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Foreword

This volume contains the papers presented at the 9th International Work-
shop on Uncertainty Reasoning for the Semantic Web (URSW 2013), held as a
part of the 12th International Semantic Web Conference (ISWC 2013) at Syd-
ney, Australia, October 21, 2013. It contains two technical papers and four
position papers, which were selected in a rigorous reviewing process, where
each paper was reviewed by at least four program committee members.

The International Semantic Web Conference is a major international fo-
rum for presenting visionary research on all aspects of the Semantic Web. The
International Workshop on Uncertainty Reasoning for the Semantic Web is
an exciting opportunity for collaboration and cross-fertilization between the
uncertainty reasoning community and the Semantic Web community. Effective
methods for reasoning under uncertainty are vital for realizing many aspects of
the Semantic Web vision, but the ability of current-generation Web technology
to handle uncertainty is extremely limited. Thus, there is a continuing demand
for uncertainty reasoning technology among Semantic Web researchers and de-
velopers, and the URSW workshop creates a unique opening to bring together
two communities with a clear commonality of interest but limited history of
interaction. By capitalizing on this opportunity, URSW could spark dramatic
progress toward realizing the Semantic Web vision.

We wish to thank all authors who submitted papers and all workshop
participants for fruitful discussions. Special thanks also to Anne Cregan-Wolfe
for her invited talk on “Knowing our Unknowns: Butterflies’ Wings, Black
Swans, Buckley’s Chance and the Last Japanese Soldier.” Furthermore, we
would like to thank the program committee members and external referees for
their timely expertise in carefully reviewing the submissions.
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Information Integration with Provenance on the
Semantic Web via Probabilistic Datalog±

Thomas Lukasiewicz and Livia Predoiu

Department of Computer Science, University of Oxford, UK
firstname.lastname@ox.cs.ac.uk

Abstract. The recently introduced Datalog± family of tractable knowledge rep-
resentation formalisms is able to represent and reason over light-weight ontolo-
gies. It extends plain Datalog by negative constraints and the possibility of rules
with existential quantification and equality in rule heads, and at the same time
restricts the rule syntax by the addition of so-called guards in rule bodies to gain
decidability and tractability. In this paper, we investigate how a recently pro-
posed probabilistic extension of Datalog± can be used for representing ontology
mappings in typical information integration settings, such as data exchange, data
integration, and peer-to-peer integration. To allow to reconstruct the history of the
mappings, to detect cycles, and to enable mapping debugging, we also propose to
extend it by provenance annotations.

1 Introduction

Information integration aims at querying in a uniform way information that is dis-
tributed over multiple heterogeneous sources. This is usually done via mappings be-
tween logical formalizations of data sources such as database schemas, ontology sche-
mas, or TBoxes; see also [16, 9, 21]. It is commonly agreed that there are mainly three
principles on how data or information from different sources can be integrated:

– Data exchange: Data structured under a source schema S (or more generally under
different source schemas S1, . . . , Sk) is transformed into data structured under a
different target schema T and materialized (merged and acquired) there through
the mapping.

– Data integration: Heterogeneous data in different sources S1, . . . , Sk is queried
via a virtual global schema T , i.e., no actual exchange of data is needed.

– Peer-to-peer data integration: There is no global schema given. All peers S1, . . . ,
Sk are autonomous and independent from each other, and each peer can hold data
and be queried. The peers can be viewed as nodes in a network that are linked
to other nodes by means of so-called peer-to-peer (P2P) mappings. That is, each
source can also be a target for another source.

Recently, a probabilistic extension of Datalog± [11] has been introduced, which we
here propose to use as a mapping language in the above information integration scenar-
ios. Classical Datalog± [2] combines Datalog with negative constraints and tuple- and
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equality-generating dependencies (TGDs and EGDs, respectively) under certain restric-
tions to gain decidability and data tractability. In this way, it is possible to capture the
DL-Lite family of description logics and also the description logic EL. The probabilistic
extension is based on Markov logic networks (MLNs) [19].

In this paper, we investigate how probabilistic Datalog± can be used as a mapping
language for information integration and propose to add provenance information to
mappings to be able to track the origin of a mapping for trust assessment and debugging.
Capturing the provenance of mappings allows to resolve inconsistencies of mappings
by considering the history of their creation. Furthermore, it helps to detect whether
and how to perform mapping updates in case the information sources have changed or
evolved. Finally, it allows to capture mapping cycles, debug mappings and to perform
meta-reasoning with mappings and the knowledge bases themselves.

2 Guarded Datalog±

We now describe guarded Datalog± [2], which here includes negative constraints and
(separable) equality-generating dependencies (EGDs). We first describe some prelim-
inaries on databases and queries, and then tuple-generating dependencies (TGDs) and
the concept of chase. We finally recall negative constraints and (separable) EGDs, which
are other important ingredients of guarded Datalog± ontologies.

2.1 Databases and Queries

For the elementary ingredients, we assume data constants, nulls, and variables as fol-
lows; they serve as arguments in atomic formulas in databases, queries, and dependen-
cies. We assume (i) an infinite universe of data constants ∆ (which constitute the “nor-
mal” domain of a database), (ii) an infinite set of (labeled) nulls ∆N (used as “fresh”
Skolem terms, which are placeholders for unknown values, and can thus be seen as
variables), and (iii) an infinite set of variables V (used in queries and dependencies).
Different constants represent different values (unique name assumption), while differ-
ent nulls may represent the same value. We assume a lexicographic order on ∆ ∪∆N ,
with every symbol in ∆N following all symbols in ∆. We denote by X sequences of
variables X1, . . . , Xk with k > 0.

We next define atomic formulas, which occur in databases, queries, and dependen-
cies, and which are constructed from relation names and terms, as usual. We assume
a relational schema R, which is a finite set of relation names (or predicate symbols,
or simply predicates). A position P [i] identifies the i-th argument of a predicate P .
A term t is a data constant, null, or variable. An atomic formula (or atom) a has the
form P (t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn are terms. We denote
by pred(a) and dom(a) its predicate and the set of all its arguments, respectively. The
latter two notations are naturally extended to sets of atoms and conjunctions of atoms.
A conjunction of atoms is often identified with the set of all its atoms.

We are now ready to define the notion of a database relative to a relational schema,
as well as conjunctive and Boolean conjunctive queries to databases. A database (in-
stance) D for a relational schemaR is a (possibly infinite) set of atoms with predicates
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from R and arguments from ∆. Such D is ground iff it contains only atoms with argu-
ments from ∆. A conjunctive query (CQ) over R has the form Q(X) = ∃YΦ(X,Y),
where Φ(X,Y) is a conjunction of atoms with the variables X and Y, and eventually
constants, but without nulls. Note that Φ(X,Y) may also contain equalities but no in-
equalities. A Boolean CQ (BCQ) over R is a CQ of the form Q(). We often write a
BCQ as the set of all its atoms, having constants and variables as arguments, and omit-
ting the quantifiers. Answers to CQs and BCQs are defined via homomorphisms, which
are mappings µ : ∆ ∪∆N ∪ V → ∆ ∪∆N ∪ V such that (i) c ∈ ∆ implies µ(c) = c,
(ii) c ∈ ∆N implies µ(c) ∈ ∆ ∪∆N , and (iii) µ is naturally extended to atoms, sets of
atoms, and conjunctions of atoms. The set of all answers to a CQQ(X)=∃YΦ(X,Y)
over a databaseD, denotedQ(D), is the set of all tuples t over∆ for which there exists
a homomorphism µ : X∪Y→∆∪∆N such that µ(Φ(X,Y))⊆D and µ(X)= t. The
answer to a BCQ Q() over a database D is Yes, denoted D |=Q, iff Q(D) 6= ∅.

2.2 Tuple-Generating Dependencies

Tuple-generating dependencies (TGDs) describe constraints on databases in the form
of generalized Datalog rules with existentially quantified conjunctions of atoms in rule
heads; their syntax and semantics are as follows. Given a relational schemaR, a tuple-
generating dependency (TGD) σ is a first-order formula of the form ∀X∀YΦ(X,Y)→
∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X, Z) are conjunctions of atoms overR called the
body and the head of σ, denoted body(σ) and head(σ), respectively. A TGD is guarded
iff it contains an atom in its body that involves all variables appearing in the body. The
leftmost such atom is the guard atom (or guard) of σ. The non-guard atoms in the body
of σ are the side atoms of σ. We usually omit the universal quantifiers in TGDs. Such σ
is satisfied in a database D for R iff, whenever there exists a homomorphism h that
maps the atoms of Φ(X,Y) to atoms of D, there exists an extension h′ of h that maps
the atoms of Ψ(X,Z) to atoms of D. All sets of TGDs are finite here.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs
Σ onR, the set of models of D and Σ, denoted mods(D,Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B (ii) every σ ∈Σ is satisfied in B. The set of
answers for a CQ Q to D and Σ, denoted ans(Q,D,Σ), is the set of all tuples a such
that a ∈ Q(B) for all B ∈mods(D,Σ). The answer for a BCQ Q to D and Σ is Yes,
denotedD∪Σ |=Q, iff ans(Q,D,Σ) 6= ∅. We recall that query answering under TGDs
is equivalent to query answering under TGDs with only single atoms in their heads. We
thus often assume w.l.o.g. that every TGD has a single atom in its head.

2.3 The Chase

The chase was introduced to enable checking implication of dependencies [17] and later
also for checking query containment [14]. It is a procedure for repairing a database rel-
ative to a set of dependencies, so that the result of the chase satisfies the dependencies.
By “chase”, we refer both to the chase procedure and to its output. The TGD chase
works on a database through so-called TGD chase rules (an extended chase with also
equality-generating dependencies is discussed below). The TGD chase rule comes in
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two flavors: restricted and oblivious, where the restricted one applies TGDs only when
they are not satisfied (to repair them), while the oblivious one always applies TGDs (if
they produce a new result). We focus on the oblivious one here; the (oblivious) TGD
chase rule defined below is the building block of the chase.

TGD CHASE RULE. Consider a databaseD for a relational schemaR, and a TGD σ
onR of the form Φ(X,Y)→ ∃ZΨ(X, Z). Then, σ is applicable to D if there exists a
homomorphism h that maps the atoms of Φ(X,Y) to atoms ofD. Let σ be applicable to
D, and h1 be a homomorphism that extends h as follows: for each Xi ∈ X, h1(Xi) =
h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is a “fresh” null, i.e., zj ∈ ∆N , zj does
not occur in D, and zj lexicographically follows all other nulls already introduced. The
application of σ on D adds to D the atom h1(Ψ(X,Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs Σ consists of an exhaus-
tive application of the TGD chase rule in a breadth-first (level-saturating) fashion, which
leads as result to a (possibly infinite) chase for D and Σ. Formally, the chase of level
up to 0 of D relative to Σ, denoted chase0(D,Σ), is defined as D, assigning to every
atom in D the (derivation) level 0. For every k> 1, the chase of level up to k of D
relative to Σ, denoted chasek(D,Σ), is constructed as follows: let I1, . . . , In be all
possible images of bodies of TGDs in Σ relative to some homomorphism such that (i)
I1, . . . , In⊆ chasek−1(D,Σ) and (ii) the highest level of an atom in every Ii is k − 1;
then, perform every corresponding TGD application on chasek−1(D,Σ), choosing the
applied TGDs and homomorphisms in a (fixed) linear and lexicographic order, respec-
tively, and assigning to every new atom the (derivation) level k. The chase ofD relative
to Σ, denoted chase(D,Σ), is then defined as the limit of chasek(D,Σ) for k →∞.

