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Abstract. The Unified Modeling Language (UML) Class Models are
widely used for modeling the static structure of object-oriented soft-
ware systems. Temporal properties of such systems can expressed using
TOCL, a temporal extension to the Object Constraint Language (OCL).
Verification and validation of temporal properties expressed in TOCL is
non-trivial and there are no automated tools that can aid such analy-
sis. Existing approaches rely on transforming the UML models to an-
other language that supports automated analysis. Such transformation
is complex and can introduce errors. Towards this end, we propose an
approach for directly analyzing temporal properties expressed in TOCL.
We present a case study based on the Steam Boiler Control System to
demonstrate the applicability of the approach.
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1 Introduction

The Unified Modeling Language (UML) Class Models are probably the most
common specification diagrams used in the software industry. Automated analy-
sis of class models often uncovers design problems. Detecting design problems in
a timely manner saves time and effort. Specifying and analyzing temporal prop-
erties in class models are non-trivial. Consider the following temporal property
in the Steam Boiler Control System [1]: “when the system is in the initialization
mode, it remains in this mode until all physical units are ready or a failure of
the water level measurement device has occurred.” It is hard to express such
property using Object Constraint Language (OCL) in a class model. TOCL [2],
however, is a temporal logic extension of OCL and can specify such temporal
properties. Once a property is specified, the class model must be analyzed to
check for the satisfaction of such properties. To the best of our knowledge, we
are unaware of any class model-based techniques for directly analyzing TOCL
properties.

There are a number of model-checking based techniques for specifying and
analyzing temporal properties in UML behavioral models, such as state machines
and activity diagrams (e.g., see [3, 4]). These techniques involve developing an
exogenous transformation, in which the source and target models are expressed
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in different languages. Typically, the UML behavioral models are transformed
to languages that are supported by model checking tools. There are three major
challenges associated with these approaches: (1) effective use of these heavy-
weight techniques requires developers to have specialized skills, (2) one has to
prove that the transformations preserve the semantics of the source UML models,
and (3) the results of the analysis performed by the back-end analysis tool must
be presented to developers in UML terms, thus requiring another exogenous
transformation.

However, temporal properties can also be expressed in class models that must
be subsequently verified. One option is to transform them into other languages
supporting automated analysis, as is done for the temporal properties specified
on the behavioral models. But such an approach will have similar problems to
those mentioned earlier. Another option is to develop model-checking support for
verifying TOCL properties in UML class models with operation specifications.
Given the complex state spaces that have to be codified and analyzed, this is a
very challenging research problem.

Existing tools of UML/OCL such as USE [5] and OCLE [6] can be used
to analyze structural properties, but they provide little support for temporal
analysis. For example, the USE tool allows a user to interactively simulate the
behavior of an operation by entering commands that change the states of objects
and then the user checks if the operation’s postconditions hold. Interactive sim-
ulation of operation behavior is useful, but can be tedious, time-consuming, and
error-prone when manually simulating a scenario involving many interactions.
Towards this end, researchers have demonstrated how scenarios can be modeled
as a sequence of snapshots, which, in turn, can be verified using USE and OCLE
[7]. However, adapting such an approach for verifying temporal properties is still
an ongoing challenge. Our current work aims to fill this gap.

In this paper we propose a lightweight class model-based analysis approach
that checks temporal properties against a non-exhaustive set of behavioral sce-
narios. The approach neither requires the use of exogenous transformations nor
specialized skills other than those related to UML modeling. Our approach builds
upon our previous work [8], where we described a temporal analysis approach
that leverages the USE Model Generator [9] to produce a subset of the class
model state space. A TOCL property is then checked against this state space.
The approach described in this paper improves upon the earlier version in the
following manners. First, the new version of the approach is based on the USE
Model Validator which significantly outperforms the Model Generator [9]. The
Model Validator uses boolean satisfiability (SAT) solvers to perform the analysis
task. This results in a larger set of behavioral scenarios that can be checked and
hence increases the confidence that a temporal property holds on a class model.
Second, in the previous version, a procedure for creating non-exhaustive set of
scenarios is defined manually. This task is tiresome, error-prone, and can be dif-
ficult to non-experts. In the current approach, this step is automated. Lastly, a
complementary step is added to make the analysis results easier to exam to find
the error. We applied our approach in specifying and analyzing real temporal
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Fig. 1: An Overview of the Approach

properties of the Steam Boiler System. Note that, checking such properties is
non-trivial using our earlier approach [8].

