal if and only if they have the same binary code. The previously men-
tioned set-theoretic principle for testing equality—a basic axiom in classical Set
Theory called extensionality—can be applied only if the membership relation ∈



does not admit cycles. A “set” u such that u belongs to itself, for example, can-
not be tested for equality using extensionality against another set v: among the
equalities to be checked we would need ... to take u into account! Nevertheless,
non well-founded set theories (whose elements are called hypersets) are useful
and very expressive tools. Especially in Informatics. They add the ability to rep-
resent circular phenomena by blending the basic set-theoretic machinery with
the notion of bisimulation used in place of extensionality (see [Acz88]). There-
fore, for example, it becomes important to find (fast) algorithms to compute
hyperset-equality. In [PP04] a number of examples of usages and extensions of
the Ackermann map are given, exploring the possibility of computing hyeperset
equality by comparing Ackermann-like encodings.

Here we discuss a possible extension of NA whose aim is to maintain formal
elegance while using as codomain a number system larger than N.

We mention the fact that, along the same line, we already proposed extensions
QA of NA mapping the collection HF of rational hereditarily finite hypersets into
dyadic rational numbers (see [DOPT10]). Dyadic rational numbers are rational
numbers that can be denoted by finitely many (binary) digits and our proposal
can be illustrated by a simple example: if QA(z) = 1010, 0111, then z is the
hyperset whose well-founded elements are the second and the fourth (that is
those having Ackermann code equal to 2 and 4), while z’s non well-founded
elements are the second, the third, and the fourth. Clearly, to build QA an
ordering of the hereditarily finite hypersets must enter into play. The set Ω =
{Ω} is—naturally—the first non well-founded set and, consequently, QA(Ω) =
0, 1.

The extension of Ackermann map discussed below is more direct than QA,
as it does not require any (somehow arbitrary) ordering of hereditarily finite
sets. This feature opens the way to an usage of the newly proposed map for
bisimulation computation based on code comparison, as well as to a large array
of numerically-based (hyper)set manipulation techniques.

1 Extending Ackermann map

Consider the following definition, obtained from Definition (1) by simply adding
a minus sign at exponent.

Definition 2.

RA(x) = Σy∈x2−RA(y) (2)

As a first and very basic motivation to consider the above map, notice that
the above definition allows a (unique) solution to the following equation:

x = 2−x (3)

To see this, it suffices to observe that the two curves y = x and y = 2−x are
increasing and decreasing, respectively, and intersect in the first quadrant of R.
Let Ω be the solution of (3) over R. It is not difficult to see that Ω /∈ Q.
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Our first objective would be to show that (2) is injective on the collection of
Hereditarily Finite Sets.

Conjecture 1. The function RA is injective on HF.

A second, more challenging, point will consist in establishing the fact that
RA is injective on the full collection of rational hereditarily finite hypersets.

Conjecture 2. The function RA is injective on HF.

We only have partial results related with the above conjectures that are
mostly related with a study of the codes of the elements of the following sub-
family of HF:

Definition 3. The elements of the family S of super-singletons

S =
{
{∅}i | i ∈ N

}
,

are defined recursively as follows: {∅}0 = ∅ and {∅}n+1 = {{∅}n}.

Super-singletons were first introduced by Zermelo in [Zer08] as a set-theoretic
representation for ordinals and they have been recently discussed by Kirby in
[Kir13].

The following figure shows the disposition of the first few code values of
super-sigletons (let si denote the code of the i-th super-singleton).

s0
0

s1
1

s2

1
2

s3

1√
2

s4 s5
Ω

1

Fig. 1: The RA-code of the first 5 super-singletons

The RA-code of super-singletons is easily determined and seen to converge
to the above defined value Ω.

Proposition 1. The following hold:

0 = s0 < s2 < · · · s2i < s2i+2 · · · < Ω < · · · s2i+3 < s2i+1 · · · < s3 < s1 = 1,

and

lim
i→∞

s2i = lim
i→∞

s2i+1 = Ω.

Proof. To see the above result it suffices to observe that 2−2
−x

is increasing and
therefore, since s0 = 0 < s2 = 1/2 and since s1 = 1 > s3 = 1/

√
2, we have:

s0 < s2 < · · · s2i < 2−2
−s2i

= s2i+2 · · ·
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and
s1 > s3 > · · · s2i+1 > 2−2

−s2i+1
= s2i+3 · · · .

Moreover, since s0 < Ω = 2−Ω and since s2i+2 = 2−2
−s2i

< 2−2
−Ω

= Ω, we have
that all even-indexed super-singletons are smaller than Ω.