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists
a homomorphism from chase(D,Σ) onto every B ∈mods(D,Σ) [3, 7]. This result
implies that BCQs Q over D and Σ can be evaluated on the chase for D and Σ, i.e.,
D∪Σ |= Q is equivalent to chase(D,Σ) |= Q. In the case of guarded TGDs Σ, such
BCQs Q can be evaluated on an initial fragment of chase(D,Σ) |= Q of constant
depth k · |Q|, and thus be done in polynomial time in the data complexity.

Note that sets of guarded TGDs (with single-atom heads) are theories in the guarded
fragment of first-order logic [1]. Note also that guardedness is a truly fundamental class
ensuring decidability as adding a single unguarded Datalog rule to a guarded Datalog±

program may destroy decidability as shown in [3].

2.4 Negative Constraints

Another crucial ingredient of Datalog± for ontological modeling are negative con-
straints (NCs, or simply constraints), which are first-order formulas of the form ∀X
Φ(X)→ ⊥, where Φ(X) is a conjunction of atoms (not necessarily guarded). We usu-
ally omit the universal quantifiers, and we implicitly assume that all sets of constraints
are finite here. Adding negative constraints to answering BCQs Q over databases and
guarded TGDs is computationally easy, as for each constraint ∀XΦ(X)→ ⊥, we only
have to check that the BCQ Φ(X) evaluates to false; if one of these checks fails, then
the answer to the original BCQ Q is positive, otherwise the negative constraints can be
simply ignored when answering the original BCQ Q.
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2.5 Equality-Generating Dependencies

A further important ingredient of Datalog± for modeling ontologies are equality-gen-
erating dependencies (or EGDs) σ, which are first-order formulas ∀XΦ(X) → Xi =
Xj , where Φ(X), called the body of σ, denoted body(σ), is a (not necessarily guarded)
conjunction of atoms, and Xi and Xj are variables from X. We call Xi=Xj the head
of σ, denoted head(σ). Such σ is satisfied in a database D for R iff, whenever there
exists a homomorphism h such that h(Φ(X,Y))⊆D, it holds that h(Xi)=h(Xj). We
usually omit the universal quantifiers in EGDs, and all sets of EGDs are finite here.

An EGD σ onR of the form Φ(X)→Xi=Xj is applicable to a database D forR
iff there exists a homomorphism η : Φ(X)→D such that η(Xi) and η(Xj) are different
and not both constants. If η(Xi) and η(Xj) are different constants in ∆, then there is
a hard violation of σ (and, as we will see below, the chase fails). Otherwise, the result
of the application of σ to D is the database h(D) obtained from D by replacing every
occurrence of a non-constant element e∈{η(Xi), η(Xj)} in D by the other element e′

(if e and e′ are both nulls, then e precedes e′ in the lexicographic order). The chase of a
database D, in the presence of two sets ΣT and ΣE of TGDs and EGDs, respectively,
denoted chase(D,ΣT ∪ ΣE), is computed by iteratively applying (1) a single TGD
once, according to the standard order and (2) the EGDs, as long as they are applicable
(i.e., until a fixpoint is reached). To assure that adding EGDs to answering BCQs Q
over databases and guarded TGDs along with negative constraints does not increase the
complexity of query answering, all EGDs are assumed to be separable [2]. Intuitively,
separability holds whenever: (i) if there is a hard violation of an EGD in the chase, then
there is also one on the database w.r.t. the set of EGDs alone (i.e., without considering
the TGDs); and (ii) if there is no chase failure, then the answers to a BCQ w.r.t. the
entire set of dependencies equals those w.r.t. the TGDs alone (i.e., without the EGDs).

2.6 Guarded Datalog± Ontologies

We define (guarded) Datalog± ontologies as follows. A (guarded) Datalog± ontology
consists of a database D, a (finite) set of guarded TGDs ΣT , a (finite) set of negative
constraints ΣC , and a (finite) set of EGDs ΣE that are separable from ΣT .

3 Probabilistic Datalog±

We consider a probabilistic extension of Datalog± based on Markov logic networks
(MLNs) [19] as introduced in [11]. We now briefly recall its syntax and semantics.

3.1 Syntax

We assume an infinite universe of data constants ∆, an infinite set of labeled nulls ∆N ,
and an infinite set of variables V , as in Datalog±. Furthermore, we assume a finite set of
random variables X , as in MLNs. Informally, a probabilistic guarded Datalog± ontol-
ogy consists of a finite set of probabilistic atoms, guarded TGDs, negative constraints,
and separable EGDs, along with an MLN. We provide the formal details next.
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We first define the notion of probabilistic scenario. A (probabilistic) scenario λ
is a (finite) set of pairs (Xi, xi), where Xi ∈ X , xi ∈Dom(Xi), and the Xi’s are
pairwise distinct. If |λ|= |X|, then λ is a full probabilistic scenario. If every random
variable Xi has a Boolean domain, then we also abbreviate λ by the set of all Xi such
that (Xi, true) ∈ λ. Intuitively, a probabilistic scenario is used to describe an event
in which the random variables in an MLN are compatible with the settings of the ran-
dom variables described by λ, i.e., each Xi has the value xi.

If a is an atom, σT is a TGD, σC is a negative constraint, σE is an EGD, and λ is a
probabilistic scenario, then: (i) a : λ is a probabilistic atom; (ii) σT : λ is a probabilis-
tic TGD (pTGD); (iii) σC : λ is a probabilistic (negative) constraint; and (iv) σE : λ
is a probabilistic EGD (pEGD). We also refer to probabilistic atoms, TGDs, (nega-
tive) constraints, and EGDs as annotated formulas. Intuitively, annotated formulas hold
whenever the events associated with their probabilistic scenarios occur.

A probabilistic (guarded) Datalog± ontology is a pair Φ = (O,M), where O is
a finite set of probabilistic atoms, guarded TGDs, constraints, and EGDs, and M is
an MLN. In the sequel, we implicitly assume that every such Φ = (O,M) is sepa-
rable, which means that Σν

E is separable from Σν
T , for every ν ∈Dom(X), where Σν

T

(resp.,Σν
E) is the set of all TGDs (resp., EGDs) σ such that (i) σ : λ ∈ O and (ii) λ is con-

tained in the set of all (Xi, ν(Xi)) with Xi ∈ X . As for queries, we are especially in-
terested in the probabilities of the answers of CQs to probabilistic Datalog± ontologies,
called probabilistic conjunctive queries (PCQs).

3.2 Semantics

The semantics of probabilistic Datalog± ontologies is given relative to probability dis-
tributions over interpretations I = (D, ν), where D is a database, and ν ∈ Dom(X).
We say I satisfies an annotated formula F : λ, denoted I |= F : λ, iff whenever
ν(X) = x, for all (X,x) ∈ λ, then D |= F . A probabilistic interpretation is a prob-
ability distribution Pr over the set of all possible interpretations such that only a finite
number of interpretations are mapped to a non-zero value. The probability of an anno-
tated formula F : λ, denoted Pr(F : λ), is the sum of all Pr(I) such that I |= F : λ.

Let Pr be a probabilistic interpretation, and F : λ be an annotated formula. We
say that Pr satisfies (or is a model of) F : λ iff Pr(F : λ) = 1. Furthermore, Pr is
a model of a probabilistic Datalog± ontology Φ = (O,M) iff: (i) Pr satisfies all an-
notated formulas in O, and (ii) 1 − Pr(false : λ) = PrM (λ) for all full probabilistic
scenarios λ, where PrM (λ) is the probability of

∧
(Xi,xi)∈λ(Xi = xi) in the MLN M

(and computed in the same way as P (X = x) in MLNs).
As for the semantics of queries, we begin with defining the semantics of PCQs with-

out free variables. Let Φ be a probabilistic Datalog± ontology, and Q be a BCQ. The
probability of Q in Φ, denoted PrΦ(Q), is the infimum of Pr(Q : {}) subject to all
probabilistic interpretations Pr such that Pr |= Φ. Note that, as a consequence, the
probability of a BCQ Q is the sum of all probabilities of full scenarios where the re-
sulting universal model satisfies Q. We next consider the general case. As usual, given
a set of variables V and a set of constants ∆, a substitution of V by ∆ is a map-
ping θ : V → ∆; given a formula F and substitution θ, we denote by Fθ the formula
obtained from F by replacing all variables vi with θ(vi). We can now define answers

8



to PCQs. Let Φ be a probabilistic Datalog± ontology, and Q be a CQ. An answer
for Q to Φ is a pair (θ, p), where (i) θ is a substitution for the free variables of Q,
and (ii) p ∈ [0, 1] is the probability of Qθ in Φ. It is positive iff p > 0.

4 Ontology Mappings with Datalog±

As a language integrating the description logics and the logic programming paradigm
with TGDs, Datalog± allows to nicely tie together the theoretical results on information
integration in databases and the work on ontology mediation in the Semantic Web.

When integrating data stored in databases or data warehouses, i.e., data organized by
database schemas, usually so-called source-to-target TGDs (s-t TGDs), corresponding
to so-called GLAV (global-local-as-view) dependencies, are used as mappings.

According to [9], a schema mapping is defined asM = (S, T, Σst, Σt), where S
and T are the source and the target schema, respectively, Σst is the set of source-to-
target TGDs and EGDs, and Σt is the set of target TGDs and EGDs, respectively.

The following two types of dependencies are important special cases of source-to-
target TGDs: LAV (local-as-view) and GAV (global as view) as explained below:

– A LAV (local as view) dependency is a source-to-target TGD with a single atom in
the body, i.e., it has the form ∀XAS(X)→ ∃Yψ(X, Y)), whereAS is an atom over
the source schema, and ψ(X, Y) is a conjunction of atoms over the target schema.

– A GAV (global as view) dependency is a source-to-target TGD with a single atom
in the head, i.e., of the form ∀X φ(X) → AT (X′), where φ(X) is a conjunction of
atoms over the source schema, and AT (X′) is an atom over the target schema with
X′⊆X.

The following mappings that are mentioned in [4] as essential can also be repre-
sented in Datalog±:

– Copy (Nicknaming): Copy a source relation or role (of arbitrary arity n) into a
target relation or role (of the same arity n like the source relation or role) and
rename it. Note that this kind of mapping is a LAV and a GAV mapping at the same
time. Example1:

∀x, y S:location(x, y)→ T :address(x, y).

– Projection (Column Deletion): Create a target relation or concept or role by delet-
ing one or more columns of a source relation or source concept or source role (of
arbitrary arity n ≥ 2). Note that this kind of mapping is a LAV and GAV mapping
at the same time. Example:

∀x, y S:author(x, y)→ T :person(x).

