
Frédéric Boulanger, Michalis Famelis and Daniel Ratiu, editors

Proceedings

10th Workshop on

Model Driven Engineering, Verification and Validation

MoDeVVa 2013

co-located with Models 2013

Miami, Florida, October 1st 2013

Copyright c© 2013 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

Editor’s addresses:

Frédéric Boulanger
Supélec - Département informatique
3 rue Joliot-Curie
91192 Gif-sur-Yvette cedex, France
frederic.boulanger@supelec.fr

Michalis Famelis
Department of Computer Science
10 King’s College Road
University of Toronto
Toronto, Ontario, Canada M5S 3G4
famelis@cs.toronto.edu

Daniel Ratiu
fortiss GmbH
Guerickestraße 25
80805 München, Deutschland
ratiu@fortiss.org

Contents

Preface . v

Marsha Chechik
Abstract of the Keynote: Partial Behavior Modeling vii

Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel
A Framework for Testing UML Activities Based on fUML 1

Pascal André, Jean-Marie Mottu, and Gilles Ardourel
Building Test Harness from Service-based Component Models 11

Christian Prehofer
Feature-based Development of State Transition Diagrams
with Property Preservation . 21

Petra Kaufmann, Martin Kronegger, Andreas Pfandler,
Martina Seidl, and Magdalena Widl

Global State Checker: Towards SAT-Based Reachability Analysis
of Communicating State Machines . 31

Ulyana Tikhonova, Maarten Manders, Mark van den Brand,
Suzana Andova, and Tom Verhoeff

Applying Model Transformation and Event-B
for Specifying an Industrial DSL . 41

Jan Olaf Blech
Ensuring OSGi Component Based Properties
at Runtime with Behavioral Types . 51

Nico Nachtigall, Benjamin Braatz, and Thomas Engel
Symbolic Execution of Satellite Control Procedures
in Graph-Transformation-Based EMF Ecosystems 61

Catherine Dubois, Michalis Famelis, Martin Gogolla,
Leonel Nobrega, Ileana Ober, Martina Seidl, and Markus Völter

Research Questions for Validation and Verification
in the Context of Model-Based Engineering 67

Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, and Indrakshi Ray
An Approach to Analyzing Temporal Properties in UML Class Models 77

Preface
The MoDeVVA workshop series brings together researchers and practitioners in-
terested in combining MDE with validation and verification. The 10th edition took
place on the 1st of October 2013 and was co-located with MODELS’13 in Miami.
The special topic of this edition was the use of models to increase the the usability
of verification tools.

Out of the 13 papers submitted and reviewed by at least three members of the
program committee, 9 were selected. About 30 participants attended this edition of
the workshop.

In addition to the presentation of the selected papers from the technical program,
MoDeVVA’13 featured an invited presentation by Marsha Chechik from the Univer-
sity of Toronto. Her highly inspiring talk gave an overview of research results in
formalizing and checking the consistency and completeness of incomplete models.

This volume contains versions of the selected papers that the authors had the
opportunity to enhance after the workshop and the fruitful discussions that occurred
during the whole day. The papers where collected using the EasyChair conference
system, formatted according to the LNCS style, and assembled using pdfLATEX and
the pdfpages package.

Program Committee
Ait Sadoune, Idir, Supélec - E3S, France
Ammann, Paul, George Mason University, USA
Balaban, Mira, Ben-Gurion University of the Negev, Israel
Barroca, Bruno, CITI-FCT/UNL, Portugal
Bouquet, Fabrice, University of Franche-Comté, France
Bousse, Erwan, Université de Rennes 1, France
Cheng, Chih-Hong, Fortiss - Munich Software and Systems Institute, Germany
Derrick, John, University of Sheffield, United Kingdom
Fondement, Frédéric, Université de Haute Alsace, France
Jacquet, Christophe, Supélec - E3S, France
Legeard, Bruno, Smartesting, France
Lúcio, Levi, MSDL, Canada
Merayo, Mercedes, Universidad Complutense de Madrid, Spain
Minea, Marius, Politehnica University of Timisoara, Romania
Motta, Alfredo, Politecnico di Milano, Italy
Salay, Rick, University of Toronto, Canada
Scheidgen, Markus, Humboldt-Universitt zu Berlin, Germany
Schieferdecker, Ina, FU Berlin/Fraunhofer FOKUS, Germany
Sokenou, Dehla, GEBIT Solutions, Germany
Taha, Safouan, Supélec - E3S, France
Weißleder, Stephan, Fraunhofer FOKUS, Germany
Williams, James, University of York, United Kingdom
Wimmer, Manuel, Vienna University of Technology, Austria
Zurowska, Karolina, Queen’s University, Canada

October 25, 2013
Gif-sur-Yvette

Frédéric Boulanger
Michalis Famelis
Daniel Ratiu

Abstract of the Keynote: Partial Behavior Modeling

Marsha Chechik
Department of Computer Science

University of Toronto
chechik@cs.toronto.edu

Although software behavior modeling and analysis has been shown to be successful
in uncovering subtle requirements and design errors, adoption by practitioners has
been slow. One of the reasons for this is that traditional approaches to behavior
models are required to be complete descriptions of the system behavior up to some
level of abstraction, i.e., the transition system is assumed to completely describe
the system behavior with respect to a fixed alphabet of actions. This completeness
assumption is limiting in the context of software development process best prac-
tices which include iterative development, adoption of use-case and scenario-based
techniques and viewpoint or stakeholder-based analysis; practices which require
modeling and analysis in the presence of partial information about system behavior.

We believe that there is much to be gained by shifting the focus in software engi-
neering from traditional behavior models to partial behavior models, i.e. operational
descriptions that are capable of distinguishing known behavior (both required and
proscribed) from unknown behavior that is yet to be elicited. Our overall aim is to
develop the foundations, techniques and tools that will enable the automated con-
struction of partial behavior models from multiple sources of partial specifications,
the provision of early feedback through automated partial behavior model analysis,
and the support for incremental, iterative elaboration of behavior models.

In this talk, I highlighted some of the results obtained in this line of research,
joint work with Sebastian Uchitel and many students at the University of Toronto,
University of Buenos Aires, and Imperial College London.

A Framework for Testing UML Activities
Based on fUML

Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel

Business Informatics Group, Vienna University of Technology, Austria
{mijatov, langer, mayerhofer, gerti}@big.tuwien.ac.at

Abstract. In model-driven engineering (MDE), models constitute the main de-
velopment artifacts. As a consequence, their quality significantly affects the qual-
ity of the final product. Thus, adequate techniques are required for ensuring the
quality of models. We present a testing framework, comprising a test specification
language and an interpreter, for validating the functional correctness of UML ac-
tivities. For this purpose, we utilize the executability of a subset of UML provided
by the fUML standard. As UML activities are employed for different purposes,
from high-level process specifications to low-level object manipulations, the pro-
posed testing framework not only allows to validate the correctness in terms of
input/output relations, but also supports testing intermediate results, as well as
the execution order of activity nodes. First experiments indicate that the proposed
testing framework is useful for ensuring the correct behavior of fUML activities.

1 Introduction
In model-driven engineering (MDE), models are used to specify the structure and be-
havior of the system to be built. By using model transformations and code generation,
artifacts, such as source code, database schema, and deployment scripts, can be gener-
ated from the models. This helps developers to abstract from technical details and in-
crease their productivity by automating parts of the development process [1,13]. MDE
shifts the development process from being code-centric to being model-based. As a
consequence, it is of uttermost importance to ensure a high quality of the models. Oth-
erwise, every error not captured at the model level is propagated to the final product [4].

One important quality aspect of models is functional correctness. For validating
the functional correctness of models, precisely defined semantics of the used modeling
language is a prerequisite. The semantics of a subset of UML [8], one of the most
adopted modeling languages, has recently been precisely defined and standardized with
fUML [9]. fUML specifies a virtual machine for executing UML models compliant to
this subset, which consists of concepts for modeling classes and activities.

Although the semantics of fUML is precisely defined, adequate means for system-
atically testing fUML models are missing. We argue that a unit testing framework for
fUML may provide the same benefits as for code-centric approaches, as it enables to
validate the functional correctness of models, helps to avoid regressions, and test cases
on model level may serve as input for testing the artifacts generated from the models.

Providing unit testing techniques for fUML activities is a challenging task because
they can be specified for different purposes and on different levels of abstraction. Hence,

Proceedings of MoDeVVa 2013 1

different means for validating their correctness are required. For instance, activities
that serve as a high-level specification of processes cannot be tested adequately using
assertions on input/output relations; constraints regarding the execution order of process
steps modeled by activity nodes seem to be more adequate in such cases. For testing
activities specifying low-level object manipulations and computations, assertions on
input/output relations might be helpful. In addition, developers may also need to specify
assertions on mutable intermediate results.

In this paper, we propose a dedicated test specification language and an accompa-
nying test interpreter enabling the validation of the correct behavior of fUML activities.
Using the test specification language the modeler can specify assertions on the execu-
tion order of the activity nodes, input and output values, and the runtime state of the
model. The test interpreter is based on the reference implementation of the fUML vir-
tual machine, which is used to execute the activities under test and to obtain execution
traces that are used for evaluating the assertions defined in the test specification.

The remainder of this paper is structured as follows. In Section 2 we introduce a
motivating example used to present our model testing approach throughout this paper.
Section 3 gives an overview of fUML and the execution traces used for evaluating
test cases on fUML activities. In Section 4 our test specification language for fUML
activities and our test interpreter for evaluating them are presented. Related work is
addressed in Section 5. Section 6 concludes this paper with an outlook on future work.

2 Motivating Example
In this section, we introduce a simple example fUML model specifying the withdrawal
functionality of an automatic teller machine (ATM), which serves as running example
throughout this paper, and discuss some test cases for validating its correct behavior.
From these test cases, we derive the requirements that we aim to address with the pro-
posed testing framework for fUML activities which is presented in Section 4.

An excerpt of the class diagram specifying the structure of the ATM system is de-
picted in Figure 1. An ATM card (class Card) has a number and a pin and is associated
with exactly one account (class Account) which has a unique number and a balance.
For realizing the withdrawal functionality, the classes ATM and Account have dedicated
operations, called withdraw, validatePin, and reduceBalance.

The activities specifying the behavior of the operations withdraw and reduceBal-
ance of the classes ATM and Account are shown in Figure 2. The activity specified
for the operation withdraw (cf. ATMWithdrawActivity in Figure 2) requires as input the
client’s card as well as the PIN and the amount of money to be withdrawn entered by
the client. First, it checks whether the PIN is valid by calling the operation validatePin.
If the PIN is valid (i.e., the operation validatePin provides true as output), the operation
reduceBalance is called for the account associated with the provided card. If this oper-
ation returns true, the ATMWithdrawActivity provides also true as output indicating the
successful withdrawal; otherwise it returns false. The activity specifying the behavior
of the operation reduceBalance (cf. AccountReduceBalanceActivity in Figure 2) takes
as input the amount of money to be withdrawn and checks whether it exceeds the ac-
count’s balance. In case the balance is not exceeded, the balance is accordingly updated
and true is returned; otherwise false is returned.

Proceedings of MoDeVVa 2013 2

A Framework for Testing UML Activities Based on fUML

Example – class diagram

Card
- number : Integer
- pin : Integer

Account
- number : Integer
- balance : Integer

+ reduceBalance(Integer amount) : Boolean

ATM

+ withdraw(Card card, Integer pin, Integer amount)
 : Boolean

+ validatePin(Card card, Integer pin) : Boolean
* 1

Fig. 1: Classes of the ATM system

Example – activity diagram

2

ATMWithdrawActivity

amount :Integer

pin :Integer

card :Card

successful :
Boolean

self
ReadSelf result

call_validatePin
(ATM::validatePin) target

pin

valid

card

readAccount
ReadStructuralFeature result object

amount

target
successful

successFalse
ValueSpecification

result

AccountReduceBalanceActivity

amount :Integer

successful :
Boolean

<
successFalse

ValueSpecification

result

self
ReadSelf

result
readBalance

ReadStructuralFeature

object result

call_subtract
:subtract x

y

result

setBalance

AddStructuralFeatureValue

object

value

result

successTrue
ValueSpecification result

successTrue
ValueSpecification

result

[false]

[true]

[false]

[true]

[false]

[true]

«decisionInput
Flow»

call_reduceBalance
(Account::reduceBalance)

Fig. 2: Activities of the ATM system

For validating the correct behavior of the activity ATMWithdrawActivity, which spec-
ifies the withdrawal functionality of the ATM, we state the following test cases.
Test case 1. If the correct PIN is provided and the amount of money to be withdrawn
does not exceed the balance of the client’s account, the balance of the account should
be reduced by the withdrawn amount and the activity should return true. Furthermore,
the validation of the PIN should happen before the balance is reduced.
Test case 2. A withdrawal should also be possible if the amount of money to be with-
drawn is equal to the balance of the account.
Test case 3. If the amount of money to be withdrawn exceeds the balance of the account,
the balance must remain unchanged and the activity should return false.

A testing framework for fUML activities has to provide the means for expressing
and evaluating these and similar test cases. Therefore, it has to fulfill the following
requirements.
R1: Execution order. It should be possible to test the chronological order in which
activity nodes are executed during the execution of the activity under test. Also other
activities that are called from the activity under test should be considered. Furthermore,
it should be possible to state the relative execution order of activity nodes without hav-
ing to state the order of all activity nodes that are expected to be executed.

Proceedings of MoDeVVa 2013 3

A Framework for Testing UML Activities Based on fUML

R2: Input / output validation. The testing framework should enable to check whether
an input of an activity results in a given output. Further, the same should be possible for
activity nodes contained by activities to allow for testing intermediate results.
R3: State validation. Assertions regarding the runtime state of the tested model, con-
sisting of objects, their feature values, and links, should be possible for any point in
time as well as for time periods of the execution of the activity under test.
R4: Test input data. The testing framework should allow to specify input data for the
parameters of the activity under test in order to test different execution scenarios.

3 Foundational UML
The fUML standard [9] provides a formal definition of the execution semantics of a
subset of UML 2. This subset contains the structural and behavioral Kernel of UML, as
well as a major subset of the UML sublanguages Activities and Actions. Its semantics
is defined through an operational approach by the specification of a virtual machine
providing the capability of executing fUML-compliant models.

Whereas the standardized fUML virtual machine provides the facilities to execute
activities and retrieve the output values for their parameters, it lacks in providing means
for analyzing the performed model execution. To address this shortcoming, we extended
the reference implementation of the virtual machine1 in previous work [7] with the func-
tionality of recording execution traces during the execution of activities. An excerpt of
our metamodel for capturing execution traces is depicted in Figure 3. A trace provides
information about the executed activities (class ActivityExecution), the executed activity
nodes (class ActivityNodeExecution), as well as the chronological order in which these
activity nodes have been executed (references chronologicalPredecessor, chronological-
Successor). Furthermore, the trace captures the input and output (classes Input, Output)
of the execution of actions (class ActionExecution) and records the call hierarchy among
activities (class CallActionExecution), as well as the input and output (classes InputPa-
rameterSetting, OutputParameterSetting) of activities. Also the evolution of the runtime
state, that is, objects and links existing at any specific point in time during the execution,
is captured by the trace: each modification of a value (class ValueInstance) is recorded
by capturing a snapshot of the modified value (class ValueSnapshot). It is worth noting
that for each execution of an action or activity the trace captures which snapshot of a
value was provided as input to the execution and which snapshot resulted as an out-
put of the execution (references to ValueSnapshot). Furthermore, the trace captures the
destroyer and creator (references destroyer, creator) of values.

In summary, the trace of an executed activity enables to reason about the execution
order of activities and activity nodes, inputs and outputs, and the runtime state of the
executed model at a specific point in time of the execution. It therefore builds the crucial
basis for the proposed testing framework for fUML activities presented in the following.

4 Testing Framework
In this section we first present a dedicated test specification language for expressing
test cases on fUML activities and illustrate its usage on the ATM example introduced

1 http://fuml.modeldriven.org/

Proceedings of MoDeVVa 2013 4

A Framework for Testing UML Activities Based on fUML

Trace model

ActivityExecution

 activityExecutionID : EInt
 activity : Activity

ActivityNodeExecution

 node : ActivityNode Input

 inputPin : InputPin

Output

 outputPin : OutputPin

InputParameterSetting

OutputParameterSetting

ValueInstance

 runtimeValue : Value

ActionExecution

Trace ValueSnapshot

 value : Value

InputParameterValue

OutputParameterValue

ParameterSetting

 parameter : Parameter ParameterValue

InputValue

OutputValue

CallActionExecution

chronological
Successor

0..1

chronological
Predecessor

0..1

*

*

*

*

original 0..1

*

*

caller 0..1

callee 0..1

*

*

destroyer 0..1

creator 0..1

1
*

1

1

*

*

*

Fig. 3: Trace metamodel for fUML

in Section 2. Subsequently, we present a test interpreter capable of evaluating test cases
as well as the result from evaluating the ATM test cases.

We provide an implementation of our testing framework integrated with the Eclipse
Modeling Framework (EMF) [14]. For more detailed information about the implemen-
tation, we kindly refer the interested reader to our project website2.

4.1 Test Specification Language

Our test specification language for fUML activities enables to specify a test suite which
consists of import declarations, test scenarios, and test cases. An import declaration is
used for referencing elements of the fUML model containing the activities under test.
Test scenarios allow to specify objects, their feature values, and links, which can be used
as input for the activities under test, as well as in state assertions (which are explained
below). Each test case has a name, refers to the activity under test, and is composed
of a set of assertions, which may either concern the execution order of activity nodes
or the runtime state of the model. An execution order assertion is used for validating
the execution order of activity nodes during the execution of the activity under test. In
such assertions, the proposed language also allows to test the execution order of nodes
contained by called activities and to accept any unspecified node before, in between, or
after specified nodes using wildcard characters. The wildcard character * stands for an
arbitrary number of activity nodes being executed, whereas stands for the execution
of exactly one arbitrary activity node. A state assertion validates the state of objects
at a certain point in time of the execution of the activity under test. For expressing
the point in time at which the state of an object should be validated, an activity node
has to be stated in combination with a temporal operator and a temporal quantifier.
The temporal operators after and before are used to define whether the snapshots of
an object captured before or after the execution of the stated activity node should be

2 http://www.modelexecution.org

Proceedings of MoDeVVa 2013 5

A Framework for Testing UML Activities Based on fUML

checked. The temporal quantifier always denotes that all snapshots captured before or
after the stated node should be checked, whereas the quantifier exactly denotes that only
the single snapshot captured directly before or after the execution of the stated node
should be checked. The properties of the object that shall be validated are defined in the
state expression of a state assertion, which can either be an object state expression for
validating the state of a complete object (i.e., all its properties), or it can be a property
state expression for validating the value of a single property of an object.

Listing 1 shows the specification of the test cases for the ATM system defined in
Section 2 using the proposed test specification language.

Listing 1: Test suite for the ATM system
1 import model.∗
2 scenario TestData {
3 object atmTO : ATM {}
4 object accountTO : Account {
5 number = 323454676;
6 balance = 800;
7 }
8 object cardTO : Card {
9 number = 323454676;

10 pin = 1234;
11 }
12 link card_account {card = cardTo; account = accountTo;}
13 }
14 test testcase1 activity ATMWithdrawActivity (card = TestData.cardTO, pin = 1234, amount = 300)
15 on TestData.atmTO {
16 var account = readAccount.result;
17 var successful = ATMWithdrawActivity.successful;
18 assertOrder ∗ , call_validatePin, ∗ , call_reduceBalance, ∗;
19 assertState always before call_reduceBalance {
20 account: :balance = 800;
21 }
22 assertState always after successTrue {
23 account: :balance = 500;
24 successful = true ;
25 }
26 }
27 test testcase2 activity ATMWithdrawActivity (card = TestData.cardTO, pin = 1234, amount = 800)
28 on TestData.atmTO { / / only the differences to testcase1 are shown
29 assertState always after successTrue {
30 account: :balance = 0;
31 successful = true ;
32 }
33 }
34 test testcase3 activity ATMWithdrawActivity (card = TestData.cardTO, pin = 1234, amount = 900)
35 on TestData.atmTO { / / only the differences to testcase1 are shown
36 assertState always after successFalse {
37 account: :balance = 800;
38 successful = false ;
39 }
40 }

After specifying the fUML model which we want to test using an import declaration
(line 1), we define a test scenario (line 2–13) composed of one ATM object, one Account
object, one Card object, and one link between the Account and the Card object.

The first test case (line 14–26) tests the activity ATMWithdrawActivity and provides
as input the Card object defined in the test scenario and the Integer values 1234 and
300 for the parameters card, pin, and amount, respectively. In this test case, we first
declare a variable account (line 16), which refers to the object provided as output by the
action readAccount through its output pin result. This variable can now be used in state

Proceedings of MoDeVVa 2013 6

A Framework for Testing UML Activities Based on fUML

assertions. In line 18, an execution order assertion is specified defining that the action
call validatePin should be executed before call reduceBalance, whereas accepting the
execution of any other activity node before, in between, and after these nodes using *.
The state assertion in line 19–21 checks that before the operation reduceBalance is
called, the balance of the account is always 800. The state assertion in line 22–25 checks
that after the execution of the last activity node sucessTrue the balance of the account
should always be 500 (i.e., it is and remains updated to 500 accordingly). Furthermore,
this state assertion defines that the output (parameter successful) should be true.

The second test case (line 27–33) implements, similar to testcase1, the assertions
regarding the correct behavior for a withdrawal of 800; hence, it is expected that the
account’s balance is updated to 0.

The third test case (line 34–40) tests the behavior of the activity ATMWithdrawAc-
tivity for the case that the amount to be withdrawn from the client’s bank account (900)
exceeds the account’s balance (800). Accordingly, we assert that the balance of the
client’s account is not modified and that the output of the activity is false.

4.2 Test Interpreter

For executing and evaluating test cases on fUML activities specified in the presented
test specification language we make use of the fUML virtual machine, as well as of
execution traces obtained from executing the activities under test (cf. Section 3).

The process of executing and evaluating tests is shown in the Figure 4. The input
provided to the test interpreter consists of the fUML model to be tested and the test suite.
Each test case in the test suite is evaluated by executing the activity under test using the
fUML virtual machine with the parameter values defined in the test case. From this
execution, we obtain an execution trace, which is used to evaluate each assertion of the
test case. Finally, a test report is generated which provides the test verdict.

To evaluate execution order assertions, we simply investigate the ActivityNodeExe-
cution instances contained in the execution trace, which represent the executed activity
nodes, as well as the links between them defined for the references chronologicalPrede-
cessor and chronologicalSuccessor.

These snapshots maintain all different versions of the object that existed during the
entire execution of the activity under test. In fUML, objects can only be modified by
certain kinds of actions, which all provide the modified object as output. Consequently,
in the execution trace, an ActionExecution instance that represents the execution of such
an action also refers to the ValueSnapshot instance representing the modified object

Test execution framework

1

Model
Execution

Artifact

Task
Automated

Caption:

in/out relation

Test
Evaluation

Execution
Trace Test Suite

fUML Model

Activities Classes

Test
Scenarios

Test Cases
 test t1 activity a1 {

 var v = act1.result
 assertState before
 act5 { v::x = 300 }
}

Test Verdict

 t1 failure
 ass1.1 failure
 ass1.2 success
 t2 success
 ass2.1 success

Fig. 4: Test interpreter

Proceedings of MoDeVVa 2013 7

A Framework for Testing UML Activities Based on fUML

as output (cf. Output, OutputValue). Thus, to evaluate a state assertion, we obtain the
ValueSnapshot instances of the ValueInstance representing the object of interest, which
are referenced as outputs by the ActionExecution instances that have been executed in
the time period specified in the state assertion (e.g., always after actionX). Whether the
modification took place within the respective time period can be easily derived from the
chronologicalPredecessor/Successor of the activity node defined in the state assertion.
The resulting set of snapshots is then checked concerning the specified condition.

When executing the test suite defined for the ATM system in Listing 1, the test
interpreter reports failures for all test cases.

For test case 1, a failure is reported for the state assertion defined in line 24–27
because the account’s balance was updated to -500. The bug causing this failure resides
in the activity AccountReduceBalanceActivity: the incoming edges of the input pins of
the action call subtract have to be switched to calculate the account’s new balance.

When evaluating test case 2, the execution order assertion, as well as the second
state assertion (validating that the balance was set to 0) fail, because the decision node
of the activity AccountReduceBalanceActivity defines that a withdrawal is only possible
if the amount of money to be withdrawn is smaller than the account’s balance (amount
< account::balance). However, according to the test case, the withdrawal should also be
possible if the amount is equal to the account’s balance (amount ≤ account::balance).

Test case 3 fails because no output value was provided for the output parameter
successful of the ATMWithdrawActivity. The bug leading to this failure was introduced
at the action successFalse of the activity ATMWithdrawActivity. This action has two
incoming control flow edges, whereas only one of them can provide a control token but
never both, which is, however, required to execute this action.

In summary, our testing framework fulfills the requirements identified in Section 2.
It enables to assert the execution order of activity nodes (requirement R1), to evaluate
the input and output of activities and actions (R2), as well as the runtime state of the
tested model at a specific point in time of the executing (R3), and it enables to define
test input data for testing different execution scenarios (R4).

5 Related Work
Gogolla et al. [2] propose a UML-based specification environment (USE) for analyzing
UML models, where the structure is specified with class diagrams and the behavior with
operations. Class invariants and pre- and post-conditions of operations can be specified
using OCL [10], which can then be validated on snapshots of the system state (i.e.,
objects and links existing at a certain point in time). The behaviors of operations are
defined using their own imperative language and are therefore executed as specified in
sequence diagrams leading to changes of the system state (i.e., snapshots).

Dinh-Trong et al. [3] present an approach for testing UML design models consist-
ing of class diagrams, interaction diagrams, and activity diagrams by simulating the
model’s behavior and validating OCL class invariants and pre- and post-conditions of
operations. In this approach a test case consists of the definition of the initial objects and
links of the system under test and a sequence of operation calls. For executing test cases,
Java code is generated from the UML model under test. The generated code simulates
the behavior of the defined activity diagrams which is specified with their own action
language JAL. For evaluating OCL constraints during the simulation, USE is applied.

Proceedings of MoDeVVa 2013 8

A Framework for Testing UML Activities Based on fUML

Pilskalns et al. [12] present an approach for testing UML models composed of class
and sequence diagrams. OCL class invariants and pre-/post-conditions of operations are
used to validate the correct behavior of models. To execute test cases, a UML model
is transformed into another format called Testable Aggregate Model (TAM) on which
symbolic execution is applied. The OCL constraints are validated after the execution of
each message defined in the sequence diagrams with USE.

The described approaches differ from our testing framework in the following re-
spects. (i) For defining behavior in UML models, the presented approaches use their
own formalisms. Thus, the execution semantics they apply is different from fUML’s
semantics. However, they are not restricted to the fUML subset. (ii) The presented ap-
proaches only evaluate invariants and pre- and post-conditions defined within the UML
model for specified scenarios, whereas our approach enables the specification of arbi-
trary test cases that are separated from the UML model. (iii) The presented approaches
only provide the possibility to validate changes on the system state caused by the ex-
ecution of a whole operation, while our testing framework enables to also validate the
state changes caused by distinct actions contained by the activity defining the opera-
tion’s behavior. Furthermore, no validation of the execution order of operations or even
actions is possible in these approaches.

