
Continual Verification of Non-Functional
Properties in Cloud-Based Systems∗

Invited Paper

Radu Calinescu, Kenneth Johnson, Yasmin Rafiq, Simos Gerasimou,
Gabriel Costa Silva and Stanimir N. Pehlivanov

Department of Computer Science, University of York, UK

Abstract. Cloud-based systems are used to deliver business-critical and
safety-critical services in domains ranging from e-commerce and e-govern-
ment to finance and healthcare. Many of these systems must comply with
strict non-functional requirements while evolving in order to adapt to
changing workloads and environments. To achieve this compliance, for-
mal techniques traditionally employed to verify the non-functional prop-
erties of critical systems at design time must also be used during their
operation. We describe how a formal technique called runtime quantita-
tive verification can be used to verify cloud-based systems continually.

1 Introduction

Few new technologies have been embraced with as much enthusiasm as cloud
computing. Users, providers and policy makers have set out to exploit the ad-
vantages of the new technology and to encourage its adoption. Their success
stories abound, and the range of services delivered by cloud-based systems is
growing at a fast pace. Business-critical e-commerce and e-government services,
and safety-critical healthcare services are increasingly part of this range.

Using cloud-based systems to deliver critical services is a double-edged sword.
On the one hand, the ability of cloud to dynamically scale resource allocations in
line with changing workloads makes it particularly suited for running such sys-
tems. On the other hand, its reliance on third-party hardware, software and net-
working can lead to violations of the strict non-functional requirements (NFRs)
associated with critical services. Taking advantage of the former characteristic of
cloud without being adversely affected by the latter represents a great challenge,
as the traditional approaches to verifying NFRs are often ineffective in a cloud
setting. NFR verification approaches such as model checking, design by contract
and quality assurance were devised for off-line use during the design or verifica-
tion and validation stages of system development. As a result, they have high
overheads and operate with models and non-functional properties (NFPs) that
in the case of cloud-based systems evolve continually as the workloads, allocated
resources and requirements of these systems change over time.

In this survey paper, we describe how a formal technique called runtime
quantitative verification [1] can be used (a) to verify the NFPs of evolving cloud-
based systems continually; and (b) to guide this evolution towards configurations
that are guaranteed to satisfy the system NFRs.

∗ This work was partly supported by the UK EPSRC grant EP/H042644/1.

Proceedings of NiM-ALP 2013 1



2 Runtime Quantitative Verification

Quantitative verification is a mathematically based technique for analysing the
correctness, performance and reliability NFPs of systems that exhibit stochastic
behaviour [14]. To analyse the NFPs of a system, the technique uses finite-state
Markov models comprising states that correspond to different system config-
urations, and edges associated with the transitions that are possible between
these states. Depending on the type of the analysed NFPs, the edges are an-
notated with transition probabilities or transition rates; and the model states
and transitions may additionally be labelled with costs/rewards. Given a model
and an NFP specified formally in temporal logic extended with probabilities
and costs/rewards, probabilistic model checkers that implement the technique
analyse the model exhaustively in order to evaluate the property.

Like most formal verification techniques, quantitative verification is tradi-
tionally used in off-line settings, to evaluate the performance-cost tradeoffs of
alternative system designs, or to analyse NFR compliance for existing systems. In
the latter case, systems in violation of their NFRs undergo off-line maintenance.
This approach does not meet the demands of emerging application scenarios
in which systems need to be continually verified as they adapt autonomously,
whenever a need for change is detected while they operate [6]. To address this
need for continual verification, the runtime variant of the approach depicted in
Fig. 1 was introduced in [10, 11] and further refined in [1, 4, 9, 12].

family of system
models for

different scenarios

model
selection

system & environ.
parameters defining
the current scenario

monitor system
& its environment

cloud-based
system

selected
model

reconfiguration
plan

non-functional
requirements

quantitative
verification

quantitative
verification

results

verification result
analysis & new
config. selection

Fig. 1. Continual verification of a cloud-based system—Monitoring is used to identify
the scenario the system operates in, and to select a model whose quantitative verifica-
tion enables the detection or, sometimes, prediction of NFR violations. The subsequent
synthesis and execution of a provably correct reconfiguration plan help the system re-
instate or maintain compliance with NFRs such as response time, availability and cost.

Proceedings of NiM-ALP 2013 2



3 Continual Verification of Cloud-Deployed Services

Continual verification can be used to manage the reliability of multi-tier software
services deployed on cloud infrastructure owned by the service provider. As we
show in [8, 13], quantitative verification at runtime enables service administrators
to quantify the impact of planned and unexpected changes on the reliability of
their services, as the approach provides precise answers to questions such as:

Q1 What is the maximum probability of a service becoming unavailable within
a one-month time period?

Q2 How will the probability of failure for a service be affected if one of its
database instances is switched off to reflect a decrease in service workload?