Similarly, all odd-indexed super-singletons are larger than Ω.

To conclude we must prove that both even and odd indexed sequences of
super-singletons converge to Ω.

This is a consequence of the fact that (2−x − 2−y) < (y − x)/2, for all
x, y ∈ [1/2, 1]. This, in turn, follows from Lagrange theorem stating that (f(b)−
f(a))/(b − a) = f ′(z), for some z ∈ (a, b). In fact, assuming y > x, the value
(2−x−2−y)/(y−x) is equal to (2−z)′ = −2−z ln(2), for some z ∈ [x, y] ⊆ [1/2, 1],
and this value is always smaller than −1/2. To conclude it is sufficient to consider
the sequence for i > 0, with x = s2i and y = s2i−1. ut

With some extra observations and using the above result we can prove the
injectivity of RA on the codes of arbitrary unions of super-singletons.

Definition 4. Given j pairwise distinct indexes i1, . . . , ij, let si1,...,ij be the code
of {∅}i1 ∪ · · · ∪ {∅}ij , that is si1 + · · ·+ sij .

Moreover, let

Si1,...,ij =
{
si1,...,ij ,k | k > ij

}
.

On the grounds of the above definition, we have that the codes of non-null
super-singletons in S are in S0. If we imagine (codes of) super-singletons in S0
as obtained from the intersection of a spiral with the x-axis, as in the Figure 2,

S0

0 1

1

Fig. 2: The spiral of S0
then the arrangement of the subsequent spirals can be seen to be a spiral of
smaller and smaller spirals, as in Figure 3.

Notice that the points of convergence of all the above spirals—that is Ω +
si = RA(Ω ∪ {∅}i), for i > 0—are, in fact, codes of hypersets. This is not the
case for the point of convergence of all the points of convergence, that turns
out to be 2Ω. Looking at the point of convergence of 2−(Ω+si) for i > 0, one
obtains the sequence of si+1Ω that—no wonder—converges at Ω2. Starting from
the sequence of spirals Si,j , whose points of convergence bring us at 3Ω, by

exponentiating we get to Ω3, and so on.
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S0

S1

S2 S3
S4

0 1

1

Fig. 3: The spirals of S0,S1,S2,S3,S4

Proposition 2. If {i1, . . . , ij} 6= {h1, . . . , hk}, then Si1,...,ij ∩ Sh1,...,hk
= ∅.

The above proposition is proved by first reducing the general case to the case
in which j = k, since a padding of 0’s on the left can always be performed. Then,
proving that the leftmost difference among indexes in two elements belonging to
Si1,...,ij and Sh1,...,hj

, respectively, can never be compensated by the following

differences.

By letting hi be the set belonging to HF whose Ackermann code is i, that
is such that NA(hi) = i, an ordering among the elements in HF is naturally (!)
induced by NA

3.
Looking at indexes that do not necessarily belong to the collection of super-

singletons or to sums of such sets, the following result holds.

Proposition 3. For all i ∈ N:

1. RA(hi) 6= RA(hi+1);
2. RA(hi) 6= RA(hi+2).

We can prove the above proposition by rather ad-hoc arguments based on
the specific value that a difference between two subsequent codes can assume.

Conclusions

We proposed a new numerical encoding for hereditarily finite hypersets that is a
natural extension of the celebrated Ackermann map establishing a bijection be-
tween natural numbers and hereditarily finite (well-founded) sets. Our proposed
encoding differs from Ackermann’s one only for a minus sign in the exponent.
Such a small difference in the definition, however, radically changes the encoding
that now maps the hypersets universe on real numbers. The map seems to have
elegant analytical properties guaranteeing its injectivity on both well-founded
and non well-founded hereditarily finite sets. Both injectivities, however, are

3 Such ordering can be seen to correspond to the ordering holding on binary represen-
tation of natural numbers: given two strings of bits α and β, if the leftmost difference
is such that a 1 appears in α, then α > β.
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just conjectured here and our opinion is that once proved RA to be 1-1 on well-
founded sets, Conjecture 2 could/should be attacked by proving that the code
of a hyperset is the unique accumulation point of the codes of the well-founded
sets obtained by its unfolding. Notice that this is the case for Ω, as well as for
other cases briefly mentioned above.
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Abstract. In this paper we introduce an initial comparison among three
different implementations of Abstract Argumentation Systems: ASPAR-
TIX, ConArg, and Dung-O-Matic. These tools are tested over four differ-
ent kinds of interaction graphs, corresponding to Erdős-Rényi networks,
scale-free Barabasi networks, Watts-Strogatz, and Kleinberg small-world
networks. Our final goal is to thoroughly evaluate their performance (in
this work we test complete and stable semantics only), and to find the
most efficient one, but also, more in general, to better study this kind of
problems from the computational point of view.