The rest of the paper is organized as follows. In Section 2, we give an overview
of the proposed analysis approach. Section 3 presents the specification Steam
Boiler System properties and Section 4 illustrates the analysis of these properties.
In Section 5, we discuss related work, and in Section 6 we summarize our
contributions and give pointers to future directions.

2 An Overview of the Approach

The research that led to this approach focused on answering the following ques-
tion: “Given a UML class model, and a temporal property, is there a scenario
supported by the class model that violates the property?.” Figure 1 presents an
overview of the approach. At the front-end of the approach, a system designer
is responsible for 1) creating a design class model, and 2) specifying a tempo-
ral property in TOCL. A class model specifies application states and includes
OCL specifications of operations. Then, the USE Model Validator is used at the
back-end to generate behavioral scenarios against which the temporal property is
checked. The tool produces a scenario, an object diagram of snapshot transition,
that violates the temporal property. The back-end processing is transparent to
the system designer.

The approach consists of four major steps. A transition-based class model
of behavior is produced in Step 1. The model, called a Snapshot Transition
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Fig. 2: The Design Class Model for the Steam Boiler Control System

Model (STM), is a class model that characterizes the valid sequences of state
transitions caused by executions of operations specified in the class model. A
state is modeled as a configuration of objects called a snapshot. The STM is
mechanically generated from the class model.

In Step 2, the temporal property to be checked is converted to an OCL
property defined in the context of the STM . The temporal property is specified
in TOCL, a temporal logic extension to OCL [2]. The TOCL property and its
OCL representation are instances of temporal property specification patterns
that enable the UML modelers to apply reusable solutions to specify temporal
properties in object-oriented notation, more details in our paper [8].

In Step 3, the USE Model Validator tool is used to produce instances of the
STM (scenarios) and check the STM constraint generated in Step 2 against
the scenarios. Specifically, the tool checks if there is a scenario that violates the
temporal property.

The analysis results for scenarios that have a large number of snapshots and
transitions might be difficult to interpret. For ease of examining, this result is
also visualized by a UML sequence diagram in Step 4.

3 The Steam Boiler Control System Problem

We use the Steam Boiler Control System described in [1] to illustrate the pro-
posed approach. The system works correctly when the water level is within two
normal limits (minimalNormal and maximalNormal) and can not pass over two
critical limits (minimalLimit and maximalLimit). Otherwise the steam-boiler
can be seriously damaged.

Figure 2 shows a design class model of the Steam Boiler Control System.

The class model has five operations that change the state of the system. The
operation getLEVEL() reads the water level and stores it in the variable water-
Level and getSTEAM() reads the evaporation steam rate and writes it in the
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Table 1: TOCL and OCL specification of the steam boiler temporal properties
Temporal Property Pattern TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

TP1: As soon as the program recognizes
a failure of the water measuring device
unit it goes into the rescue mode.

Response-
global

context ControlProgram
inv: self.wlmdFailure implies
next self.mode=# Rescue

context ControlProgram
inv: inv: let CS: Snapshot= self.snp
in NS: Snapshot= CS.getNext()
in self.wlmdFailure implies NS.program.mode= # Rescue

TP2: Failure of any physical units ex-
cept the water measuring device puts the
program into degraded mode

Response-
global

context ControlProgram
inv: (smdFailure or pumpFailure
or pumpControlerFailure) implies
next self.mode=# Degraded

context ControlProgram
inv: let CS: Snapshot= self.getCurrentSnapshot()
in let NS: Snapshot = CS.getNext()
in (self.pumpControlerFailure or self.pumpFailure or
self.smdFailure) implies NS.program.mode =# Degraded

TP3: If the water level is risking to
reach one of the limit values (e.g.,
greater than maximalNormal or less
than minimalNormal) the program en-
ters the mode emergency stop.