– Augmentation (Column Addition): Create a target relation or role (of arbitrary
arity n ≥ 2) by adding one or more columns to the source relation or role or
concept. Note that this is a LAV dependency. Example:

1 Note that all examples are stemming from a consideration of the OAEI benchmark set, more
specifically, the ontologies 101 and 301-303.
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∀x S:editor(x)→ ∃z T :hasEditor(z, x).

– Decomposition: Decompose a source relation or source role (of arbitrary arity n)
into two or more target relations or roles or concepts. Note that this is a LAV de-
pendency. Example:

∀x, y S:publisher(x, y)→ T :organization(x), T :proceedings(y).

Only one mapping construct mentioned in [4] as essential cannot be represented by
Datalog±, and this is the join. As each TGD has to be guarded, there must be an atom
in the body that contains all non-existentially quantified variables and, hence, a join like
∀x, y S:book(y), S:person(x)→ T :author(x, y) cannot be represented with Datalog±.

In ontology mediation, the definition of a mapping or alignment is based on corre-
spondences between so-called matchable entities of two ontologies. The following def-
inition is based on [8]: Let S and T be two ontologies that are to be mapped onto each
other; let q be a function that defines the sets of matchable entities q(S) and q(T ). Then,
a correspondence between S and T is a triple 〈e1, e2, r〉 with e1 ∈ q(S), e2 ∈ q(T )
and r being a semantic relation between the two matchable elements. A mapping or
alignment between S and T then is a set of correspondences C = ∪i,j,k{〈ei, ej , rk〉}
between S and T . Note that this is a very general definition that basically allows to
describe any kind of mapping language.

Semantic Web and ontology mapping languages usually contain a subset of the
above mentioned mapping expressions and in addition constraints, mainly class dis-
jointness constraints as additional mapping expressions (see also [21, 18]). However,
note that both research communities, the data integration and the ontology mediation
community, also proposed mapping languages that are also more expressive than even
the above mentioned normal source-to-target TGDs, e.g., second-order mappings as de-
scribed in the requirements of [20] or second-order TGDs [10]. In [18], a probabilistic
mapping language based on MLNs that is built by mappings of a couple of basic de-
scription logic axioms onto predicates with the desired semantics has been presented.
A closer look reveals that the mapping constructs that are used are renaming, decompo-
sition and class disjointness constraints, and combinations thereof.

With Datalog±, such disjointness constraints can be modeled with NCs ΣNC :

– Disjointness of ontology entities with the same arity: A source relation (or role
or concept) with arity n is disjoint to another relation (or role or concept) with the
same arity n. The NC below corresponds to class disjointness that specifies that
persons cannot be addresses:

∀x S:Person(x), T :Address(x)→ ⊥.

– Disjointness of ontology entities with different arity: A source relation (or role)
with arity n ≥ 2 is disjoint to another relation (or role or concept) with the arity
n > m ≥ 1. The example below specifies that persons do not have prices.

∀x, y S:Person(x), T :hasPrice(x, y)→ ⊥.

EGDs are also part of some mapping languages, especially in the database area, and
can be represented by Datalog± as long as they are separable from the TGDs. Such
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kinds of dependencies allow to create mappings like the one of the following form
specifying that publishers of the same book or journal in both, the source and target
schema (or ontology), have to be the same:

∀x, y, z S:publisher(x, y), T :publishes(y, z)→ x = z.

5 Ontology Mappings with Probabilistic Datalog±

A probabilistic (guarded) Datalog± mapping has the formM=(S, T, pΣst, pΣt, M),
where (i) S and T are the source and the target schemas or ontologies, respectively,
(ii) pΣst is a set of probabilistic (guarded) TGDs, EGDs, and NCs encoding the proba-
bilistic source-to-target dependencies, (iii) pΣt is a set of probabilistic (guarded) TGDs,
EGDs, and NCs encoding the probabilistic target dependencies, and (iv) M is the MLN
encoding the probabilistic worlds.

Observe here that the TGDs, EGDs, and NCs are annotated with probabilistic sce-
narios λ that correspond to the worlds that they are valid in. The probabilistic dependen-
cies that the annotations are involved in are represented by the MLN. As annotations
cannot refer to elements of the ontologies or the mapping except of the MLN itself,
there is a modeling advantage of separating the two tasks of ontology modeling and of
modeling the uncertainty around the axioms of the ontology.

Note that due to the disconnected representation between the probabilistic depen-
dencies and the ontology, we can encode part of mapping formulas as predicates encod-
ing a specific semantics like disjointness, renaming, or decomposition, in a similar way
as done in [18]. With these predicates, an MLN can be created and the actual mappings
can be enriched by ground predicates that add the probabilistic interpretation.

However, another more interesting encoding consists of using a second ontology
describing additional features of the generation of the mappings and in this way eventu-
ally even do meta reasoning about the mapping generation. A rather general example of
such an additional MLN describing the generation of a mapping is shown in Fig. 1. In
this example, the MLN describes the generation of a mapping by means of the matcher
that it generates and a set of — possibly dependent — applicability conditions as well
as additional conditions that influence the probability of the mapping besides the result
of the matcher.

With such kind of an MLN describing the dependency of different kinds of con-
ditions (also dependencies between matchers are conceivable in order to combine the
results of several different matchers), probabilistic reasoning over data integration set-
tings can be done in more precise settings. To our knowledge, such kinds of probabilistic
meta ontologies for the matching process have not yet been proposed.

6 Provenance

Data provenance information describes the history of data in its life cycle. It adds value
to the data by explaining how it was obtained. In information integration, when data
from distributed databases or ontologies is integrated, provenance information allows
to check the trustworthiness and correctness of the results of queries and debug them
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Fig. 1. Example of an MLN describing the generation of mappings by means of applicability
conditions and an additional condition that influences the probability of the mapping besides the
result of the matcher.

as well as trace the errors back to where they have been created. Hence, an information
integration framework should be equipped by some form of provenance.

In data provenance, it is mainly distinguished between where-, why- and how-
provenance [5]. How-provenance [12] is the most expressive one and most appropri-
ate for our purpose of annotating mappings and tracing back the origin of query results.
How-provenance is modeled by means of a semiring. It is possible to construct different
kinds of semirings depending on what kind of information has to be captured and which
operations on that information are to be allowed. Besides formalizing different kinds of
provenance annotations with a certain kind of semiring (called K-relations) based on
the positive relational algebra, [12] provides a formalization of plain Datalog without
negation with K-relations that is used within the collaborative data sharing system OR-
CHESTRA [13] also for modeling TGDs without existential quantifiers. In order to
capture applications of mappings in ORCHESTRA, [15] proposes to use a so-called
M-semiring, which allows to annotate the mappings withM = m1, . . . ,mk being a
set of mapping names, which are unary functions, one for each mapping. This can be
combined with the formalization of negation-free Datalog (with a procedural semantics
based on the least fixpoint operator to construct the model) with positive K-relations as
presented in [12].

Clearly, such kind of a formalization for our probabilistic Datalog± information
integration framework would allow to capture provenance and annotate the mappings
with an id such that the integration paths can be traced back to their origin. In this way,
routes that can be used to debug mappings like in [6] can be captured. In addition, as
shown in [12], when the mappings are the only probabilistic or uncertain elements, the
probabilities can also be computed more efficiently as the captured provenance also
carries the information where the probabilities are propagated from. In addition, cycles
can be detected and the trustworthiness of query results can also be estimated, as it can
be detected where the data that is involved in the query result has been integrated from.
For this purpose, the trustworthiness of data sets and possibly also peers who provide
access to data sets need to be assessed beforehand.

In order to use a similar approach as the aforementioned ORCHESTRA system,
we need to investigate how to model the application of the chase within probabilistic
Datalog± with a semiring formalization. It can be expected that in probabilistic data
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integration with Datalog±, the lineage will be restricted by the guards who help to direct
the chase towards the answer of a query through the annotated guarded chase forest.

7 Summary and Outlook

By means of probabilistic (guarded) Datalog± [11], which can represent DL-Lite and
EL, we use a tractable language with dependencies that allows to nicely tie together the
theoretical results on information integration in databases and the work on ontology me-
diation in the Semantic Web. The separation between the ontology and the probabilis-
tic dependencies allows us to either model the mappings with specific newly invented
predicates like disjointness, renaming, or decomposition, etc. or — more interestingly
— with a probabilistic meta ontology describing the matching process.

The paper shows how classical and probabilistic (guarded) Datalog± can be used to
model information integration settings and sketches a deterministic mapping language
based on Datalog± and two different kinds of probabilistic adaptations based on the
rather loosely coupled probabilistic extension of Datalog± with worlds represented by
means of an MLN. We also justify why data provenance needs to be captured and rep-
resented within such a probabilistic information integration framework and propose to
use an adaptation of K-relations as proposed by [12]. Such an extension with prove-
nance allows to track how results of queries to the framework have been created and
also debug mappings as errors can be traced back to their origin.

As a next step, we will develop the proposed framework for provenance capture
and, amongst others, investigate how to model the chase application for reasoning with
probabilistic (guarded) Datalog± with a semiring-framework.
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Campus Universitário Darcy Ribeiro
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Abstract. Although several languages have been proposed for dealing
with uncertainty in the Semantic Web (SW), almost no support has been
given to ontological engineers on how to create such probabilistic ontolo-
gies (PO). This task of modeling POs has proven to be extremely difficult
and hard to replicate. This paper presents the first tool in the world to im-
plement a process which guides users in modeling POs, the Uncertainty
Modeling Process for Semantic Technologies (UMP-ST). The tool solves
three main problems: the complexity in creating POs; the difficulty in
maintaining and evolving existing POs; and the lack of a centralized tool
for documenting POs. Besides presenting the tool, which is implemented
as a plug-in for UnBBayes, this papers also presents how the UMP-ST
plug-in could have been used to build the Probabilistic Ontology for Pro-
curement Fraud Detection and Prevention in Brazil, a proof-of-concept
use case created as part of a research project at the Brazilian Office of
the General Comptroller (CGU).

Keywords: Uncertainty Modeling Process, Semantic Web, UMP-ST,
POMC, Probabilistic Ontology, Fraud Detection, MEBN, UnBBayes

1 Introduction

In the last decade there has been a significant increase in formalisms that inte-
grate uncertainty representation into ontology languages. This has given birth
to several new languages like: PR-OWL [5–7], PR-OWL 2 [4, 3], OntoBayes [20],
BayesOWL [8], and probabilistic extensions of SHIF(D) and SHOIN(D) [15].
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However, the increase of expressive power these languages have provided
did not come without its drawbacks. In order to express more, the user is also
expected to deal with more complex representations. This increase in complexity
has been a major obstacle to making these languages more popular and used
more often in real world problems.

While there is a robust literature on ontology engineering [1, 10] and knowl-
edge engineering for Bayesian networks [14, 12], the literature contains little guid-
ance on how to model a probabilistic ontology.

To fill the gap, Carvalho [4] proposed the Uncertainty Modeling Process for
Semantic Technologies (UMP-ST), which describes the main tasks involved in
creating probabilistic ontologies.

Nevertheless, the UMP-ST is only a guideline for ontology designers. In this
paper we present the UMP-ST plug-in for UnBBayes. This plug-in has the ob-
jective of overcoming three main problems:

1. the complexity in creating probabilistic ontologies;
2. the difficulty in maintaining and evolving existing probabilistic ontologies;

and
3. the lack of a centralized tool for documenting probabilistic ontologies.