1 Introduction

An Abstract Argumentation Framework (AF), or System, as introduced in the
seminal paper by Dung [5], is simply a pair 〈A, R〉 consisting of a set A whose
elements are called arguments, and of a binary relation R on A, called “attack”
relation. Several different semantics (i.e., extensions) can be obtained over argu-
ments by considering subsets of arguments with specific properties. An AF has
an obvious representation as a directed graph where nodes are arguments and
edges are drawn from attacking to attacked arguments.

The main aim of this work is to better understand this kind of systems under
the perspective of their computational performance, in terms of networks with
different properties and size. Indeed, existent and future applications [9] exploit-
ing AFs need to efficiently behave and scale over “large” networks with properties
close to real-world ones. In fact, in complex discussions it is not hard to find 50-
100 arguments at least, especially if we consider on-line open fora, or discussion
groups. When we make these digital tribunes correspond to well-known social
networks, as Twitter or Facebook, but also to more structured debate-friendly
tools, as DebateGraph4, then the number of arguments can further increase due
to the a high number of users participating to a discussion. The different intrin-
sic nature of these graphs leads to find more or less extensions of some kind,

4 http://debategraph.org



e.g., stable ones [5]. In our tests we adopt two different types of small-world net-
works (Kleinberg [11] and Watts-Strogatz [13]), one class of scale-free networks
(Barabasi [1]), and Erdős-Rényi [8] networks (see Sec. 3.2).

Our main goal is to compare three different tools that are more oriented to
a straight computation of extensions, than on providing support to negotiation
or decision-making. These tools correspond to ASPARTIX, ConArg, and Dung-
O-Matic, introduced in Sec. 3.

2 Dung Argumentation

In [5], Dung has proposed an abstract framework for argumentation in which
the focus is on the definition of the argument status.

Definition 1. An Argumentation Framework (AF) is a pair 〈A, R〉 of a set A of
arguments and a binary relation R on A called the attack relation. ∀ai, aj ∈ A,
aiRaj means that ai attacks aj. An AF may be represented by a directed graph
(the interaction graph) whose nodes are arguments and edges represent the attack
relation. A set of arguments B attacks an argument a if a is attacked by an
argument of B. A set of arguments B attacks a set of arguments C if there is an
argument b ∈ B which attacks an argument c ∈ C.

Dung gave several semantics to “acceptability”. These various semantics pro-
duce none, one or several acceptable sets of arguments, called “extensions”. In
Def. 2 we define the concepts of conflict-free and stable extensions:

Definition 2. A set B ⊆ A is conflict-free in a given 〈A, R〉 iff no two argu-
ments a and b in B exist such that a attacks b. A conflict-free set B ⊆ A is a
stable extension iff for each argument which is not in B, there exists an argument
in B that attacks it.

The other semantics for “acceptability” rely upon the concept of defense:

Definition 3. Given 〈A, R〉, an argument b is defended by a set B ⊆ A (or B
defends b) iff for any argument a ∈ A, if a attacks b then B attacks a.

An admissible set of arguments according to Dung must be a conflict-free set
which defends all its elements. Formally:

Definition 4. Given 〈A, R〉, a conflict-free set B ⊆ A is admissible iff each
argument in B is defended by B.

Besides the stable semantics, three more semantics refining admissibility have
been introduced in [5]:

Definition 5. Given a 〈A, R〉, a preferred extension is a maximal (w.r.t. set
inclusion) admissible subset of A. An admissible B ⊆ A is a complete extension
iff each argument which is defended by B is in B. The least (w.r.t. set inclusion)
complete extension is the grounded extension.
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3 Tools and Graphs

In the following of this section we describe our benchmark environment. We
organize the content into two subsections: Sec. 3.1 concerns a more detailed
description of the three tools we used in our comparison, while Sec. 3.2 describes
in detail the random networks we generated as benchmark.