Regarding the specification of test cases, the UML testing profile (UTP) [11] has to
be named. It is an extension of UML, intended to support model-based testing by pro-
viding a standardized language for designing, visualizing, specifying, analyzing, con-
structing, and documenting the artifacts commonly required for testing software-based
systems. While UTP allows to specify test cases, compared to the test specification
language proposed in this paper, UTP is less expressive. For instance, execution order
assertions cannot be expressed using UTP.

6 Conclusion and Future Work
We presented ongoing research towards developing a testing framework for validating
the correct behavior of UML activities based on fUML. Our testing framework provides
a dedicated test specification language for specifying the expected behavior of fUML
activities in a set of test cases as well as a test interpreter which enables to evaluate the
test cases by executing the activities under test and analyzing their actual behavior by
utilizing execution traces.

First experiments with the proposed testing framework indicate its usefulness for
ensuring the correct behavior of fUML models. In-depth case studies are necessary
in future work in order to confirm this first impression. The experiments revealed the
following interesting extensions of our testing framework left for future work.
Parallelism. fUML activities provide modeling concepts for specifying concurrent ex-
ecution flows (e.g., fork nodes). The current implementation of our testing framework
only supports the evaluation of test cases for one possible sequential execution order of
concurrent flows and not all possible sequential execution orders.
Object-centric testing. Another possible extension of our framework is to support
object-centric testing. User should be able to specify state validation expressions with-
out referring to the activity under test directly, but by specifying how the state of the
system changes during the execution. This would enable to express test cases on the

Proceedings of MoDeVVa 2013 9

A Framework for Testing UML Activities Based on fUML

expected behavior of a fUML activity, without coupling the test case with the activity.
In this respect OCL might be a valuable extension of our testing framework.
Corrective feedback. Our testing framework provides as output the information re-
garding the success or failure of each assertion. An interesting line of future work is
to investigate techniques for slicing fUML models (e.g., [6]) based on failing assertion,
which enables to determine the actual cause of a failing assertion. Based on this slice,
recommendations for possible fixes could be computed.
Model-based testing. Another possible future research direction is to apply model-
based testing approaches to generate test cases for fUML activities based on coverage
criteria. We are currently investigating the approach proposed by Holzer et al. [5] who
use UML activity diagrams for generating test cases for programs written in ANSI C.

References

1. J. Bézivin. On the unification power of models. SoSyM, 4(2):171–188, 2005.
2. J. Brüning, M. Gogolla, L. Hamann, and M. Kuhlmann. Evaluating and Debugging OCL

Expressions in UML Models. In Tests and Proofs, volume 7305 of LNCS, pages 156–162.
Springer, 2012.

3. T. Dinh-Trong, N. Kawane, S. Ghosh, R. France, and A. Andrews. A Tool-supported Ap-
proach to Testing UML Design Models. In Proc. of the 10th IEEE Conf. on Engineering of
Complex Computer Systems (ICECCS), pages 519–528. IEEE Computer Society, 2005.

4. R. France and B. Rumpe. Model-driven Development of Complex Software: A Research
Roadmap. In Proc. of the Workshop on the Future of Software Engineering (FOSE) @
ICSE’07, pages 37–54, 2007.

5. A. Holzer, V. Januzaj, S. Kugele, B. Langer, C. Schallhart, M. Tautschnig, and H. Veith.
Seamless Testing for Models and Code. In Fundamental Approaches to Software Engineer-
ing, volume 6603 of LNCS, pages 278–293. Springer, 2011.

6. K. Lano and S. Kolahdouz-Rahimi. Slicing of UML Models Using Model Transformations.
In Model Driven Engineering Languages and Systems, volume 6395 of LNCS, pages 228–
242. Springer, 2010.

7. T. Mayerhofer, P. Langer, and G. Kappel. A Runtime Model for fUML. In Proc. of the 7th
Workshop on Models@run.time (MRT) @ MoDELS’12, pages 53–58. ACM, 2012.

8. Object Management Group. OMG Unified Modeling Language (OMG UML), Superstruc-
ture, Version 2.4.1, August 2011. Available at: http://www.omg.org/spec/UML/2.4.1.

9. Object Management Group. Semantics of a Foundational Subset for Executable UML Mod-
els (fUML), Version 1.0, February 2011. Available at: http://www.omg.org/spec/FUML/1.0.

10. Object Management Group. OMG Object Constraint Language (OCL), Version 2.3.1, Jan-
uary 2012. Available at: http://www.omg.org/spec/OCL/2.3.1.

11. Object Management Group. UML Testing Profile (UTP), Version 1.2, April 2013. Available
at: http://www.omg.org/spec/UTP/1.2.

12. O. Pilskalns, A. Andrews, A. Knight, S. Ghosh, and R. France. Testing UML designs. Infor-
mation and Software Technology, 49(8):892–912, 2007.

13. D. C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE Computer,
39(2):25–31, 2006.

14. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling Frame-
work. Addison-Wesley Professional, 2nd edition, 2008.

Proceedings of MoDeVVa 2013 10

A Framework for Testing UML Activities Based on fUML

Building Test Harness
from Service-based Component Models

Pascal André, Jean-Marie Mottu, and Gilles Ardourel

LUNAM Université - LINA CNRS UMR 6241 - University of Nantes
2, rue de la Houssinière, F-44322 Nantes Cedex, France

firstname.lastname@univ-nantes.fr

Abstract. In model-driven development, the correctness of models is
essential. Testing as soon as possible reduces the cost of the verification
and validation process. Considering separately PIM and PSM reduces
the test complexity and helps the evolution of the system model. In
order to test models before their final implementation, we propose an
approach to guide the tester through the process of designing tests at
the model level. We target model testing for Service-based Component
Models. The approach produces test harness and provides information
on how to bind the services of the components under test and how to
insert the relevant data. The tests are then executed by plunging the
harness into a technical platform, only dedicated to running the tests.

Keywords: Test Harness, Model Conformance, Test Tool, MDD

1 Introduction

Testing as early as possible reduces the cost of Verification and Validation
(V&V) [1]. In Model-Driven Development (MDD), V&V is improved by directly
testing models for correctness [2]. Testing models helps to focus the effort on the
early detection of platform independent errors, which are costly when detected
too late. Testing models does not consider implementation specific errors and
thus reduces the complexity of testing [3]. Designing the tests on models ease
their adaptation when models are refactored. However, building and running
tests on models remain a challenge.

We target service-based component models with behaviour, including data
and communications. The specification detail level is sufficient enough to enable
various kinds of test at the model level. While testing such software components,
the encapsulation should be preserved. Therefore, finding where and how pro-
viding test data is difficult: variables are accessed through services, which are
available from the interface of the component but also from other required ser-
vices. Designing the test fixture of a service implies a sequence of service calls
additionally to the component initialisation. In [4], Gross mentioned issues in
Component-Based Software (CBS) testing: testing in a new context (i.e. devel-
opment context one, deployment context ones), lack of access to the internal

Proceedings of MoDeVVa 2013 11

working of a component. Ghosh et al. [5]. also identify several problems: the
selection of subsets of components to be tested and the creation of testing com-
ponents sequences. Our work is concerned with these issues.

We consider the building of test harness for unit and integration testing ded-
icated to Service-based Component Systems. Test harnesses are used to provide
test data, to run the test, to get the verdict (fail or pass). We create test harness
from the platform independent model (PIM) of the system under test (SUT) and
from test intentions. Those intentions declare which services are tested in which
context, with which data. The tester incrementally builds a harness to run the
test in an appropriate context, especially without breaking the encapsulation.
The tester needs assistance for this task.

In this paper, we propose an approach assisting the test of service-based
component models. This approach integrates the tests at the model level and is
provided with tools. First, we propose operating at the model level, we modelise
the tests at the same abstraction level as the component model. We build test
harnesses as component systems made of Components Under Test (CUT) and
Test Components (TC), which are created to test. As a consequence, the assem-
bly of test components and regular components can benefit from the develop-
ment tools associated with the component model. Additionally, test components
could be transformed into platform specific models, thus capitalising the early
testing effort. Second, we propose a guided process to assist the tester to man-
age the complexity of the component under test. The test harness is obtained
from transformations of the SUT, guided by the test intention, enriched by test
components, and assisted by several analyses and heuristics proposing relevant
information and ensuring model correctness through verifications. Third, we il-
lustrate the approach on a motivating example, a platoon of vehicles. We have
developed a set of prototype tools designed to experiment the proposals. It is
implemented in COSTO, the tool support of the Kmelia component model [6].

2 Testing Service-based Component Model

This section introduces the testing of service-based component model and the
challenges to be tackled. It describes our approach on a motivating example.

2.1 Service-based Component Model

A component system is an assembly of components which services are bound by
assembly links. The interface of a component defines its provided and required
services. The interface of a service defines a contract to be satisfied when calling
it. The service may communicate, and the assembly links denote communication
channels. The set of all the services needed by a service is called its service
dependency. The required services can then be bound to provided services. These
needs are either satisfied internally by other services of the same component, or
specified as required services in the component’s interface and satisfied by other
components. A composite component encapsulates an assembly.

Proceedings of MoDeVVa 2013 12

Building Test Harness from Service-based Component Models

Fig. 1. Component and service notation

In the example of Figure 1, the component c : Client requires a service pro-
vided by the component s :Server, through an assembly link. This assembly is
illustrated with the SCA notation [7]. We extended the SCA notation (right
part of the legend of Figure 1) to make explicit the dependencies and data use-
ful for testing: (i) typed data define the component state, (ii) services access
these variables, (iii) provided services internally depends on required services.

Figure 2 represents a motivating example: a simplified platoon of several ve-
hicles. Each vehicle computes its own state (speed and position) by considering
its current state, its predecessor’s state, and also a safety distance between vehi-
cles. Each vehicle is a component providing its speed and position and requiring
predecessor’s speed and position. Three vehicles are assembled in that example.
Each vehicle provides a configuration service conf initiating its state, a service
run launching the platoon and requiring the service computeSpeed to calculate
new position and speed. The leader is another component controlling its own
values according to a position goal. The Figure 2 represents completely only the
dependencies of computeSpeed, the service under test later.

2.2 Testing Components at the Modelling Stage

Conformance testing aims to control that system under test behave correctly
according to their specification. With Service-based Components, we test that
the behaviour conforms to the specification of their interfaces. In the context of

Fig. 2. Example of a component model of the Platoon system

Proceedings of MoDeVVa 2013 13

Building Test Harness from Service-based Component Models

Service-Based Component Applications, the test harness is designed by selecting
the components under test, replacing their servers and their clients (the first with
mocks, the last with test drivers), then providing test data to the test drivers and
getting their verdicts [8]. Test harness should preserve component encapsulation.
JUnit classes are an example of test harnesses for Java OO programs.

In MDD, Service-based Component System is modelised with a PIM, and
part of its components (the SUT) is tested depending on a test intention. The test
intention defines for each test which part of the system is tested (component(s)),
with which entry points (service(s)), in which situation (SUT state), with which
request (service call with parameters), expecting which results. At the beginning,
the test intention is tester’s knowledge, then she has to concretely prepare and
run the test to get a verdict from oracles.

Testing such a SUT is not just creating test data and oracles, the difficulty
is to consider components in an appropriate context (assembly of components),
to run the test data on them, get the output to be checked with the oracles. The
building of test harness to fulfil this task is an important work. Moreover, the
process of creating a test harness is not trivial for models of components.

We consider several characteristics making the test of component models an
original process: (i) Early specifications are often too abstract or incomplete to
be executable. In order to test service-based component, we have to execute it
in a consistent environment: its dependencies have to be satisfied by compatible
services and every operation used in the environment has to be concrete enough
or bound to a concrete operation. Furthermore, its environment must be able
to run test cases. (ii) In strongly encapsulated components, finding where and
how to insert data is challenging: variables are usually only accessible through
services and some data are required from external services. (iii) At the model
level, tests should be designed as models. Describing test artefacts like mocks
and drivers in the component modelling language provides several benefits: it is
easy to communicate with designers; tests follow the same validity rules as the
model for both consistency and execution, allowing the use of the development
tools associated with the component model. (iv) Models are subject to frequent
refactoring or even evolutions, which can compromise the applicability of existing
tests.

In this work, we are concerned with the building of test harness for service-
based component models. The tester chooses the components and their services
she tests (defined with the test intention). She orders the tests. She creates the
test data based on existing works considering the specification of component:
work of [9] with state machines, work of [10] performing LTS behaviours testing,
etc. She creates oracles, for instance, based on the contracts usually available
defining a service interface. Our approach assists the tester in building the test
harness allowing her to run such test data and to apply such oracles.

Proceedings of MoDeVVa 2013 14

Building Test Harness from Service-based Component Models

Test Harness

Construction

SUT Model

(PIM)

Test Intention

 test (TI)

Test

execution
 Verdict

Data sources

Harness

+ SUT

(TSM)

Code

Mappings and

transformations

Operational Framework

(PDM)

Fig. 3. Testing process overview

3 Assisting the test harness building

The construction process takes as input the System Under Test (SUT) model
which is a PIM (Platform Independent Model) and a test intention (Figure 3).
It is made of three activities (transformations). The first one builds the test
harness as an assembly with the SUT in a Test Specific Model (TSM) at the
model level. The second composes the harness with a Platform Description Model
(PDM) to get an executable model (code). During the execution, the concrete
data providers give the test data needed to run the test, and the concrete assert
functions return the verdicts. Designing the oracles and the data sets influences
the operational level. This point is out of concern in the rest of the paper.

3.1 Test Harness Construction

This section explains how the tester is guided to build a consistent test harness.
As noted in [5] (and filed under the issue C3), it is sometimes necessary to
consider different subsets of the architecture when testing a component, because
of the influence (e.g. race conditions) of the other components on the SUT. The
test harness is designed by (i) selecting the relevant subset of original components
and services to test, (ii) replacing all or parts of their clients (resp. servers) by
test drivers (resp. mocks), (iii) providing data sources. The test intention serves
as a guideline during the construction process.

As an example, we are intent on testing the conformance of the computeSpeed
(safeDistance : Integer) : Integer service of the mid component with the following
safety property: the distance between two neighbour vehicles is greater than a
value safeDistance . The service behaviour depends on (a) the recommended safe
distance from the predecessor, (b) the position and speed of the vehicle itself
and of its predecessor. Coming back to the example of Figure 2, testing the
computeSpeed service of mid implies to give a value to the safeDistance param-
eter, to initialise the values of the pos and speed variables, which are used by
the computeSpeed service and to find providers for pilotspeed et pilotpos which
are required by computeSpeed. Only one component vehicle is under test here
because other ones are not necessary to test the computeSpeed service, but a
more complex architecture could have been retained.

The challenge for the tester is to manage the way these data can be provided.
They can be provided by the test driver, by the configuration step, or by other
components (original components or mock components). Finding the service to

Proceedings of MoDeVVa 2013 15

Building Test Harness from Service-based Component Models

be invoked in order to set the component in an acceptable state for the test is
not trivial. Our goal is to help the tester to manage this complexity, in order to
reduce testing effort. At this stage, assisting the harness building consists in:
1. Detecting missing features between the SUT and the test intention. This

detection is achieved by the verification of two properties:
(a) Correctness. All the service dependencies are satisfied in the scope of the

test harness. No pending or incompatible dependencies remain.
(b) Testability. All the formal test data are linked to values in the TSM

(variables, parameters, results...).
2. Proposing candidates for the missing features: which service can configure

data, can handle the test data or can fulfil missing required services?
3. Generating and linking test components (mocks, drivers as mirror services,

bindings, abstract functions...).
In the TSM of Figure 4, the vtd test driver is responsible to put the compute

Speed service in an adequate context (providing input data and oracle). The ser-
vice testcase1 of vtd contains only a computeSpeed call and an oracle evaluation.
To fix the computeSpeed requirements, the test designer could (1) ask for mock
components (with random values), (2) reuse the first component coming from
the SUT (and fulfil the requirements of first ...) or (3) design its own mock. This
variability enables several kinds of test and answers to the issue C3 of Ghosh et
al. [5]. Note that a double integer mock component im1 is used here because it
offers a better control of the delivered speed (intdata1) and position (intdata2),
but a harness with two independent integer mocks providing a single intdata
service would also be possible.

The data of computeSpeed test harness are bound in the following way: (a)
the safeDistance parameter is assigned in the call sequence of the test driver,
(b) the position and speed (pos and speed variables) of the mid vehicle under
test are bound to the conf service of mid, (c) the im1 mock component playing
the role of the predecessor is configured to return the position and speed of the
predecessor.

3.2 Mappings and Transformations
According to the MDD principles, the test will be executed by composing the test
harness with the PDM (Figure 3). The test data and test primitives (oracle...)

Fig. 4. A TSM : test harness for the mid component’s service computeSpeed (SUT)

Proceedings of MoDeVVa 2013 16

Building Test Harness from Service-based Component Models

Fig. 5. Test harness Concrete data and Function Mapping

are provided by the PDM test support or implemented by the tester. The PIM
may include primitive types and functions (numbers, strings, I/O...) that must
also be mapped to the code level. These mappings are predefined in standard
libraries or user-defined. High-level TSM primitives are connected to low level
functions (PDM, code), as illustrated by Figure 5. If the mapping is complete
and consistent, then the model is executable.

The goal of the Mappings and Transformations activity (Figure 3) is to fix
this composition. Each service involved in the test must be executable in a con-
sistent environment: its dependencies must be satisfied by compatible services,
and every operation used in the environment must be sufficiently concrete or
related to a specific operation. Every abstract type should be mapped to a con-
crete type. At this stage, assisting the harness building consists in (1) detecting
missing mappings between the TSM and PDM (Executability), (2) proposing
tracks for the missing mappings based on signatures, pre/post conditions... (all
the primitive types and functions are mapped to concrete ones, the test data
inputs have concrete entry points), (3) generating standard primitive fragments
(idle functions, random functions...). The mappings are stored in libraries in or-
der to be reused later and the entries can be duplicated to several PDM. This
activity induces an additional cost at model level, but the errors detected are
less expensive to solve than those of components and services. Moreover, if the
component model is implemented several times targeting several PDM, the tests
would be reused and part of the behaviour would have been checked before
runtime, as proposed here.

4 Experimentation

The test process of Figure 3 has been instrumented using the COSTO/Kmelia
tool1. Kmelia is a wide-spectrum language dedicated to the development of cor-
rect components and services [6]. Kmelia includes an abstract language for com-
1 http://www.lina.sciences.univ-nantes.fr/aelos/projects/kmelia/

Proceedings of MoDeVVa 2013 17

Building Test Harness from Service-based Component Models

putations, instead of links to the source code as in related languages like SCA,
Sofa2, Fractal or SystemC. This layer is useful to check models before trans-
forming them to PSM. Kmelia is supported by the COSTO tool, a set of Eclipse
plugins including an editor, a type checker and several analysis tools.

The test harness construction has been experimented on the platoon exam-
ple. The goal was to build a harness to test the conformance of the service
computeSpeed as introduced in Section 3.
– The test intention is a special Kmelia component, where only the name and

description are mandatory. This trick enables to reuse the tool facilities and
to consider test design at the model level.
TEST_INTENTION P l a t o o n T e s t I n t e n t i o n
DESCRIPTION " the v e h i c l e w i l l s t op i f i t i s too c l o s e to the p r e v i o u s one "
INPUT VARIABLES

pos , p r e v i o u s _ p o s , m i n d i s t a n c e : I n t e g e r ;
OUTPUT VARIABLES

speed : I n t e g e r
ORACLE

speed=0

– The input data are provided and output data are collected in text files.
– During the process, the building tool (1) starts from a test intention, (2)

asks the user to select target system and services (or proposes some if the
test intention is detailed), (3) displays the board to match the test intention
with the SUT (Figure 6), (4) proposes candidates by looking to variable
types, (5) checks the correction and testability properties, (6) goes back to
step (2) until the TSM is complete, (7) checks the executability properties
and proposes candidates (from the libraries) for the missing elements, (8)
generates the code.

Fig. 6. Test harness assignments: mapping the test intention to the SUT

Proceedings of MoDeVVa 2013 18

Building Test Harness from Service-based Component Models

A web-appendix2 shows the details of this example.
The harness building activities (transformations, decisions, assistance and

generation) are implemented and integrated as COSTO functionalities. We de-
veloped the PDM framework in Java (7 packages, 50 classes, 540 methods and
3400 LOC). The service instanciation uses Java threads with an ad-hoc com-
munication layer based on buffered synchronous channels (monitors). We keep
strong traceability links from the code level to the PIM level for a better feed-
back on errors and also for animating the specification at the right level (GUI).
We add specific support for contract checking (assertions and oracles).

Compared with the Junit practice, the tester could focus on the "business"
part and did not need to care with Java details of the implementation. While
the specification of the components was available, the tester could not modify
them to make the test case more easy to write. She discovers the specification
elements on-the-fly when mapping them to the test intention.

5 Related Work

There are several works interested in generating tests for testing components.
In [11], Mariani et al. propose an approach for implementing self-testing com-

ponents. They move testing of component from development to deployment time.
In [12], Heineman applies Test Driven Development to component-based soft-
ware engineering. The component dependencies are managed with mocks, and
tests are run once components can be deployed. In contrary, in our proposal we
propose to test the components at the modelling phase, before implementation.

In [13], Edwards outlines a strategy for automated black-box testing of soft-
ware components. Components are considered in terms of object-oriented classes,
whereas we consider component as entity providing and requiring services.

In [14], Zhang introduces test-driven modeling to apply the XP test-driven
paradigm to an MDD process. Their approach designs test before modelling when
we design test after modelling. In [9], the authors target robustness testing of
components using rCOS. Their CUT approach involves functional contracts and
a dynamic contract. However, these approaches apply the tests on the target
platform when we design them at the model level and apply them on simulation
code.

6 Conclusion

In this paper, we described a method to integrate testing early in an MDD
process, by designing test artefacts as models. The test designer is assisted in
building component test harnesses from the component model under test and test
abstract information through a guided process. The COSTO/Kmelia framework
enabled to implement the process activities and to run the tests on the target
specific execution platform with a feedback at the model level. The approach
2 http://www.lina.sciences.univ-nantes.fr/aelos/download/ModeVVa_app.pdf

Proceedings of MoDeVVa 2013 19

Building Test Harness from Service-based Component Models

can be ported to any modelling languages supporting rich behavior modelling
such as Sofa, rCOS or AADL. The benefits are a shorter test engineering process
with early feedback and the tests are reified to be run again.

In future work, we will study different kinds of oracle contracts in order to
find which logics are best fitted to express them in a testable way as well as
ensuring a good traceability of the verdict.

References

1. G. Shanks, E. Tansley, and R. Weber, “Using ontology to validate conceptual
models,” Commun. ACM, vol. 46, no. 10, pp. 85–89, Oct. 2003.

2. M. Gogolla, J. Bohling, and M. Richters, “Validating uml and ocl models in use
by automatic snapshot generation,” Software and Systems Modeling, vol. 4, no. 4,
pp. 386–398, 2005.

3. M. Born, I. Schieferdecker, H.-g. Gross, and P. Santos, “Model-driven development
and testing - a case study,” in First European Workshop on MDA with Emphasis
on Industrial Application. Twente Univ., 2004, pp. 97–104.

4. H.-G. Gross, Component-based Software Testing With Uml. SpringerVerlag, 2004.
5. S. Ghosh and A. P. Mathur, “Issues in testing distributed component-based

systems,” in In First International ICSE Workshop on Testing Distributed
Component-Based Systems, 1999.

6. P. André, G. Ardourel, C. Attiogbé, and A. Lanoix, “Using assertions to enhance
the correctness of kmelia components and their assemblies,” ENTCS, vol. 263, pp.
5 – 30, 2010, proceedings of FACS 2009.

7. OSOA, “Service component architecture (sca): Sca assembly model v1.00 specifi-
cations,” Open SOA Collaboration, Specification Version 1.0, March 2007.

8. C. R. Rocha and E. Martins, “A method for model based test harness generation
for component testing,” J. Braz. Comp. Soc., vol. 14, no. 1, pp. 7–23, 2008.

9. B. Lei, Z. Liu, C. Morisset, and X. Li, “State based robustness testing for compo-
nents,” Electr. Notes Theor. Comput. Sci., vol. 260, pp. 173–188, 2010.

10. B. Schätz and C. Pfaller, “Integrating component tests to system tests,” Electr.
Notes Theor. Comput. Sci., vol. 260, pp. 225–241, 2010.

11. L. Mariani, M. Pezzè, and D. Willmor, “Generation of integration tests for self-
testing components,” in FORTE Workshops, ser. LNCS, vol. 3236. Springer, 2004,
pp. 337–350.

12. G. Heineman, “Unit testing of software components with inter-component depen-
dencies,” in Component-Based Software Engineering, ser. LNCS. Springer Berlin
/ Heidelberg, 2009, vol. 5582, pp. 262–273.

13. S. H. Edwards, “A framework for practical, automated black-box testing of
component-based software,” Softw. Test., Verif. Reliab., vol. 11, no. 2, pp. 97–111,
2001.

14. Y. Zhang, “Test-driven modeling for model-driven development,” IEEE Software,
vol. 21, no. 5, pp. 80–86, 2004.

Proceedings of MoDeVVa 2013 20

Building Test Harness from Service-based Component Models

Feature-based Development of State Transition
Diagrams with Property Preservation

Christian Prehofer

fortiss GmbH, Munich, Germany, Prehofer@fortiss.de

Abstract. In this paper, we consider incremental development of state
transition diagrams by adding features, which add new states and transi-
tions. The goal is to capture when properties of a state transition diagram
are preserved when adding a feature. We classify several typical cases of
such state transition diagram extensions and show when commonly used
properties are preserved. In some cases, we add restrictions to the input
events. In others, we need to transform properties to account for new
failure cases. Properties are specified on the externally visible input and
output events. To formalize the properties and to reason about internal
state transition diagram extensions we use a computation tree logic with
states and events.

1 Introduction

The idea of incremental development is to start with a base model and then
to add small features in succession, which add previously unspecified behavior.
Here, we extend state transition diagrams (SDs) by features, which means to add
new states and transitions. With extension of an SD we refer to such a syntactic
extension. The core question addressed here is whether properties are preserved
when incrementally extending an SD by a new feature which adds new states
and transitions.

As an example consider Figure 1, where a new, alternative path is added
to an SD. By convention, added features are shown in red, with bold lines and
bold labels. In this example, consider the main property that the output ”Issue
ticket” occurs eventually. As can be seen easily, the extension by this new path
preserves this property. As a second example, consider the example in Figure 2,
which adds a new loop. In this case, the above property (i.e., that a ticket is

Adding)alterna1ve)op1ons/paths)

□(!"#$"→◊%&"%"'()&"))
)

cash)

credit)

/)conf)

/)Issue)1cket)voucher)

/)Issue)1cket)start)

Fig. 1. Adding an alternative Path

Adding)independent)loops)

cash)

credit)

)/)done)

enter)
discount)

start)

​□(%!"#$"→+◊%&"%"'()&"%) 

□◊start)
)

/)conf) /)Issue)1cket)

Fig. 2. Adding a local Loop

Proceedings of MoDeVVa 2013 21

Refining)Transi1ons)

cash)
/)conf)

/)credit)approved)
credit)

/)Issue)1cket)start)

/)credit)check)

Fig. 3. Refining a Transition

Adding)failures)

•  □(!"#$"→+◊%&"%"'()&"))
•  OR)□(!"#$"→◊((#3(&4%56%%&"%"'()&")%))

cash)

credit)

/conf)

/)Issue)1cket)
voucher)

/)Issue)1cket)start)

cancel)

/)declined)

Fig. 4. Adding Failure Paths

issued eventually) is not preserved, as the loop may be traversed infinitely many
times. Next, consider Figure 4, which adds two new failure paths. In this case,
the above property that a ticket is issued is not preserved. We have two options
here. As the first option, we may assume that such a failure does not occur.
Alternatively, we may also transform the property to account for this new case.