This paper is organized as follows. Section 2 introduces the UMP-ST process
and the Probabilistic Ontology Modeling Cycle (POMC). Section 3 presents
UnBBayes and its plug-in framework. Then, Section 4 describes UMP-ST plug-
in, which is the main contribution of this paper. Section 5 illustrates how this tool
could have been used to create a probabilistic ontology for procurement fraud
detection and prevention. Finally, Section 6 presents some concluding remarks.

2 UMP-ST

The Uncertainty Modeling Process for Semantic Technologies (UMP-ST) con-
sists of four major disciplines: Requirements, Analysis & Design, Implementa-
tion, and Test.

Figure 1 depicts the intensity of each discipline during the UMP-ST is iter-
ative and incremental. The basic idea behind iterative enhancement is to model
the domain incrementally, allowing the modeler to take advantage of what is
learned during earlier iterations of the model. Learning comes from discovering
new rules, entities, and relations that were not obvious previously. Some times it
is possible to test some of the rules defined during the Analysis & Design stage
even before having implemented the ontology. This is usually done by creating
simple probabilistic models to evaluate whether the model will behave as ex-
pected before creating the more complex first-order probabilistic models. That
is why some testing occurs during the first iteration (I1) of the Inception phase,
prior to the start of the implementation phase.

Figure 2 presents the Probabilistic Ontology Modeling Cycle (POMC). This
cycle depicts the major outputs from each discipline and the natural order in
which the outputs are produced. Unlike the waterfall model [17], the POMC
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Fig. 1. Uncertainty Modeling Process for Semantic Technologies (UMP-ST).

cycles through the steps iteratively, using what is learned in one iteration to
improve the result of the next. The arrows reflect the typical progression, but
are not intended as hard constraints. Indeed, it is possible to have interactions
between any pair of disciplines. For instance, it is not uncommon to discover
a problem in the rules defined in the Analysis & Design discipline during the
activities in the Test discipline. As a result, the engineer might go directly from
Test to Analysis & Design in order to correct the problem.

Fig. 2. Probabilistic Ontology Modeling Cycle (POMC) - Requirements in blue, Anal-
ysis & Design in green, Implementation in red, and Test in purple.
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In Figure 2 the Requirements discipline (blue circle) defines the goals that
should be achieved by reasoning with the semantics provided by our model. The
Analysis & Design discipline describes classes of entities, their attributes, how
they relate, and what rules apply to them in our domain (green circles). This
definition is independent of the language used to implement the model. The
Implementation discipline maps our design to a specific language that allows
uncertainty in semantic technologies (ST). For our case study, the mapping is to
PR-OWL (red circles). Finally, the Test discipline is responsible for evaluating
whether the model developed during the Implementation discipline is behaving
as expected from the rules defined during Analysis & Design and whether they
achieve the goals elicited during the Requirements discipline (purple circle). As
noted previously, it is a good idea to test some rules and assumptions even
before the implementation. This is a crucial step to mitigate risk by identifying
problems before wasting time in developing an inappropriate complex model.

An important aspect of the UMP-ST process is defining traceability of re-
quirements. Gotel and Finkelstein [11] define requirements traceability as:

Requirements traceability refers to the ability to describe and follow
the life of a requirement, in both forward and backward directions.

To provide traceability, requirements should be arranged in a specification
tree, so that each requirement is linked to its “parent” requirement. In our
procurement model, each item of evidence is linked to a query it supports, which
in turn is linked to its higher level goal. This linkage supports requirements
traceability.

In addition to the hierarchical decomposition of the specification tree, re-
quirements should also be linked to work products of other disciplines, such as
the rules in the Analysis & Design discipline, probability distributions defined
in the Implementation discipline, and goals, queries, and evidence elicited in
the Requirements discipline. These links provide traceability that is essential to
validation and management of change.

This kind of link between work products of different disciplines is typically
done via a Requirements Traceability Matrix (RTM) [19, 18]. Although useful
and very important to guarantee the goals are met, the RTM is extremely hard
to keep track without a proper tool. Therefore, this was a crucial feature that
we incorporated into the UMP-ST plug-in.

3 UnBBayes plug-in Architecture

UnBBayes is an open-source JavaTM application developed by the Artificial In-
telligence Group from the Computer Science Department at the University of
Brasilia in Brazil that provides a framework for building probabilistic graphical
models and performing plausible reasoning. It features a graphical user interface
(GUI), an application programming interface (API), as well as plug-in support
for unforeseen extensions. It offers a comprehensive programming model that
supports the exploitation of probabilistic reasoning and intrinsically provides a
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high degree of scalability, thus presenting a means of developing AI systems on
the fly [13, 16].

Unlike APIs, plug-ins offer a means to run new code inside the UnBBayes’
runtime environment. A plug-in is a program that interacts with a host appli-
cation (a core) to provide a given function (usually very specific) “on demand”.
The binding between a plug-in and a core application usually happens at loading
time (when the application starts up) or at runtime.

In UnBBayes, a plug-in is implemented as a folder, a ZIP or a JAR file
containing the following elements: (a) a plug-in descriptor file3 (a XML file
containing meta-data about the plug-in itself), (b) classes (the Java program
itself - it can be a set of “.class” files or a packaged JAR file), and (c) resources
(e.g. images, icons, message files, mark-up text).

UnBBayes currently relies on Java plug-in Framework (JPF) version 1.5.1 to
provide a flexible plug-in environment. JPF is an open source plug-in infrastruc-
ture framework for building scalable Java projects, providing a runtime engine
that can dynamically discover and load plug-ins on-the-fly. The activation pro-
cess (i.e. the class loading process) is done in a lazy manner, so plug-in classes
are loaded into memory only when they are needed.

One specific type of plug-in that can be added to UnBBayes is the module
plug-in. Module plug-ins provide a means to create a relatively self-sufficient
feature in UnBBayes (e.g. new formalisms or completely new applications). In
UnBBayes vocabulary, modules are basically new internal frames that are initial-
ized when tool bars or menu buttons are activated. Those internal frames do not
need to be always visible, so one can create modules that add new functionali-
ties to the application without displaying any actual “internal” frame (wizards
or pop-ups can be emulated this way). The UMP-ST tool presented in this paper
is a completely new application, since it was implemented as a module plug-in.

Figure 3 illustrates the main classes of a module plug-in. UnBBayesModule
is the most important class of a module and it is an internal frame (thus,
it is a subclass of swing JInternalFrame). Classes implementing IPersis-

tenceAwareWindow are GUI classes containing a reference to an I/O class, and
because UnBBayesModule implements IPersistenceAwareWindow, a module should
be aware of what kind of files it can handle (so that UnBBayes can consis-
tently delegate I/O requests to the right modules). NewModuleplug-in and
NewModuleplug-inBuilder are just placeholders representing classes that should
be provided by plug-ins. The builder is necessary only if NewModuleplug-in does
not provide a default constructor with no parameters. For more information on
UnBBayes plug-in framework see [16].

4 UMP-ST plug-in

As seen in Section 2, the UMP-ST process consists of four major disciplines:
Requirements, Analysis & Design, Implementation, and Test. Nevertheless, the

3 A plug-in descriptor file is both the main and the minimal content of a UnBBayes
plug-in, thus one can create a plug-in composed only by a sole descriptor file.
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Fig. 3. Class diagram of classes that must be extended to create a module plug-in.

UMP-ST plug-in focuses only on the Requirements and Analysis & Design dis-
ciplines, since they are the only language independent disciplines. Moreover, as
explained in Section 1, the objective of the UMP-ST plug-in is overcoming three
main problems:

1. the complexity in creating probabilistic ontologies;
2. the difficulty in maintaining and evolving existing probabilistic ontologies;

and
3. the lack of a centralized tool for documenting probabilistic ontologies.

The UMP-ST plug-in is a almost like a wizard tool that guides the user in
each and every step of the Requirements and Analysis & Design disciplines. This
involves the definition of the goals that should be achieved by the probabilistic
ontology (PO) as well as the queries that should be answered by the PO in order
to achieve that goal and the evidence needed in order to answer these queries.
Only then the user is allowed to move to the next phase of the process which is
defining the entities, then the rules, and finally the groups related to the defined
goals, queries, and evidence (see Figure 2).

Respecting this order of steps defined in the process allows the tool to incor-
porate an important aspect which is traceability. In every step of the way, the
user is required to associate which working product previously defined requires
the definition of this new element. For instance, when defining a new query, the
user has to say which goal that query helps achieve. We call this feature back-
tracking. This feature allows, for instance, the user to identify which goals are
being achieved by the implementation of a specific group. This feature provides
an easy and friendly way of maintaining the RTM matrix, defined previously.
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The step by step guidance provided by the tool allows the user to overcome
the complexity in creating POs (first problem). Moreover, the plug-in also solves
the third problem, since all the documentation related to the PO being designed
is centralized in the tool and can be saved for future use.

Finally, the difficulty in maintaining and evolving existing POs (second prob-
lem) is addressed mainly by the traceability feature. When editing any ele-
ment (e.g., a goal, an entity, a rule, etc), two panels are always present. On
the one hand, the back-tracking panel shows every element from previous steps
of the process associated with the element being edited. On the other hand,
the forward-tracking panel shows every element created in the following steps
of the process associated with the element being edited. This provides a con-
stant attention to where and what your changes might impact, which facilitates
maintainability and evolution of existing POs.

Figure 4 presents the panel for editing entities with some of the main features
of the UMP-ST plug-in.

Fig. 4. Panel for editing an entity with a few features highlighted.

The UMP-ST tool was implemented as a module plug-in in UnBBayes. The
UMP-ST plug-in is mostly structured in a Model-View-Controller (MVC4) de-

4 A MVC design isolates logic and data from the user interface, by separating the
components into three independent categories: Model (data and operations), View
(user interface) and Controller (mostly, a mediator, scheduler, or moderator of other
classes) [2].
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sign pattern5, which explicitly separates the program’s elements into three dis-
tinct roles, in order to provide separation of concern (i.e. the software is sepa-
rated into three different set of classes with minimum overlap of functionality).
The View is implemented by the umpst.GUI package, the Controller by the
umpst.Controller package, and the Model by the umpst.IO and umpst.Model

packages. For more details, see [16].

5 Use Case

A major source of corruption is the procurement process. Although laws attempt
to ensure a competitive and fair process, perpetrators find ways to turn the
process to their advantage while appearing to be legitimate. For this reason,
a specialist has didactically structured different kinds of procurement frauds
encountered by the Brazilian Office of the Comptroller General (CGU) in past
years.

This section presents how the UMP-ST plug-in could have been used to build
the Probabilistic Ontology for Procurement Fraud Detection and Prevention
in Brazil, an use case presented by Carvalho [4]. Although Carvalho [4] has
followed the UMP-ST process, there was no tool at the time to help create
the corresponding documentation. The focus of this section is to show how this
modeling process could benefit from the UMP-ST plug-in6.