3.1 Tools

ASPARTIX. The ASPARTIX 5 system [7, 6] is an ASP-based tool for com-
puting acceptable extensions for a broad range of formalizations of Dung’s AFs
and generalisations, e.g., value-based AFs [2]. ASPARTIX relies on a fixed dis-
junctive Datalog program (ASP also includes default negation) which takes an
instance of an argumentation framework as input, and uses an ASP solver (as
DLV) for computing the type of extension specified by the user. ASPARTIX
is able to solve admissible, stable, complete, grounded, preferred, semi-stable,
ideal, stage, cf2, resolution-based grounded and stage2 extensions.
ConArg. ConArg6 [4, 3] is a constraint-based tool based on the Java Constraint
Programming solver7 (JaCoP), a Java library that provides the Java user with
a Finite Domain Constraint Programming paradigm [12]. All the properties de-
scribing conflict-free, admissible, complete, stable, grounded and preferred ex-
tensions have been modeled and implemented with constraints. In this paper we
consider a (faster) command-line version of ConArg. To model all the seman-
tics presented in Sec. 2 we used MiniZinc8, which is a medium-level constraint
modelling language that can be mapped onto different existing solvers.
Dung-O-Matic. Dung-O-Matic9 is an abstract argument computation engine
implemented by the javaDungAF Java class. Dung-O-Matic supports Dung’s
AFs and several of their semantics, namely admissible, complete, eager, grounded,
ideal, preferred, semi-stable, and finally stable. In order to find each of the
proposed extensions, this tool implements a different algorithm presented in
literature; for instance, the grounded semantics is computed with the original
algorithms presented by Dung in [5].

3.2 Networks

Due to the lack of well-established benchmarks using real interaction graphs,
we decided to randomly generate our test networks. To generate random graphs
we adopted two different tools. The first one is Java Universal Network/Graph
Framework (JUNG, http://jung.sourceforge.net), which is a Java software
library for the modeling, generation, analysis and visualization of graphs. With

5 http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/
6 https://sites.google.com/site/santinifrancesco/tools/ConArg.zip
7 http://www.jacop.eu
8 http://www.minizinc.org
9 http://www.arg.dundee.ac.uk/?page_id=279
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Fig. 1: An example of a a) Erdős-Rényi, b) Watts-Strogatz, c) Kleinberg, and d) a
Barabasi graph, all with around 40 nodes.

JUNG we generated Barabasi [1] and Kleinberg [11] networks. The second library
we used is named NetworkX (http://networkx.github.io), and it consists of
a Python software package for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks. With this tool we were
able to generate Erdős-Rényi [8] and Watts-Strogatz [13]. We use two different
libraries because of their different capabilities: with JUNG we are able to ran-
domly generate directed Barabasi and Kleinberg networks, while NetworkX does
not cover Kleinberg networks at all, and only provides undirected Barabasi ones.
On the other side, NetworkX offers both Watts-Strogatz and Erdős-Rényi net-
works (not present in JUNG). Four examples of these networks are represented
in Fig. 1. Our attention is more focused on testing small-world networks because
we consider real large interaction-graphs as coming from social networks [10, 9].

4 Preliminary Tests and Conclusion

In Fig. 2 and Fig. 3 we show a first comparison among the three systems pre-
sented in Sec. 3.1, testing complete and stable extensions respectively. On the
x-axis we report the exact number of nodes of each set of networks we use: in
each set, we considered 50 random networks for each of the four classes reported
in Sec. 3.2, for a total of 200 networks. On the y-axis we report the average
CPU time to compute all the complete/stable extensions on that given set of
networks. These first tests show that ConArg performs better than the other
two systems, even if ASPARTIX has comparable results.

Performance has been collected using an Intel(R) Core(TM) i7 2.4Ghz pro-
cessor, with 16Gb of RAM. To run ASPARTIX, we have used the last version
of DLV (December 2012) with Gringo v3.0.5 and ClaspD v1.1.4 as extensions.

In this work we have commenced a study on the computational efficiency
of nowadays tools dealing with AFs [5]. Our will is to extend this study un-
der several lines. First, we will show tests on more computationally-demanding
semantics (e.g., preferred extensions), we will test hard problems in Argumen-
tation (e.g., deciding if a set is a preferred extension is CO-NP-complete), and,
finally, we will better define the link with small-world networks, by finding the
most appropriate random-network model. At last, we will test these tools over
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Fig. 2: Comparing complete extensions. Fig. 3: Comparing stable extensions.

larger networks (e.g., 1, 000 arguments), to check how feasible it is to use them in
a real application, as, for instance, large-scale agreements via microdebates [9].
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1 Introduction

The adoption of structured approaches for the management of the Business Processes
(BPs) operating within an organization is constantly gaining popularity. Nevertheless,
their further automation is severely hampered by the fact that standard approaches are
an insufficient means for capturing the complex process-related knowledge and making
it available in a machine-accessible form [1]. As a result, many tasks, such as process
analysis, verification, retrieval and composition, still require great manual efforts. In
this scenario, the application of well-established techniques stemming from the area of
Knowledge Representation has been shown as a promising approach for the enhance-
ment of BP and Web Service [1, 2] management systems.