Response-
global

context SteamBoiler
inv: (self.wlmd.waterLevel >
self.maximalNormal or self.wlmd.waterLevel
< self.minimalNormal) implies next
self.program.mode = # EmergencyStop

context SteamBoiler
inv: let CS: Snapshot = self.snp
in let NS: Snapshot = CS.getNext()
in (self.wlmd.waterLevel > self.maximalNormal or
self.wlmd.waterLevel < self.minimalNormal) implies
NS.program.mode = # EmergencyStop

TP4: when the valve of the steam boiler
is open, then eventually the water level
will be lower or equal to the maximal
normal level.

Response-
global

context SteamBoiler
inv: self.valveOpen = # open implies
sometime
(self.wlmd.waterLevel < = maximalNormal)

context SteamBoiler
inv: let CS: Snapshot = self.snp
in let FS: Set(Snapshot) = CS.getPost()
in self.valveOpen = # open implies FS → exists
(s:Snapshot | s.WLMD.waterLevel < = maximalNormal)

TP5: when the program is in the initial-
ization mode and a failure of the water
level measurement device is detected it
puts the program in the emergency stop
mode.

Response-
global

context ControlProgram
inv: (self.mode = # Initialization
and self.wlmdFailure ) implies
next self.mode =# EmergencyStop

context ControlProgram
inv: let CS: Snapshot = self.snp
in let NS: Set(Snapshot) = CS.getNext()
in (self.mode = # Initialization and self.wlmdFailure)
implies NS.program.mode = # EmergencyStop

TP6: when the system is in initializa-
tion mode, it remains in this mode until
all physical unites are ready or a failure
of the water level measurement device
has occurred.

Universality-
between Q
and R

context ControlProgram
inv: self.mode = # Initialization implies
always self.mode = # Initialization
until (PhysicalUnit.allInstances→
forAll( u: PhysicalUnit | u.ready))

context ControlProgram
inv: let CS: Snapshot = self.snp
in let FS1: Snapshot = CS.getPost() → select(s:Snapshot |
s.boiler.ready and s.SMD.ready and s.pump.ready
and s.PC.ready and s.WLMD.ready)→ first()
in let PreFS1=Set(Snapshot) = FS1.getPre()
in let BTS: Set(Snapshot)=PreFS1 → excluding(CS.getPre())
in self.mode = # Initialization implies BTS → forAll
(s1:Snapshot | s1.program.mode= # Initialization)

vaporationRate variable. The openPump(),closePump(), and openValve() oper-
ations open the pump, close the pump, and open the boiler valve, respectively.
The OCL specifications of getLEVEL() and openPump() are defined bellow.

context WaterLevelMeasurementDevice::getLEVEL(): Double

pre: self.program.mode= #Normal

post: self.waterLevel = result

context PumpControler::openPump()

pre: self.pump.mode = # Off

post: self.pump.mode = # On

The system has a number of temporal requirements that need to be verified.
We resorted to the use TOCL to specify the temporal properties in the boiler
system. Table 1 presents the TOCL specifications of some of these properties.
In our previous paper [8], we explain how to use reusable solution patterns to
specify temporal properties in TOCL.
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4 Case Study: Specifying and Analysing Temporal
Properties of Steam Boiler

The following discusses the steps in Figure 1 in the context of the Steam Boiler
Control System.

4.1 Step1: Generation of the STM

Step 1 takes the steam boiler class model (see Fig. 2) as input and produces a
STM model [7]. The STM model characterizes a sequence of state transitions of
the boiler system, where each transition is triggered by an operation invocation.
The STM is formed by (1) creating a Snapshot class, (2) creating a hierarchy
of transition classes representing operation invocation, and (3) converting oper-
ation specifications to invariants of the transition classes. Everything else ( class
invariants, associations ect.) remains intact in the STM model. Figure 3 shows
the STM model that is produced from the boiler class model.