As explained in Section 2, the objective of the Requirements discipline is
to define the objectives that should be achieved by representing and reasoning
with a computable representation of domain semantics. For this discipline, it is
important to define the questions that the model is expected to answer, i.e.,
the queries to be posed to the system being designed. For each question, a set
of information items that might help answer the question (evidence) should be
defined.

One of the goals presented in [4] with its respective queries/evidences is:

1. Goal : Identify whether the committee of a given procurement should be
changed.
(a) Query : Is there any member of committee who does not have a clean

history?
i. Evidence: Committee member has criminal history;
ii. Evidence: Committee member has been subject to administrative

investigation.
(b) Query : Is there any relation between members of the committee and the

enterprises that participated in previous procurements?
i. Evidence: Member and responsible person of an enterprise are rela-

tives (mother, father, brother, or sister);

5 Design patterns are a set of generic approaches aiming to avoid known problems in
software engineering [9].

6 Due to space limitation, only part of the whole documentation is going to be pre-
sented in this paper. The focus will be on presenting several features available in the
UMP-ST plug-in.
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ii. Evidence: Member and responsible person of an enterprise live at the
same address.

Figure 5 presents how this goal and its corresponding queries and evidence
would be displayed in the UMP-ST plug-in. Note that both query and evidence
are considered hypothesis in our tool. The idea is to generalize, since an evidence
for a query could be another query. Therefore, we decided to call them both
hypothesis.

Fig. 5. Panel for displaying the hypothesis (queries and evidence) for a goal.

The next step in the POMC model is to define the entities, attributes, and
relationships by looking on the set of goals/queries/evidence defined in the pre-
vious step. For instance, from the evidence that says “responsible person of an
enterprise” we need to define the entities Person (Pessoa) and Enterprise (Em-
presa). Figure 4 presets the entity Enterprise (Empresa) with its attributes, goals
and hypothesis defined as backtraking elements, as well as traceability panel with
its forward-tracking elements (attributes, rules, relationships, groups, etc).

Once the entities, its attributes, and relationships are defined, we are able to
define the rules for our PO. The panel for editing rules are really similar to the
panel for editing entities. The difference is that we can define what type of rule
it is (deterministic or stochastic). Moreover, the backtraking panel allows the
user to add elements from the previous step in the POMC cycle, i.e., entities,
attributes, and relationships, as well as elements in the current step, i.e., other
rules. Thus, the forward-tracking panel only allows elements from the current
and future steps in the process, i.e., other rules and groups.

Finally, once the rules are defined, the user can go to the final step of the
Analysis & Design discipline, which is to define the groups, which will facilitate
the implementation of the PO. The panel for creating groups is similar to the
panel for editing rules. The difference is that the forward-tracking panel allows
only other groups.

Figure 6 presents a list of groups created. Note that there is pretty much
a one-to-one correspondence to the Multi-Entity Bayesian Networks Fragments
(MFrags) created in [4] (see Figure 7). For instance, the Personal Information
(Informações Pessoais) group is implemented as the Personal Information MFrag,
the Enterprise Information (Informações da Empresa) group is implemented as
the Enterprise Information MFrag, etc.

23



Fig. 6. Panel displaying some groups.

Fig. 7. Implementation of the PO in UnBBayes-MEBN.

This one-to-one mapping and the traceability feature help users deal with
change and evolution of the PO. The traceability panel present when editing a
goal shows all elements associated with the realization of that goal. Therefore, if
a user needs to change a specific goal he/she knows where it is going to impact,
all the way to the implementation. Without the UMP-ST plug-in this would be
infeasible.

6 Conclusion

This paper presented the UMP-ST plug-in. A GUI tool for designing, maintain-
ing, and evolving POs. To the best of our knowledge, this is not only the first
implementation in the world of the UMP-ST process, but also the first tool to
support the design of POs.

The UMP-ST plug-in provides a step by step guidance in designing POs,
which allows the user to overcome the complexity in creating POs. Moreover,
the plug-in also provides a centralized tool for documenting POs, whereas before
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the documentation was spread in different documents (word documents with
requirements, UML diagrams with entities, attributes, and relations, etc).

Finally, the difficulty in maintaining and evolving existing POs is addressed
mainly by the traceability feature. The implementation of both forward-tracking
and back-tracking provide a constant attention to where and what your changes
might impact, which facilitates maintainability and evolution of existing POs.
Although this traceability can be achieved by a simple implementation of RTM
in tools like spreadsheets, as the PO becomes larger this manual traceability
becomes infeasible and error prone.

The UMP-ST plug-in is still in beta phase. Some of the features that should
be included in the future are: exporting all documentation to a single PDF of
HTML file; and generating MFrags automatically based on the groups defined in
the last step of the Analysis & Design discipline, in order to facilitate the creation
of a MEBN model (i.e., PR-OWL PO) during the Implementation discipline.
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Abstract. This position paper proposes a collaboration method between Seman-

tic Web and Fuzzy Logic aiming to handle uncertainty in the informat ion re-

trieval process in order to cover more relevant items in result of search process. 

The collaboration method employs OWL ontology in query enhancement, RDF 

in annotation process and fuzzy rules in ranking enhancement.  

1 Introduction 

In the information retrieval process, there are returned documents which are relevant 

to the query but they focus in addition of query main interest on others additional 

topics. To deal with this imprecision we propose to valorize in the ranking process 

relevant documents which deal mainly with query themes. Another source of impreci-

sion in the search process is the user queries; we propose to enhance it in order to 

come near the intention of the user. This paper is organized as follows: in the next 

section we present our proposition to enhance the query background expression then 

we explain how Semantic Web and Fuzzy Logic collaborate to enhance ranking 

process. In Section 3, we present some related works and Section 4 concludes the 

paper. 

2 Handling uncertainty by semantic/fuzzy collaboration 

2.1 The semantic/fuzzy query enhancement 

A main cause of uncertainty in the information retrieval process comes from the us-

er’s queries. In order to return more relevant results, the information retrieval system 

has to indentify the user’s intention behind the query. To do it, we propose to enhance 

user queries by adding semantically related terms. In this purpose, we use the Web 

Ontology Language OWL and then we employ some fuzzy rules in order to weight up 

the query terms importance. In Figure 1, we present our semantic/fuzzy query en-

hancement. 
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Fig. 1. Semantic/fuzzy query enhancement 

The Semantic query enhancement passes through the enrichment of the query by new 

terms syntactically different but semantically near; the new added terms are not 

picked to derive the query meaning but to find terms expressing more the user inten-

tion. Several works as [1- 3] are proposed to express the semantic similarity between 

ontology concepts. After eliminating empty terms from the query, we can reuse the 

algorithm presented in [3] to find the semantically nearest term to each query term 

using OWL ontology. The number of added terms must not be constant; it can derive 

the query meaning if it is large or useless if it is few. So we decide that the number of 

added terms be proportional to the query length. Hence, we propose to add only n/4 

terms having the highest similarity to query terms. Also, we propose that the informa-

tion retrieval system is interactive and allows users to highlight certain query terms in 

order to reflect their importance. Finally, to weight the query terms, we apply some 

fuzzy rules; those rules define the priority of weighting: 

─ If a query term is added from the ontology then it will has low weight priority.  

─ If a query term is not bold, then it will has a medium weight priority. 

─ If a query term is bold then it will has a high weight priority. 

2.2 The semantic/fuzzy ranking enhancement 

The semantic/fuzzy ranking enhancement aims to manage uncertainty about the out-

put of classic querying process and to valorize documents focusing specially in the 

same user query interests. It aims principally to limit the number of relevant docu-

ments dealing with several topics. The semantic/fuzzy ranking enhancement passes 

through two fundamental concepts: the “meta-document” which allows annotating 

semantically the collection of documents and the “themes clouds” which enhance the 

ranking process based on Fuzzy Logic. The meta-document is introduced in [4] and it 

is able to annotate semantically multimedia objects as well as web documents. A me-

ta-document uses RDF metadata to annotate web resources in a way that ensures its 

reusability. The querying process matches the user query with the meta-documents in 

order to identify the score relevance of the resources to the query. We define the 

“theme cloud” as groups of weighted terms concerning a given theme. Simply, we 

collect potential terms representing a given theme to construct a theme cloud. The 

terms’ weights express the ability of each term to represent the theme. After running a 

usual querying process matching the query and the meta-documents, we get the relev-

ance score for each annotated resource or document. At this point, the theme clouds 

are used to enhance ranking results in the benefit of relevant documents focusing 
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mainly on query interests. The Figure 2 gives a simple presentation of the structure of 

the semantic/fuzzy ranking enhancement: 

 

Fig. 2. The semantic/fuzzy ranking enhancement 

To run the ranking enhancement, first, we establish the meta-document/theme 

weighted links WDT. WDT  expresses the potential themes mentioned by the meta-

document. To assign a weight WDT  to a meta-document/theme link, we simply sum 

the weights of theme terms existing in the meta-document. Then we establish 

query/themes weighted links which express the ability of each theme to represent the 

query. To assign a weight to a query/theme link, we use the classic similarity measure 

between two weighted terms vectors: 

      

 𝑊𝑄𝑇 = 𝑠𝑖𝑚 𝑄,𝑇𝑖 =
 Wqj ∗ Wtij

t

𝑗=1

  (Wqj )2
t

𝑗=1
 ∗  (Wtij

)2
t

𝑗=1

            (1)  

The next step of ranking enhancement is to calculate for each document his theme 

similarity with the query in order to increase or decrease its relevance score in terms 

of the value of the theme similarity. The theme similarity TS is calculated as follow: 

   
𝑇𝑆 (𝑄,𝐷) =   WQTi

− WDT i
  

𝑘

𝑖=1

         (2) 

The main goal of the ranking enhancement is to increase relevance of documents   

focusing on the same query themes and to decrease relevance of document dealing 

with different themes vis-à-vis the query. The TS (Q, D) value is optimal when its 

value is minimal; this means that the query and the document are focusing on the 

same themes with approached values. Contrariwise, if the TS is high, this means that 

the document deals with other themes in addition to the query themes. Finally, the 

increase or the decrease Rate R affected to a document Relevance Score RS is based 

on the following fuzzy rules: 

─ If RS is high or medium and TS is low then R is high 

─ If RS is low and TS is low then R is medium 

─ If RS is low or medium and TS is high then R is negative  
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3 Related work 

Several approaches considering both uncertainty and the Semantic Web have been 

proposed in the information retrieval issue. [5, 6] propose to fuzzify in different ways 

RDF triples, likewise [7, 8] propose to fuzzify OWL ontology statements. A common 

point in those works is the use of formal ways to express the assignment of a truth 

degree to RDF triples or OWL axioms. In our proposition, numerical membership 

values identification is done in background using mathematical deduction without the 

need of formal expressions (e.g. weight priority of a query term). Some other works 

are near our proposition:  [9] shows that it is useful to express a fuzzy proximity val-

ues between terms of a query. By using a fuzzy set of rules [10] shows the usability of 

a ranking system based on fuzzy inference. In the query enhancement issue, many 

works are proposed [11-12]; our method is characterized by its simplicity and flexibil-

ity. 