While several tools are today available for the modeling, verification, simulation,
and execution (e.g., Intalio, Tibco, YAWL, Enhydra Shark), no commercial tool en-
ables the semantic annotation of BP models, nor semantics-based reasoning services.
Although several approaches have been proposed in literature to enable the exploita-
tion of semantic facilities (see, e.g., the seminal work in [2, 3], and recent proposals [4,
5]), very few implemented tools (e.g., [6, 7]) give a (limited) support to the integrated
management of the structural definition of a flow model, the formal definition of its
behavior, and the domain knowledge related to the business scenario where it operates.

The BPAL platform implements a BP modeling and reasoning environment where
the procedural knowledge of a BP can be enriched through ontology-based annotations.
The theoretical basis of the tool is the Business Process Abstract Language [8], a lan-
guage grounded in Logic Programming (LP) for representing and reasoning on various
facets of process knowledge: (i) the meta-model of a BP schema (BPS), which covers
a core of the BPMN notation, (ii) the BPS execution semantics, specified in a special-
ized version of the Fluent Calculus, a well-known LP-based action language, (iii) the
behavioral properties of process executions, expressed by means of the CTL temporal
logic, and (iv) the domain specific semantics of individual activities occurring in a BP,
defined via OWL annotations (falling within the OWL 2 RL fragment) along the line of
Semantic Web Services proposals.

The BPAL platform provides a graphical user interface to ease the definition of a BP
Knowledge Base (BPKB) that collects the various pieces of process knowledge. BPAL
also provides a reasoner implementing services for the enactment, verification, retrieval,

? A video demonstration is available at http://www.youtube.com/watch?v=xQkapzjhO7g



and composition of processes in the BPKB. Complex queries combining different as-
pects of process knowledge can be expressed in QuBPAL [9], a query language based on
the SELECT-WHERE paradigm. QuBPAL queries are translated into clausal form and
answered through an efficient, sound and complete LP query evaluation mechanism.

2 An Overview of the Functionalities of BPAL

Management of BP Repositories. The platform provides functionalities for managing
BP repositories, such as: (1) creating a new BPS, (2) importing an existing BPS from
an XML serialization of a BPMN diagram, and (3) editing a BPS via a graphical editor.
Semantic Annotation. Two kinds of annotations enable the enrichment of a BPS with
domain related knowledge defined in a given reference ontology: (1) terminological an-
notations, which associate BPS elements with concept expressions, and (2) functional
annotations, which define the conditions under which flow elements can be executed
and the effects of their execution on the state of the world.
Enactment. The execution of a BP is modeled as an execution trace, corresponding to
a plan in the Fluent Calculus, i.e., a sequence of actions of the form [begin(e1), . . . ,
complete(en)] where ei represents a flow elements. Execution traces correspond to
process logs, which are commonly stored by BPM systems to record the enactment of
BP instances. BPAL can verify whether a trace can be generated by a BP enactment
(i.e., the compliance of a trace w.r.t. a given BPS) and, by exploiting the LP inference
mechanism, the rules defining the trace semantics can also be used to generate the traces
of a BPS satisfying some given (behavioral and/or ontological) property.
Verification. BPAL enables the verification of properties that depend on the interac-
tion between the operational behavior of the process and the ontology-based semantic
annotation. Thus, besides well-known correctness criteria typically addressed in the
workflow community (e.g., soundness), the tool is also able to verify that, during a BP
enactment, no semantics-related constraint is violated. For instance, given a BPS named
p, we can define the following predicate:

holds(not(ef(false)),bps(p))
meaning that no state is reachable (expressed by the temporal operator ef ‘exists fi-
nally’) where the false concept can be inferred from functional annotations specify-
ing the effects of execution (e.g., o : approvedPO and o : rejectedPO) and execution-
independent OWL axioms (e.g., approvedPOurejectedPOv false).
Compliance. Temporal queries can also be used for analyzing the compliance with
business rules, i.e., directives expressing internal policies and regulations of an enter-
prise. In an eProcurement scenario, one such compliance rule may be that every order
is eventually closed. This rule can be expressed by the following predicate meaning that
it is not possible to reach the final state of the process where some order is not closed:

holds(not(ef(final(p) and nonclosedP0)),bps(p))
Here nonclosedP0 holds in a given state if, for some O, the OWL assertion O : order
holds and the OWL assertion O : closedP0 does not hold.
Retrieval. The LP inference mechanism based on resolution can be also used for com-
puting, via unification, substitutions for variables occurring in queries. BPAL exploits
this query answering mechanism and provides a reasoning service for the retrieval of
process fragments described in a declarative way. In particular, the WHERE clause of
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a QuBPAL query can specify a combination of ontological, structural, and behavioral
properties. For instance, if we want to retrieve all activities that must precede a deliv-
ery and require an authorization by the sales manager, then we may issue the following
query (names prefixed by ‘?’ denote variables):