More precisely, we consider the case where an SD is extended by a new
feature, which adds new states and transitions. We classify several typical cases
of such SD extensions and show when commonly used properties are preserved.
In some cases, we also transform properties to account for new failure cases.

Our approach is, on a conceptual level, similar to adding aspects on a pro-
gramming language level. For this, [3] has analyzed typical patterns of aspects
w.r.t properties expressed in temporal logic. However, to our knowledge, such
an approach has not yet been pursued for state transition diagrams. The main
advantage here is that we can formalize properties on the control flow to deter-
mine when a property is preserved. Also, we adapt properties for expressiveness,
unlike [3].

We formalize properties in a specific computation tree logic (CTL) which
considers both states and events, following the logic in [9, 6]. Properties are
specified on the externally visible traces of input and output events. To analyze
when properties are preserved, we also need to capture the possible traversals
of the state transition diagram, i.e., the internal view of states. This is why
conventional CTL logics with consider either states or events are insufficient
(see e.g. [7] for a comparison).

There exists ample work on refinement for SDs, e.g. [8], which aims to pre-
serve all properties of an existing system, which is however not applicable in
many cases. Hence we present custom solutions for specific features of SDs and
specific classes of properties.

Other work on modularity for model checking [2, 5] considers the problem
of extending automata models by new states and transitions. In these works,

Proceedings of MoDeVVa 2013 22

Feature-based Development of State Transition Diagrams with Property Preservation

composition of statecharts leads to proof obligations for specific properties to
maintain. These are in turn to be validated by a model checker. Similar goals
have been pursed in the context of aspect-modeling for state machines in [10].
These approaches require the specification and establishment of each individual
property after the extension.

2 State Transition Diagrams and Event/State-based
Temporal Logic

We model software systems by SDs, which we formalize as labeled transition
systems.

Definition 1 (Labelled Transition System). A labelled transition system
(or LTS) is a structure L = (S, s0, A,→) where

– S is a set of states.
– s0 ∈ S is the initial state.
– Two disjoint sets I and O of input and output events and the silent event τ

is not in I nor O.
– Pairs of input and output events A = (I ∪ {τ})× (O ∪ {τ}), called labels.
– →⊆ S ×A× S is the transition relation; an element (r, α, s) ∈→ is called a

transition, and is usually written as r
α−→ s.

To model practical examples we use explicit labels with a pair of input and
output events. We write (s, (i, o), s′) or (s, α, s′), where α = (i, o), for transitions.
We let Aτ = A ∪ {τ}. We let α, β, . . . range over Aτ . As I and O are disjoint,
we also write i instead of (i, τ) and o instead of (τ, o).

Let L = (S, s0, A,→) be an LTS. A sequence (s0, α0, s1)(s1, α1, s2) . . . ∈→∞

is called a path from s0; if a path cannot be extended anymore because it is either
infinite or ends in a state without outgoing transitions, it is called a maximal
path. We write statei(π) for the i’th state of the path, i ≥ 0. We write eventi(π)
for the i’th event of the path, i ≥ 0.

In the following, we briefly introduce a computation tree logic (CTL) based
on both states and events. This is needed as we aim to separate the external
view on an SD, in terms of events, and the internal view in terms of states, as
discussed below.

Our logic, called ESCTL, is a special case of the UMC logic presented in [9].
In more detail, UMC permits multiple labels on a transition; here we use pairs
of input and output events, which is easily embedded in UMC.

Definition 2 (ESCTL). The syntax of the logic ESCTL(Event/State-based
CTL) is defined by the following grammar where we let φ, φ′, . . . range over
ESCTL-state formulas: φ ::= T | s | ¬φ | φ ∧ φ′ | Eϕ | Aϕ where s ∈ S
and ϕ is a path formula. ESCTL-path formulae are formed according to the
following grammar: ϕ ::= Xφ | Xχφ | φχUχ′φ′ | φχWχ′φ′ where φ and φ′ are
ESCTL-state formula and χ and χ′ are event formulae. An event formula is
defined by the following grammar where we let χ, χ′ range over event formulas:
χ ::= true | α | ¬χ | χ ∧ χ′

Proceedings of MoDeVVa 2013 23

Feature-based Development of State Transition Diagrams with Property Preservation

In the following we will say state and path formula instead of ESCTL-state
and ESCTL-path formula.

Let L = (S, s0, A,→) be an LTS. The satisfaction relation |= between states
s ∈ S and state formulae is defined as usual. For a detailed treatment, we refer
to [9]. Satisfaction of path formulae by maximal paths is defined as follows:

π |= Xφ iff state1(π) |= φ;

π |= Xχφ iff event0(π) |= χ and state1(π) |= φ;

π |= ϕχUχ′ϕ′ iff ∃j ≥ 0 : statej(π) |= ϕ ∧ statej+1(π) |= ϕ′ ∧ eventj(π) |= χ′∧
∀0 ≤ k < j.statek(π) |= ϕ ∧ eventk(π) |= χ;

π |= ϕχWχ′ϕ′ iff π |= ϕχUχ′ϕ′ or ∀k ≥ 0.statek(π) |= ϕ ∧ eventk(π) |= χ;

Satisfaction of event formulae by events is defined as usual [9]. Informally, π |=
ϕχUχ′ϕ′ holds if for some path π, the property ϕ holds on the states and χ holds
on the events, until a transition with (sj , α, sj+1) occurs, where χ′ holds for α
and ϕ′ holds for sj+1.

We define the usual operators F and G, as well as Fχ, for a event χ,
as follows: F = ¬T,EFφ = E(TtrueUφ), AFφ = A(TtrueUφ), EFχφ =
E(TtrueUχφ), EFχ = E(TtrueUχT), AGφ = ¬EF¬φ,AGχ = ¬EF¬χ, EGφ =
AG¬φ,E(ϕφUϕ

′) = ϕ′ ∨ E(ϕφUφϕ
′). Without ambiguity, we omit T in formu-

lae. Similarly, we write eUχ instead of TeUχ.
Note that our combined event/state logic treats events and state separately,

and many properties on states are easier to formalize than similar ones on events.
For instance consider a property state s implies state s′; we denote this as
AG(s→ AFs′), which is defined as AG(¬s∨AFs′). On the other hand, an event
e implies P is denoted as AG(e→ P), defined as AG((Xe(AFP)) ∨X¬eT).

3 SD Composition and Property Preservation

In the following, we first motivate our specifications in state/event logic and
then classify properties on SDs. This is followed by a detailed analysis of SD
composition for different cases.

We use our event/state logic in order to specify externally visible behavior
and internal behavior, respectively. Assume an SD S and a set of input traces I
consisting only of input events.

– We express properties on externally visible behavior by properties on in-
put and output events. No formulae with states are permitted, as these are
considered internal.

– (Full) behavior specifications use properties over states, input and output
events created by S, using all of the above.

One reason why we use externally visible events for behavior is that two com-
posed SDs may share input or output events. This is not possible if only names
of states are considered. On the other hand, we need states to reason about
internals of a composition, as discussed below.

Proceedings of MoDeVVa 2013 24

Feature-based Development of State Transition Diagrams with Property Preservation

3.1 Specification Patterns

Our goal is to study what properties are preserved when adding a new feature
to an SD. For the properties to consider, we use the specification patterns as in
[4]. From the extensive study in [4], it was observed that around 80%-90% of
all properties in specifications are of the three kinds. First, we have the pattern
”a leads to b”, called response in [4]. Formally, we have, AG(a → AFb). The
other two classes, called universality and absence, are invariants stating that a
property holds globally or something never happens. Such invariants must hold
for all states and/or transitions, which means that validation is compositional in
this sense. We should note here that the properties in [4] also consider different
temporal scopes for the validity of the formulae. This is not considered here for
simplicity.

In this paper, we hence focus on leads to or response properties. Together
with the invariants, this covers a significant amount of specifications. The other
pattens in [4] formalize precedence of states and chained response and prece-
dence. We conjecture that other patterns can be handled in a similar way, but
detailed analysis is left to further work.

3.2 SD Composition

In the following, we define formally how to extend an SD by a new feature.
We also use SDs to denote such extensions, which are then glued together at
specified join states. Based on join states, similar to join points in aspect-oriented
languages, we use graphical notation to denote the composition of SDs. For a
more formal definition, we refer to [8].

For adding a new path, consider the schematic view in Figure 5. By conven-
tion, the SD E in red color represents the path to be added to the blue, base SD
S. We assume that E and S have disjoint states, and further that E has initial
state s′ and a state j′. In S, we assume a start state s and a join state j for
adding a path. The two SDs will be composed by merging these two states, s′

and j′, with the states s and j, respectively. This is denoted by the light dashed
lines. In the merged state, we use the states s and j for these. Formally, the
states s′ and j′ are renamed to s and j in E, and the two SDs are then merged
to obtain S∪E. Note that we do not use the same names for the states i and j in
S and E to be merged in order to avoid confusion when expressing preconditions
on E or S.

We also consider refinement of transitions as follows. We write S−E, where
E denotes a set of transitions in S which are removed. Based on this, we can
express transition refinement by S−E∪E′ as shown in Figure 3. If E removes a
single transition for which a corresponding path with same start and end states
and the same trigger event in the first transition in this path, then we denote this
as a transition refinement by S ∪r E′ and leave E implicit (without ambiguity).

Proceedings of MoDeVVa 2013 25

Feature-based Development of State Transition Diagrams with Property Preservation

Adding)alterna1ve)paths)

□(#→◊8))
)

/)b)a) s) j)

e)

s‘) j‘)

...)...) ...)

Fig. 5. Adding an Alternative Path (Schematic view)

3.3 Property Preservation for Response/Leadsto Properties

The main goal of this section is to define rules for the extension of an SD. As
defined above, assume an SD S which is extended to S ∪ E by an extension E.
The goal is now to define criteria when a property for S, e.g. S |= P , also holds
for S ∪ E, i.e., S ∪ E |= P .

This achieves modularity on properties w.r.t. extension, and also simplifies
formal proofs as S ∪ E is larger than S and E. Furthermore, we will see that
many properties can be obtained easily by local analysis of the state diagram.
We should observe also that some properties are not preserved by extensions.
For this, we will transform the properties into extended properties with extra
conditions.

Adding Alternative Paths We consider the schematic view of adding an
alternative path in Figure 5. We use the states s, s′ and j, j′ as shown in this
figure. However, the schematic case as in Figure 5 is simplified for illustration
and does not show all cases covered by this rule. More precisely, this case is
specified by the following assumptions: First, there is a path from s to j in S,
i.e., S |= AG(s → EFj). This means that j is reachable from s on at least one
path; thus we add an alternative path to this. Second, E |= AG(s′ → AFj′). This
means that j′ is reached eventually when entering E. Furthermore, we assume
s 6= j to avoid trivial loops which are covered in a separate case below. Third,
we assume that j′ is a final state in E. Hence we have no newly added infinite
loops and termination only in state j for E.

We consider first a property of the form AG(a→ AFb). The main idea here
is to identify cases when an alternative path does not obstruct this property.
In other words, the event b is observed in any path after a, even with the new
alternative path.

Assuming S,E with states s, s′ and j, j′ as specified above for Figure 5. In
case S |= AG(a→ AFb) holds for S, we obtain S ∪E |= AG(a→ AFb) if one of
the following holds:

– S |= AG(a→ (¬sUb))
– or S |= AG(s→ (¬jWb))

– or E |= AG(s′ → AFb).

Proceedings of MoDeVVa 2013 26

Feature-based Development of State Transition Diagrams with Property Preservation

Adding)failures)

□(#→◊8))
)

/)c)

s) j)

e)

s‘)

a) ...) ...)

Fig. 6. Adding a Failure Path

Adding)fallback)paths)

□(#→◊8))
)

j) s)

e)

j‘) s‘)

...) /)b)a) ...)...) ...)

Fig. 7. Adding a Fallback Path

Adding a Failure Path We consider the schematic view of adding a failure
path in Figure 6. The assumptions for this case are as follows: there is a failure
event c which occurs in E, E is entered by event e and furthermore that there
is no paths back to the SD S. Formally, we have no j′ in this case and E |=
AG(e→ AFc).

In case of leadsto properties, we have several cases. The base case happens
when the property is not affected by the failure, i.e., if the added path is not
taken before b, formally a→ (¬sUb). Then, we have the case that b always occurs
in E, similar to above.

If these simple cases do not hold, we have the option to weaken the property.
Assuming S |= AG(a → AFb) and AG(E |= e → AFc), we obtain S ∪ E |=
AG(a→ AFc∨b).

Adding Fallback Paths The idea of a fallback path is that a new path is
added, similar to the alternative path case. Here, the new path leads to a state
already traversed earlier. Thus we fall back to an earlier state and create a
possible loop, which is different from the above cases.

We consider the schematic view of adding an alternative path in Figure 7.
As above, the SD E in red color represents the path to be added to the blue,
base SD S, with join states s and j. We assume that E has initial state s′ and
a final state j′.

The fallback case, as illustrated schematically in Figure 7, is specified by the
following assumptions: First, there is a path from j to s in S, i.e., S |= AG(j →
EFs). Secondly, E |= AG(s′ → AFj′). Third, j′ is a final state in E. The main
problem in this case is that the fallback path adds a loop which may be traversed
infinitely often.

Consider a response property of the form a leads to b. The main idea here
is to identify cases when an alternative path does not obstruct this property.
In other words, the event b is observed in any path after a, even with the new
alternative path.

Assuming S,E with states s, s′ and j, j′ as specified above for Figure 7.
Assuming S |= AG(a→ AFb), we obtain S ∪ E |= AG(a→ AFb) if

– S |= AG(a→ (¬sWb))
– or E |= AG(s′ → AFb).

For adding a fallback path, we have another important case. If we can avoid
non-termination by the added loop of the fallback path, we can also establish

Proceedings of MoDeVVa 2013 27

Feature-based Development of State Transition Diagrams with Property Preservation

Adding)loops)

□(#→◊8))
)

/)b)a) s) j)

e)

s‘)

...)

Fig. 8. Adding a local Loop

Refine)Transi1on)=)Add)+)Delete)

□(#→◊8))
)

s)

e)

s‘)

j)

s‘) j‘)

/)b)a) ...)...)

Fig. 9. Refining a Transition

the desired property. It is sufficient to express that in state s, the input e does
not occur infinitely often.

The problem is that we cannot express such fairness properties in a CTL-
logic. We can formalize this as S ∪ E |= ¬AG(s ∧ Xe), but this is a CTL*
formula and not a CTL formla. Fortunately, for our state/event logic, there
also exists an extension, including model checking, for the µ-calculus, which can
embed CTL* [6]. Another, suitable solution is to add fairness conditions on the
permitted input events, as done for CTL-logic in [1]. We expect that this can
also be transferred to action/state CTL logics, but this goes beyond the scope
of the paper.

Refining Transitions In this case, a transition is refined into several new states
and new transitions. This is typical when moving from a higher level model
to a more detailed model, which shows more details by refining a transition
into several transitions. Note that removing transitions is a special case of this
refinement. An example is shown in Figure 9.

The schematic case is illustrated in Figure 9. Formally, it is specified by
the following assumptions: First, there is a transition from s to j in S. Second,
E |= AG(s′ → Aj′). This means that j is reached eventually when entering
E. Hence we have no infinite loops and termination only in state j. Refining a
transition could be modeled by removing a transition and adding a new path;
for refinement it is however more effective to consider this in conjunction.

We consider first a property of the form a → AFb. The main idea here is
to identify cases when the added path does not obstruct this property. In other
words, the event b is observed in any path after a, even with the new alternative
path.

Assuming S |= AG(a→ AFb), we obtain S ∪r E |= AG(a→ AFb) if

– S |= AG(a→ (¬sWb))
– or S |= AG(s→ (¬jWb))
– or E |= AG(s′ → AFb).

The cases above are as in the case of adding a transition: In the first case,
(¬sUb) means s never happens before b. Hence b occurs always before the alter-
native path is taken. In the second case, s → (¬jWb) means this: if s happens,
then b happens after j. This is to avoid the case that b only occurs between s
and j. Finally, E |= AG(s′ → AFb) means that b happens in E when the path
is taken. Hence the property also holds for the combined SD.

Proceedings of MoDeVVa 2013 28

Feature-based Development of State Transition Diagrams with Property Preservation

Putting things together

cash
/conf

/Issue ticket

voucher

/ Issue ticket start

cancel
declined

 credit approved

/credit check

/done

enter
discount

Fig. 10. Combining the Examples

3.4 Example

In the following, we apply the above results to the example in the introduc-
tion. We consider the base SD as in Figure 1 and the property AG(start →
AFIssue ticket). Combining the examples from Section 1, we obtain the SD in
Figure 10

1. Adding the voucher option in Figure 1 preserves this property.
2. Adding the discount option in Figure 2 does not preserve this property. As-

suming a fairness precondition, this turns into AG(start → AFIssue ticket).
More formally, we need to assume in the following that enter discount does
not occur infinitely often in sequence.

3. Refining the credit transition in Figure 3 preserves this last property.
4. Adding the failure cases as in Figure 4 does not preserve this prop-

erty. We need to weaken the property as follows: AG(start →
AFdeclined∨cancel∨Issue ticket), assuming the above fairness precondition re-
garding enter discount.

4 Conclusions

In this paper, we have presented a new approach for incremental development
of state transition diagrams. We have developed a classification of individual
features to be added to an SD, and then discussed when properties can be
established. In some failure cases, we had to modify the properties to account
for failure cases. In case of loops, we may need a notion of fairness for some
properties. The conditions for the rules only assume properties of the SDs to be
composed, which means that the rules are modular. Hence, one benefit is that
we can validate the rules more efficiently. In many cases the conditions can be
checked by simple analysis on the SD level.

We have formalized our rule by using a recently developed Event/State CTL
logic. This permits us to express properties on externally visible behavior in

Proceedings of MoDeVVa 2013 29

Feature-based Development of State Transition Diagrams with Property Preservation

terms of input and output events, while expressing composition conditions by
internal states. We have validated our rules by several examples in a workflow
example. We assume that our rules and examples are easy to express in a model
checker for our state/event logic, e.g. in the UMC tool [6].

The main novelty is to focus on different kinds of properties individually,
which permits new ways for incremental development. Regarding other works
on refinement, we note that usual notions of refinement preserve all properties,
which is too strong for our case. Further work will address other patterns of
property specifications, also including different scopes.

Acknowledgements The author would like to thank Sebastian Bauer, Martin
Wirsing, Franco Mazzanti and Rolf Hennicker for stimulating discussions.

References

1. C. Baier, J.-P. Katoen, et al. Principles of model checking, volume 26202649. MIT
press Cambridge, 2008.

2. C. Blundell, K. Fisler, S. Krishnamurthi, and P. Van Hentenrvck. Parameterized
interfaces for open system verification of product lines. In Automated Software
Engineering, 2004. Proceedings. 19th International Conference on, pages 258 –
267, sept. 2004.

3. S. D. Djoko, R. Douence, and P. Fradet. Aspects preserving properties. In Proceed-
ings of the 2008 ACM SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation, PEPM ’08, pages 135–145, New York, NY, USA, 2008.
ACM.

4. M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for
finite-state verification. In Software Engineering, 1999. Proceedings of the 1999
International Conference on, pages 411 –420, 1999.

5. J. Liu, S. Basu, and R. Lutz. Compositional model checking of software product
lines using variation point obligations. Automated Software Engineering, 18, 2011.

6. F. Mazzanti. UMC logics. http://fmt.isti.cnr.it/umc/V4.1/umc.html. [Online;
accessed July 9th, 2013].

7. R. Nicola and F. Vaandrager. Action versus state based logics for transition sys-
tems. In I. Guessarian, editor, Semantics of Systems of Concurrent Processes, vol-
ume 469 of Lecture Notes in Computer Science, pages 407–419. Springer-Verlag,
1990.

8. C. Prehofer. Assume-guarantee specifications of state transition diagrams for be-
havioral refinement. In iFM 2013: 10th International Conference on integrated
Formal Methods. Springer-Verlag, June 2013.

9. M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. A state/event-based
model-checking approach for the analysis of abstract system properties. Science of
Computer Programming, 76(2):119 – 135, 2011.

10. G. Zhang and M. Hölzl. Hila: High-level aspects for uml state machines. In
S. Ghosh, editor, Models in Software Engineering, volume 6002 of Lecture Notes
in Computer Science, pages 104–118. Springer-Verlag, 2010.

Proceedings of MoDeVVa 2013 30

Feature-based Development of State Transition Diagrams with Property Preservation

Global State Checker: Towards SAT-Based
Reachability Analysis of Communicating State Machines?

Petra Kaufmann1, Martin Kronegger2, Andreas Pfandler2,
Martina Seidl1,3, and Magdalena Widl4

1 Business Informatics Group, TU Wien
2 Database and Artificial Intelligence Group, TU Wien

3 Institute for Formal Models and Verification, JKU Linz
4 Knowledge-Based Systems Group, TU Wien
{firstname.lastname@tuwien.ac.at}

Abstract. We present a novel propositional encoding for the reachability problem of
communicating state machines. The problem deals with the question whether there
is a path to some combination of states in a state machine view starting from a given
configuration. Reachability analysis finds its application in many verification scenarios.
By using an encoding inspired by approaches to encode planning problems in artifi-
cial intelligence, we obtain a compact representation of the reachability problem in
propositional logic. We present the formal framework for our encoding and a prototype
implementation. A first case study underpins its effectiveness.

1 Introduction

In model-based engineering (MBE), software models take over the role as core development
artifact, which textual code has in traditional software engineering. The goal of MBE is to
leverage the abstraction power of models in order to deal with the complexity of modern
software systems [2]. Executable code is to be directly generated from the models with little
or no intervention of a developer [12]. With this valorization of software models, stronger
requirements on their correctness come along. As a consequence, formal methods found
their way into MBE to verify models, often by reusing techniques successfully applied for
the verification of traditional software systems. Among the most successful techniques to
verify hardware and software systems are approaches based on model checking [4], which
exhaustively traverse the states of a system to answer questions related to the reachability of
certain states from an initial configuration. In order to deal with large state spaces, symbolic
methods have been introduced to compactly encode state spaces. Thereby propositional logic
turned out to be particularly useful. The success of model checking is closely connected to
the observation that in many cases it is sufficient to show correctness only for a restricted
number of execution steps, which resulted in the method of bounded model checking [3].

In the context of MBE, model checking is used for the verification of behavioral models
like UML state machines. For this purpose, many encodings of state machines have been
proposed which translate the state machines to the input format of the model checkers. Usually,
? This work was partially funded by the Vienna Science and Technology Fund (WWTF) under grant

ICT10-018 and by the Austrian Science Fund (FWF): P25518-N23.

Proceedings of MoDeVVa 2013 31

working waiting

desperate

ε/orderCoffee

coffeeDone/-

error/-ε/-

error

preparingidle

orderCoffee/-

ε/coffeeDone

ε/error

Student Coffee Machine

Fig. 1. State machines of a student and a coffee machine.

the model checkers provide languages to describe finite state automata, which are also the
conceptual basis of state machines. However, it still can be challenging to find a semantics-
preserving translation as even similar concepts may strongly diverge in their semantics. In this
paper, we propose to directly encode the reachability problem for composite state machines
into the problem of satisfiability of propositional logic (SAT). The motivation behind this
approach is an integration into our formal MBE framework [15] where we successfully used
SAT technologies in the context of optimistic model versioning. Our current encoding reuses
ideas from SAT-based planning [11] to encode the search of paths between global states of
a state machine view.

This paper is structured as follows. First, we review related work in Sec. 2. Then we pro-
vide a concise problem definition in Sec. 3 which serves as basis for our encoding presented
in Sec. 4. In Sec. 5 we introduce our Eclipse-based implementation and report on a first case
study. Finally, we conclude with an outlook to future work.

2 Related Work

Several works have been presented which deal with the transformation of UML state machines
to input languages of model checkers (see for example in [1,5,6,8,10]). These languages
provide high-level constructs to model software systems and in many aspects they provide
similar constructs as do modeling languages like UML, in particular UML state machines.

However, one of the major challenges of such approaches is to overcome semantical het-
erogenities, which raises the question if this translation step is really required. This has already
been recognized by Niewiadomski et al., who propose an encoding to propositional logic
for bounded reachability analysis of state machines, which they show to be more efficient
than translations to standard model checkers [9]. In this paper, we follow the approach of [9]
to encode the reachability problem to SAT, but propose an alternative encoding where we
formulate the reachability analysis problem of UML state machines inspired by encodings as
used for solving planning problems [11]. As a result, we obtain an intuitive encoding which
allows to directly extract a path of a length bounded by k from a solution without the need
of looping through values lower than the bound.

3 Problem Definition

To motivate our approach consider the following example. Fig. 1 shows the state machines of
a student and a coffee machine implementing a simplified workflow of a student’s interaction

Proceedings of MoDeVVa 2013 32

Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines

working waiting

desperate

ε/- ε/orderCoffee

coffeeDone/-ε/-

err
or/

-

ε/-ε/-

ε/-

StudentExt

Fig. 2. Extended state machine of the student machine.

with a coffee machine. The initial state of each state machine is indicated by an arrow from a
black filled circle. States are visualized as rounded rectangles and are connected to each other
by transitions. Each transition carries a label consisting of a symbol called trigger to the left,
and a set of symbols called effects to the right of a “/”. The empty trigger ε indicates that the
transition can be executed without receiving any trigger symbol. This symbol can be used to
model an on-completion event. The symbol “–” represents an empty set of effects. The receipt
of the trigger symbol causes the state machine to change its current state from the source
state to the target state of the transition. The symbols in the set of effects are sent during the
execution of the transition. The communication among state machines is synchronous and
therefore the execution of a transition is only possible if each of its effects is understood by
a different state machine in its current state.

For a given set of state machines, the Global State Checking (GSC) problem asks whether
a certain combination of states of the state machines can be reached from an initial config-
uration. In this paper we consider the k-Global State Checking (k-GSC) problem. Given a
setM of state machines which communicate over an alphabetA, the k-GSC problem asks
whether a certain combination of states of the state machines can be reached from an initial
configuration by a path with a length of at most k. For example, it can be checked whether
the combination of the states working in state machine student and preparing in state machine
coffee machine is reachable starting from the initial states through a path of length 10, or
whether the combination of waiting and error is not reachable by a path of length 1000. In
the following, we present a precise definition of the semantics of a state machine view and
of the k-GSC problem. We start by defining a state machine as follows:

Definition 1 (State Machine). Given an alphabet A, a state machine M is a quintuple
(S,ι,Atr ,Aeff ,T), where S is a set of states, ι ∈ S is a designated initial state, Atr ⊆A,
Aeff ⊆A, and T⊆S×Atr∪{ε}×P(Aeff)×S.