4 Conclusion 

In this paper we studied two interoperable axes in the information retrieval process: 

the Semantic Web and the Fuzzy Logic. We propose to enhance query background 

expression and also to enhance ranking process using fuzzy rules. Given that Numeri-

cal inputs of fuzzy rules are deduced from the meta-documents characteristics, it re-

mains to identify in the short run, the numerical limits to fuzzy sets on which we will 

apply the fuzzy rules set. Equally, we plan to extend the current proposition and to 

investigate the concept of user profile in order to cover more relevant result docu-

ment. 
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Abstract. Public authorities are increasingly sharing sets of open data.
These data are often preprocessed (e.g. smoothened, aggregated) to avoid
to expose sensible data, while trying to preserve their reliability. We
present two procedures for tackling the lack of methods for measuring
the open data reliability. The first procedure is based on a comparison be-
tween open and closed data, and the second derives reliability estimates
from the analysis of open data only. We evaluate these two procedures
over data from the data.police.uk website and from the Hampshire Po-
lice Constabulary in the UK. With the first procedure we show that the
open data reliability is high despite preprocessing, while with the second
one we show how it is possible to achieve interesting results concerning
the open data reliability estimation when analyzing open data alone.

1 Introduction

Open Government Data are valuable for boosting the economy, enhancing the
transparency of public administration and empowering the citizens. These data
are often sensitive and so need to be preprocessed for privacy reasons. In the
paper, we refer to the public Open Government Data as “open data” and to the
original data as “closed data”.

Different sources expose open data in different manners. For example, Crime
Reports [4] and data.police.uk [15] both publish UK crime data, but in differ-
ent format (maps vs. CSV files), level of aggregation, smoothing and timeliness
(daily vs. monthly update), which all represent possible reasons for reliability
variations. For different stakeholders it is important to understand how reliable
different sources are. The police, who can access the closed data, needs to know
if open data are reliable enough e.g. to be used in projects involving the citizens.
The citizens wish to know the reliability of the different datasets to understand
the reasons for differences between authoritative sources. We present two proce-
dures to cope with the lack of methods to analyze these data: one for computing
the reliability of open data by comparing them with the closed data, and one to
estimate variations in the reliability of the open data by relying only on these.
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The analysis of open data is spreading, led by the Open Data Institute
(http://www.theodi.org) and others. For instance, Koch-Weser [10] presents
an interesting analysis of the reliability of China’s Economic Data, thus analyzing
the same aspect as we are interested in, on a different typology of dataset. Tools
for the quality estimation of open data are being developed (e.g. Talend Open
Studio for Data Quality [14], Data Cleaner [8]), but their goal is less targeted
than ours, since they aim at quantifying the quality of open data in general as to
provide a substrate for a more comprehensive open data analysis infrastructure.
Relevant for this work is also a paper from Ceolin et al. that uses a statistical
approach to model categorical Web data [3] and one that uses provenance to
estimate reliability [2]. We plan to adopt the approach proposed by Ebden et
al. [6] to measure the impact of different processes on the data.

The rest of this paper is structured as follows: Section 2 describes a procedure
for measuring the reliability of open data given closed data and a case study
implementation; Section 3 presents a procedure for analyzing open data and a
case study; lastly, Section 4 provides final discussion.

2 Procedure for Comparing Closed and Open Data

The UK Police Home Office aggregates (i.e., presents coarsely) and smoothens
(introduces some small error) the open data for privacy reasons. We represent
the open data provenance with the PROV Ontology [17] as in Fig. 1. In general,
a faulty aggregation process or aggregating data coming from heterogeneous
sources not properly manipulated might unexpectedly affect the resulting data
reliability, while smoothing should affect it explicitly but in a limited and con-
trolled manner. The following procedure aims at capturing such variation:

Closed Data

Open Data

Aggregation Smoothing

rdf:type

prov:Entity

prov:Activity

Fig. 1: Open Data Creation Provenance.

Select the relevant data Closed data might be spurious, so we select the data
items that are relevant for our analyses. The selection of the data might
involve the temporal aspect (i.e. only data referring to the relevant period
are considered), their geographical location (select only the data regarding
the area of interest), or other constraints and their combination;

35



Roll up categorical data There exists a hierarchy of categories because each
level is available to a different audience: open data are presented coarsely to
the citizens, while closed data are fine grained. We bring the categorization
to the same level, hence bringing the closed data to the same level as the
open data.

Compare the corresponding counts Different measures are possible, because
the difference between datasets can be considered from different points of
view: relative, absolute, etc.. For instance, the ratio of the correct items over
the total amount or the Wilcoxon signed-rank test [18].

Case Study 1 We compare a set of crime counts per categories grouped per
neighbourhood and month from data.police.uk with a limited set (30,436 rel-
evant entries) of corresponding closed data from the Hampshire Constabulary
by implementing the procedure above as follows:

Data Selection Select the data for the relevant months and geographical area.
In this latter case, we load the KML file describing the Hampshire Constab-
ulary area using the maptools library [1] in the R environment [13] and check
if the crimes coordinates occur therein using the SDMTools library [16];

Data Aggregation We apply two kinds of aggregation: temporal, to group
together data about the same month and geographical, to aggregate per
neighbourhood. The closed data items report the address of occurrence of
the crimes, while the open data are aggregated per police neighbourhood.
We match the zip code of the addresses and the neighbourhoods using the
MapIt API [11].

Data Comparison We average the result of the Wilcoxon signed-rank test
applied per neighbourhood, to compare open and aggregated closed data.

For each neighbourhood we compute a Wilcoxon signed-rank test to check the
significance of the difference between open and closed data and we average the
outcomes (see Table 1a). We compute the test on the differences of the two counts
(open and closed data) to check whether the estimated average of the distribution
of the differences is zero (that is, the two distributions are statistically equivalent)
or not.

The results at our disposal are limited, since we could analyze only two
complete months. Still, we can say that smoothing, in these datasets, introduces
a small but significant error. The highest error average (2.75) occurs with the
entry with the highest error variance: this suggests that the higher error is due
to a few, sparse elements, and not to the majority of the items. To prove this,
we checked the error distribution among the entities and we reported the results
in Table 1b. A χ2 test [12] at 95% confidence level confirms that the two error
distributions do not differ in a statistically significant manner.

3 Procedure for Analyzing Open Data

We propose here a procedure for analyzing open data alone, to be used when
closed data are not available, which provides weaker but still useful results,
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Table 1: Statistics about the errors in the comparison between open and closed
data, and error distibution.

(a) Statistics about the compar-
ison of open and closed data.

Months Avg Var % Different
error error Entries

month 1 2.75 12.28 79%

month 2 0.86 3.52 86%

(b) Percentage of items in each open dataset
presenting a relative error of at most 0%,
25%, 50%, 75% and 100% with respect to the
corresponding closed data item.

Month % of Entries per Relative Error
0% ≤ 25% ≤ 50% ≤ 75% ≤ 100%

month 1 35% 44% 65% 74% 96%

month 2 34% 43% 57% 65% 91%

compared to the previous one. It compares each dataset with the consecutive
one, measures their similarity and pinpoints the occurrence of possible reliabil-
ity changes based on variations of similarity over time. We use a new similarity
measure for comparing datasets, that aggregates different similarity “tests” per-
formed on couples of datasets. Given two datasets d1 and d2, their similarity is
computed as follows:

sim(d1, d2) = avg(t1(d1, d2), . . . , tn(d1, d2))

where avg aggregates the results of n similarity tests ti, with i ∈ {1 . . . n}. We
propose the following families of tests, although we are not restricted to them:

Statistical test Check with a statistical test (e.g. Wilcoxon signed-rank test)
if the data are drawn from significantly different distributions.

Model Comparison test Build a model (e.g. linear regression [7] or Support
Vector Machines [5]) on one of the two datasets and evaluate its perfor-
mance (precision, recall) over the other dataset. These models represent an
abstraction over the first dataset and by evaluating them over the other one,
we check, according to such a model, how similar the two datasets are.

The tests can be aggregated, for instance, by averaging them or by merging them
in a “subjective opinion” [9], which is a construct of a probabilistic logic that
is equivalent to a Beta probability distribution about the correct value for the
similarity. The expected value of the Beta is close to the arithmetical average,
but the variance represents the uncertainty in our calculation, since it reduces as
long as we consider more tests. The similarity measure alone does not stand for
reliability: there can be many reasons for a similarity variation (e.g. a new law or
a particular event that makes the crime rate rise) without implying a reliability
change. Also, a similarity value alone might be difficult to interpret in terms of
reliability, when a gold standard is not available. So we analyze the similarity of
consecutive datasets to pinpoint items that possibly present reliability variations:
if the similarity between datasets remains similar for a period of time, and then
a variation occurs, one of the possible reasons for such a variation is a change
in the data reliability. Unfortunately, we can not discriminate between this and
other causes, unless we have additional information at our disposal.
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Case Study 2 We analyze the police open data for the Hampshire Constabulary
from data.police.uk, that consist of crime counts, aggregated per neighbour-
hood from April 2011 to December 2012. We know that in this period open
data creation policy changes occurred. These might have affected the datasets
reliability. We compare the distribution of the crime counts among the crime
categories, and we represent the similarity between two datasets as the percent-
age of neighbourhoods that are statistically similar (according to a Wilcoxon
signed-rank test). The results of the comparison are reported in Figure 2, where
each point represents the similarity between two datasets, in sequence. At the
twelfth comparison the similarity trend breaks and then starts a new one. That
is likely to be a point where the reliability diverges as the similarity variation
possibly hints, and it actually coincides with a policy change (the number of
neighbourhoods varies from 248 to 232), and since the area divided by these
neighbourhoods is the same, this possibly introduces a variation in the impact
of the smoothing error, but we do not have at our disposal a confirmation of such
impact. As we stressed earlier, the procedure allows us only to pinpoint possibly
problematic data, but without additional information, our analysis cannot be
precise, that is, we cannot be certain about the reason of the similarity change.
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Fig. 2: Plot of the similarity of consequent datasets of crime counts for the Hamp-
shire Constabulary from the data.police.uk website.

4 Conclusion and Future Work

We presented two procedures for the computation of the reliability of open data:
one based on the comparison between open and closed data, the other one based
on open data alone. Both procedures have been evaluated using data from the
data.police.uk website and from the Hampshire Police Constabulary in the
UK. The first procedure allows us to estimate the reliability of open data, and
shows that smoothing procedures, although introducing some error, preserve a
high data reliability. The second procedure is useful to grasp indications about
the data reliability, although more weakly than the first one, since it allows
only to pinpoint possible reliability variations in the data. Despite the fact that
open data are exposed by authoritative institutions, these procedures allow us
to enrich the open data with information about their reliability, to increase the
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confidence of both the insider specialist and the common citizen who use them
and to help in understanding possible discrepancies between data exposed by
different authorities. We plan to extend the range of analyses applied and of
datasets considered. Moreover, we intend to map the data with Linked Data
entities to combine the statistical analyses with semantics.
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Abstract. The emergence in recent years of initiatives like the Linked Open Data
(LOD) has led to a significant increase in the amount of structured semantic data
on the Web. In this paper we argue that the shareability and wider reuse of such
data can very often be hampered by the existence of vagueness within it, as this
makes the data’s meaning less explicit. Moreover, as a way to reduce this prob-
lem, we propose a vagueness metaontology that may represent in an explicit way
the nature and characteristics of vague elements within semantic data.