SELECT ?a
WHERE precedes(?a,delivering,p) AND requiresSalesMgrAuth(?a)

where (i) precedes(a,b,p) is a predicate, defined by using the CTL temporal opera-
tors, which means that in any enactment of process p, activity a precedes activity b,
and (ii) requiresSalesMgrAuth(?a) holds if the (terminological) annotation of ?a is
a concept subsuming the OWL assertion ∃ requiresAuth.salesMgr.
Composition. The tool allows the user to specify a process skeleton, which constitutes
a high level definition of a new BP to be composed by retrieving subprocesses from
a given BP repository [10]. Tasks appearing in the skeleton are associated with local
constraints, which express requirements for the selection of the corresponding subpro-
cesses to be retrieved, and global constraints, specifying the requirements on the com-
posed BPS as a whole. Local and global constraints are expressed as QuBPAL queries
and evaluated over the BPKB in order to compute possible compositions.

Fig. 1: GUI of the BPAL platform

3 Tool Description

The BPAL platform is implemented as an Eclipse Plug-in1, whose main components
are depicted in the functional view in Figure 2.

The BPKB Editor provides a graphical user interface to define a BPKB and to
interact with the BPAL Reasoner. It encompasses: a tree view of the available resources
(Fig. 1a), the STP2 BPMN Modeler (Fig. 1b), a browser for the visualization of OWL

1 http://www.eclipse.org/
2 http://www.eclipse.org/soa
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ontologies (Fig. 1c), an annotation panel (Fig. 1d), and finally a query prompt (Fig. 1e)
to submit queries and collect the results (Fig. 1f).

The BPAL Reasoner provides the means to process and query the BPKB. Process
schemas are imported into the BPKB from BPMN process models via the BPMN2BPAL
interface. In order to ease the sharing and re-use of semantic meta-data, semantic infor-
mation used and produced during the annotation process (i.e., reference ontologies and
semantic annotations) can be exported and imported from OWL/RDF files by means
of the RDF I/O module. The underlying rule-based reasoner can deal indifferently with
RDF, RDFS and OWL (restricted to the RL profile). The BPKB Manager handles the
set-up and the interaction with the LP engine by initializing and updating a BPKB. After
populating the BPKB, inference is essentially performed by posing queries to the XSB
Prolog engine3, connected through a Java/Prolog interface. XSB extends conventional
Prolog systems with an operational semantics based on tabling, i.e., a mechanism for
storing intermediate results and avoiding to prove sub-goals more than once. In our set-
ting, XSB has a crucial advantage with respect to other Prolog systems, because tabling
ensures the termination of query evaluation over a BPKB. Finally, the Query Manager
exposes functionalities to translate QuBPAL queries into LP queries, evaluate them, and
collect the results in a textual form or export them in an XML serialization.

Fig. 2: Functional view of the BPAL platform

4 Discussion

The BPAL platform presented in this paper enables the combination of the procedural
and ontological perspectives related to process knowledge in a very smooth and natural
way. BPAL provides a uniform framework for modeling and semantically enriching BP
models, in order to reason on properties that depend on the sequence of operations that
occur during process enactment and also on the domain where the process operates. In
doing this, our approach does not introduce a new BP modeling paradigm, but provides
a framework where one can map and integrate knowledge represented by means of
existing formalisms. This is very important from a pragmatic point of view, as one
can express process-related knowledge by using standard modeling languages such as

3 http://xsb.sourceforge.net/
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BPMN for BP models and OWL for ontologies, and then automatically translate this
knowledge into logic programs (see [8] for details), thus allowing the use of standard LP
methods and tools to perform reasoning. This LP translation also enables the application
of further, very sophisticated reasoning techniques recently developed in the field of
logic programming. In this respect, interesting directions of future work include the
enhancement of our framework with: (i) process mining facilities, by adopting Inductive
Logic Programming techniques, such as the ones presented in [11], and (ii) verification
techniques for BPs in the presence of data constraints, by following approaches based
on Constraint Logic Programming such as, for instance, the one proposed in [12].