A state machine consists of a set of states, two alphabets, and a transition relation between
the states. For a transition t∈T with t=(s,tr,eff ,s′), s is the source state of the transition,
s′ is the target state, tr is a symbol (trigger) which upon receipt triggers the execution of the
transition, and eff is a set of symbols (effects) that are sent when the transition is executed.
The trigger symbol can be the special symbol ε 6∈A standing for an empty trigger. A transition
containing ε can be triggered no matter whether any symbol is received. In order for the
execution of the transition to finish, each symbol in eff must be received by a different state
machine. In Fig. 1, state machine Student contains states S={working,desperate,waiting},

Proceedings of MoDeVVa 2013 33

Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines

triggers Atr = {coffeeDone,error} and effect Aeff = {orderCoffee}. An example for a
transition is (working,ε,{orderCoffee},waiting).

In order to give a precise semantics of the interaction between state machines, we introduce
the notion of an extended state machine.

Definition 2 (Extended State Machine). Given a state machineM=(S,ι,Atr ,Aeff ,T), the
extended state machine M∗ is a quintuple (S∪S∗,ι,Atr ,Aeff ,T∗) where S∗={s∗t |t∈T}
and T∗={(s,tr,∅,s∗t),(s∗t ,ε,eff ,s′) |t=(s,tr,eff ,s′)∈T}.

An extended state machine introduces an intermediate state s∗t for each transition t. This
intermediate state has one incoming transition, which is triggered by the trigger of t and has
no effects. It also has one outgoing transition, which leads to the target state of t with ε as
trigger and the effects of t. The states contained in S∗ we call extended states. Fig. 2 depicts
the extended state machine constructed from state machine Student in Fig. 1. The reason for
the construction of an extended state machine is to distinguish between the event of having
received the trigger and the event of being able to send the effects.

The communication between state machines takes place through a structure called mes-
sage set. A message set contains a sender state machine and a set of pairs, each containing a
symbol sent by the sender state machine and a receiving state machine. Each of the symbols
is sent by the same state machine but received by a different state machine. This is captured
in the following definition.

Definition 3 (Message Set). Given a setM={M∗1 ,...,M∗l } of extended state machines with
M∗i =(Si,ιi,A

tr
i ,A

eff
i ,Ti) for 1≤ i≤ l, a message set is a pair (σ,{(a1,R∗1),...,(ak,R∗k)})

where

– σ=M∗d with 1≤d≤l and
– {(a1,R∗1),...,(ak,R∗k)}∈P(Aeff

d ×M\{σ})

such that for 1≤i≤k allR∗i are pairwise distinct.

For a message set (σ,{(a1,R∗1),...,(ak,R∗k)}), σ is an extended state machine which
executes a transition leaving an extended state with the set {a1,...,ak} of effects, and for each
1≤ i≤k, R∗i is an extended state machine which executes a transition leaving an original
(non-extended) state through trigger ai. Note that {(a1,R∗1),...,(ak,R∗k)} can be the empty
set, which represents an empty set of effects on a transition.

A message set can be admissible in some global configuration. Such a configuration is
given by a global state, a tuple of states containing exactly one state per state machine. By
applying a message, a global successor state is reached.

Definition 4 (Application of a Message Set). Given a set of extended state machinesM=
{M∗1 ,...,M∗l } withM∗i =(Si,ιi,A

tr
i ,A

eff
i ,Ti) for 1≤i≤l, and a global state ŝ=(s1,...,sl)∈

S1×···×Sl, a message setm=(M∗d ,{(a1,R∗1),...,(ak,R∗k)}), with 1≤d≤l and 1≤k<l, is
admissible in ŝ if

(i) (sd,ε,{a1,...,ak},s′d)∈Td, and
(ii) there exists a setR⊆{1,...,l}\{d} and a bijective function rec :{1,...,k}→R such

thatR∗j =M
∗
rec(j) and (srec(j),aj,∅,s′rec(j))∈Trec(j) for each 1≤j≤k.

Proceedings of MoDeVVa 2013 34

Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines

Given a global state ŝ and a message setm that is admissible in ŝ, a global successor state
ŝ′ of ŝ after applyingm is given by ŝ′=(next(s1),...,next(sl)) where

next(si)=





s′d if i=d
s′i if i∈R
si otherwise

There are two requirements for a message set to be admissible in a global state: (1) the
sender’s state in the global state is an extended state with an outgoing transition containing
the set {a1,...,ak} of effects, and (2) each receiver’s state in the global state has an outgoing
transition triggered by the respective symbol from the message set. Note that we are dealing
with extended state machines, which means that a transition cannot carry a trigger symbol
other than ε together with a non-empty set of effects. Therefore it can never happen that a
receiver state machineR∗i sends any effects while executing the transition triggered by some
symbol ai. The global successor state ŝ′ is reached by applying a message set. It differs from
ŝ in states of the sender and the receiver state machines contained in the applied message set:
The sender’s state changes from an extended state to its only successor state, and the receivers’
states change according to the received symbol into an extended state.

We combine message sets of disjoint sets of state machines in a transaction as follows.

Definition 5 (Transaction). A transaction is a nonempty set of message sets {m1,...,ml}
with mi=(σi,{(ai,1,R∗i,1),...,(ai,ki,R

∗
i,ki

)}) such that all state machines occurring in the
message sets, i. e., all σi andR∗i,j (with 1≤i≤l,1≤j≤ki), are pairwise distinct.

A transaction is admissible if all its message sets are admissible. The global state reached by
applying a transaction is the global state reached by applying each of its message sets.

We further define a path as a sequence of transactions as follows.

Definition 6 (Path). A path µ from a global state ŝ0 to a global state ŝk is a sequence
µ=[n1,...,nk] of transactions such that there exists a sequence [ŝ0,...,ŝk] of global states
where for all 1≤i≤k, ni is admissible in state ŝi−1 and ŝi is the global successor state of
ŝi−1 after applying ni.

A global state ŝj is reachable from ŝi if there is a path from ŝi to ŝj. The length of a path
is the number of its transactions.

The k-GSC problem deals with reaching a combination of states of state machines in a
state machine view. This combination contains at most one state of each state machine. Hence
such a combination not necessarily specifies a complete global state. We therefore define a
partial global state as follows.

Definition 7 (Partial Global State). Given a set M = {M∗1 , ... ,M∗l } of extended state
machines with M∗i = (Si,ιi,A

tr
i ,A

eff
i ,Ti) for 1≤ i≤ l, a partial global state is an l-tuple

ŝp∈S1∪{?}×···×Sl∪{?}, where ? is a new symbol not contained in any Si. ŝp=(s1,...,sl)
matches a global state ŝ=(q1,...,ql) if for all 1≤i≤l, si=qi whenever si 6=?.

Finally, we define the k-GSC problem as follows.

Proceedings of MoDeVVa 2013 35

Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines

k-GSC
Instance: A setM of state machines, a global state ŝ, and a partial global state ŝp.
Question: Is there a path of length at most k from ŝ to a global state ŝ′ that matches ŝp?

The global state ŝ is also referred to as initial state and the partial global state ŝp is also
referred to as goal. The initial state usually contains each state machine’s initial state.

4 Encoding

In order to find solutions to the k-GSC problem, we propose to encode it to the satisfiability
problem of propositional logic (SAT) and hand it to a SAT solver. In the following we present
a detailed description of the SAT formula representing the k-GSC problem. In the next section
we describe our tool, the Global State Checker, which builds upon this encoding.

Let k be a positive integer, ŝ a global state representing an initial state, and ŝp a partial
global state representing a goal. Then the formula ϕ is satisfiable if and only if there is a
global state ŝ′ that is reachable from ŝ by a path of length at most k and that matches ŝp.

Recall that in a k-GSC instance we are given a setM = {M1,...,Ml} of state ma-
chines, a global state ŝ = (x1, ... , xl), and a partial state ŝp = (g1, ... , gl). For each
1 ≤ i ≤ l let Mi = (Si, ιi,A

tr
i ,A

eff
i ,Ti) and the corresponding extended state machine

beM∗i =(Si∪S∗i ,ιi,Atr
i ,A

eff
i ,T∗i).

In order to define the set of variables of ϕ, we introduce a set T :=
⋃

1≤i≤l Ti of

transitions, a set A :=
⋃

1≤i≤l

(
Atr

i ∪Aeff
i

)
of symbols, a set S :=

⋃
1≤i≤lSi of states,

and a set S∗ :=
⋃

1≤i≤l S
∗
i of extended states. Then the set of variables is given by

{vi | v ∈ (T ∪A∪ S ∪ S∗),0 ≤ i ≤ k} were i is an index capturing the relative posi-
tion of the variable in the path. That is, each transition, symbol, state, and extended state
together with one index up to k represents a variable.

Let t=(s,tr,eff ,s′) be a transition of a state machine and (s,tr,∅,s∗t) and (s∗t ,ε,eff ,s
′) be

the corresponding transitions in the respective extended state machine. To simplify the presen-
tation, we use the functions src(t):=s, int(t):=s∗t , trg(t):=tr , eff(t):=eff , and tgt(t):=s′.

Further let T ∗ :=⋃1≤i≤lT
∗
i . Given a state s ∈ S, let environ(s) := {s∗ | (s∗,ε,∅,s) ∈

T ∗}∪{s∗ |(s,ε,eff ,s∗)∈T ∗} be a set of extended states containing a predecessor of s if the
transition does not contain any effects and a successor of s if the transition contains ε as trigger.

The formula ϕ is then given by a conjunction of the following subformulas:

ϕinit :=

l∧

i=1

(∧

s∈Si,s=xi

s0∧
∧

s∈Si∪S∗i ,s6=xi

s0∧
∧

a∈A
a0
)

ϕgoal :=

l∧

i=1,gi 6=?

(
gki ∨

∨

s∈environ(gi)
sk
)

ϕ1 :=

k−1∧

i=0

∧

t∈T

[
ti→

(
src(t)i∧int(t)i+1∧trg(t)i∧trg(t)i+1 ∧

∧

eff∈eff(t)

(
eff

i∧eff i+1
))]

ϕ2 :=

k−1∧

i=0

∧

trg∈A

[
trgi∧trgi+1→

∨

t∈T ,trg=trg(t)

ti
]

Proceedings of MoDeVVa 2013 36

Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines

ϕ3 :=

k−1∧

i=0

∧

eff∈A

[
eff

i∧eff i+1→
∨

t∈T ,eff∈eff(t)
ti
]

ϕ4 :=

k−1∧

i=0

∧

s∈S

[
si∧si+1→

∨

t∈T ,s=src(t)

ti
]

ϕ5 :=

k−1∧

i=0

∧

t∈T

[
int(t)i∧int(t)i+1→

∧

eff∈eff(t)
eff

i+1
]

ϕ6 :=

k−1∧

i=0

∧

t∈T

[
int(t)i∧int(t)i+1→

∧

eff∈eff(t)
eff i+1

]

ϕ7 :=

k−1∧

i=0

∧

t∈T

[(
int(t)i∧

∧

eff∈eff(t)
eff

i+1
)
→
(
int(t)

i+1∧tgt(t)i+1

)]

ϕ8 :=

k−1∧

i=0

l∧

j=1

[(∨

s∈(Sj∪S∗
j)

si
)
∧

∧

s1,s2∈(Sj∪S∗
j),s1 6=s2

(
s1

i∨s2i
)]

.

The intuition behind these subformulas is as follows: ϕinit initialises the path by setting the
initial states with index 0 to true, and all other states and all symbols to false. ϕgoal encodes
the goal states and the extended states in their environment for index k. For all other path
indices, a symbol variable in its positive polarity means that the respective symbol has been
made available as effect through the transaction at the respective index and is waiting to be
consumed by some transition as a trigger in a later transaction. When the symbol has been
consumed, the respective symbol variable occurs in its negative polarity. ϕ1 ensures that
whenever a transition is executed, the state machine changes to the respective extended state.
Then the trigger symbol is set its negative polarity and the effect symbols are set to their
positive polarity. ϕ2 and ϕ3 express that whenever the polarity of a symbol is changed, there
must be a transition causing this change. ϕ4 encodes that leaving a state is always caused by
some transition.ϕ5 andϕ6 ensure that after executing a transaction either all effect symbols of
a transition are consumed or none of them. The formulas ϕj with j∈{2,...,5} are also called
framing axioms. These formulas ensure that every change in a global state has a cause. Note
that it is not necessary to state all changes explicitly, because they are already covered implicitly
by other formulas. ϕ7 forces a machine to move to the target state if all effect symbols have
been consumed. ϕ8 expresses that each machine is in exactly one state after each transaction.

Note that the encoding allows that nothing happens, i. e., no transaction takes place at an
index. It is ensured by the framing axioms that in this case, the global state remains the same.
This relaxation implicitly encodes the “at most k” formulation of the problem: If at n indices
nothing happens and the goal is reached at index k, it means that the length of the transaction
sequence is k−n. The framing axioms also ensure that state machines not participating in
a transaction do not change.

A solution returned by the SAT solver consists of a set of variables set to true. By extract-
ing those variables that represent states and transitions (sets S, S∗, and T) we obtain a path
to the goal. If the length of the path is less than k, then for some consecutive indices the state
variables represent the same states. The shorter path can therefore be easily extracted.

Proceedings of MoDeVVa 2013 37

Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines

Fig. 3. UI of the Global State Checker.

In order to simplify the encoding we assume that after applying a transaction each symbol
can be consumable only once. Allowing a symbol to be consumable multiple times after one
transaction requires the integration of counters, which can be realized, e.g., by building upon
ideas presented in [13]. We are currently developing such an extension.

5 Implementation and Case Study

We have implemented the encoding described above as Eclipse plugin5 and designed a set of
instances for an initial case study. Our prototype implementation is available on our Eclipse
update site6. Further resources and instructions can be found on our project website7. In the
following, we shortly describe our implementation and discuss a first case study.

Implementation. The Global State Checker prototype is embedded into the Eclipse modeling
framework (EMF). The metamodel for the statemachine view described in Sec. 3 is provided
by an Ecore metamodel. Instances of the k-GSC problem are created as models of the defined
language. Our encoder module takes a state machine view as input and encodes it into a
formula of propositional logic according to the encoding described in Sec. 4. Additional
measures are taken to convert the formula into conjunctive normal form (CNF), which is a
common format used by SAT solvers. The data structure representing the encoding is handed
to the SAT4J [7] solver, a SAT solver written in Java, which integrates seamlessly into our
tool. The SAT solver either returns UNSAT or SAT. The former means that the problem
has no solution, i.e., that the specified state is not reachable in k steps. The latter case means
that there exists a solution, i.e., a path from the initial configuration to a global state matching

5 http://www.eclipse.org/
6 http://modelevolution.org/updatesite
7 http://modelevolution.org/prototypes/gsc

Proceedings of MoDeVVa 2013 38

Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines

k3 15 100 1000

t (ms)

100

200

300

700

20,000 1 state

3 states

overall time

encoding time

Fig. 4. Runtime measures for the coffee machine test case.

the specified goal. In this case, the SAT solver additionally returns a logical model of the
formula representing the problem. A logical model assigns one of the truth values true and
false to each propositional variable. Since each variable represents either a state, a transition,
or a symbol with respect to a certain index, such a model can be easily translated into a path
leading to the specified state. This way we retrieve a solution to our original problem.

Fig. 3 shows the graphical user interface of our prototype. The user can select a set of
states directly in the modeling editor, enter a bound, and start the k-GSC tool. For conve-
nience, it may be specified whether the given global state is expected to be reachable or not.
Red or green highlighting indicate how the expected result compares to the effective result.
All test cases are listed in the global state checker console. The expanded subitems of the
third test case in Fig. 3 show the path found by the SAT solver.
Case Study. We have designed three different benchmark instances with varying number of
state machines, states, and transitions in order to test our prototype. The instances have been
adapted from our previous work [15]. The first instance is shown in Fig. 3 and represents
the communication of a coffee machine, a PhD student, and a technician who repairs the
coffee machine in case of an error. The second instance represents a simplified version of the
SMTP protocol. The third instance represents the well-known dining philosophers problem
with three philosophers. Of each instance we have created a correct and an erroneous version.

For all test cases, ŝ (the starting state of the path) has been set to the global initial state,
i.e., the global state where each state machine is in its initial state. For instances “coffee”
and “mail”, each possible combination of states for each state machine, and for the instance
“philosophers” a meaningful selection of combination of states have been tested with the bound
k set to {3,15,100}. Details on the outcomes of the test cases are presented on our project
website. The results of all test cases are as expected. The bugs in the erroneous versions have
been found. The approach performs well up to a bound of k=1000. In Fig. 4 we exemplarily
show the runtime measures for the coffee machine instance, which were evaluated on an Intel
Core i5 CPU with 2.5 GHz running Linux. The red lines show a test case in which the goal
was a partial global state containing a state of one out of three state machines, and the blue
lines show a case where the goal was a complete global state, i.e., containing a state of each
state machine. The dashed lines express the time needed to encode the problem and the solid
lines give the total time, i.e., encoding time plus time spent by the SAT solver. As can be
expected, the bottleneck for higher bounds is the task of solving the SAT instance.

6 Conclusion and Future Work
We presented a SAT-based approach to verify whether a combination of states in the state
machine view of a software model can be reached through a path of bounded length from an

Proceedings of MoDeVVa 2013 39

Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines

initial configuration. Using SAT allowed for a more direct translation than, e.g., using a model
checker, and for a good integration within our existing framework which is implemented
as plugin for the popular development environment Eclipse and therefore easily accessible
to developers. We precisely defined the semantics of the state machine view of a software
model. On this formal semantics we could build a formal problem definition. Based on this
problem definition, the encoding to SAT turned out to be very intuitive, easy to understand
and therefore easy to extend.

Immediately planned extensions of our encoding include the integration of a counter to
handle the availability of multiple occurrences of a symbol representing an effect. Another
important task is the optimization of the encoding in order to avoid unnecessary blowups and
yield a more compact representation. On a longer time frame, the integration of transition
guards and hierarchical state machines are planned. Before extending our approach, however,
more extensive testing as well as a runtime comparison to alternative encodings will be
necessary. To thoroughly test the tool, we will implement a solution verifier to automatically
verify the solution returned by the SAT solver and apply our previously used approach of
grammar-based fuzzing for MBE tools [14].

References

1. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A State/Event-based Model-Checking
Approach for the Analysis of Abstract System Properties. Science of Computer Programming
76(2), 119–135 (Feb 2011)

2. Bézivin, J.: On the Unification Power of Models. SoSyM 4(2), 171–188 (2005)
3. Biere, A.: Bounded Model Checking. In: Handbook of Satisfiability, pp. 457–481. IOS Press (2009)
4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)
5. Dubrovin, J., Junttila, T.A.: Symbolic Model Checking of Hierarchical UML State Machines. In:

Int. Conf. on Application of Concurrency to System Design. pp. 108–117. IEEE (2008)
6. Knapp, A., Merz, S., Rauh, C.: Model Checking—Timed UML State Machines and Collaborations.

In: Formal Techniques in Real-Time and Fault-Tolerant Systems. pp. 395–416 (2002)
7. Le Berre, D., Parrain, A.: The Sat4j Library, Release 2.2, System Description. Journal on

Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)
8. Lilius, J., Paltor, I.: vUML: A Tool for Verifying UML Models. In: ASE. pp. 255–258 (1999)
9. Niewiadomski, A., Penczek, W., Szreter, M.: Towards Checking Parametric Reachability for UML

State Machines. In: Ershov Memorial Conference. LNCS, vol. 5947. Springer (2010)
10. Ober, I., Graf, S., Ober, I.: Validation of UML Models via a Mapping to Communicating Extended

Timed Automata. In: Model Checking Software, LNCS, vol. 2989, pp. 127–145. Springer (2004)
11. Rintanen, J.: Planning and SAT. In: Handbook of Satisfiability, pp. 483–504. IOS Press (2009)
12. Selic, B.: What Will it Take? A View on Adoption of Model-based Methods in Practice. SoSyM

11, 513–526 (2012)
13. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In: Int. Conf. on

Principles and Practice of Constraint Programming. LNCS, vol. 3709, pp. 827–831. Springer (2005)
14. Widl, M.: Test Case Generation by Grammar-based Fuzzing for Model-driven Engineering. In:

Int. Haifa Verification Conference (2012)
15. Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M., Tompits, H.: Guided

Merging of Sequence Diagrams. In: Software Language Engineering. LNCS, vol. 7745, pp.
164–183. Springer (2013)

Proceedings of MoDeVVa 2013 40

Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines

Applying Model Transformation and Event-B
for Specifying an Industrial DSL

Ulyana Tikhonova, Maarten Manders, Mark van den Brand,
Suzana Andova, and Tom Verhoeff

Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{u.tikhonova,m.w.manders,m.g.j.v.d.brand,s.andova,t.verhoeff}@tue.nl

Abstract. In this paper we describe our experience in applying the
Event-B formalism for specifying the dynamic semantics of a real-life in-
dustrial DSL. The main objective of this work is to enable the industrial
use of the broad spectrum of specification analysis tools that support
Event-B. To leverage the usage of Event-B and its analysis techniques
we developed model transformations, that allowed for automatic gener-
ation of Event-B specifications of the DSL programs. The model trans-
formations implement a modular approach for specifying the semantics
of the DSL and, therefore, improve scalability of the specifications and
the reuse of their verification.

Key words: domain specific language, Event-B, model transformations,
verification and validation, reuse, scalability

1 Introduction

Domain-Specific Languages (DSLs) are a central concept of Model Driven En-
gineering (MDE). A DSL provides domain notions and notation for defining
models. It implements the semantic mapping of the models by means of model
transformations. A DSL bridges the gap between the domain level and an exe-
cution platform. From a semantics point of view this gap can be quite wide, i.e.
the DSL implementation usually includes rather complicated design solutions
and algorithms. To manage the complexity of the industrial DSL, considered
in this paper, we provide an explicit definition of its semantics by means of a
formal method. This allows for formal specification of the DSL semantics and
for assessing correctness of the specified semantic mapping via verification and
validation.

In this paper we discuss the use cases of verification and validation applied
to a DSL specification in an industrial context. We identify two different roles,
that use different types of analysis of the DSL specification. A DSL developer is
interested in validating and checking consistency of the DSL design and imple-
mentation. A DSL user is interested in getting better understanding of the DSL
semantics, for example via simulation of its specifications. Correspondingly, in

Proceedings of MoDeVVa 2013 41

the context of MDE a formal specification of a DSL can be given on two ab-
straction levels: the DSL metamodel level and the DSL model level.

There exists quite a number of formalisms for specifying behavior and tools
for analyzing these specifications using different verification and validation tech-
niques. In this research we use the Event-B formalism [2] and the Rodin plat-
form [3], as they allow the implementation of all use cases listed above. By
using Event-B and Rodin we can (1) prove consistency of the DSL semantics
specifications with (automatic and interactive) provers, (2) find deadlocks and
termination problems using model checkers, (3) use animators to validate the
specified semantics with the help of domain experts, and (4) provide graphi-
cal visualization of the specification to help DSL users to understand how their
programs run. All these tools are available in Rodin for Event-B.

In this paper, we show how Event-B and Rodin can be adopted in practice
and applied to the industrial use cases, through model transformations from
the DSL to Event-B. Our model transformations can automatically generate an
Event-B specification for each concrete DSL program. For this, we apply the tech-
niques of composition and instantiation of Event-B specifications. Composition
of Event-B specifications simplifies the creation, maintenance and verification of
larger specifications, because one can handle the smaller components separately.
Instantiation is a way to concretize a generic Event-B specification, defined on
the DSL metamodel level, to the model level of a concrete DSL program. The
instantiation technique allows for the reuse of verification results from one level
to the other. As a result of applying these techniques, our model transformations
improve usability of Event-B and Rodin.

In the rest of the paper, Section 2 gives the overview of the industrial DSL
and defines roles and use cases; Section 3 introduces the Event-B formalism;
Sections 4.1 and 4.2 describe the decomposition and instantiation techniques;
Section 4.3 outlines the implementation of our approach and results of its ap-
plication. Related work is discussed in Section 5. Conclusions and directions for
future work are given in Section 6.

2 Case Study and Use Cases

Our case study was performed at ASML,1 a producer of complex lithography
machines for the semiconductor industry. In our case study we specified the
dynamic semantics of the LACE DSL. LACE (Logical Action Component Envi-
ronment) is one of the DSLs, developed by and used within ASML for controlling
lithography machines. A lithography machine consists of many physical subsys-
tems (such as actuators, projectors, and sensors), which operate simultaneously
in order to perform the required functions of the machine. LACE allows for
specifying how subsystems operate in collaboration with each other by means of
so-called logical actions. An example of a logical action is shown in Figure 1.

LACE has a graphical notation based on UML activity diagrams. A logical
action consists of subsystem actions (rounded rectangles in Figure 1), each of

1 www.asml.com, http://en.wikipedia.org/wiki/ASML_Holding

Proceedings of MoDeVVa 2013 42

Applying Model Transformation and Event-B for Specifying an Industrial DSL

take_a_snapshot

Laser Sensor Handler Projector

AdjustFramePosition PositionObject

MoveToParking

SwitchGlass

ProduceLight GrabAFrame

objectPosition

framePosition

snapshot

Fig. 1: An example of a logical action for taking a snapshot

which belongs to a subsystem, that executes this subsystem action (vertical col-
umn, containing the rounded rectangle). Subsystem actions, combined together
into a so-called scan (dashed rounded rectangle), are executed synchronously.
Thus, in Figure 1 the Sensor subsystem starts and stops the GrabAFrame action
at the same moments, as the Laser subsystem starts and stops the ProduceLight
action. Subsystem actions within a logical action can be executed sequentially or
concurrently (thick arrows, fork and join nodes). For example, the subsystem ac-
tions AdjustFramePosition and PositionObject are independent actions and
can be executed in any order or in parallel, but the GrabAFrame action can be per-
formed only after both these actions are finished. Finally, subsystem actions may
require and produce data. The dataflow in a logical action is depicted by means
of thin arrows, input and output pins. For example, in Figure 1 the GrabAFrame

action produces data, which is saved in the snapshot output parameter.

The high-level description of the machine subsystems’ behavior, given in log-
ical actions, is translated into the invocations of hardware drivers and a synchro-
nization driver in such a way that the resulting execution matches the behavior
specified in the logical actions. The semantic gap between LACE and driver
functions is wide, and thus the translation is hard to develop, maintain, under-
stand, and use. We construct a formal specification of LACE and apply different
kinds of analysis to it, in order to enhance understandability, maintainability
and usage of the DSL translation. We identify the following roles and use cases
of specification of a DSL and its analysis in the industrial context (Figure 2).

A DSL developer designs and develops the DSL by constructing its meta-
model and semantic translations. Formal specification of this DSL implemen-
tation allows for the verification, such as checking that it is consistent, non-
contradictive, feasible and complete. A DSL user specifies DSL programs as
instances of the DSL metamodel. In the context of formal methods the instan-
tiation of metamodel by a DSL program needs to be verified separately. Formal
specification of the DSL programs allows for the execution of specifications, and

Proceedings of MoDeVVa 2013 43

Applying Model Transformation and Event-B for Specifying an Industrial DSL

DSL implementation

DSL programs

prove / evaluate
conformance

simulate /
model check /

visualize

prove
consistency

DSL user

DSL developer

Fig. 2: Roles and use cases of the DSL specification and its analysis

thus for model checking and simulation. The construction of the LACE specifi-
cations and the implementation of the listed use cases are described in Section 4.