1 Introduction

Ontologies are formal shareable conceptualizations of domains, describing the mean-
ing of domain aspects in a common, machine-processable form by means of concepts
and their interrelations [4], and enabling the production and sharing of data that are
commonly understood among human and software agents. Achieving the latter requires
ensuring that the meaning of ontology elements is explicit and shareable, namely that all
users have an unambiguous and consensual understanding of what each ontological el-
ement actually represents. In this paper we examine how vagueness affects shareability
and reusability of semantic data. Vagueness is a common natural language phenomenon,
demonstrated by concepts with blurred boundaries, like tall, expert etc., for which it is
difficult to determine precisely their extensions (e.g. some people are borderline tall:
neither clearly “tall” nor “not tall”) [5].

Our position is threefold. i) That vagueness exists not only within isolated, application-
specific, semantic data but also in public datasets that should be shareable and reusable.
ii) That vagueness hampers the comprehensibility and shareability of these datasets and
cause problems. iii) That the negative effects of vagueness can be partially tackled by
making the data vagueness-aware, namely by annotating their elements with metain-
formation about the nature and characteristics of their vagueness. In the next section
we explain and support the first two parts of our position with real world examples. In
section 3 we describe how semantic data can become vagueness-aware via a vagueness
metaontology. Sections 4 and 5 present related work and summarize our own.

2 Motivation and Approach Rationale

The possibility of vagueness in ontologies and semantic data has long been recognized
in the research literature, especially in the area of Fuzzy Ontologies [3] [2]. An inspec-
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tion of well-known ontologies and public semantic data reveals that the possibility is
indeed a reality. A characteristic group of such elements are categorization relations
where entities are assigned to categories with no clear applicability criteria. An exam-
ple of such a relation is “hasFilmGenre”, found in Linked Data datasets like Linked-
MDB (http://linkedmdb.org) and DBpedia (http://dbpedia.org), that
relates films with the genres they belong to. As most genres have no clear applicability
criteria there will be films for which it is difficult to decide whether or not they be-
long to a given genre. A similar argument can be made for the DBpedia relations “is
dbpedia-owl:ideology of ” and “dbpedia-owl:movement”. Another group of vague ele-
ments comprises specializations of concepts according to some vague property of them.
Examples include “Famous Person” and “Big Building”, in the Cyc Ontology (http:
//www.cyc.com/platform/opencyc), and “Managerial Role” and “Competi-
tor”, found in the Business Role Ontology (http://www.ip-super.org).

The presence of vague terms in semantic data often causes disagreements among
the people who develop, maintain or use it. Such a situation arose in a real life sce-
nario where we faced significant difficulties in defining concepts like “Critical System
Process” or “Strategic Market Participant” while trying to develop an electricity mar-
ket ontology. When, for example, we asked our domain experts to provide exemplary
instances of critical processes, there was dispute among them about whether certain pro-
cesses qualified. Not only did different domain experts have different criteria of process
criticality, but neither could anyone really decide which of those criteria were sufficient
for the classification. In other words, the problem was the vagueness of the predicate
“critical”. While disagreements may be overcome by consensus, they are inevitable as
more users alter, extend, or use semantic data. A worse situation is when a user misinter-
prets the intended meaning of a vague term and uses it wrongly. Imagine an enterprise
ontology where the concept “Strategic Client” was initially created and populated by
the company’s Financial Manager whose implicit criterion was the amount of revenue
the clients generated for the company. Imagine also the new R&D Director querying
the instances of this concept when crafting an R&D strategy. If their own applicability
criteria for the term “Strategic” do not coincide with the Financial Manager’s, using the
returned list of clients might lead to poor decisions. The above examples show how the
inherent context-dependence and subjectivity that characterizes vagueness may affect
shareability in a negative way, due to potential disagreements or misunderstandings.
More generally, typical use-case scenarios where this may happen include:

1. Structuring Data with a Vague Ontology: When domain experts are asked to
define instances of vague concepts and relations, then disagreements may occur on
whether particular entities constitute instances of them.

2. Utilizing Vague Facts in Ontology-Based Systems: When knowledge-based sys-
tems reason with vague facts, their output might not be optimal for those users who
disagree with these facts.

3. Integrating Vague Semantic Information: When semantic data from several sources
need to be merged then the merging of particular vague elements can lead to data
that will not be valid for all its users.

4. Evaluating Vague Semantic Datasets for Reuse: When data practitioners need to
decide whether a particular dataset is suitable for their needs, the existence of vague
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elements can make this decision harder. It can be quite difficult for them to assess
a priori whether the data related to these elements are valid for their application
context.

To reduce the negative effects of vagueness, we put forward the notion of vagueness-
aware semantic data, informally defined as “semantic data whose vague ontological
elements are accompanied by comprehensive metainformation that describes the nature
and characteristics of their vagueness”. For example, a useful piece of metainformation
is the set of applicability criteria that the element creator had in mind when defining the
element (e.g. the amount of generated revenue as a criterion for a client to be strate-
gic in the previous section’s example). Another is the element creator itself (e.g. the
author of a vague fact). In any case, our position is that having such metainformation,
explicitly represented and published along with the vague semantic data, can improve
the latter’s comprehensibility and shareability, especially in regard to the four scenar-
ios of the previous section. For example, the knowledge of the same vague concept’s
intended applicability criteria in two different datasets can i) prevent their merging in
case these criteria are different and ii) help a data practitioner decide which of these two
concepts’s associated instances are more suitable for his/her application.

3 Making Ontologies Vagueness-Aware

3.1 Key Vagueness Aspects

In the literature two kinds of vagueness are identified: quantitative- or degree-vagueness;
and qualitative- or combinatory vagueness [5]. A predicate has degree-vagueness if the
existence of borderline cases stems from the lack of precise boundaries for the predicate
along one or more dimensions (e.g. “bald” lacks sharp boundaries along the dimension
of hair quantity while “red” can be vague for both brightness and saturation). A pred-
icate has combinatory vagueness if there are a variety of conditions pertaining to the
predicate, but it is not possible to make any crisp identification of those combinations
which are sufficient for application. A classical example of this type is “religion” as
there are certain features that all religions share (e.g. beliefs in supernatural beings, rit-
ual acts) yet it is not clear which are able to classify something as a religion. Based on
this typology, we suggest that for a given vague term it is important to represent and
share the following explicitly:

– The type of the term’s vagueness: Knowing whether a term has quantitative or
qualitative vagueness is important as elements with an intended (but not explicitly
stated) quantitative vagueness can be considered by others as having qualitative
vagueness and vice versa.

– The dimensions of the term’s quantitative vagueness: When the term has quan-
titative vagueness it is important to state explicitly its intended dimensions. E.g.,
if a CEO does not make explicit that for a client to be classified as strategic, its
R&D budget should be the only pertinent factor, it will be rare for other company
members to share the same view as the vagueness of the term “strategic” is multi-
dimensional.
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– The necessary applicability conditions of the term’s qualitative vagueness:
Even though a term with qualitative vagueness lacks a clear definition of sufficient
conditions for objects to satisfy it, it can still be useful to define the conditions
that are necessary for its applicability. This will not only narrow down the possible
interpretations of the term (by including conditions that other people may forget
or ignore) but will also provide better grounding on any discussion or debate that
might arise about its meaning.

Furthermore, vagueness is subjective and context dependent. The first has to do
with the same vague term being interpreted differently by different users. Two company
executives might have different criteria for the term “strategic client”. Even if they share
an understanding of the type and dimensions of this term’s vagueness, a certain amount
of R&D budget (e.g. 1 million euros) makes a client strategic for one but not the other.
Similarly, context dependence has to do with the same vague term being interpreted or
applied differently in different contexts even by the same user; celebrating an anniver-
sary is different to celebrating a birthday when it comes to judging how expensive a
restaurant is. Therefore we additionally suggest that one should explicitly represent the
term’s creator as well as the applicability context for which it is defined or in which
it is used.

3.2 A Metamodel of Vague Ontology Elements

Ontology elements that can be vague are typically concepts, relations, attributes and
datatypes [2]. A concept is vague if – in the given domain, context or application sce-
nario – it admits borderline cases; namely if there could be individuals for which it is
indeterminate whether they instantiate the concept. Similarly, a relation is vague if there
could be pairs of individuals for which it is indeterminate whether they stand in the rela-
tion. The same applies for attributes and pairs of individuals and literal values. Finally, a
vague datatype consists of a set of vague terms which may be used within the ontology
as attribute values (e.g. performance may take as values terms like poor, mediocre and
good). To formally represent these vague elements by means of a metaontology, we con-
sider the OWL metamodel defined in [6] and extend it by defining each vague element
as a subclass of its corresponding element and by defining appropriate metaproperties
that reflect the key aspects discussed in the previous sections. Figures 1 and 2 provide
an overview of the metamodel while a concrete example of how this may be used to an-
notate a vague ontology is available at http://boris.villazon.terrazas.
name/data/VagueOntologyExample.ttl

The metamodel is to be used by producers and consumers of semantic data, the
former utilizing it to annotate the vague part of their ontologies with relevant metain-
formation and the latter querying this metainformation to better use them. Vagueness
annotation is a manual task, meaning that knowledge engineers and domain experts
should detect the vague elements, determine the relevant characteristics (type, dimen-
sions, etc.) and populate the metamodel. How this task may be best facilitated is a
subject for further research, but a good starting point would be the integration of the
process within traditional semantic data production processes. Regarding the consump-
tion of a vagueness-aware ontology, the first benefit it has for its potential users is that
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Fig. 1. Classes of Vagueness Metamodel

Fig. 2. Properties of Vague Elements

it makes them aware of the existence of vagueness in the domain. This is important be-
cause vagueness is not always obvious, meaning it can easily be overlooked and cause
problems. The second benefit is that the ontology’s users may query each of the vague
elements’ metainformation and use it in order to reduce these problems.

For example, when structuring data with a vague ontology, disagreements may oc-
cur on whether particular objects are instances of vague concepts. If, however, informa-
tion like the applicability conditions and contexts of these elements are known to the
people who perform this task, then their possible interpretation spaces will be reduced.
Also, when vague elements are used within some end-user application, the availability
of vagueness metainformation can help the system’s developers in two ways. i) It will
make them aware of the fact that the ontology contains vague information and thus some
of the system’s output might not be considered accurate by the end-users. ii) They may
use the vagueness metainformation to try to deal with that. For example, the applicabil-
ity context of a vague axiom can be used in a recommendation system to explain why a
particular item was recommended. Finally, in dataset integration and evaluation scenar-
ios, the vagueness metamodel can be used to compare ontologies’ vagueness compati-
bility. For example, if the same two vague classes have different vagueness dimensions,
then the one class’s set of instance membership axioms might not be appropriate for the
second’s as it may have been defined with a different vagueness interpretation in mind.
A simple query to the two ontologies’ vagueness metamodel could reveal this issue.