The approach has been applied to real-world scenarios coming from end-users in-
volved in the European Project BIVEE4 and from the pilot conducted within a collab-
oration between the italian CNR and SOGEI (ICT Company of the Italian Ministry of
Finance). The former is related to the modeling of production processes in manufac-
turing oriented networked-enterprises, while the latter regards the procedural modeling
of legislative decrees in the tax domain. The experiments we have conducted are en-
couraging and revealed the practical usability of the tool and its acceptance by business
experts. On a more technical side, the LP reasoner based on the XSB system shown a
significant efficiency, since very sophisticated reasoning tasks have been performed on
BPs of small-to-medium size (about one hundred of activities and several thousands of
reachable states) in an acceptable amount of time and memory resources.
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Abstract. Internet and mobile applications are becoming more and
more helpful and widespread, while our daily lives are becoming increas-
ingly busy and complicated. Preferences affect our actions, as well as
those of intelligent agents. Answer Set Programming is a suitable frame-
work for a decision making process which aims at supporting users by
suitably planning their activities. Resourced Answer Set Programming
(RASP) provides mechanisms for the optimization of answer sets accord-
ing to preferences and resources. In this paper, an ASP-based system
integrated with a mobile application able to plan the activities of a user
is proposed, taking into account the context in which the user is located,
the available resources, the geographical position and user’s preferences.

Keywords: answer set programming, logic programming, preference
handling, resource management, planning and scheduling

1 Introduction

Everyone’s daily life is becoming increasingly complicated and busy, and pref-
erences affect our daily actions and the way in which we try to achieve our
goals. On the other side, the technology, and in particular intelligent agents, is
potentially able to help us, since mobile applications and the web in particu-
lar are becoming more and more helpful and are available on affordable mobile
devices. In this scenario, evaluation and adequate handling of user preferences
(expressed either in an explicit or in an implicit way) is becoming increasingly
useful. In fact, an adequate preference handling system can help the user in the
organization of everyday life. In fact, preferences affect the way intelligent agents
(including human) act, and their decision-making process.

Approaches concerning preferences in (constraint) logic programming and
non-monotonic reasoning are widely studied (cf., e.g., [9], [11], [12] and [8]). More
specifically, reasoning on preferences in relation to Answer Set Programming
(ASP, cf., e.g., [2], [1], [10] and [13]) has been investigated (see among many
[2], [4], [6] and [3]) These approaches introduce preferences either globally (e.g.,
[4]) or among rules (e.g., [14]). Particularly suitable to our purposes seems to
be the Resourced Answer Set Programming (RASP), an extension of ASP that



supports declarative reasoning on consumption and production of resources and
allows to model and plan preferences on these aspects in a very simple way (see
[6], [5] and [7] for a comprehensive treatment about RASP).

In this paper, we illustrate the design of an integrated system able to plan
activities of users, taking into account the context in which the user is located,
the available resources, the geographical position and her/his preferences. This
system, which is being implemented, is ASP- and RASP-based and can interact
with the user through a mobile application. In Section 2 we briefly overview
RASP, while in Section 3 the design of the system is described and in Section 4
we conclude.

2 RASP

Even resource production and consumption processes are connected with pref-
erences: in fact, an agent may prefer to use some resources and not others in a
given situation, or it may prefer to use available resources for obtaining a certain
resource rather than others. o

Resourced Answer Set Programming (RASP) extends the ASP framework
by introducing resources and preferences. With RASP we can easily specify
available resources and the amount of resources needed to produce others: it
supports reasoning about resource consumption and production, according to
preferences. Resources are modelled by amount-atoms of the form q#a (q is the
kind of resource and a its available quantity 1). Amount-atoms are used in r-facts
(RASP-facts) to represent the available quantities of resources. Thanks to r-rules
(RASP-rules), a specific quantity of certain resources can be transformed into a
specific quantity of another resource: amount-atoms in the body of a rule model
the consumed resources, while in the head they model the resources produced
by that rule. An r-rule can be fired several times thanks to the prefix [N −M ]
(respectively the minimum and the maximum number of times a rule can be
fired). In the following example (1), the rule can be fired from one to four times,
producing from one to four portions of pasta according to available resources; to
produce one portion of pasta with pesto the needed resources are 80 gr. of pasta
and a little bottle of home made pesto, while to make that bottle of pesto we
need some grams of many ingredients:

[1− 4]pasta with pesto#1← pasta#80, home made pesto#1.

home made pesto#1← basil#15, garlic#1, pine nuts#25,

oil#10, grated parmesan#25.

basil#300. pine nut#250.

garlic#3. oil#120. grated parmesan#120.

(1)

1 For lack of space we do not consider management of quantities here, and in the
example we just use integers.
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If we want to clearly express which resource we prefer to use, we have to
introduce p-lists (i.e. preference-lists), where the leftmost element of the list has
high priority. For example, we can state that when we cook pasta with pesto we
prefer to use home made pesto rather than pesto from supermarket:

[1− 4]pasta with pesto#1←
pasta#80, (home made pesto#1 > supermarket pesto#1).