3 Event-B

Event-B is an evolution of the B method, both introduced by Abrial [2]. Event-B
employs set theory and first-order logic for specifying software and/or hardware
behavior. A big advantage of Event-B is its tool support, offered by the Rodin
platform [3]. Using Rodin and its plug-ins, one can create and edit Event-B
specifications, verify them using automatic or interactive provers, animate and
model check Event-B specifications.

An Event-B specification consists of contexts and machines. A context de-
scribes the static part of a system: sets, constants and axioms. A machine uses
(sees) the context to specify behavior of a system via a state-based formalism.
Variables of the machine define the state space. Events, which change values of
these variables, define transitions between the states. An event consists of guards
and actions, and can have parameters. An event can occur only when its guards
are true, and as a result of the event its actions are executed. The properties of
the system are specified as invariants, which should hold for all reachable states.
The properties are verified via proving automatically generated proof obligations
and/or via model checking.

The attractive simplicity of Event-B is enhanced by techniques such as shared
event composition and generic instantiation, which support scalability and reuse
of Event-B specifications [4]. We discuss these techniques in detail in Section 4.

4 Model Transformations from LACE to Event-B

The Rodin platform allows for the implementation of the use cases described in
Figure 2, provided that the corresponding Event-B specifications of LACE are
given. This poses the following problems. First, the semantics of LACE is com-
plex, therefore capturing it within Event-B machines is challenging and results
in a big specification, which is hard to understand, maintain and verify. To tackle
this problem we apply two types of composition of Event-B specifications: com-
position of semantic features and composition of machines (Section 4.2). The

Proceedings of MoDeVVa 2013 44

Applying Model Transformation and Event-B for Specifying an Industrial DSL

LACE specification is composed using model transformations. Second, while a
specification of LACE on the metamodel level can be created and analyzed once,
specifications of the LACE programs need to be constructed and analyzed many
times by DSL users. We cannot expect DSL users to create Event-B specifi-
cations of their LACE programs and to verify them themselves. Therefore, we
apply model transformations from LACE to Event-B to automatically generate
specifications of LACE programs and we use the generic instantiation technique
to verify their conformance to the LACE specification, given on the metamodel
level (Section 4.1). Moreover, we enhance simulation of Event-B specifications
of LACE programs by providing a user-friendly visualization.

4.1 Instantiation of Event-B specification

Generic instantiation is a technique, proposed by Abrial and Hallerstede to reuse
an existing Event-B specification by refining the data structures, specified in its
constants and variables, in a new copy of this specification [4]. We apply generic
instantiation as depicted in Figure 3 (on the left). The concepts of conceptual
machine and of composite machine are introduced in Subsection 4.2.

LACE
metamodel

LACE
program

Simulation

Proving

Model checking

metamodel
context

model
context

conceptual
machine

sees

sees

Event-BDSL / EMF

M2M
«instantiate»

Rodin

composite
machine

M2M

m
et

am
od

el
 le

ve
l

m
od

el
 le

ve
l

input

input

M2M

Fig. 3: Instantiation and composition of Event-B specification

The metamodel context captures the structure specified in the LACE meta-
model. A conceptual machine uses this context to specify the dynamic seman-
tics of LACE in terms of the metamodel. Based on the structural properties,
specified in the axioms of the metamodel context, the conceptual machines
are proved to be consistent and complete by discharging the corresponding proof
obligations using the Rodin provers. Thus, the semantics is verified on the meta-
model level. The metamodel context and the conceptual machines for a spe-
cific DSL are constructed manually and only once.

In the model context, values are assigned to the sets and constants, intro-
duced in the metamodel context. The assignments are done in the axioms of
the model context. Therefore, being used by a composite machine, this con-
text specifies behavior of a concrete LACE program – on the model level. This
specification can be model checked and animated, allowing for the analysis of a

Proceedings of MoDeVVa 2013 45

Applying Model Transformation and Event-B for Specifying an Industrial DSL

particular LACE program. Model contexts are generated from LACE programs
automatically by means of model transformations.

According to the generic instantiation technique, if all structural properties,
defined in the metamodel context, can be derived for the structure, instantiated
in the model context, then the verification of the Event-B specification can be
extended straightforwardly from the metamodel level to the model level [4].
In [13] and [6] it is proposed to use theorem proving to show this derivation.

Due to the large sizes of the model contexts, generated from LACE pro-
grams, the automatic provers of Rodin fail to discharge instantiation theorems.
On the other hand, we do not expect an average DSL user to prove these theo-
rems using Rodin interactive provers, as it requires knowledge of propositional
calculus and understanding of proof strategies. Therefore, instead of the the-
orem proving, we employ evaluation of structural properties predicates in the
ProB animator integrated in Rodin [11]. Thus, we achieve automatic proof of
instantiation in Event-B.

4.2 Composition of Event-B specification

As we mentioned before, capturing semantics of LACE within Event-B machines
is rather complicated due to their different abstraction levels. To handle this
complexity we employ modularity of LACE semantics. Each module is described
separately as a conceptual machine in Event-B. Composition of the conceptual
machines gives a resulting Event-B machine, which specifies the LACE dynamic
semantics. The modular approach facilitates development, understandability and
proving the correctness of the specification. We distinguish two types of modu-
larity in the dynamic semantics of LACE: semantic modularity and architectural
modularity.

To manage complexity of the LACE semantics we decompose it into separate
semantic features (SFs): Core SF, Order SF, Scan SF and Data SF. The Core

SF specification defines common concepts and interfaces: logical actions, con-
sisting of subsystem actions, subsystems and events for requesting execution of
logical actions and subsystem actions. Order SF, Scan SF and Dataflow SF are
specified independently on the basis of the Core SF machine by adding extra
variables, invariants, parameters, guards and actions to the Core SF machine
and by changing some of the Event-B types, used in it. Order SF introduces
partial order of execution of subsystem actions within a logical action. Scan

SF joins subsystem actions into scans. Data SF introduces input and output
parameters and dataflow within a logical action. The composition of semantic
features is implemented via weaving Event-B code of the machines in the model
transformation (the self-referential M2M arrow in Figure 3).

The LACE implementation consists of different software components, such
as: logical action components (LAC), that translate logical action requests into
subsystem actions, and subsystems (SS), that execute subsystem actions. This
architectural modularity of LACE is implemented in Event-B using the shared
event composition approach [14]. Software modules are specified in separate ma-
chines, which are then composed into one composite machine specifying the

Proceedings of MoDeVVa 2013 46

Applying Model Transformation and Event-B for Specifying an Industrial DSL

whole system. The interaction of the modules is implemented via composition
(or in fact, synchronization) of the events of the composing machines. Com-
position of events means conjunction of the events’ guards and composition of
the events’ actions in one composite event. The composition of the LAC and
SS machines is implemented using model transformation (the M2M arrow from
conceptual machines to composite machines in Figure 3).

As a result of the intersection of two types of specification modularity, eight
conceptual machines and four composition schemes need to be specified: for
each semantic feature we specify a conceptual machine of each software module
(LAC and SS) and a scheme of the interaction of LAC with SS. An Event-B
machine that specifies the LACE semantics as a whole is composed of LAC and
SS machines, that include Event-B code for all four semantic features, according
to the compositional schemes of all four semantic features. Two dimensions of
the modularity presented above simplify creation, verification and validation of
Event-B components and maintenance of the model transformations.

4.3 Implementation

The LACE-to-Event-B transformations, described in Sections 4.1 and 4.2, were
implemented using the Operational QVT (Query/View/Transformation) lan-
guage [1] in the Eclipse environment. The input for the transformation is pro-
vided directly by the LACE implementation software, which employs model
transformation and code generation techniques in the Borland Together envi-
ronment, and therefore is compatible with EMF (Eclipse Modeling Framework).
As a target metamodel for the transformation we use the Event-B Ecore imple-
mentation provided by the EMF framework for Event-B [15].

The LACE-to-EventB transformation is designed in a modular way, which
follows the logic of instantiation and composition techniques as described in Sec-
tions 4.1 and 4.2. Thus, the transformation is possible to reuse and to generalize.

Table 1: Characteristics of the LACE-to-Event-B transformation
Event-B Semantic features core+scan+

components core scan order data order+data

Metamodel
context

3 constants
5 axioms

4 constants
8 axioms

5 constants
9 axioms

11 constants
22 axioms

–

Model context
20 constants

7 axioms
21 constants

8 axioms
23 constants
10 axioms

37 constants
17 axioms

–

LAC machine
3 events
21 POs

3 events
23 POs

4 events
26 POs

4 events
28 POs

4 events
34 POs

SS machine
3 events
7 POs

3 events
11 POs

3 events
7 POs

3 events
7 POs

3 events
11 POs

composition
of LAC and SS

machines

10 events
70 POs

30 events
386 POs

10 events
82 POs

10 events
89 POs

30 events
491 POs

Proceedings of MoDeVVa 2013 47

Applying Model Transformation and Event-B for Specifying an Industrial DSL

Table 1 shows the representative characteristics of the transformation: sizes
of the metamodel contexts vs. model contexts and sizes of the conceptual ma-
chines (LAC and SS machines for core, scan, order and data semantic features)
vs. composite machines (bottom row). The automatically generated Event-B
components are shaded. As an input for the transformation the LACE program
depicted in Figure 1 is used. All proof obligations (POs) of the LAC and SS ma-
chines are discharged by invocation of the automatic provers in Rodin. The proof
obligations of the composite machines (bottom row) can be left undischarged, as
these are inherited proof obligations of the LAC and SS machines (according to
the shared event composition approach [14]). The Event-B machine that specifies
the LACE semantics as a whole is located in the bottom right cell of the table.
One can observe that this machine is much larger and has much more proof
obligations, than the conceptual machines, of which this machine is composed.

To make it convenient for a LACE user to work with Event-B we developed a
graphical visualization of the LACE specification using the BMotion Studio plug-
in [10]. This visualization runs together with the ProB animator and provides
a GUI (graphical user interface) for a machine being animated. The GUI is
based on the original LACE notation. By experimenting with a LACE program
specification using this GUI a user can get better understanding of the DSL
design and improve efficiency of her programs. Screen shots of the visualization
can be found on the web-page of our project.2

5 Related Work

There are a number of studies in which Event-B has been applied to a specifi-
cation of the dynamic semantics of a DSL. Aı̈t-Sadoune and Aı̈t-Ameur employ
Event-B and Rodin for proving properties and animation of BPEL processes [5].
Hoang et al. use Event-B and Rodin to automate analysis of Shadow models [9].
In both studies, DSL program descriptions are translated into Event-B specifi-
cations. The translations are implemented in the Java programming language.
These works do not use generic instantiation and composition techniques, but
apply refinement of Event-B machines [4] to implement modularity of the pro-
grams. Based on our experience, refinement restricts semantics definition and can
be rather complicated for automatic proving. Moreover, we use model transfor-
mations to implement the generation of Event-B specifications, which increases
the abstraction level of the translation and therefore enhances its reuse.

Besides Event-B, other formalisms have been used as a target formal do-
main for specifying semantics of DSLs. Chen et al. propose transformational
specification of dynamic semantics using Abstract State Machines (ASM) as a
target formalism and explore specified behavior by means of the AsmL simulator
tool [8]. Moreover, they introduce semantic units as an intermediate common
language for defining dynamic semantics of DSLs and explore a technique for
their composition [7]. Another approach, that supports reuse of the DSL analy-
ses via intermediate specification modules, is proposed by Ratiu et al. [12]. They

2 www.win.tue.nl/mdse/COREF

Proceedings of MoDeVVa 2013 48

Applying Model Transformation and Event-B for Specifying an Industrial DSL

identify conceptually distinct sub-languages, shared by different DSLs, and trans-
form these to different analysis formalisms. These works support modularity of a
DSL specification by modularizing target formalisms. In this paper we describe
how modularity of the DSL specification arises from the modularity of the DSL
semantics, and apply model transformations to compose semantic modules.

6 Conclusion

In this paper we showed how the dynamic semantics of an industrial DSL can
be defined using the Event-B formalism and model transformations. The Rodin
platform and its plug-ins provide a broad spectrum of functionality and analysis
tools for Event-B specifications. Our objective was to adopt Event-B for the
industrial use cases for two major roles: DSL users and DSL developers. This
was achieved by using MDE techniques – model transformations that define the
semantics mapping from DSL domain to Event-B.

In order to specify semantics of LACE in a modular and scalable way we
introduce semantic features and specify them in conceptual Event-B machines.
The conceptual machines are verified on the metamodel level using automatic
provers of Rodin. The LACE-to-Event-B transformation composes the concep-
tual machines into the LACE specification and instantiates this specification for
concrete LACE programs. The resulting Event-B specifications can be validated
and model checked by DSL developers and can be simulated by DSL users in
the user-friendly GUI – all in the Rodin environment.

As future work we aim for applying the demonstrated techniques to other
DSLs. For this we need to generalize LACE-to-Event-B transformation by distin-
guishing repetitive Event-B code, that can be combined into fine-grained specifi-
cation patterns. This will allow not only for reuse of the demonstrated techniques
of instantiation and composition, but also for reuse of already verified and visu-
alized pieces of specification.

7 Acknowledgements

We are very grateful to Marc Hamilton and Wilbert Alberts (ASML, The Nether-
lands) for introducing us to the LACE world and providing very useful feedback
on our experiments. We would like to thank Michael Butler and Colin Snook
(University of Southampton, United Kingdom) for their help with using Event-
B and Rodin. We also would like to thank Anton Wijs and Alexander Sere-
brenik (Eindhoven University of Technology, The Netherlands) for their useful
comments on this paper.

References

1. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Object
Management Group (OMG), July 2007.

Proceedings of MoDeVVa 2013 49

Applying Model Transformation and Event-B for Specifying an Industrial DSL

2. J.-R. Abrial. Modeling in Event-B: system and software engineering, volume 1.
Cambridge University Press, 2010.

3. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: An Open Toolset for Modelling and Reasoning in Event-B. International
Journal on Software Tools for Technology Transfer (STTT), 12(6):447–466, 2010.

4. J.-R. Abrial and S. Hallerstede. Refinement, Decomposition, and Instantiation of
Discrete Models: Application to Event-B. Fundam. Inform., 77(1-2):1–28, 2007.

5. I. Aı̈t-Sadoune and Y. Aı̈t-Ameur. Stepwise Design of BPEL Web Services Com-
positions: An Event-B Refinement Based Approach. In R. Lee, O. Ormandjieva,
A. Abran, and C. Constantinides, editors, Software Engineering Research, Man-
agement and Applications, pages 51–68. Springer Berlin / Heidelberg, 2010.

6. D. A. Basin, A. Fürst, T. S. Hoang, K. Miyazaki, and N. Sato. Abstract Data
Types in Event-B – An Application of Generic Instantiation. In Workshop on the
experience of and advances in developing dependable systems in Event-B, volume
abs/1210.7283 of CoRR, pages 5–16, 2012.

7. K. Chen, J. Porter, J. Sztipanovits, and S. Neema. Compositional Specification Of
Behavioral Semantics For Domain-Specific Modeling Languages. Int. J. Semantic
Computing, 3:31–56, 2009.

8. K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic Anchoring
with Model Transformations. European Conference on Model Driven Architecture
- Foundations and Applications, pages 115–129, 2005.

9. T. S. Hoang, A. McIver, L. Meinicke, C. Morgan, A. Sloane, and E. Susatyo.
Abstractions of non-interference security: probabilistic versus possibilistic. Formal
Aspects of Computing, pages 1–26, 2012.

10. L. Ladenberger, J. Bendisposto, and M. Leuschel. Visualising Event-B Models with
B-Motion Studio. In M. Alpuente, B. Cook, and C. Joubert, editors, Proceedings of
FMICS 2009, volume 5825 of Lecture Notes in Computer Science, pages 202–204.
Springer, 2009.

11. M. Leuschel and M. Butler. ProB: A Model Checker for B. In A. Keijiro, S. Gnesi,
and M. Dino, editors, FME, volume 2805 of Lecture Notes in Computer Science,
pages 855–874. Springer-Verlag, 2003.

12. D. Ratiu, M. Voelter, Z. Molotnikov, and B. Schaetz. Implementing Modular
Domain Specific Languages and Analyses. In Proceedings of the Workshop on
Model-Driven Engineering, Verification and Validation, pages 35–40, 2012.

13. R. Silva and M. Butler. Supporting Reuse of Event-B Developments through
Generic Instantiation. In K. Breitman and A. Cavalcanti, editors, 11th Inter-
national Conference on Formal Engineering Methods (ICFEM), volume 5885 of
Lecture Notes in Computer Science, pages 466–484. Springer, 2009.

14. R. Silva and M. Butler. Shared Event Composition/Decomposition in Event-B. In
B. K. Aichernig, F. S. de Boer, and M. M. Bonsangue, editors, Formal Methods
for Components and Objects (FMCO), pages 122–141. Springer, 2010.

15. C. Snook, F. Fritz, and A. Illisaov. An EMF Framework for Event-B. In Workshop
on Tool Building in Formal Methods - ABZ Conference, 2010.

Proceedings of MoDeVVa 2013 50

Applying Model Transformation and Event-B for Specifying an Industrial DSL

Ensuring OSGi Component Based Properties at
Runtime with Behavioral Types

Jan Olaf Blech

RMIT University, Melbourne fortiss GmbH, Munich

Abstract. We present work on using automata based behavioral descriptions (be-
havioral types) of OSGi components for monitoring their specified behavior at
runtime. Behavioral types are associated with OSGi components. We are focusing
on behavioral types that specify protocols defined by possible orders of method
calls of and between components and specifications based on the maximal ex-
ecution time of these method calls. Behavioral runtime monitors for detecting
deviations from a specified behavior are generated for components automatically
out of their behavioral types. We sketch the integration of our behavioral runtime
monitors into a behavioral types framework and present implementation and eval-
uation work on the behavioral runtime monitoring part.

1 Introduction

In our work, we are extending the basic typing concepts of traditional software com-
ponent systems with means for specifying possible behavior of components. As with
traditional types, like primitive datatypes and their composition, our behavioral types
can be used for eliminating possible sources of errors at development time of software
systems. This is analog to classical static type checks performed by a compiler. Further-
more, we can use behavioral types for eliminating possible sources of errors at runtime.
This is analog to dynamic type checks performed when accessing pointers that reference
data with types that can not be statically determined in some classical programming lan-
guages. Behavioral types also provide additional information about components which
can be used for further tool based operations. Ensuring behavioral type correctness at
runtime of an OSGi system is the main focus of this paper.

In this paper, we are using finite automata based descriptions of method call or-
ders and maximal execution times of methods. Programmers even outside the academic
community seem to be familiar with finite automata and thus, we believe that it is a
good candidate for the acceptance of our specification formalism. We present a first
version of an implementation 1 for the OSGi [14] framework 2. OSGi allows dynamic
reconfiguration of Java based software systems. In this paper, we concentrate on check-
ing / ensuring of behavioral type safety at runtime of a system using behavioral runtime
monitors generated from our behavioral types. We monitor a system’s execution and
throw behavioral types exceptions in case of deviations from the specified behavior.

1 The parts of our behavioral types framework concerning behavioral runtime monitors as de-
scribed in this paper are available at http://sourceforge.net/p/beht/wiki/Home

2 Among other aspects of the framework, additional implementation details are described in [7]

Proceedings of MoDeVVa 2013 51

Our work features the following highlights: 1) The use of multi-purpose automata
based behavioral types. The same specification files can be used for other operations at
compile time, e.g., static analysis of component compatibility, and runtime, e.g., dis-
covery of components in a SOA like scenario, dynamic adaptation of components [6].
2) The enforcement of these types at runtime by generating behavioral runtime moni-
tors out of the types, using aspect oriented programming and an integration into Java by
throwing runtime exceptions in case of deviation, and ensuring of maximal execution
time of methods by using aspect oriented programming and runtime exceptions. There
is no need to modify or add special comments to the source code files of the system.
We think that this is highly beneficial for the acceptance of our approach since existing
practices in Eclipse can still be used, people who are not interested in using behavioral
types may still work on the same code base.

Overview Related work is discussed in Section 2. Our behavioral types are introduced
in Section 3 together with behavioral runtime monitors. Section 4 describes the monitor
integration with Java and AspectJ. Section 5 presents an example and a conclusion is
given in Section 6.

2 Related Work

Interface automata [1] are one form of behavioral types. Like in this work, component
descriptions are based on automata. The focus is on communication protocols between
components which is one aspect that we also address in this paper. While the used
formalism for expressing behavior in interface automata is more powerful (timed au-
tomata vs. automata vs. timing annotation per method), interface automata do not target
the main focus of this paper: checking the behavior at runtime of a component by using
some form of monitoring. They are especially aimed at compatibility checks of differ-
ent components interacting at compile time of a system. The term behavioral types is
used in the Ptolemy framework [12]. Here, the focus is on real-time systems.

The runtime verification community has developed frameworks which can be used
for similar purpose as our behavioral type based monitors. The MOP framework [15]
allows the integration of specifications into Java source code files and generates As-
pectJ aspects which encapsulate monitors. Compared to this work, the intended goals
are different. While we keep the specification and implementation part separate, in or-
der to be able to use the specification for different purposes at development, compile
and runtime, a close integration of specification and code is often desired and realized
in the runtime verification frameworks. A framework taking advantage of the trade-off
between checking specifications at runtime and at development time has been studied
in [9]. A framework that generates independent Java monitors leaving the instrumen-
tation aspect to the implementation is described in [3]. Other topics explored in this
context comprise, e.g., the efficiency and expressiveness of monitoring [2, 4] but are
less focused on software engineering aspects compared to this paper.

Monitoring of performance and availability attributes of OSGi systems has been
studied in [17]. Here, a focus is on the dynamic reconfiguration ability of OSGi. Another
work using the .Net framework for runtime monitor integration is described in [11].

Proceedings of MoDeVVa 2013 52

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

service

bundle bundle

service

OSGi framework implementation

Operating System

service

Fig. 1: OSGi framework

Runtime enforcement of safety properties was initiated with security automata [16]
that are able to halt the underlying program upon a deviation from the expected behav-
iors. In our behavioral types framework, the enforcement of specifications is in parts left
to the system developer, who may or may not take potential Java exceptions resulting
from behavioral type violations into account.

Means for ensuring OSGi compatibility of bundles realized by using an advanced
versioning system for OSGi bundles based on their type information is studied in [5].
Some investigations on the relation between OSGi and some more formal component
models have been done in [13]. Aspects on formal security models for OSGi have been
studied in [10].

3 Behavioral Types for OSGi

We present an overview on OSGi and describe our behavioral types. We present our
vision for integrating behavioral types in the development and life-cycle of OSGi sys-
tems. Furthermore, we present the implemented generation of runtime monitors from
behavioral types.

3.1 OSGi Overview

The OSGi framework is a component and service platform for Java. It allows the ag-
gregation of services into bundles (cf. Figure 1) and provides means for dynamically
configuring services, their dependencies and usages. It is used as the basis for Eclipse
plugins but also for embedded applications including solutions for the automotive do-
main, home automation and industrial automation. Bundles can be installed and unin-
stalled during runtime. For example, they can be replaced by newer versions. Hence,
possible interactions between bundles can in general not be determined statically.

Bundles are deployed as .jar files containing extra OSGi information. Bundles gen-
erally contain a class implementing an OSGi interface that contains code for managing
the bundle, e.g., code that is executed upon activation and stopping of the bundle. Upon
activation, a bundle can register its services to the OSGi framework and make it avail-
able for use by other bundles. Services are implemented in Java and typically realized

Proceedings of MoDeVVa 2013 53

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

by registering a service object implementing a special interface. The bundle may itself
start to use existing services. Services can be found using dictionary-like mechanisms
provided by the OSGi framework. Typically one can search for a service which is pro-
vided using an object with a specified Java interface.

In the context of this paper, we use the term OSGi component as a subordinate
concept for bundles, objects and services provided by bundles.

The OSGi standard only specifies the framework including the syntactical format
specifying what bundles should contain. Different implementations exist for different
application domains like Equinox3 for Eclipse, Apache Felix4 or Knopflerfish5. If bun-
dles do not depend on implementation specific features, OSGi bundles can run on dif-
ferent implementations of the OSGi framework.

Services can run in parallel and are – if not explicitly synchronized – asynchronous.
Method calls, even between objects in different bundles – are non-blocking. In the con-
text of behavioral runtime monitoring using behavioral types, we are interested on how
to monitor relevant semantics features of the runtime behavior rather than reasoning
about the semantics features themself. For this paper, the monitoring of the order of
method calls within and between components and their timing behavior and the dy-
namic creation and handling of monitors in accordance with the dynamic handling of
bundles and objects are relevant.

3.2 Behavioral Types

Our behavioral types provide an abstract description of a components behavior and thus
provide a way of formalizing specifications associated with the component. They can be
used as a basis for checking the compatibility of components – for composing compo-
nents into new ones, and interaction of different components – and for providing ways
to make components compatible using coercion. Type conformance can be enforced at
compile time (e.g., like primitive datatypes int and float in a traditional typing system)
– if decidable and feasible – or at runtime of a system – e.g., like whether a pointer is
assigned to an object of a desired type at runtime in a traditional typing system.

In our work behavioral types are realized as files that contain a description of (parts
of the) behavior of an OSGi component. Typically, there should be one file per bundle,
or class definition. But different aspects of behavior may also be realized using different
files. In Eclipse the files are associated with an OSGi bundle by putting them in the same
project folder in the Eclipse workspace. Here, behavioral types are formally defined
using the following ingredients.

Behavioral Type Automaton A behavioral type automaton is a finite automaton repre-
sented as a tuple (Σ,L, l0, E) comprising an alphabet of labels Σ, a set of locations
L, an initial location l0 and a set of transition edges E where each transition is a tuple
(l, σ, l′) with l, l′ ∈ L and σ ∈ Σ. A consistency condition on our types is that all
σ ∈ Σ appear in some transition in E.

3 http://www.eclipse.org/equinox/
4 http://felix.apache.org/site/index.html
5 http://www.knopflerfish.org/

Proceedings of MoDeVVa 2013 54

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

In this paper, since we are interested in method calls, Σ is the set of method names
of components. The definition presented here can be used for specifying the behavior
of single objects, all objects from a class, bundles and their interactions. It can be used
for monitoring incoming method calls, outgoing method calls, or both.

Maximal Execution Time Table In addition to the protocol defined by the behavioral
type automaton, we define the maximal execution time of methods as a mapping Σ →
long ∪ ⊥ from the set of method names Σ to their maximal execution time in mil-
liseconds. The specification of a maximal execution time is optional, thus, the ⊥ entry
indicates that no maximal execution time is set.

The behavioral type automaton together with the corresponding maximal execution
time table form a behavioral type. Additional descriptive information is optionally avail-
able, but not used for the behavioral runtime monitoring aspects that are described here.
Other representations such as Σ comprising method signatures and timing information
are possible future extensions.