44



4 Related Work

Representing semantic data metainformation is common in the community, like the
VoID vocabulary for describing Linked datasets [1]. However, no vagueness-related
vocabularies are yet available. In a more relevant approach an OWL 2 model for repre-
senting fuzzy ontologies is defined [3]. It focuses, however, on enabling the represen-
tation of fuzzy degrees and fuzzy membership functions within an ontology, without
any information regarding the intended meaning of the fuzzy elements’ vagueness or
the interpretation of their degrees (e.g. the dimensions a concept membership degree
covers). Thus, our approach is complementary to fuzzy ontology related works, in the
sense that it may be used to enhance the comprehensibility of fuzzy degrees.

5 Conclusions and Future Work

In this paper we considered vagueness in semantic data and we demonstrated the need
and potential benefits of making the latter vagueness-aware by annotating their elements
with a metaontology that explicitly describes the vagueness’s nature and characteristics.
The idea is that even though the availability of the metainformation will not eliminate
vagueness, it will manage to reduce the high level of disagreement and low level of
comprehensibility it may cause. This increased semantic data comprehensibility and
shareability we intend to establish in our future work through user-based experiments.
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Abstract. This paper focuses on the incorporation of the Markov Logic
Network (MLN) formalism as a plug-in for UnBBayes, a Java framework
for probabilistic reasoning based on graphical models. MLN is a formal-
ism for probabilistic reasoning which combines the capacity of dealing
with uncertainty tolerating imperfections and contradictory knowledge
based a Markov Network (MN) with the expressiveness of First Order
Logic. A MLN provides a compact language for specifying very large MNs
and the ability to incorporate, in modular form, large domain of knowl-
edge (expressed in First Order Logic sentences) inside itself. A Graphical
User Interface for the software Tuffy was implemented into UnBBayes
to facilitate the creation, and inference of MLN models. Tuffy is a Java
open source MLN engine.

Keywords: Markov Logic Network, MLN, Tuffy, UnBBayes, Markov
Network, probabilistic reasoning, probabilistic graphical models

1 Introduction

In the past decade, several languages have been proposed to deal with complex
knowledge representation problems that also need to deal with uncertainty. A
frequent approach is to combine both logic and probabilistic formalisms resulting
in a powerful model for knowledge representation and treatment of uncertainty.
Some examples of these approaches were build and have been improved ev-
ery day as Markov Logic Networks (MLN) [1], Multi-Entity Bayesian Networks
(MEBN) [3], Probabilistic Relational Models (PRM) [2], Relational Markov Net-
works (RMN) [10], and Structural Logistic Regression (SLR) [7].

Markov Logic Network (MLN) is a principled formalism which combines
First-Order Logic (FOL) with Markov network (MN). An MLN, basically, is
a first-order knowledge base where a weight is assigned to each formula. The
weight of a formula indicates how strong the formula is as a constraint. Together
with a finite set of constants, an MLN can be grounded as a Markov network.
This way, a MLN can be seen as a template for building Markov networks [1].

46



There are a few implementations for MLN like Alchemy [1] in C++, Tuffy
[6] in Java, ProbCog [11] in both Python and Java, and Markov TheBeast [9] in
Java. In some of them there is no graphical user interface (GUI). The one that
does, the interface is quite simple providing no real ease-of-use. In general, as
these software are not very friendly, they become hard to use for users without
previous experience with their programming tasks and command lines.

This paper presents an implementation of a Java tool that consists of a GUI to
facilitate the task of making inferences, creating, and editing MLN models. This
tool was developed at the University of Brasilia (UnB) and uses the software
Tuffy as a library. Its current features include GUIs for modeling terms of a
knowledge base into a tree structure and for searching them in order to help the
user find terms easily in large models. Moreover, it is also possible to edit and to
persist these structures as a standard MLN file (compatible with both Tuffy and
Alchemy). Besides that, every parameter that can be set on Tuffy can be easily
set in the GUI. It even supports the addition in the GUI of new parameters that
might be present in future versions of Tuffy using only a configuration file. This
tool was implemented as a plug-in for UnBBayes, a Java open source software
developed at UnB that is capable of modeling, making inferences and learning
probabilistic networks [4].

This paper is structured as follows. Section 2 presents the MLN. Section 3
overviews some implementations of MLN and presents the major reasons for
choosing Tuffy as the application programming interface (API) behind this plug-
in. Section 4 introduces the GUI developed as a plug-in for UnBBayes.

2 Markov Logic Networks

A knowledge base of First-Order Logic (FOL) can be viewed as a set of con-
straints on possible worlds. Each formula has an associated weight that reflects
how strong this formula is as a constraint [1]. An MLN is a set with formulas of
FOL assigned to a real-valued weight for each formula. Together with a finite set
of constants, it defines a Markov Network (MN). Each state of the MN generated
represents a possible world of the generic MLN representation. A possible world
determines the truth value of each ground (i.e. instantiated) predicate. Thus,
it is said that an MLN is like a template for constructing MNs. Given different
set of constants, it will produce different MNs with different values and sizes.
However they have the same parameters and regularities in structure. Different
instantiated formulas still have the same weights. So, in MLN it is possible to use
inference methods generally used for MNs, since the used network is a grounded
one. However, due to the fact that most of time the grounded network is large
and complex, to use this method could be infeasible. Therefore, approximate
and lifted inference algorithms have been proposed [1].

Maximum a Posteriori (MAP) inference (i.e. finding the most likely state of
the world consistent with some evidence) and marginal inference (i.e. computing
arbitrary conditional probabilities) are common approaches to making inferences
in MLN. Learning algorithms are used to build, from historic data, models that
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represent a problem to be treated. For this formalism, learning methods are used
to construct or refine a MLN. Two types of learning are specified: weight learning
(i.e. which tries to find the weights of the specified formulas that maximize
the likelihood or conditional likelihood of a relational database) and the harder
technique of structure learning (i.e. which tries to learn the formulas themselves).

More details on MLN can be found in [1] and will not be covered in this
paper.

3 The choice of an implementation

With the intent of building a GUI for MLN, the first step is to implement or
find an existing implementation of the formalism. So, pros and cons of some im-
plementations have to be analyzed. If no implementation had compatibility with
UnBBayes, it would be necessary to create a new one. Fortunately it was not
the case. The pros and cons of the more common implementations are presented
below. As our goal was to build a plug-in for UnBBayes, the programming lan-
guage had a larger weight than the features available on the tool. UnBBayes [4]
is an open source application developed in Java that provides a framework for
building and reasoning with probabilistic graphical models. Since version 1.5.1,
it works with Java Plugin Framework (JPF). JPF allows the construction of
scalable projects, loading plug-ins at runtime. The MLN GUI has been built as
a plug-in for UnBBayes.The software analyzed were Alchemy [1], ProbCog [11],
TheBeast [9] and Tuffy [6].

3.1 Alchemy

Alchemy is the reference for other implementations of MLN and is the most
complete of them. It covers MAP Inference, marginal inference, weight learning,
structure learning and other features from each of the mentioned topics. Alchemy
is an open source software developed in C/C++. It does not have a GUI and
it works only in Linux or Linux shell emulator. Alchemy was the first option to
extend, but its programing language is not easily integrated with Java.

3.2 TheBeast

TheBeast [8] is an open source and is a Statistical Relational Learning software
based on MLN. Although it is developed in Java, it does not have much docu-
mentation and it does not work similarly to Alchemy. This fact impacts on that
it would be harder to work with it. TheBeast has no GUI implemented either.

3.3 ProbCog

ProbCog is an open source software for Statistical Relational Learning that
supports learning and inference for relational domains. Merged to ProbCog, is
PyMLN, a toolbox and a software library for learning and reasoning in MLN.
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It has a GUI for MLN but it, seemingly, shows the necessary files for inference
and the main parameters to be more easily selected, but nothing beyond the
basic. Most of the code of ProgCog is developed in Java, although its MLN tool
is developed in Python.

3.4 Tuffy

Tuffy is an open source Markov Logic Network engine. It is developed in Java
and makes use of a PostgreSQL database. Tuffy is in version 0.3 and is capable
of MRF partitioning, MAP inference, marginal inference and weight learning.
Since Tuffy has many similar features to Alchemy, as weel as the same structure
for input files, it has no GUI, and it is implemented in the same programming
language as UnBBayes, it ended up being the most suitable MLN implementation
to be used in the MLN GUI plug-in.

4 The GUI for MLN

There are several helpful easy to use GUI tools for Bayesian networks. However,
this is not true to MLN yet. For most of them, the only way to make it work is
to set command line parameters and then enter commands through a console.
Sometimes you must memorize a bunch of commands if you want to realize a
task fast, while you could just press buttons and choose options with some clicks
in a more easy to use GUI interface. Creating a GUI to simplify this process
of designing and using MLNs was the main motivation of this research. The
following paragraphs describe the main features of a proposed GUI for MLN.

This project of a GUI for MLN into UnBBayes was built as a JPF plug-in.
The plug-in structure provides a way to run a new project inside the running
environment of UnBBayes. The bind between the new plug-in and the core of
UnBBayes happens in a way that no changes are needed in the core structure.

Basically, building new plug-in implementations for UnBBayes is really sim-
ple, since a stub implementation is available in [5].

Figure 1 presents the GUI divided in numbered parts. Each part is described
bellow.

The Tuffy input files are: a MLN file (.mln), an evidence file (.db) and a query
file (.db). The last one can be replaced passing its content through command line.
Figure 1 Part 1 shows the possibility to load this three files and the possibility
to send the query predicates through a text field.

When the MLN file and the evidence file are loaded, their terms (i.e. pred-
icates, weighted formulas and evidences) are separated and organized in a tree
structure as shown in Figure 1 Part 5. This tree structure gives a great gain of
visualization and differences between structures into the MLN.

Figure 1 Part 2 presents a very useful search tool. It searches dynamically
predicates, formulas, and evidence that match the inputted string. This feature
is useful when working with very large MLNs.
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Fig. 1. GUI for MLN implemented as plugin into UnBBayes

The GUI also presents a way to add and remove predicates, formulas and
evidence. This feature is shown in Figure 1 Part 3. Lots of terms can be directly
inputted into the correct classification. The deletion is made from a drop down
list which brings to the user all the existing terms. Every change made through
this feature is persisted in the original file. This feature makes it easier for the
user to include or remove terms in a MLN model.

Figure 1 Part 4 allows the user to choose what inference method to use and
the button to trigger the inference process, which will be executed by Tuffy in
the background. Tuffy is embedded into UnBBayes and used as a library through
its API.

Figure 1 Part 7 is displayed when the ”inference” tab is chosen. It presents
the output in a text area, the same way that it is presented in the output file in
Tuffy.

Figure 1 Part 6 presents the parameters of Tuffy in an easy way to set and
save. The parameters of Tuffy were parameterized by type that they represent
(e.g. integer, float, boolean and string). This allows the parameters to be loaded
to the interface from a configuration file and new parameters added in new
versions of Tuffy can be easily incorporated to UnBBayes without the need to
change any programming code. The dynamic values of the parameters are defined
in another configuration file.

5 Conclusion

This paper presents a GUI for Tuffy, a Java Markov Logic Network inference
engine. As shown, this GUI facilitates the task of creating MLNs models and
reasoning with them. This GUI was implemented as a JFP plug-in for the
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UnBBayes software. UnBBayes and this plug-in1 is available from http://

unbbayes.sourceforge.net/ under GPL license.
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