Each instance of the Snapshot class represents a state in a transition system.
A snapshot is a configuration of one object of each of the concrete classes inf
Figure 2. In this system, a snapshot has only one object of each class. The
approach can also be used to specify snapshots that have many objects of each
class, and it distinquishes between these objects using identifiers [7].

To create the hierarchy of transition classes, we generate a subclass of the
abstract Transition class from each operation. In the Steam Boiler class model,
we only consider five modifier operations and thereby we create five subclasses
of the class Transition, one for each operation (see Fig.2 and Fig. 3). For each
parameter of an operation, we generate two references (shown as attributes of
the Transition subclasses) that represent the value of the parameter before and
after the execution of the operation. In boiler class model, none of the operations
has a parameter, so we do not create any references. We define two references
for each operation that point to the object’s states before and after an operation
invocation. A reference is also created for the return value of an operation.

We define the before and after state conditions in the STM as invariants
based on the pre and post conditions of the operations in the initial class model.

The following illustrates how the getLevel() operation in the WaterLevelMea-
surmentDevice class is defined in the STM model. We generate two references
(wlmdPre and wlmdPost of type WaterLevelMeasurmentDevice) that point to
the object that the operation is invoked on. Because this operation has a return
value of type Double, a ret:Double reference is created to point to the returned
value of the operation. The pre and post conditions of getLevel() operation (
presented above) are converted to invariants in STM as follows:

context WaterLevelMeasurmentDevice_getLevel

inv: self.wlmdPre.program.mode=# Normal

inv: wlmdPost.waterLevel= ret

Similarly, we generate invariants from the pre and post conditions for all the
other operations.
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Fig. 3: The Steam Boiler Snapshot Transition Model

4.2 Step2: Converting TOCL to OCL properties

In this step, the steam boiler class model is unfolded as a sequence of snapshot
transitions represented by the STM in order to express TOCL properties as OCL
constraints. We first specify the temporal properties in the Steam Boiler Control
System using TOCL. Table 1 shows some of the boiler system TOCL properties.
These TOCL properties are specified in the context of the steam boiler class
model. Then, OCL constraints are systematically produced in the context of the
steam boiler STM model (see Fig. 3) using these TOCL properties. Each OCL
constraint captures the semantics of the corresponding TOCL constraint in the
context of the STM model.

Consider the TOCL and OCL expressions of the temporal property TP1 in
the Table 1. The TOCL states that if the water measuring device fails (self.wlmd
Failure=true) then the program goes into the rescue mode (nextself.mode =
#Rescue). In the corresponding OCL expression, the next state (NS) is returned
by first getting the current snapshot(CS) and navigating to the next state by the
operation getNext(). Then the OCL asserts that if the water measuring device
fails, then the program in the next state is in the Rescue mode.
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Fig. 4: Counterexample: Scenario violating the temporal property TP1

4.3 Step 3: Analysis

Now, we apply a UML/OCL structural analysis tool to perform the analysis
task of the boiler system temporal properties. In this case study, we used the
USE Model Validator to check the temporal property expressed in OCL in the
steam boiler STM model. For each property, the Validator attempts to produce a
scenario (i.e., an instance of the STM) that violates the property. The Validator
takes the STM model and an OCL property and provides a relational logic
specification. Then the tool employs of-the-shelf SAT solvers to check if there
exist an instance of the STM model that violates the OCL expression.

The approach checks a property based on the small-scope hypothesis [10].
That is, when a property does not hold in a model, it is more likely that there
is a small scenario that violates the property. Therefore, the approach does not
enumerate all possible scenarios, but a constrained number. A scope restricts
the number of instances that each class can have in a snapshot and limits the
number of transitions in a scenario. As such, the Model Validator enumerates
all possible scenarios within the defined scopes and check the given property.