3.3 Behavioral Types at Development and Runtime of a System

A potential major advantage of using behavioral types is the support of a seamless inte-
gration of behavioral specification throughout the development phase and the life cycle
of a system. Our behavioral types can be used for different purposes (we proposed them
in [8]) at development and runtime. A main idea of using behavioral types at develop-
ment time is to derive them from requirements and use them for refinement checking of
different forms of specification for the same entity that are supposed to have some se-
mantical meaning in common. For example, the abstract specification, source code and
compiled code of the same component represent different abstraction levels and should
fulfill the same behavioral type. Checking this could be done by using static analysis at
development time. At the end of a development process, a developed OSGi bundle is
deployed including the behavioral type files. These can now be used for additional (dy-
namic) operations in the running system. Figure 2 shows two operations which can be
carried out at runtime of a system: the registration and discovery of components using
the OSGi framework, the compatibility, e.g., deadlock checking of bundle interaction
protocols. Behavioral runtime monitors and their derivation from the development pro-
cess are shown in Figure 3. The Figure shows the generation of the behavioral runtime
monitor and its connection using aspects at development time and the actual monitoring
at runtime. Up till now, we have implemented editors, registration of OSGi components,
compatibility (deadlock freedom) of specifications, some form of dynamic adaptation
as proposed in [6], and the behavioral runtime monitors which are new to this paper.

3.4 Monitor Generation

Regardless of what we intend to monitor, the monitor generation from a specification
is the same. It is done automatically from a behavioral type file and generates a single
Java file that defines a single monitor class.

Figure 4 shows a generated monitor. Monitors are generated as classes bearing a
name derived from the original behavioral type. They comprise a map maxtimes that

Proceedings of MoDeVVa 2013 55

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

bundle with behavior

start of a bundle

OSGi infrastructure

register
behavioral
descriptions

bundle with behavior

discover components

ask for
specification

bundle with behavior

bundle with behavior

compatibility
checker
(bundle)

get behavior

checking compatibility and reacting

1) 2)

3)

BTBT

BT BT

BTBT

BTBT

BTBT
BT

BT

Fig. 2: Behavioral types at runtime

requirements

specification

Behavioral Type

Development Phase Eclipse Based Tool Support

model or text
based documents

implementation

Java project / files

deployment
bundle with behavioral runtime monitor

Behavioral TypeBehavioral Type

Behavioral TypeBehavioral TypeBehavioral Type

running

classes /packages /
bundle MANIFEST
classes /packages /
bundle MANIFEST
classes /packages /
bundle MANIFEST

Behavioral
Type

Behavioral
Type

Behavioral
Type

monitor connection
aspects generated monitors

behavioral
runtime
monitors

monitor connection
aspects+weaving

Fig. 3: Derivation of behavioral runtime monitors

Proceedings of MoDeVVa 2013 56

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

maps method names to their maximal execution time in milliseconds. This entry is op-
tional. If present, this map is initialized by the constructor –

public clientinstance out realistic simple mon()
in the example – of the monitor with the values specified for methods in the behavioral
type file. Generated from an automaton from the behavioral type our behavioral runtime
monitors comprise a static enumeration type with the location names of the automaton.
In the automaton, the locations LOCs0, LOCs1 are present. Using this type a state
transition function generated from the transition relation is generated. The state tran-
sition function takes a string encoding a method name – event name – and updates a
state field protected LOCATION state of the method. This field is initialized on
object creation with the name of the initial state: LOCs0 in the example.

package monitors;
import
public class clientinstance_out_realistic_simple_mon {

public Map<String,Long> maxtimes = new HashMap<String,Long>();
public clientinstance_out_realistic_simple_mon() {

maxtimes.put("listFlights",new Long(1000)); }
public static enum LOCATION { LOCs0 , LOCs1 }
protected LOCATION state = LOCATION.LOCs0;
public boolean nextState(String event) {

boolean rval = false;
switch (state) {

case LOCs0:
...
break;

case LOCs1:
if (event.equals("listFlights")) {

state = LOCATION.LOCs1;
rval = true;

}
....
if (event.equals("listFlight")) {

state = LOCATION.LOCs1;
rval = true;

}
break;

}
return rval;

}
}

Fig. 4: Generated example monitor

4 Behavioral Runtime Monitor Integration using AspectJ

The generated monitors are connected to the component that shall be observed using
AspectJ aspects. AspectJ is an extension of Java that features aspect oriented program-
ming. Aspects are specified in separate files and feature pointcuts that allow the speci-
fication of locations where Java code specified in the aspect shall be added to existing
Java code. This weaving of aspect code into existing Java code is done on bytecode
level.

Proceedings of MoDeVVa 2013 57

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

Monitors are created and called from aspects. All extra code needed to integrate the
monitors is defined in the AspectJ files or in libraries accessed through the AspectJ files.
There is no need to touch the source code of a component. This independence of source
code and specification is a design goal of our framework. We distinguish different kinds
of monitor deployment. Each kind requires its own aspect template and its instantiation.

Singleton monitors In some cases it is sufficient to use a singleton instance of a monitor.
This is the case when monitoring all the method calls that occur in a bundle, within all
objects of a class, or within a singleton object. For monitoring method call orders, we
use a before pointcut in AspectJ. Figure 5 shows an example aspect: Here, before
the calls to methods – specified in the execution pattern after the “:” in the pointcut –
of all objects of class MiddlewareProc an update on the state transition function –
the com.nextState – is inserted. We extract the name of the called method using
reflection and a helper method AJMonHelpers.getMethodName and pass it to the
state transition function. In addition to updating the state field in the monitor we get a
boolean value indicating whether the monitored property is still fulfilled. In case of a
deviation the BehavioralTypeViolationException – a runtime exception is
thrown. The implementation of the MiddlewareProc class may or may not catch
this exception and react to it.

package bookingsystem.middleware;
import java.util.HashMap;
import java.util.Map;
....
import monitors.*;

public aspect CallincprotocolMiddlewareProc {
...
pointcut myMethod(MiddlewareProc p): this(p) &&

within(MiddlewareProc) && execution(* *(..));
before (MiddlewareProc p): myMethod(p) {

...
boolean verdict = com.nextState(

AJMonHelpers.getMethodName(
thisJoinPointStaticPart.getSignature()));

if (!verdict) throw new BehavioralTypeViolationException();
}

}

Fig. 5: Example aspect

Multiple monitor instances In same cases we want to monitor each object of a class
with an independent monitor. Here, we create on call of the object’s constructor an
individual monitor for the object. It is added to a (hash)map (Object → Monitor). Since
the AspectJ pointcuts are defined with respect to the static control flow information
specified in the source code of a class, on each call of a method belonging to the class
to be monitored, we use the same code in each object and chose the monitor for the
particular object by looking it up from the map and advance the respective monitor
state.

Proceedings of MoDeVVa 2013 58

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

Monitoring of time Monitoring time is done using Java timers within the Java code
associated with the pointcuts. On call of a method we create a timer that is scheduled
to throw an exception after the specified maximal execution time. Using the after
pointcut, the timer is canceled if the method’s execution finishes on time and thus, no
exception is thrown in this case.

The adaptation of an aspect for monitoring a particular component is simple. One
has to take the appropriate AspectJ .aj file and adapt it, by inserting the names of the
classes and packages that shall be monitored and the correct monitor names. Weaving of
the aspects is done automatically on Java bytecode level and no additional configuration
needs to be done.

5 Example and Evaluation

One example scenario regarded by us is the flight booking system (our set-up com-
prises only the functionality necessary for our monitoring experiments) shown in Fig-
ure 6. OSGi components and their interactions are shown. Clients are represented as
proxy components in the system and served by middleware processes which are cre-
ated and managed by a coordination process. Middleware processes use concurrently
a flight database and a payment system which are represented by proxy OSGi com-
ponents. We have investigated the communication structure between the components
and investigated deployment of monitors. This comprises the following cases: 1) The
use of multiple monitors running in parallel and being created at runtime for different
objects which are created dynamically. In the example system this is the case for the
middleware processes, where processes are created as separate objects on demand and
are monitored independently of each other. 2) The monitoring of all objects of a single
class using a single monitor and the monitoring of singleton objects and the monitoring
of bundle behavior. This is, e.g., the case in the payment subsystem. 3) Furthermore, we
have investigated the monitoring of maximal execution time of methods. In the example
system this is the case in the payment subsystem and access to the flight database. We
did not find any major problems in our approach.

Client

middleware
process

middleware
process

...

flight

database

payment

subsystem

coordination

process

...Client

Fig. 6: Components of our flight booking system

Proceedings of MoDeVVa 2013 59

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

6 Conclusion

We presented work on behavioral types for Java / OSGi components and the monitoring
of behavioral type based specifications at runtime of a system. Our Eclipse based imple-
mentation allows the behavioral runtime monitoring of components without modifying
their source code by using aspect oriented programming. In addition to the behavioral
runtime monitoring work, the same behavioral types can be used for other operations
at compile time, e.g., static analysis of component compatibility, and runtime, e.g., dis-
covery of components in a SOA like scenario, dynamic adaptation of components [6].

References
1. L. de Alfaro, T.A. Henzinger. Interface automata. Symposium on Foundations of Software

Engineering, ACM , 2001.
2. H. Barringer, Y. Falcone, K. Havelund, G. Reger, D. Rydeheard. Quantified event automata:

Towards expressive and efficient runtime monitors. Formal Methods, vol. 7436 of LNCS,
Springer-Verlag, 2012. (FM’12)

3. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Verification, Model Checking, and
Abstract Interpretation, vol. 2937 of LNCS, Springer-Verlag, 2004. (VMCAI’04)

4. Bauer, A., Leucker, M.: The theory and practice of SALT. NASA Formal Methods, vol.
6617 of LNCS, Springer-Verlag, 2011.

5. J. Bauml and P. Brada. Automated Versioning in OSGi: A Mechanism for Component Soft-
ware Consistency Guarantee. Euromicro Conference on Software Engineering and Advanced
Applications, 2009.

6. J. O. Blech, Y. Falcone, H. Rueß, B. Schätz. Behavioral Specification based Runtime Moni-
tors for OSGi Services. Leveraging Applications of Formal Methods, Verification and Vali-
dation (ISoLA), vol. 7609 of LNCS, Springer-Verlag, 2012.

7. J. O. Blech, H. Rueß, B. Schätz. On Behavioral Types for OSGi: From Theory to Implemen-
tation. http://arxiv.org/abs/1306.6115. arXiv.org 2013.

8. J. O. Blech and B. Schätz. Towards a Formal Foundation of Behavioral Types for UML
State-Machines. UML and Formal Methods. ACM SIGSOFT Soft. Eng. Notes, 2012.

9. E. Bodden, L. Hendren. The Clara framework for hybrid typestate analysis. Software Tools
for Technology Transfer (STTT), vol. 14, 2012.

10. O. Gadyatskaya, F. Massacci, A. Philippov. Security-by-Contract for the OSGi Platform.
Information Security and Privacy Conference, IFIP Advances in Information and Communi-
cation Technology, vol. 376, 2012.

11. K.W. Hamlen, G. Morrisett, F.B. Schneider. Certified in-lined reference monitoring on .NET.
Programming languages and analysis for security, ACM 2006.

12. E.A. Lee, Y. Xiong. A behavioral type system and its application in ptolemy ii. Formal
Aspects of Computing, 2004.

13. M. Mueller, M. Balz, M. Goedicke. Representing Formal Component Models in OSGi. Proc.
of Software Engineering, Paderborn, Germany, 2010.

14. OSGi Alliance. OSGi service platform core specification (2011) Version 4.3.
15. P. O’Neil Meredith, D. Jin, D. Griffith, F. Chen, G. Roşu. An Overview of the MOP Runtime

Verification Framework. Software Techniques for Technology Transfer, Springer, 2011.
16. F.B. Schneider. Enforceable security policies. ACM Transactions on Information and System

Security, vol. 3, ACM, 2000.
17. F. Souza, D. Lopes, K. Gama, N. Rosa, R. Lima. Dynamic Event-Based Monitoring in a SOA

Environment. On the Move to Meaningful Internet Systems, vol. 7045 of LNCS, Springer-
Verlag, 2011.

Proceedings of MoDeVVa 2013 60

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

Symbolic Execution of Satellite Control
Procedures in Graph-Transformation-Based

EMF Ecosystems

Nico Nachtigall, Benjamin Braatz, and Thomas Engel

Université du Luxembourg, Luxembourg
firstname.lastname@uni.lu

Abstract. Symbolic execution is a well-studied technique for analysing
the behaviour of software components with applications to test case gen-
eration. We propose a framework for symbolically executing satellite con-
trol procedures and generating test cases based on graph transformation
techniques. A graph-based operational symbolic execution semantics is
defined and the executed procedure models are used for generating test
cases by performing model transformations. The approach is discussed
based on a prototype implementation using the Eclipse Modelling Frame-
work (EMF), Henshin and ECLiPSe-CLP tool ecosystem.

Keywords: symbolic execution, graph transformation, test case gener-
ation, triple graph grammars, EMF henshin

1 Introduction

Symbolic execution [4] is a well-studied technique for analysing the behaviour of
software components with applications to test case generation. The main idea is
to abstract from possibly infinite or unspecified behaviour. Uninitialised input
variables or external function calls are represented by symbolic variables with the
sets of possible concrete input values as value domains. Consequently, symbolic
program execution is rather based on symbols than on concrete values leading to
symbolic expressions which may restrict the value domains of the symbols. For
each execution path, a path constraint (PC) is defined by a dedicated boolean
symbolic expression. Solving the expression, i.e., finding a valuation for all con-
tained symbolic variables so that the expression is evaluated to true, provides
concrete input values under which the corresponding path is traversable. An
execution path is traversable as long as its path constraint is solvable.

In this paper, we propose a framework for symbolically executing satellite
control procedures (SCPs) and generating test cases based on graph transfor-
mation techniques [6]. We successfully apply graph transformation techniques
in an industrial project with the satellite operator SES (Société Européenne des
Satellites) for an automatic translation of SCPs from proprietary programming
languages to SPELL (Satellite Procedure Execution Language & Library) [8].
The safety-critical nature of SCPs implies that extensive testing is required after

Proceedings of MoDeVVa 2013 61

translation. The presented approach allows us to generate tests without leaving
this graph-transformation-based ecosystem. We define a graph-based operational
semantics for symbolically executing SCPs for a subset of the SPELL language.
The executed procedure models are used for generating test cases by performing
model transformations. We discuss our approach based on a prototype imple-
mentation using the EMF Henshin [7] and ECLiPSe-CLP [9] tools.

Sec. 2 introduces the symbolic execution framework. In Sec. 3, the graph-
based operational symbolic execution semantics is defined. Sec. 4 presents model
transformation rules for test case generation and a prototype implementation for
the approach. Sec. 5 concludes the paper and compares with related work.

2 Models & Symbolic Execution Framework

The symbolic execution framework in Fig. 1 uses the abstract syntax tree (AST)
of a procedure, which defines a typed attributed graph [6]. The AST can be con-
structed by parsing the source code with appropriate tools (see Sec. 4). The AST
graph is symbolically executed using two graph transformation systems (GTSs).
A GTS is a set of graph transformation rules where each rule may create or delete
nodes and edges or update attribute values. In phase one, the GTS GTSFlow

is used to annotate AST with execution flow information leading to graph
AF = AST + FLOW . In phase two (symbolic execution), the GTS GTSSym

is exhaustively applied to AF leading to graphs Statei = AF + SYM i, i = 1..n
representing the status of the execution.

Fig. 2 shows the running example in a small subset of the SPELL language
[8]. SCP “Charge Batteries” retrieves the state of charge (SC) of both batteries
of a satellite, defines a minimal threshold min of 50%, and switches to the battery
with higher SC if it exceeds min. Otherwise, an alert is issued. Meta-model SCP
specifies the general syntax of ASTs for such procedures. A procedure Proc con-
sists of a list of statements Stmnt (assignments Asg, function calls FnCall, defini-
tions FnDef or branching If structures) with explicit next pointers. Function calls
contain a list of arguments (arg) and function definitions contain a list of param-
eters (pm). An assignment contains a variable (var) and an assigned expression
(ex). Expressions (Expr) are either numbers (Number), variables (Var) or Boolean
expressions (Bool) with operator (<,<=, >,>=, and, or) and operands (left (le)
and right (ri)). Complex statements (If,FnDef) contain a block (B) that references
a list of statements. Furthermore, If statements have a boolean condition cond
and may have else and ElIf structures (edge el). The AST for the procedure is a
graph typed over meta-model SCP. Graph FLOW represents the flow annotation
of AST . Places P are assigned (dotted edges asg) to nodes in AST that should

Graph based

SCP Model

Annotate

E-Flow

Information

(apply) ASTP
0ASTP

0

Stepwise

Symbolic

Execution

(apply)AST

AF

nState ..1

Model checking
invariant properties
Detection of unreachable
(„dead“) model fragments
Test case generationSymGTSFlowGTS

Fig. 1. Steps of Symbolic Model Execution

Proceedings of MoDeVVa 2013 62

Symbolic Execution of Satellite Control Procedures in Graph-Transformation-Based EMF Ecosystems

le,ri

Number
Int i

Var
Id v

Asg

Bool
Op op

If
FnCall
Id fn

ProcStmnt

Expr

first
FnDef
Id fnPm Arg arg

pm bodypm

bl,else

ex

var

cond

f

B
arg

el

next

1 DEF switch&charge(x,
2 y,
3 min):
4 IF x>y AND
5 x>min:
6 Send(’SWITCH_B1&
7 CHARGE_B2 ’)
8
9 ELIF y>min:

10 Send(’SWITCH_B2&
11 CHARGE_B1 ’)
12
13 s0=GetTM(’SC1 ’)
14 s1=GetTM(’SC2 ’)
15 min =50
16
17 switch&charge(s0,
18 s1,
19 min)
20
21 IF s0 <=min AND
22 s1 <=min:
23 Alert()

:FnDef
fn=switch&charge

pm

:If

cond

body

ex
var

next

lin
es

 1
-1

1
:Bool

op=AND

:Var
v=‘x‘

:Bool
op=>

ri

le ri

le

:Procfirst

:Pm
v=‘x‘pm

next

...

...

...

...

...

...

l.1
3

lin
es

 1
4-

23 arg :Arg
v=‘s0‘arg...

...
...

:Asg

next

:P

:P

asg

:P:If

bl

el
:P

:P

:P

:P

:P

:P

:P

:P

:B

f

:P

next

f

l

f

...n

n

l

n
...

:FnCall
fn=swi...

n

n

f,l ...

f

l
n

n

...

f,l

f

...

...l

l

lohi

...

f l

n

...

f l

n

:T
o
k
e
n

e
v
a
l=
tr
u
e

p
c
=
…
a
n
d
(S

0
>
S
1
,…

)…
sy
m
=
2

:S
y
m
b

te
rm

=
S
0

:S
y
m
b

te
rm

=
S
1

c

c

c...

c

on

lst

nxt

AST FLOW SYMn

Fig. 2. SCP meta-model (top), SCP “Charge Batteries” (left), SCP model (AST), flow
annotation (FLOW) and symbolic execution elements (SYMn)

be executed. P nodes can be connected by f,l or n edges in order to indicate which
other nodes need to be executed at first, next or last before finishing the execu-
tion of a node, e.g., in order to execute the procedure (node Proc), the assignment
in line 13 (node Asg) needs to be executed first. For each execution path, a Token
representing the current execution point with path constraint is created (in total
six Tokens for the example). In graph SYM n, the Token node on place P that
is assigned to node Proc indicates that the procedure was evaluated (eval=true)
with path constraint pc=and(and(S0>S1,S0>50),not(and(S0<=50,S1<=50))) and
symbolic variables S0, S1 (Symb) for GetTM(’SC1’) and GetTM(’SC2’) by enter-
ing line 6 but not line 23. The resulting graphs State1..n can be used for model
checking invariants, detection of dead model fragments or test generation.

3 Operational Execution Semantics

The execution semantics is divided into the execution flow of the AST graph
and the token semantics for traversing all flow paths. Fig. 3 shows the rules of
GTSFlow and GTSSym in short-hand notation, i.e., nodes and edges marked
with <+> are created, those marked with <-> are deleted and attribute values of
the form [x=>y] are updated from x to y when applying the rule. Nodes marked
with <tr> have a “hidden” translation attribute that is updated [false=>true]
during rule application so that the rule is only applied once. A more formal
definition of graph transformation in general is given in [6].

Proceedings of MoDeVVa 2013 63

Symbolic Execution of Satellite Control Procedures in Graph-Transformation-Based EMF Ecosystems

Rule Init1 specifies that the first statement of a procedure needs to be exe-
cuted first. An initial token is put on the first place with path constraint true
and eval=false. Rule Stmnt1 defines that successive statements need to be exe-
cuted successively. Note that the first statement in Fig. 2 is a FnDef. Therefore,
another rule defines that the succeeding statement needs to be executed first
until there is no more FnDef. Rule Asg1 defines that the expression of an assign-
ment needs to be evaluated first before assigning the resulting value. The rule
for blocks is defined analogously. Rule Bool1 defines that the left operand has to
be evaluated before the right operand. Rule If1, branches the flow - the condition
is evaluated before executing the block (hi - positive condition) or an “empty”
place (lo - negative condition). Rule ElIf1 links the “empty” place of rule If1 to
the alternative If. Rule Else1 is defined analogously.

Rule TFst2 moves the token to the first child place (edge f) as long as possible.
Rule TNxt2 moves the token of an evaluated place to the next place (edge n) and
changes attribute eval to false. The rules implement a left-most inner-most evalu-
ation strategy. Rule GetTM2 evaluates each GetTM-FnCall to a path-wide unique
symbolic variable (Symb) Si (uniqueness is given by token attribute sym which is
increased by one). Note that Symbs are ordered in their occurence of evaluation
which is important for a later test generation. Rule GetTM2 requires that a last
Symb already exists. An analogue rule creates a last Symb if not existent. Rule
Asg2 assigns the term of the evaluated expression to the variable Var and sets the
assignment as evaluated by moving token edge on. Rule BoolAnd2 concatenates

Init1

:Proc
<tr>

:Stmnt
<tr>

first

:P
<+>

:P
<+>

f,l

on

Stmnt1

:Stmnt :Stmnt
<tr>

next

:P

:P

l

:P
<+>

l

Bool1

:Bool

:Expr
<tr>

:P

:Expr
<tr>

:P
<+>

:P
<+>

If1

:B
<tr>

:P

:Bool
<tr>

:P
<+>

:P
<+>

:P
<+>

ElIf1

:P

:P

:P

Asg1

:Expr
<tr>

:P

f,l

:Asg

ex

:P
<+>

:If

<+>

<+>
n

f

:Token<+>
eval=false
pc=true
sym=0

<+> <+>

<+>

<+>

<->

<+>

<+>

<+>

l

n

le ri

<+>

<+> <+> <
+
>

<
+
>

f

l l

lohi

bl cond

<+> <+>

<
+
>

<
+
>

<
+
>

<+><+>

f

l

lo

el

:If

:If
<tr>

<
+
>

TFst2
:P :Pf

on

TNxt2
:P :Pn :P

nxt

GetTM2 Asg2
:P :P

on
c

on

var

BoolAnd2
f l

c

cc

c

:Symb

Branch2 hi lo :P:P:P

c
on

c

lst

c

l :Asg

c

on

on c on

c

c

on

Check2

sa
t(
p
c)
=
tr
u
e

:Bool
op=‘and‘

:Var<+>
name=v
val=t

:Var
Id v

:Token
eval=true

:Term
term=t

in

:Token
eval=[false=>true]
sym=[i=>i+1]

:FnCall
fn='GetTM'

:Symb<+>
term=Si

lst
:Token

eval=[true
 =>false]

on on

:Token
eval=false

on

:Term
term=t1

:Term
term=t2

<+>

<->

<+>

<+>

<-> <+>
<-> <+> <+>

<+>
<->

:P

<+>

:P :P

<+>

c

:Token
eval=true

:Term<+>
term=and(t1,t2)

<+> on
<+> <->

:Token<+>
eval=check
pc=[pc=>
 and(pc,
 not(t))]
sym=i

:Var
name=v
val=vt

:Var<+>
name=v
val=vt

c

:T
o
k
e
n

e
v
a
l=

[c
h
e
c
k
=
>
fa

ls
e
]

p
c
=
p
c

:Term
term=t

:Token
eval=[true=>check]
pc=[pc=>and(pc,t)]
sym=i

:Symbin

in

<+> <+><->

<+>

<+>

Fig. 3. Rules for annotation (top, GTSFlow) and symbolic execution (bottom, GTSSym)

Proceedings of MoDeVVa 2013 64

Symbolic Execution of Satellite Control Procedures in Graph-Transformation-Based EMF Ecosystems

both evaluated operands with and. Analogue rules for boolean expressions with
other operators (or,<,>,etc.) are defined. Amalgamated rule Branch2 duplicates
the token with all connected variables and symbols, negates the condition (not(t))
for the lo path and concatenates the condition with the path constraint. Rule
Check2 checks, if the path constraints of duplicated tokens are still satisfiable af-
ter a branch (attribute condition sat(pc)=true). If the path constraint of a token
becomes unsatisfiable, the token status eval remains check and the token can not
be moved any more. After simulating the example in Fig. 2, three tokens from
six possible paths are assigned to node Proc with eval=true while the other three
tokens remain at the last If statement with unsolvable path constraints. Only
tokens that are assigned to node Proc with eval=true are considered during test
case generation (they represent execution paths with solvable path constraints).
Additional rules are defined for annotating and traversing function calls and def-
initions. A function is traversed every time it is called so that global side effects
in execution can be respected, e.g., operations on call by reference arguments.

4 Implementation & Test Case Generation

A procedure is parsed with Xtext [5] to an EMF AST graph first. Then, the EMF
Henshin tool [7] is used in combination with the ECLiPSe constraint solver [9] to
execute the AST graph by automatic rule applications and satisfiability checking
/ solving constraints. The AST graph is completely preserved during execution.
Correspondences between symbolic variables of path constraints (nodes of type
Symb) and AST graph structures are used for test generation by applying the
forward model transformation (FT) rules in Fig. 4. An FT rule [8] consists of
a source graph GS , correspondence graph GC and target graph GT . While GS

is parsed, nodes and edges in GC , GT are created. Applying the rules yields a
graph that is serialised to test case files with Xtext. Rule Proc2Test creates a Test
suite for a procedure. Rule Token2Case creates a test case for each execution path
with solvable path constraint. Rule LstSymb2KeyElem adds a key tm for each last
(edge lst) evaluated GetTM(tm) function call of an execution path to the test
case with a list containing a test input valuation for symbolic variable s as first
(edge fst) element so that path constraint pc is satisfied (solve(s,pc)). A second
rule handles all previous symbolic variables. Symbolic variables are ordered in
order to reflect the sequential execution order of the represented GetTM function
calls which is needed for proper test generation with test inputs in correct order.

lst
c

:C

:Case
<+>

:Case

GTGCGS

case

:Test

:C

GTGCGS

:Proc
<tr>

:Test
<+>

:C

GTGCGS

Proc2Test Token2Case

k

LstSymb2KeyElem

fst

arg

<
+
>

<
+
>

<
+
>

:Proc

<
+
>

<
+
><
+
>

:C

on

<+>

:Symb<tr>
term=s

:L
is

tE
le

m
<
+
>

v
a
l=

so
lv

e
(s

,p
c
)

:FnCall
fn=‘GetTM‘

:Token
pc=pc

:P

:Token
<tr>

:Arg
val=tm

:P

:Key<+>
name=tm

<+>
<+>

Fig. 4. Rules for test case generation

Proceedings of MoDeVVa 2013 65

Symbolic Execution of Satellite Control Procedures in Graph-Transformation-Based EMF Ecosystems

5 Conclusion & Related Work

We have presented a framework for symbolically executing simple satellite proce-
dures. The approach preserves the correspondences between symbolic variables
and the AST, so that the result graph can be used for test case generation by
performing model transformations afterwards. A prototype implementation for
the symbolic execution and test case generation framework has been presented.