(2)

RASP provides also two kinds of conditional preference lists (cp-list): pref when
and only when lists. Suppose that one prefers normal pasta instead of gluten
free pasta, but not in case of allergy : the only when condition is false and the
cp-list is ignored. And suppose that when one has guests, one prefers to use
home made pesto instead of supermarket pesto: if the condition has guest does
not hold, the cp-list becomes simply a disjunction.

[1− 4]pasta with pesto#1←
(pasta#80 > gluten free pasta#80 only when notallergy),

(home made pesto#1 > supermarket pesto#1 pref when has guest).

(3)

3 Framework Design

The design of an ASP-based integrated system for preference and resource man-
agement and planning is proposed here as a concrete application in real-world
contexts. The main purpose of this system is to simplify our daily life, and for
this reason the ASP-based system is integrated with web services to reach users
everywhere, in every moment and situation via inexpensive mobile devices, typi-
cally smartphones. It is important to notice that the system is able to handle even
conditional preferences and priorities among preferences. Furthermore, starting
from the user’s geographic location, the system optimizes the preferred answer
sets according to her/his objectives, whether they are declared in an explicit or
implicit way.

Fig. 1. The framework
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Resources managed by the system are al least time and money, but the end-
user can define others, through a web application interface, so to ensure a simple
customization and personalization of the system. The framework is composed of
different parts (Fig. 1): a database, a web application, an answer set viewer and
the core of the system. In the database, the data needed by the system to make in-
ferences are stored. It is a NoSQL database (http://nosql-database.org/), useful
when we have to deal with a huge quantity of data that do not require a relational
model. NoSQL is the de facto standard for mobile applications, and has bee cho-
sen in view of efficiency and scalability, since the reasoning part is performed
by the ASP module and thus no complex queries are needed. Data extracted
from the database are processed by the data-transformer module, that trans-
forms query results into an ASP-compatible format. At first, a pre-processing
is needed: the system extracts the activities to plan and the preferences from
the database, and then constructs suitable RASP rules and ASP facts and rules
(needed to describe available resources and constraints). At this point, the files
built in the previous step are processed by the ASP/RASP reasoning module,
that consists of two parts: the ASP interpreter processes the data and grounds
the program; the RASP interpreter processes the ground program and produces
the preferred answer sets. Finally, these answer sets are transformed into a for-
mat understandable by a non academic user: the interaction between end-users
and the system is made through the web application, via a smartphone. The end
interface also performs user monitoring and profiling, feeding the system with
new data, so as to elicit user needs, habits and preferences.

In the implementation which is being developed, the database and ASP/RASP
parts are on a server, while the interface is on the mobile. In perspective (i.e.,
when a suitable deployment will be available) for the sake of scalability the
ASP/RASP part can be moved on the mobile.

Let us provide an example of use. Assume that John wants to keep fit and
hates gyms, but loves being outdoors and is very busy because of his new job:
the system can produce a training program tailored for him in real time, that
changes from time to time according to his preferences, resources, objectives and
the place he actually is (the current user geographic and contextual location).
The database has a catalogue of gym exercises, John’s preferences (he hates gym,
loves being outdoors, etc.), his available resources (the amount of his free time
today, exercise equipment he has at home, parks nearby, and so on), resources
he wants to be produced (e.g. loss of weight). If it is a sunny day, but John is
very busy and has a lot of work to do: the system plans for him a run in the
park near the office during his lunch break and exercises suitable for outdoor.
However, if it is a rainy day and John had a rough day, the system plans for him
training less hard exercises he can do while watching TV.

4 Concluding Remarks

The main purpose of the proposed framework is not to advance the state of the
art of ASP and RASP approaches, but to realize an innovative application of logic
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programming, by means of an effective integration with modern technologies
affordable and understandable by everyone. The architecture includes in fact a
suitable user interface, which is being designed so as to be understandable also
by elder or impaired users, for which such a system can be particularly useful.

The novelty is the design of the framework itself; it aims at moving ASP and
RASP outside the academic world, into the real world, and make them usable in
concrete situations by ordinary people. In fact, we gave two small examples that
can represent situations of our daily lives: in the first (see Section 1) the system
can be a cooking teacher who offers us recipes suitable to our needs, while in the
second (see Section 2) a personal trainer that offers custom workouts.

As mentioned, an implementation is under way, where the system will be able
to automatically learn user preferences and objectives through machine learning
mechanisms typical of proactive and adaptive agents.
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