We analyzed the temporal properties in Table 1 on scopes that have one
object of each class and 10 transitions. The Validator uncovered a scenario that
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Algorithm 1 Snapshot Transitions to Sequence Diagram

Input: Sequence of Snapshot Transition
Output: Sequence diagram
Algorithm Steps: For every object of the Class transition do
Step 1. Get the class name and the operation name that associated with transition.
Step 2. Get the object on which the operation is invoked on.
Step 3. Get the operation parameters from the transition object attributes.
Step 4. Get the return value from the ret attribute of the transition object.
Step 5. Draw a timeline for the object that the operation is invoked on from step 2.
Step 6. Draw an operation invocation on the object using the name of the operation
and its attributes from steps 1, and 3 above .
Step 7. Draw a return message of the operation with the value from step 4

violates the first temporal property in Table 1, TP3. Figure 4 shows the coun-
terexample that violates property TP1. To uncover the fault, the verifier must
examine the counterexample.

4.4 Step 4: Sequence diagram extraction

The results of Step 3 might be complicated and difficult to present and examine.
In this step, we provide support for extracting a sequence diagram from a se-
quence of snapshot transition. Algorithm 1 provides a systematic way to achieve
this objective. We do not show the generated sequence diagram for the lack of
space.

5 Related Work

A number of model-checking based techniques have been proposed for speci-
fying and analyzing temporal properties in UML behavioral models, such as
statemachines and activity diagrams (e.g., see [3, 4]). In order to apply such
techniques, the UML models must be transformed to the tool-specific input lan-
guages. For example, the vUML [3] tool automatically converts UML statema-
chines to PROMELA specifications and then invokes SPIN model checker to
verify the desired properties. Although the system is modeled as UML statema-
chines, the temporal properties are specified in LTL, but not in the UML nota-
tion. Eshuis [4] applied symbolic model checking to analyze the data integrity
constraints of UML activity diagram and class models. The activity models are
formalized and transformed to the input language of the NuSMV model checker.
Unlike these techniques, the analysis approach described in this paper neither
requires transformation nor requires that the verifier be familiar with notations
other than UML and TOCL/OCL.

UML/OCL analysis tools, such as OCLE [6] and USE [11] provide support
for validating structural properties. However, OCLE and USE are limited in
analyzing temporal properties. The approach described in this paper enables a
system designer to analyze TOCL temporal properties using OCLE and USE.
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The Scenario-based Design Analysis approach [7] checks whether a given
scenario is supported by a design class model. The analysis results depend on
the quality of the selected scenarios, which is challenging for complex models .
While this approach checks one scenario at a time, the approach in this paper
builds on the Scenario-based analysis to check a temporal property within a
scope of automatically generated scenarios.

6 Conclusions and Future Work

In this paper, we proposed a lightweight and rigorous approach that uses UML
notations for specification and analysis of temporal properties without the need
for transformation. The use of TOCL object-oriented temporal logic with spec-
ification patterns makes the approach accessible to UML modeling community.
As a pointer to future work, we plan to provide a system-development process
through which a system designer is able to design complex systems in incremen-
tal and iterative manner. Our future work also includes deploying the approach
for specifying and analyzing a real-world healthcare Dengue Decision Support
System (DDSS) requirements.

References

1. Abrial, J.R., Börger, E., Langmaack, H.: The Stream Boiler Case Study: Com-
petition of Formal Program Specification and Development Methods. In: Formal
Methods for Industrial Applications. (1995) 1–12

2. Ziemann, P., Gogolla, M.: OCL Extended with Temporal Logic. In: Ershov Memo-
rial Conference. (2003) 351–357

3. Lilius, J., Porres, I., Paltor, I.P., Centre, T., Science, C.: vUML: a Tool for Verifying
UML Models. (1999) 255–258

4. Eshuis, R.: Symbolic model checking of uml activity diagrams. ACM Trans. Softw.
Eng. Methodol. 15 (January 2006) 1–38

5. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Journal on Software and System Modeling 4
(2005) 2005
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