In contrast to interpreter based symbolic execution engines [1,3] of program-
ming languages, our graph-transformation-based approach allows symbolic exe-
cution on a more abstract level enabling its formal analysis and application to
other languages and behavioural diagrams in future work. In [2], an abstract
symbolic execution framework based on term rewriting is proposed. In contrast
to our approach, the correspondences between symbolic variables and the pro-
gram term are not preserved. Research on how to transfer and enhance results
from term to graph rewriting approaches for symbolic execution is topic of future
work. In [10], the execution of UML state machines is presented but diagram–
path-constraint correspondences are not specified explicitly.

In future work, we plan to extend the symbolic execution semantics for ap-
plicability to industrial SPELL SCPs [8] and analyse its correctness w.r.t. a
formal SPELL semantics that needs to be defined first. We will investigate im-
portant properties of symbolically executed models that should be preserved
during model refactorings and how to ensure their preservation. Moreover, we
will assess the scalability of our approach.

References

1. Anand, S., Pasareanu, C.S., Visser, W.: JPF-SE: A symbolic execution extension
to java pathfinder. In: TACAS. pp. 134–138 (2007)

2. Arusoaie, A., Lucanu, D., Rusu, V.: A Generic Approach to Symbolic Execution.
Tech. Rep. RR-8189, INRIA (Dec 2012)

3. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX conference on Operating systems design and implementation. pp. 209–
224. OSDI’08, USENIX Association, Berkeley, CA, USA (2008)

4. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (Feb 2013)

5. The Eclipse Foundation: Xtext (2013), http://www.eclipse.org/Xtext/
6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic

Graph Transformation, vol. EATCS Monographs in Theoretical Computer Science.
Springer (2006)

7. EMF Henshin (2013), http://www.eclipse.org/modeling/emft/henshin/
8. Hermann, F., Gottmann, S., Nachtigall, N., Braatz, B., Morelli, G., Pierre, A., En-

gel, T.: On an Automated Translation of Satellite Procedures Using Triple Graph
Grammars. In: Proc. ICMT’13, LNCS, vol. 7909, pp. 50–51. Springer (2013)

9. Schimpf, J., Shen, K.: Eclipse - from lp to clp. Theory and Practice of Logic
Programming 12, 127–156 (2012)

10. Zurowska, K., Dingel, J.: Symbolic execution of UML-RT State Machines. In: Proc.
of SAC ’12. pp. 1292–1299. SAC ’12, ACM (2012)

Proceedings of MoDeVVa 2013 66

Symbolic Execution of Satellite Control Procedures in Graph-Transformation-Based EMF Ecosystems

Research Questions for
Validation and Verification

in the Context of Model-Based Engineering

Catherine Dubois1, Michalis Famelis2, Martin Gogolla3,
Leonel Nobrega4, Ileana Ober5, Martina Seidl6, and Markus Völter7

1 ENSIIE, Évry, France
2 University of Toronto, Canada
3 University of Bremen, Germany

4 University of Madeira, Funchal, Portugal
5 University of Toulouse, France

6 Johannes Kepler University Linz, Austria
7 Völter Ingenieurbüro, Heidenheim, Germany

Abstract. In model-based engineering (MBE), the abstraction power
of models is used to deal with the ever increasing complexity of modern
software systems. As models play a central role in MBE-based develop-
ment processes, for the adoption of MBE in practical projects it becomes
indispensable to introduce rigorous methods for ensuring the correctness
of the models. Consequently, much effort has been spent on developing
and applying validation and verification (V&V) techniques for models.
However, there are still many open challenges.
In this paper, we shortly review the status quo of V&V techniques in
MBE and derive a catalogue of open questions whose answers would
contribute to successfully putting MBE into practice.

1 Introduction

This paper is based on the discussions of a working group (whose members are
mainly the authors of this paper) of the 2013 Dagstuhl seminar number 13182 on
Meta-Modeling Model-Based Engineering Tools. The working group addressed a
panel of important issues with validation and verification (V&V) of models and
model transformations whose correctness is crucial for the successful realization
of model-based engineering (MBE) projects.

Overall, models help to clarify and plan the development of software. Fur-
thermore, they allow the use of methods to ensure quality and discover errors
in conceptual designs. However, with the extensive use of models during the
software development process, there is the danger of introducing defects into
the models. For detecting or avoiding such defects, techniques of validation and
verification (V&V) for models help.

Besides models, model transformations (MTs) are at the heart of model-based
engineering. Different kinds of MTs underlie the engineering activities and their

Proceedings of MoDeVVa 2013 67

associated tools. They can be used for example to refine models, to generate
code, etc. This variety of purposes of MTs emphasizes the need for effective and
dedicated V&V techniques for animating, testing, and proving them.

In a model-based development process, V&V techniques help to better un-
derstand models and to assess model properties which are stated implicitly in
the model. V&V serves to inspect models and to explore modeling alternatives.
Model validation answers the question ‘Are we building the right product?’
whereas model verification answers ‘Are we building the product right?’, similar
as V&V does for code. Validation is mainly an activity done by the developer
demonstrating model properties to the client, whereas in verification the devel-
oper uncovers properties relevant within the development process. Verification
is closely related to testing and covers automatic and semi-automatic (static)
analysis techniques like theorem proving and model-checking.

In this paper, we shortly review the status quo of V&V techniques in MBE
and derive research questions whose answers will push the whole field forward.
The methodology behind this paper is as follows. First, we started to list ob-
jectives, methods, tools, use cases and then highlighted difficulties, bottlenecks
and pitfalls. On this basis, we derived some key research questions. This paper
sums up these discussions and lists the different research questions.8

The main conclusion of our analysis of the actual situation is that specific
V&V methods for models and MTs are required. Although numerous tools exist
to verify and validate hardware and software, they do not apply straightforwardly
to models and MTs. In [8], E. M. Clarke, E. A. Emerson and J. Sifakis mentioned
abstraction techniques as one of the promising paths for the future advances in
the field of verification. The use of V&V techniques in the context of MBE
follows the direction of abstraction. However V&V for models is concerned by
a more complete abstraction mechanism that covers the entire system, whereas
in [8], abstraction is considered mostly at mathematical level and targets formal
semantics.

The rest of the paper is organized as follows: In Section 2, we reflect on
the situation and describe some challenges. Subsequently, the research questions
which emerged are listed in Section 3. We conclude in Section 4.

2 Status and Challenges

In this section we describe the main observations regarding the state of theory
and practice that informed the discussions of our working group and list proposed
solutions found in the literature. The observations are organized thematically,
based on the main areas in which V&V and MBE intersect.

2.1 Gap Existing between Models and V&V Formalisms

In the context of model-based development, V&V faces new challenges. The
origin of most of them stays in the gap existing between the (mostly high-level)

8 We are aware that for some of them proposals already exist. Because of lack of space,
we are not able to reference them all, and so we cannot reach exhaustiveness.

Proceedings of MoDeVVa 2013 68

Research Questions for Validation and Verification in the Context of Model-Based Engineering

specification mechanisms, used at design time both for specifying the model and
the properties that are subject to V&V, and the underlying V&V engines that
use low-level formalisms.

The gap between the two specification mechanisms can be (at least partially)
filled by using model transformations and traceability mechanisms [11], which are
definitely needed in this context. Yet it is only part of the answer as behavioral
semantics often leads to non-bijective correspondences between design time and
runtime artifacts.

The V&V frameworks, which are typically using back-end tools using spe-
cific formalisms need to be complemented with mechanisms allowing the user to
interact with the back-end tools through their own modeling languages. They
do offer the right environment to reason about the system under modeling. In
this context we can mention existing initiatives that go on this direction. In [6]
a high-level change-driven transformation language is proposed in order to cap-
ture changes, even those that concern low level transformations (as it may be in
the case of some feedback (e.g. counter-examples) produced by V&V tools. Sup-
porting the user during the error diagnosis phases can be done e.g. by allowing
customizable simulation trace visualization [1].

In the same spirit of hiding the technicalities related to the V&V engine, we
can mention here the issue of (semi-)automatically managing the V&V machine
configuration. Although not necessarily a research challenge, this is a typical
functionality required in order to improve the accessibility to V&V tools.

2.2 Need to Refine Existing Methodologies

V&V tools have the potential of helping the user during model development,
by allowing early V&V, similar to debugging facilities offered by programming
development environments. Most of the generic methodologies identify some pos-
sible points where V&V could be used. In a realistic setting, the model-based
development methodology should be refined in order to better identify which
V&V activities are meaningful at the various phases of design, in order to take
full advantage of the existing V&V engines. Such a methodology would most
likely vary depending on the nature of the project and on the application do-
main, but one can expect that methodology definitions can be capitalized within
the same business domain.

2.3 Importance of Snapshots

In the context of V&V, it is important to be able to clearly and completely
describe a dynamic model configuration (often called model snapshot, or global
state of the system) - in terms of existing objects, values of their respective at-
tributes, existing links, active states in the state machine (if any), content of the
input queue, etc. Such a snapshot could correspond to the state of the dynamic
model before an error or otherwise identified as meaningful. A particular case
of model snapshot is the one specifying the model instantiation, arising in the
context of describing the initial state of a model execution. Each commercial

Proceedings of MoDeVVa 2013 69

Research Questions for Validation and Verification in the Context of Model-Based Engineering

tool that offers model simulation functionalities uses some (more or less docu-
mented) mechanism for describing model instantiation, however this snapshot
description does not cover arbitrary snapshots.

There are some approaches that tackle the idea of model snapshot, such as
for instance, the USE tool [12] which allows the user to generate/verify UML
model snapshots. Yet, no modelling tool uses such elaborate techniques.

2.4 Properties

V&V focuses on verifying some properties with different objectives. Properties to
be verified differ according to the nature of models (e.g. static or dynamic) and to
the stage in the development process (e.g. specification or code generation time).
Furthermore there are also limitations and synergies depending on the applied
V&V techniques (static analysis, testing, model checking, runtime verification,
formal proof). However there is no one-to-one association between properties
and techniques, the latter being for the most part complementary.

More generally, we can distinguish structural properties (composition of mod-
els, consistency, redundancy), behavioral properties (ensure liveness of a model
or safety properties) and also quantitative properties (such as Worst Case Exe-
cution Time (WCET) or schedulability). Properties are related with models but
also to model transformations. Here the classification is different, it is discussed
in more detail in the next subsection. We can also distinguish between static and
dynamic properties and in both categories refine into language inherent, model
specific, generic or user-defined properties.

We can find in the literature many approaches and tools to verify models.
However it is quite confusing and it is difficult to draw a classification allowing
the answer to the following question: What kind of property to verify on which
model at what stage with what kind of technique? Some partial answers exist,
e.g. using feature models [10] or ontologies [15].

2.5 Model Transformations

Model transformations (MTs) are an integral part of model-based software engi-
neering. MTs are used for a broad variety of purposes, ranging from applications
as diverse as maintaining inter-model consistency to defining the translational
semantics of a domain-specific language. This ubiquity of model transforma-
tions emphasizes the need for effective V&V techniques, that focus specifically
on MTs. This is especially true in contexts of use where MTs are critical, such
as code generation. At the same time, V&V for MTs differs from traditional
program verification, since MTs are defined at a higher level of abstraction than
programs, thus creating opportunities for more effective application of formal
techniques. These factors have generated considerable interest in the research
community, with special-interest events such as the VOLT workshop (“Verifica-
tion Of ModeL Transformations”) being organized since 2012.

An important challenge in studying the verification of MTs is to understand
how verifying MTs is different from traditional program verification. There has

Proceedings of MoDeVVa 2013 70

Research Questions for Validation and Verification in the Context of Model-Based Engineering

been some work mapping the challenges that are specific to MTs; for example,
[4, 5] discuss the challenges of testing MTs, whereas [16] focuses specifically on
bidirectional transformations.

In the same vein, it is necessary to understand how to best reuse existing ver-
ification tools, techniques and methods. For example, in [2], the autors propose a
tri-dimensional approach that takes into account (a) the kind of transformation
involved, (b) the properties of interest, and (c) the available verification tech-
niques. The purpose is to identify what verification method is most appropriate
based on the transformation and desired properties. Similarly, [10] classifies ap-
proaches for verifying transformations based on five criteria: (a) verification goal
(e.g. consistency, correctness), (b) representation of the domain, (c) represen-
tation used for the verification task, (d) specification language used, and (e)
verification technique (theorem proving, static analysis, model checking).

In general, the correctness of MTs is of paramount importance and is gen-
erally the ultimate goal of verification of MTs. Correctness is tightly related
with specification. The Tracts methodology [18] proposes a generalization of
model transformation contract, based on the idea of duck typing MTs with OCL
constraints, while also supporting test-case generation. Another approach is to
reuse transformation primitives in order to build correct-by-construction trans-
formations, typically with a trade-off in expressive power, such as the case of
DSLTrans [3].

Finally, the identification of properties that are meaningful when verifying
MTs is also important. Confluence and termination have been studied exten-
sively for transformations based on graph rewriting [9, 14]. In [2], a more thor-
ough categorization of properties is proposed, marking the distinction between
properties related to transformations themselves (e.g. determinism) and prop-
erties related to the result of applying the transformation (e.g. conformance of
the output). For each of these major categories, several minor sub-categories are
identified.

2.6 Informal vs. Formal vs. Incomplete Modeling

Starting from informal use case sketches, which can be connected to formal model
elements by trace links, there is need during V&V to concentrate on particu-
lar model parts and to switch on or off particular model inherent elements (in
class diagrams, e.g., multiplicities, or aggregation and composition restrictions).
Furthermore we may desire to explicitly configure constraints by negating, deac-
tivating or activating them (in class diagrams, e.g., class invariants and operation
pre- and postconditions; in state charts, e.g., state invariants and transition pre-
and postconditions). Such configuration options must be offered with different
types of granularity: (a) all model elements may be relaxed, (b) only a manual
model element selection can be considered for relaxation, or (c) a semi-automatic
element selection for relaxation may be offered (such a semi-automatic selection
might depend on a user-determined, editable criteria catalogue). In the ultimate
vision one might consider sliders on the user interface of the modeling tool which
allows the developer to gradually go from a strict, formal model through various

Proceedings of MoDeVVa 2013 71

Research Questions for Validation and Verification in the Context of Model-Based Engineering

intermediate levels to a totally relaxed and informal model. However, if formal
test cases and test scenarios are desired, then a minimal frame for test case con-
struction must be preserved. Such a minimal frame could consist, e.g., for class
diagrams of central classes and associations and for state charts of central states
and transitions, with all model elements in the minimal version without any im-
plicit or explicit constraints. Thus, there will be a tradeoff between switching off
or ignoring certain model elements (like constraints or classes) and the degree of
formality: if more model elements are switched off, the model will become more
informal and will accept more scenarios; however, this procedure only works to
a certain degree, because one can only formulate scenarios if at least a minimum
selection of formal model elements is present; for a completely informal model
no formal scenario can be formulated. Thus, ignoring certain model elements or
constraints and the degree of formality are closely linked.

In order to handle incomplete and partial models wrt V&V, these model
configuration options must be recorded along with the various V&V test sce-
narios, test cases and their results with respect to the configured model. Test
cases and test scenarios must be invoked repeatedly with different configuration
options and test results must be recorded in a systematic way. It must be pos-
sible to query test results in order to retrieve the proper configuration settings.
The mechanisms for playing around with model relaxation can also be employed
to allow for model alternatives. Model relaxations and model alternatives will
span up a graph of model versions. These model versions must be connected to
a graph of proper model test cases and model scenarios.

2.7 Comparison and Benchmarking

In the V&V research area, not only theoretical results are important, but also the
tools which implement novel approaches in order to benefit from these results.
Expressive benchmarks are necessary to evaluate the maturity of the tools as well
as compare the power of novel approaches to established techniques. At dedi-
cated workshops like the Comparison and Versioning of Software Models [17] the
benchmarking issue has been a specially discussed topic which is one approach
to obtain commonly accepted benchmarks. Often community-organized compe-
titions and evaluations are a valuable source for the benchmarks which serve as
basis for evaluations in scientific publications illustrating the benefits of their
contributions. Examples of such events are the SAT solving competition [13] or
the Transformation Tool Contest (TTC) [7].

For the community the advantages of a centrally organized competition are
manifold. First of all, evaluations are performed in an environment equal to
all participants, thus allowing a fair comparison of the different tools. Second,
the benchmarks are not selected by the tool developers, but by some impartial
experts and covers the whole spectrum of interesting test cases. Third, a clear
documentation of the outcome is provided such that the experiments performed
in the context of a competition are repeatable. By this means the state-of-the-art
of a research field becomes publicly available, it becomes clear where progress has
been made and where more work has to be done. Ideally, new research questions

Proceedings of MoDeVVa 2013 72

Research Questions for Validation and Verification in the Context of Model-Based Engineering

are derived from the results which might then be handed over to the community
in order to get solutions. These research questions may be documented in terms
of benchmarks which cannot be handled by current tools. Often, such bench-
marks are provided from industry and allow the researchers to show that a new
approach improved the state-of-the-art.

To the best of our knowledge, recently there are no community-organized
evaluations and competitions for V&V approaches in the field of MBE (TTC
goes in that direction), although such events would be extremely beneficial with
respect to the same arguments discussed above. Their absence is somehow sur-
prising as the research community is rather large playing a major role in all
leading modeling conferences. However, there are several reasons which might
explain why no V&V competitions for MBE-approaches are organized at the
moment. In the following, we elaborate on three urgent problems, which have to
be overcome for structured V&V research.

(i) No common standards. Many approaches use their own metamodel in
order to focus on the language element relevant for their purposes as for example
UML is too large to be completely implemented.

(ii) No community platform. In order to collect and document interesting
benchmarks which are required for organizing a successful competition, the com-
munity needs a forum to gather relevant data as it is for example done with the
TPTP repository.

(iii) Metrics for improvements. In automatic theorem proving the improve-
ments are mostly measured by runtime reduction or by compactness of proofs.
For V&V approaches it is not so easy to measure progress in tools: the size of
encodings or the execution time could be compared as well as the size of the
error traces. However, MBE tools are also confronted with other requirements
like usability and this is much harder to evaluate.

2.8 Domain-Specific Languages

Most verification tools have quite specific, sometimes archaic and hard to use
input languages that are optimized for the semantic paradigm used by the tool.
These languages are often alien to standard developers and hence, verification
tools are often not used. On the other hand, developers could benefit from easy-
to-use verification techniques; even in non safety-critical domains, verification
can be an additional means of quality assurance, even when it is not required by
industry standards. Development approaches based on domain-specific languages
(DSLs) are becoming more and more mainstream, through code generation this
approach leads to improved productivity. Models expressed with DSLs also have
the potential of simplifying analysis and verification, because of the higher degree
of domain semantics they express. There seems to be a potential to exploit the
two approaches synergistically: from the high-level models, we can automate the
generation of the input to the verification tools.

Proceedings of MoDeVVa 2013 73

Research Questions for Validation and Verification in the Context of Model-Based Engineering

3 Research Questions

In this section we list the research questions that emerged from the discussions of
our working group. The purpose of the list is to document the important issues
that, we believe, research in the intersection of MBE and V&V must address.

Gap Existing between Models and V&V Formalisms: How do we express
properties at the level of models in a way understandable to clients? How
do we formulate models and properties in a single language transparent to
clients? How do we report the V&V results and diagnostics in an appropri-
ate form to clients? How do we bridge the gap between formally expressed
and verified properties on one side and client attention on the other side?
Can modeling language extensions help in making explicit the needs of V&V
machines?

Need to Refine Existing Methodologies: How do we integrate V&V in the
overall development and modeling process? On the technical level of tool
exchange? On the methodological level of using the right technique at the
right time for the right task? When are techniques like animation, execution,
symbolic evaluation, testing, simulation, proving or test case generation used
efficiently during development?For which model and model transformation
properties can they be employed?

Design-time vs. Runtime: How do we obtain during the V&V phase an ini-
tial model instantiation on the model runtime level which is determined by
the model design time description? How do we obtain large and meaning-
ful instantiations? How do we connect design time and runtime artifacts?
How do we deal with the scalability issue in the context of V&V ? How do
we handle time and space concerns wrt design time and runtime artifacts?
How do we automatically or semi-automatically manage the V&V machine
configuration?

Properties: How do we handle model and model transformation properties
relevant in V&V like consistency, reachability, dependence, minimality, con-
formance, safety, liveness, deadlock freeness, termination, confluence, cor-
rectness? How do we search for such properties in models and model trans-
formations? What are the benefits and tradeoffs between expressing these
properties on more abstract modeling levels in contrast to expressing them
on more concrete levels? How do we find the right techniques for uncover-
ing static and dynamic model properties? Which techniques are appropriate
for uncovering static modeling language inherent properties, which for static
model-specific properties? Which techniques are appropriate for uncovering
dynamic generic properties, which for dynamic model-specific properties?
Which high-level features are needed in the property description language
in order to query and to determine modeling level concepts?

Model Transformation: What verification techniques are meaningful for ver-
ifying model transformations? How do we analyse properties like confluence
and termination for transformations which are composed from transforma-
tion units? How do we analyse correctness of model transformations wrt a

Proceedings of MoDeVVa 2013 74

Research Questions for Validation and Verification in the Context of Model-Based Engineering

transformation contract? How do we infer a transformation contract from a
model transformation?

Informal vs. Formal vs. Incomplete Modeling: How do we leverage infor-
mal assumptions found in sketches for exploratory V&V? Are informal sket-
ches close enough to V&V at all? What are appropriate relaxation mech-
anisms for different degrees of formality? How do we handle incomplete or
partial models wrt V&V? How do we deactivate and activate model units?
How do we handle the exploration of model properties and alternatives?

Comparison and Benchmarking: How do we compare existing V&V tools
employed for modeling wrt functionality, coverage, scalability, expressive-
ness, executing system (i.e., for models at runtime)? Which criteria are ap-
propriate for comparison? Can the broad and diverse spectrum of V&V
machines (like B, Coq, HOL/Isabelle, SAT, SMT, CSP solvers, Relational
logic and enumerative techniques) be globally compared in a fair way at all?

Domain-Specific Languages: How can DSLs be defined so that they are close
to the domain concepts on the one hand, but still allow the generation of
meaningful input files for verification tools? How do we express the properties
to be verified at the domain level in a user-friendly way? Can the property
specifications be integrated with the same DSL and/or model used for de-
scribing the to-be- verified system without creating self-fulfilling prophecies?
How can we lift the result of a verification (e.g. an example program execu-
tion that demonstrates the failure) back to the domain level and express it
in terms of the DSL-level input? Can incremental language extensions help
with making programs expressed in general-purpose languages more check-
able? For example, the semantics of a specific extension construct may enable
the generation of very rich inputs to the verification tool, which otherwise
may have to be specified manually (program annotations or properties)?

4 Conclusion

On this paper we present some observations and list the research questions that
emerged from them. This list of research questions spans a wide area of themes
where MBE and V&V intersect: specification and feedback and its impact on
stakeholder collaboration, development process, design-time vs runtime, prop-
erties, model transformations, informal vs formal vs incomplete modeling, com-
parison and benchmarking, and domain-specific languages.

Our hope is that the set of observations and questions presented here will
spark further discussions and thus aid the community focus research on those
areas where the synergy of MBE and V&V can yield the greatest benefits.

References

1. El Arbi Aboussoror, Ileana Ober, and Iulian Ober. Seeing Errors: Model Driven
Simulation Trace Visualization. In Proc. of the Int. Conf. on Model Driven En-
gineering Languages and Systems (MODELS’12), volume 7590 of LNCS, pages
480–496. Springer, 2012.

Proceedings of MoDeVVa 2013 75

Research Questions for Validation and Verification in the Context of Model-Based Engineering

2. Moussa Amrani, Levi Lucio, Gehan Selim, Benoit Combemale, Jürgen Dingel, Hans
Vangheluwe, Yves Le Traon, and James R. Cordy. A Tridimensional Approach for
Studying the Formal Verification of Model Transformations. In Proc. of the IEEE
Fifth Int. Conf. on Software Testing, Verification and Validation (ICST’12), pages
921–928. IEEE Computer Society, 2012.

3. Bruno Barroca, Levi Lúcio, Vasco Amaral, Roberto Félix, and Vasco Sousa.
DSLTrans: A Turing Incomplete Transformation Language. In Software Language
Engineering, volume 6563 of LNCS, pages 296–305. Springer, 2011.

4. Benoit Baudry, Trung Dinh-trong, J.-M. Mottu, Devon Simmonds, Robert France,
Sudipto Ghosh, Franck Fleurey, and Yves Le Traon. Model transformation testing
challenges. In Proc. of the IMDT workshop @ ECMDA06, 2006.

5. Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert France, Yves Le Traon, and
Jean-Marie Mottu. Barriers to systematic model transformation testing. Commun.
ACM, 53(6):139–143, June 2010.

6. Gábor Bergmann, István Ráth, Gergely Varró, and Dániel Varró. Change-driven
model transformations - change (in) the rule to rule the change. Software and
System Modeling, 11(3):431–461, 2012.

7. Pieter Van Grop Christian Krause, Louis Rose. Transformation tool contest 2013.
http://planet-sl.org/ttc2013.

8. Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: algo-
rithmic verification and debugging. Commun. ACM, 52(11):74–84, 2009.

9. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamen-
tals of algebraic graph transformation, volume 373. Springer, 2006.

10. Sebastian Gabmeyer, Petra Brosch, and Martina Seidl. A Classification of Model
Checking-Based Verification Approaches for Software Models. In Proceedings of
VOLT’13, 2013.

11. Ismênia Galvão and Arda Goknil. Survey of traceability approaches in model-
driven engineering. In 11th IEEE International Enterprise Distributed Object Com-
puting Conference (EDOC 2007), pages 313–326. IEEE Computer Society, 2007.

12. Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-Based Spec-
ification Environment for Validating UML and OCL. Science of Computer Pro-
gramming, 69:27–34, 2007.

13. Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The Inter-
national SAT Solver Competitions. AI Magazine, 33(1), 2012.

14. Jochen M. Küster. Definition and validation of model transformations. Software
and Systems Modeling, 5(3):233–259, 2006.

15. Mounira Kezadri and Marc Pantel. First steps toward a verification and vali-
dation ontology. In Proc. of Int. Conf. on Knowledge Engineering and Ontology
Development (KEOD’10), pages 440–444, 2010.

16. Perdita Stevens. Generative and transformational techniques in software engi-
neering ii. chapter A Landscape of Bidirectional Model Transformations, pages
408–424. Springer, 2008.

17. Jan Oliver Ringer Udo Kelter, Piet Pietsch. Comparison and versioning of software
models. http://pi.informatik.uni-siegen.de/CVSM2013/.

18. Antonio Vallecillo, Martin Gogolla, Loli Burgueño, Manuel Wimmer, and Lars
Hamann. Formal specification and testing of model transformations. In Proc. of the
12th Int. Conf. on Formal Methods for the Design of Computer, Communication,
and Software Systems: formal methods for model-driven engineering (SFM’12),
pages 399–437. Springer, 2012.

Proceedings of MoDeVVa 2013 76

Research Questions for Validation and Verification in the Context of Model-Based Engineering

An Approach to Analyzing Temporal Properties
in UML Class Models

Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, and Indrakshi Ray
Colorado State University

Computer Science Department
{mustafa, rabdunab, france, iray}@cs.colostate.edu

Abstract. The Unified Modeling Language (UML) Class Models are
widely used for modeling the static structure of object-oriented soft-
ware systems. Temporal properties of such systems can expressed using
TOCL, a temporal extension to the Object Constraint Language (OCL).
Verification and validation of temporal properties expressed in TOCL is
non-trivial and there are no automated tools that can aid such analy-
sis. Existing approaches rely on transforming the UML models to an-
other language that supports automated analysis. Such transformation
is complex and can introduce errors. Towards this end, we propose an
approach for directly analyzing temporal properties expressed in TOCL.
We present a case study based on the Steam Boiler Control System to
demonstrate the applicability of the approach.

Keywords: Analysis, Verification, Class Model, Temporal Properties

1 Introduction

The Unified Modeling Language (UML) Class Models are probably the most
common specification diagrams used in the software industry. Automated analy-
sis of class models often uncovers design problems. Detecting design problems in
a timely manner saves time and effort. Specifying and analyzing temporal prop-
erties in class models are non-trivial. Consider the following temporal property
in the Steam Boiler Control System [1]: “when the system is in the initialization
mode, it remains in this mode until all physical units are ready or a failure of
the water level measurement device has occurred.” It is hard to express such
property using Object Constraint Language (OCL) in a class model. TOCL [2],
however, is a temporal logic extension of OCL and can specify such temporal
properties. Once a property is specified, the class model must be analyzed to
check for the satisfaction of such properties. To the best of our knowledge, we
are unaware of any class model-based techniques for directly analyzing TOCL
properties.

There are a number of model-checking based techniques for specifying and
analyzing temporal properties in UML behavioral models, such as state machines
and activity diagrams (e.g., see [3, 4]). These techniques involve developing an
exogenous transformation, in which the source and target models are expressed

Proceedings of MoDeVVa 2013 77

in different languages. Typically, the UML behavioral models are transformed
to languages that are supported by model checking tools. There are three major
challenges associated with these approaches: (1) effective use of these heavy-
weight techniques requires developers to have specialized skills, (2) one has to
prove that the transformations preserve the semantics of the source UML models,
and (3) the results of the analysis performed by the back-end analysis tool must
be presented to developers in UML terms, thus requiring another exogenous
transformation.

However, temporal properties can also be expressed in class models that must
be subsequently verified. One option is to transform them into other languages
supporting automated analysis, as is done for the temporal properties specified
on the behavioral models. But such an approach will have similar problems to
those mentioned earlier. Another option is to develop model-checking support for
verifying TOCL properties in UML class models with operation specifications.
Given the complex state spaces that have to be codified and analyzed, this is a
very challenging research problem.

Existing tools of UML/OCL such as USE [5] and OCLE [6] can be used
to analyze structural properties, but they provide little support for temporal
analysis. For example, the USE tool allows a user to interactively simulate the
behavior of an operation by entering commands that change the states of objects
and then the user checks if the operation’s postconditions hold. Interactive sim-
ulation of operation behavior is useful, but can be tedious, time-consuming, and
error-prone when manually simulating a scenario involving many interactions.
Towards this end, researchers have demonstrated how scenarios can be modeled
as a sequence of snapshots, which, in turn, can be verified using USE and OCLE
[7]. However, adapting such an approach for verifying temporal properties is still
an ongoing challenge. Our current work aims to fill this gap.

In this paper we propose a lightweight class model-based analysis approach
that checks temporal properties against a non-exhaustive set of behavioral sce-
narios. The approach neither requires the use of exogenous transformations nor
specialized skills other than those related to UML modeling. Our approach builds
upon our previous work [8], where we described a temporal analysis approach
that leverages the USE Model Generator [9] to produce a subset of the class
model state space. A TOCL property is then checked against this state space.
The approach described in this paper improves upon the earlier version in the
following manners. First, the new version of the approach is based on the USE
Model Validator which significantly outperforms the Model Generator [9]. The
Model Validator uses boolean satisfiability (SAT) solvers to perform the analysis
task. This results in a larger set of behavioral scenarios that can be checked and
hence increases the confidence that a temporal property holds on a class model.
Second, in the previous version, a procedure for creating non-exhaustive set of
scenarios is defined manually. This task is tiresome, error-prone, and can be dif-
ficult to non-experts. In the current approach, this step is automated. Lastly, a
complementary step is added to make the analysis results easier to exam to find
the error. We applied our approach in specifying and analyzing real temporal

Proceedings of MoDeVVa 2013 78

An Approach to Analyzing Temporal Properties in UML Class Models

+Bop()

-B_att : Boolean

B

+Aop()

-A_att : Boolean

A

-b 1

-a 1

-B_att : Boolean

B

-A_att : Boolean

A

1

1

+nextSnapshot()

Snapshot

1

-b 1

1

-a

1

Transition

1 0..1

1 0..1
Aop

Bop

Class Model with
Operations Specification Snapshot Transition Model

B_att becomes true in next
state in response to A_att
being true in current state.

context A
inv: self.A_att= true implies
next self.b.B_att=true

context A
inv: let CS: Snapshot = self.Snapshot
 in let NS:Snapshot = CS.nextSnapshot()
in self.Aatt=true implies NS.b.Batt=true

TOCL Temporal Property

OCL Property

A_att : Boolean = true

a3 : A

s3 : Snapshot

B_att : Boolean = false

b3 : B

bo1 : Bop

1

-a 1

1
-b1

s2 : Snapshot

B_att : Boolean = false

b2 : B

ao1 : Aop

1

-b 1

A_att : Boolean = false

a3 : A

B_att : Boolean = false

b1 : B

1

-a 1

1
-b1

A_att : Boolean = true

a2 : A

a:A b:B

Aop()

Bop()

Sequence diagram
counterexample

System
designer

USE Model
Validator

specified inspecified in

(1)

(2)

(3)

(4)
1

-a 1

s1 : Snapshot

creates

specifies

Sequence of snapshot
transition counterexample

error

Fig. 1: An Overview of the Approach

properties of the Steam Boiler System. Note that, checking such properties is
non-trivial using our earlier approach [8].

The rest of the paper is organized as follows. In Section 2, we give an overview
of the proposed analysis approach. Section 3 presents the specification Steam
Boiler System properties and Section 4 illustrates the analysis of these properties.
In Section 5, we discuss related work, and in Section 6 we summarize our
contributions and give pointers to future directions.

2 An Overview of the Approach

The research that led to this approach focused on answering the following ques-
tion: “Given a UML class model, and a temporal property, is there a scenario
supported by the class model that violates the property?.” Figure 1 presents an
overview of the approach. At the front-end of the approach, a system designer
is responsible for 1) creating a design class model, and 2) specifying a tempo-
ral property in TOCL. A class model specifies application states and includes
OCL specifications of operations. Then, the USE Model Validator is used at the
back-end to generate behavioral scenarios against which the temporal property is
checked. The tool produces a scenario, an object diagram of snapshot transition,
that violates the temporal property. The back-end processing is transparent to
the system designer.

The approach consists of four major steps. A transition-based class model
of behavior is produced in Step 1. The model, called a Snapshot Transition

Proceedings of MoDeVVa 2013 79

An Approach to Analyzing Temporal Properties in UML Class Models

+startOperartion()

-mode : Mode
-ready : Boolean
-failureDetected : Boolean
-wlmdFailure : Boolean
-smdFailure : Boolean
-pumpFailure : Boolean
-pumpControlerFailure : Boolean

ControlProgram

-ready : Boolean

PhysicalUnit

+openValve()

-capacity : Double
-minimalNormal : Double
-maximalNormal : Double
-maximumIncrease : Double
-maximumDecrease : Double
-minimalLimit : Double
-maximalLimit : Double
-valveOpen : ValveState

SteamBoiler

-mode : State
-capacity : Double

Pump

-program

1

-units

*

-sb

1

-pump

1

-evaporationRate : Double

SteamMeasurementDevice -smd

1

-sb

1

+getLEVEL() : Double

-waterLevel : Double

WaterLevelMeasurementDevice

-wlmd1
-sb 1

+openPump()
+closePump()

-circulating : Boolean

PumpControler

-pump1 -controler 1

+Normal
+Initialization
+Degraded
+Rescue
+EmergencyStop

«enumeration»
Mode

+On
+Off

«enumeration»
State

+open
+closed

«enumeration»
ValveState

Fig. 2: The Design Class Model for the Steam Boiler Control System

Model (STM), is a class model that characterizes the valid sequences of state
transitions caused by executions of operations specified in the class model. A
state is modeled as a configuration of objects called a snapshot. The STM is
mechanically generated from the class model.

In Step 2, the temporal property to be checked is converted to an OCL
property defined in the context of the STM . The temporal property is specified
in TOCL, a temporal logic extension to OCL [2]. The TOCL property and its
OCL representation are instances of temporal property specification patterns
that enable the UML modelers to apply reusable solutions to specify temporal
properties in object-oriented notation, more details in our paper [8].

In Step 3, the USE Model Validator tool is used to produce instances of the
STM (scenarios) and check the STM constraint generated in Step 2 against
the scenarios. Specifically, the tool checks if there is a scenario that violates the
temporal property.

The analysis results for scenarios that have a large number of snapshots and
transitions might be difficult to interpret. For ease of examining, this result is
also visualized by a UML sequence diagram in Step 4.

3 The Steam Boiler Control System Problem

We use the Steam Boiler Control System described in [1] to illustrate the pro-
posed approach. The system works correctly when the water level is within two
normal limits (minimalNormal and maximalNormal) and can not pass over two
critical limits (minimalLimit and maximalLimit). Otherwise the steam-boiler
can be seriously damaged.

Figure 2 shows a design class model of the Steam Boiler Control System.

The class model has five operations that change the state of the system. The
operation getLEVEL() reads the water level and stores it in the variable water-
Level and getSTEAM() reads the evaporation steam rate and writes it in the

Proceedings of MoDeVVa 2013 80

An Approach to Analyzing Temporal Properties in UML Class Models

Table 1: TOCL and OCL specification of the steam boiler temporal properties
Temporal Property Pattern TOCL Specification on Class Model OCL Specification on the Snapshot Transition Model

TP1: As soon as the program recognizes
a failure of the water measuring device
unit it goes into the rescue mode.

Response-
global

context ControlProgram
inv: self.wlmdFailure implies
next self.mode=# Rescue

context ControlProgram
inv: inv: let CS: Snapshot= self.snp
in NS: Snapshot= CS.getNext()
in self.wlmdFailure implies NS.program.mode= # Rescue

TP2: Failure of any physical units ex-
cept the water measuring device puts the
program into degraded mode

Response-
global

context ControlProgram
inv: (smdFailure or pumpFailure
or pumpControlerFailure) implies
next self.mode=# Degraded

context ControlProgram
inv: let CS: Snapshot= self.getCurrentSnapshot()
in let NS: Snapshot = CS.getNext()
in (self.pumpControlerFailure or self.pumpFailure or
self.smdFailure) implies NS.program.mode =# Degraded

TP3: If the water level is risking to
reach one of the limit values (e.g.,
greater than maximalNormal or less
than minimalNormal) the program en-
ters the mode emergency stop.

Response-
global

context SteamBoiler
inv: (self.wlmd.waterLevel >
self.maximalNormal or self.wlmd.waterLevel
< self.minimalNormal) implies next
self.program.mode = # EmergencyStop

context SteamBoiler
inv: let CS: Snapshot = self.snp
in let NS: Snapshot = CS.getNext()
in (self.wlmd.waterLevel > self.maximalNormal or
self.wlmd.waterLevel < self.minimalNormal) implies
NS.program.mode = # EmergencyStop

TP4: when the valve of the steam boiler
is open, then eventually the water level
will be lower or equal to the maximal
normal level.

Response-
global

context SteamBoiler
inv: self.valveOpen = # open implies
sometime
(self.wlmd.waterLevel < = maximalNormal)

context SteamBoiler
inv: let CS: Snapshot = self.snp
in let FS: Set(Snapshot) = CS.getPost()
in self.valveOpen = # open implies FS → exists
(s:Snapshot | s.WLMD.waterLevel < = maximalNormal)

TP5: when the program is in the initial-
ization mode and a failure of the water
level measurement device is detected it
puts the program in the emergency stop
mode.

Response-
global

context ControlProgram
inv: (self.mode = # Initialization
and self.wlmdFailure) implies
next self.mode =# EmergencyStop

context ControlProgram
inv: let CS: Snapshot = self.snp
in let NS: Set(Snapshot) = CS.getNext()
in (self.mode = # Initialization and self.wlmdFailure)
implies NS.program.mode = # EmergencyStop

TP6: when the system is in initializa-
tion mode, it remains in this mode until
all physical unites are ready or a failure
of the water level measurement device
has occurred.

Universality-
between Q
and R

context ControlProgram
inv: self.mode = # Initialization implies
always self.mode = # Initialization
until (PhysicalUnit.allInstances→
forAll(u: PhysicalUnit | u.ready))

context ControlProgram
inv: let CS: Snapshot = self.snp
in let FS1: Snapshot = CS.getPost() → select(s:Snapshot |
s.boiler.ready and s.SMD.ready and s.pump.ready
and s.PC.ready and s.WLMD.ready)→ first()
in let PreFS1=Set(Snapshot) = FS1.getPre()
in let BTS: Set(Snapshot)=PreFS1 → excluding(CS.getPre())
in self.mode = # Initialization implies BTS → forAll
(s1:Snapshot | s1.program.mode= # Initialization)

vaporationRate variable. The openPump(),closePump(), and openValve() oper-
ations open the pump, close the pump, and open the boiler valve, respectively.
The OCL specifications of getLEVEL() and openPump() are defined bellow.

context WaterLevelMeasurementDevice::getLEVEL(): Double

pre: self.program.mode= #Normal

post: self.waterLevel = result

context PumpControler::openPump()

pre: self.pump.mode = # Off

post: self.pump.mode = # On

The system has a number of temporal requirements that need to be verified.
We resorted to the use TOCL to specify the temporal properties in the boiler
system. Table 1 presents the TOCL specifications of some of these properties.
In our previous paper [8], we explain how to use reusable solution patterns to
specify temporal properties in TOCL.

Proceedings of MoDeVVa 2013 81

An Approach to Analyzing Temporal Properties in UML Class Models

4 Case Study: Specifying and Analysing Temporal
Properties of Steam Boiler

The following discusses the steps in Figure 1 in the context of the Steam Boiler
Control System.

4.1 Step1: Generation of the STM

Step 1 takes the steam boiler class model (see Fig. 2) as input and produces a
STM model [7]. The STM model characterizes a sequence of state transitions of
the boiler system, where each transition is triggered by an operation invocation.
The STM is formed by (1) creating a Snapshot class, (2) creating a hierarchy
of transition classes representing operation invocation, and (3) converting oper-
ation specifications to invariants of the transition classes. Everything else (class
invariants, associations ect.) remains intact in the STM model. Figure 3 shows
the STM model that is produced from the boiler class model.

Each instance of the Snapshot class represents a state in a transition system.
A snapshot is a configuration of one object of each of the concrete classes inf
Figure 2. In this system, a snapshot has only one object of each class. The
approach can also be used to specify snapshots that have many objects of each
class, and it distinquishes between these objects using identifiers [7].

To create the hierarchy of transition classes, we generate a subclass of the
abstract Transition class from each operation. In the Steam Boiler class model,
we only consider five modifier operations and thereby we create five subclasses
of the class Transition, one for each operation (see Fig.2 and Fig. 3). For each
parameter of an operation, we generate two references (shown as attributes of
the Transition subclasses) that represent the value of the parameter before and
after the execution of the operation. In boiler class model, none of the operations
has a parameter, so we do not create any references. We define two references
for each operation that point to the object’s states before and after an operation
invocation. A reference is also created for the return value of an operation.

We define the before and after state conditions in the STM as invariants
based on the pre and post conditions of the operations in the initial class model.

The following illustrates how the getLevel() operation in the WaterLevelMea-
surmentDevice class is defined in the STM model. We generate two references
(wlmdPre and wlmdPost of type WaterLevelMeasurmentDevice) that point to
the object that the operation is invoked on. Because this operation has a return
value of type Double, a ret:Double reference is created to point to the returned
value of the operation. The pre and post conditions of getLevel() operation (
presented above) are converted to invariants in STM as follows:

context WaterLevelMeasurmentDevice_getLevel

inv: self.wlmdPre.program.mode=# Normal

inv: wlmdPost.waterLevel= ret

Similarly, we generate invariants from the pre and post conditions for all the
other operations.

Proceedings of MoDeVVa 2013 82

An Approach to Analyzing Temporal Properties in UML Class Models

-mode : Mode
-ready : Boolean
-failureDetected : Boolean
-wlmdFailure : Boolean
-smdFailure : Boolean
-pumpFailure : Boolean
-pumpControlerFailure : Boolean

ControlProgram

-ready : Boolean
-capacity : Double
-minimalNormal : Double
-maximalNormal : Double
-maximumIncrease : Double
-maximumDecrease : Double
-minimalLimit : Double
-maximalLimit : Double
-valveOpen : ValveState

SteamBoiler

-ready : Boolean
-mode : State
-capacity : Double

Pump
-sb

1

-pump

1

-ready : Boolean
-evaporationRate : Double

SteamMeasurementDevice -smd

1

-sb1

-ready : Boolean
-waterLevel : Double

WaterLevelMeasurementDevice

-wlmd1

-sb

1

-ready : Boolean
-circulating : Boolean

PumpControler

-pump1

-controler 1 +Normal
+Initialization
+Degraded
+Rescue
+EmergencyStop

«enumeration»
Mode

+On
+Off

«enumeration»
State

+open
+closed

«enumeration»
ValveState

-program1

-PC1

-program

1

-pump1

-program

1

-sb1

-program

1

-smd1

-program 1-wlmd1

-snp 1
-boiler 1

-snp

1

-WLMD 1

-snp

1

-SMD 1

-snp 1

-pump 1

-snp

1

-PC 1

-snp

1

-program

1

+getNext() : Snapshot
+futureClosure(in sp : Set(Snapshot)) : Set(Snapshot)
+getPost() : Set(Snapshot)
+getPrevious() : Snapshot
+previousClosure(in sp : Set(Snapshot)) : Set(Snapshot)
+getPre() : Set(Snapshot)

Snapshot

Transition

-wlmdPre : WaterLevelMesurementDevice_getLEVEL
-wlmdPost : ControlProgram
-ret : Double

WaterLevelMesurementDevice_getLEVEL

-sbPre : SteamBoiler
-sbpPost : SteamBoiler

SteamBoiler_OpenValve

-CPPre : ControlProgram
-CPPost : ControlProgram

ControlProgram_StartOperation

{ordered}

{ordered}

-PreviousTrans

0..1

-nextSnapshot 1

-nextTrans

0..1

-PreviousSnapshot 1
{ordered}

-PCPre : PumpControler
-PCPost : PumpControler

PumpControler_OpenPump

-PCPre : PumpControler
-PCPost : PumpControler

PumpControler_ColosePump

Fig. 3: The Steam Boiler Snapshot Transition Model

4.2 Step2: Converting TOCL to OCL properties

In this step, the steam boiler class model is unfolded as a sequence of snapshot
transitions represented by the STM in order to express TOCL properties as OCL
constraints. We first specify the temporal properties in the Steam Boiler Control
System using TOCL. Table 1 shows some of the boiler system TOCL properties.
These TOCL properties are specified in the context of the steam boiler class
model. Then, OCL constraints are systematically produced in the context of the
steam boiler STM model (see Fig. 3) using these TOCL properties. Each OCL
constraint captures the semantics of the corresponding TOCL constraint in the
context of the STM model.

Consider the TOCL and OCL expressions of the temporal property TP1 in
the Table 1. The TOCL states that if the water measuring device fails (self.wlmd
Failure=true) then the program goes into the rescue mode (nextself.mode =
#Rescue). In the corresponding OCL expression, the next state (NS) is returned
by first getting the current snapshot(CS) and navigating to the next state by the
operation getNext(). Then the OCL asserts that if the water measuring device
fails, then the program in the next state is in the Rescue mode.

Proceedings of MoDeVVa 2013 83

An Approach to Analyzing Temporal Properties in UML Class Models

Fig. 4: Counterexample: Scenario violating the temporal property TP1

4.3 Step 3: Analysis

Now, we apply a UML/OCL structural analysis tool to perform the analysis
task of the boiler system temporal properties. In this case study, we used the
USE Model Validator to check the temporal property expressed in OCL in the
steam boiler STM model. For each property, the Validator attempts to produce a
scenario (i.e., an instance of the STM) that violates the property. The Validator
takes the STM model and an OCL property and provides a relational logic
specification. Then the tool employs of-the-shelf SAT solvers to check if there
exist an instance of the STM model that violates the OCL expression.

The approach checks a property based on the small-scope hypothesis [10].
That is, when a property does not hold in a model, it is more likely that there
is a small scenario that violates the property. Therefore, the approach does not
enumerate all possible scenarios, but a constrained number. A scope restricts
the number of instances that each class can have in a snapshot and limits the
number of transitions in a scenario. As such, the Model Validator enumerates
all possible scenarios within the defined scopes and check the given property.

We analyzed the temporal properties in Table 1 on scopes that have one
object of each class and 10 transitions. The Validator uncovered a scenario that

Proceedings of MoDeVVa 2013 84

An Approach to Analyzing Temporal Properties in UML Class Models

Algorithm 1 Snapshot Transitions to Sequence Diagram

Input: Sequence of Snapshot Transition
Output: Sequence diagram
Algorithm Steps: For every object of the Class transition do
Step 1. Get the class name and the operation name that associated with transition.
Step 2. Get the object on which the operation is invoked on.
Step 3. Get the operation parameters from the transition object attributes.
Step 4. Get the return value from the ret attribute of the transition object.
Step 5. Draw a timeline for the object that the operation is invoked on from step 2.
Step 6. Draw an operation invocation on the object using the name of the operation
and its attributes from steps 1, and 3 above .
Step 7. Draw a return message of the operation with the value from step 4

violates the first temporal property in Table 1, TP3. Figure 4 shows the coun-
terexample that violates property TP1. To uncover the fault, the verifier must
examine the counterexample.

4.4 Step 4: Sequence diagram extraction

The results of Step 3 might be complicated and difficult to present and examine.
In this step, we provide support for extracting a sequence diagram from a se-
quence of snapshot transition. Algorithm 1 provides a systematic way to achieve
this objective. We do not show the generated sequence diagram for the lack of
space.

5 Related Work

A number of model-checking based techniques have been proposed for speci-
fying and analyzing temporal properties in UML behavioral models, such as
statemachines and activity diagrams (e.g., see [3, 4]). In order to apply such
techniques, the UML models must be transformed to the tool-specific input lan-
guages. For example, the vUML [3] tool automatically converts UML statema-
chines to PROMELA specifications and then invokes SPIN model checker to
verify the desired properties. Although the system is modeled as UML statema-
chines, the temporal properties are specified in LTL, but not in the UML nota-
tion. Eshuis [4] applied symbolic model checking to analyze the data integrity
constraints of UML activity diagram and class models. The activity models are
formalized and transformed to the input language of the NuSMV model checker.
Unlike these techniques, the analysis approach described in this paper neither
requires transformation nor requires that the verifier be familiar with notations
other than UML and TOCL/OCL.

UML/OCL analysis tools, such as OCLE [6] and USE [11] provide support
for validating structural properties. However, OCLE and USE are limited in
analyzing temporal properties. The approach described in this paper enables a
system designer to analyze TOCL temporal properties using OCLE and USE.

Proceedings of MoDeVVa 2013 85

An Approach to Analyzing Temporal Properties in UML Class Models

The Scenario-based Design Analysis approach [7] checks whether a given
scenario is supported by a design class model. The analysis results depend on
the quality of the selected scenarios, which is challenging for complex models .
While this approach checks one scenario at a time, the approach in this paper
builds on the Scenario-based analysis to check a temporal property within a
scope of automatically generated scenarios.

6 Conclusions and Future Work

In this paper, we proposed a lightweight and rigorous approach that uses UML
notations for specification and analysis of temporal properties without the need
for transformation. The use of TOCL object-oriented temporal logic with spec-
ification patterns makes the approach accessible to UML modeling community.
As a pointer to future work, we plan to provide a system-development process
through which a system designer is able to design complex systems in incremen-
tal and iterative manner. Our future work also includes deploying the approach
for specifying and analyzing a real-world healthcare Dengue Decision Support
System (DDSS) requirements.

References

1. Abrial, J.R., Börger, E., Langmaack, H.: The Stream Boiler Case Study: Com-
petition of Formal Program Specification and Development Methods. In: Formal
Methods for Industrial Applications. (1995) 1–12

2. Ziemann, P., Gogolla, M.: OCL Extended with Temporal Logic. In: Ershov Memo-
rial Conference. (2003) 351–357

3. Lilius, J., Porres, I., Paltor, I.P., Centre, T., Science, C.: vUML: a Tool for Verifying
UML Models. (1999) 255–258

4. Eshuis, R.: Symbolic model checking of uml activity diagrams. ACM Trans. Softw.
Eng. Methodol. 15 (January 2006) 1–38

5. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Journal on Software and System Modeling 4
(2005) 2005

6. Chiorean, D., Paşca, M., Cârcu, A., Botiza, C., Moldovan, S.: Ensuring UML
Models Consistency Using the OCL Environment. Electron. Notes Theor. Comput.
Sci. 102 (November 2004) 99–110

7. Yu, L., France, R.B., Ray, I., Ghosh, S.: A Rigorous Approach to Uncovering
Security Policy Violations in UML Designs. In: ICECCS. (2009) 126–135

8. Al-Lail, M., Abdunabi, R., France, R., Ray, I.: Rigorous Analysis of Temporal
Access Control Properties in Mobile Systems. In: ICECCS. (July 2013)

9. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying uml/ocl
models using boolean satisfiability. In: MBMV. (2010) 57–66

10. Jackson, D.: Alloy: A Lightweight Object Modeling Notation. ACM Transactions
on Software Engneering Methodology 11(2) (2002) 256–290

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based Specification Envi-
ronment for Validating UML and OCL. Sci. Comput. Program. 69(1-3) (2007)
27–34

Proceedings of MoDeVVa 2013 86

An Approach to Analyzing Temporal Properties in UML Class Models

	Preface
	Abstract of the Keynote: Partial Behavior Modeling
	A Framework for Testing UML Activities Based on fUML
	Building Test Harness from Service-based Component Models
	Feature-based Development of State Transition Diagrams with Property Preservation
	Global State Checker: Towards SAT-Based Reachability Analysis of Communicating State Machines
	Applying Model Transformation and Event-B for Specifying an Industrial DSL
	Ensuring OSGi Component Based Properties at Runtime with Behavioral Types
	Symbolic Execution of Satellite Control Procedures in Graph-Transformation-Based EMF Ecosystems
	Research Questions for Validation and Verification in the Context of Model-Based Engineering
	An Approach to Analyzing Temporal Properties in UML Class Models