Q3 How many additional VMs should be used to run a service component when
moving it to VMs placed on servers with fewer memory blocks?

Service administrators (or their automated resource management scripts) can
then respond with remedial action if the service fails to comply with its NFRs,
e.g., by discarding the planned removal of a component instance.

Compositional NFR Verification Standard verification uses a monolithic
model constructed from the parallel composition of models of all system com-
ponents, in order to capture interleaving and synchronised behaviour between
components. Despite significant improvements in the efficiency of quantitative
verification techniques and tools, this often results in high overheads that make
the runtime use of the technique unfeasible because the system may change again
before its latest change has been fully analysed. This problem is addressed by
compositional NFR verification, a formal technique that replaces the analysis
of monolithic system models with a sequence of verification steps carried out
component-wise on local NFPs. The ordering of the steps is determined accord-
ing to component dependencies within the analysed system, and ultimately helps
infer global system NFPs. Compositional verification reduces the NFP analysis
overheads significantly, and in [8] we show that it can be used for continual NFP
verification in certain scenarios associated with cloud-based systems.

Incremental NFR Verification Cloud-deployed services operate in a highly
dynamic environment where service components are frequently added, removed
and scaled according to demand, or might fail unexpectedly. While composi-
tional verification broadens the range of systems to which NFR verification can
be applied effectively, it cannot cope with such rapid changes. Our INVEST
incremental verification framework from [13] addresses this limitation by identi-
fying and executing a minimal sequence of reverification steps after each change
in a component-based system.

Practical Use Using our continual NFR verification of cloud-deployed ser-
vices requires the construction of accurate models of the analysed system and
the specification of its NFRs in probabilistic temporal logic. As most practi-
tioners lack the formal methods expertise required to carry out this task, we
developed domain-specific languages that administrators of cloud resources can
use to specify the initial structure of their multi-tier cloud-deployed services and
the changes under which their NFPs should be analysed [16].

Proceedings of NiM-ALP 2013 3



4 Continual Verification of Service-Based Systems

Continual NFP verification can also be exploited by cloud-service users, to drive
the dynamic selection of service-based system (SBS) components. Built through
the integration of third-party services deployed on cloud datacentres and ac-
cessed over the Internet, SBSs are increasingly used in business-critical and
safety-critical applications in which they must comply with strict NFRs. Self-
adaptive SBSs achieve NFR compliance by selecting the concrete services for
their operations dynamically, from sets of functionally equivalent third-party
services with different levels of performance, reliability and cost.

Continually verified SBSs The self-adaptive SBS architecture and devel-
opment methodology we introduced in [2] and extended in [1, 7] carry out this
concrete service selection using continual NFR verification. Given an SBS work-
flow comprising n ≥ 1 operations to be performed by third-party services, our
SBS architecture uses intelligent proxies to interface the workflow with sets of
remote service such that the i -th SBS operation can be carried out by mi > 1
functionally equivalent services. The main role of the intelligent proxies is to
ensure that each execution of an SBS operation is carried out through the in-
vocation of a concrete service selected as described below. The proxy overseeing
the i -th SBS operation is initialised with a sequence of “promised” service-level
agreements slaij = (p0

ij , cij ), 1 6 j 6 mi , where p0
ij ∈ [0, 1] and ci,j > 0 represent

the provider-supplied probability of success and the cost for an invocation of
service si,j , respectively. The intelligent proxies are also responsible for notify-
ing a model updater about each service invocation and its outcome. The model
updater starts from a developer-supplied initial Markov model of the SBS work-
flow, and uses the on-line learning techniques from [3, 5] to adjust the transition
probabilities of the model in line with these proxy notifications. Finally, the up-
to-date Markov model is used by an autonomic manager that performs runtime
quantitative verification to select the service combination used by the intelligent
proxies so that the SBS satisfies its NFRs with minimal cost at all times.

Efficient NFR Verification The runtime quantitative verification within
our framework [3, 5] is carried out by an embedded version of the PRISM prob-
abilistic model checker [15]. This version of PRISM can handle the “on the fly”
analysis necessary for a range of small-sized SBS workflows. The compositional
and incremental verification approaches described in the previous section can be
used to reduce the overheads of continual NFP verification in order to extend
its applicability to larger SBS workflows.

Practical Use For a continually verified SBS architecture to be practical, de-
velopers should be able to build instances of it without requiring special training
in formal methods. To address this need, our work from [3, 5] introduced a tool-
supported SBS development framework. In this framework, many of the com-
ponents and artefacts described above are either generated automatically (e.g.,
starting from an annotated UML activity diagram of the SBS workflow and from
the WSDL specifications of its concrete services) or workflow-independent and
therefore provided as reusable middleware.

Proceedings of NiM-ALP 2013 4



5 Conclusion

A key advantage of cloud-based systems is their ability to evolve, e.g., by scal-
ing their resources up and down in response to changes in workload. When
such evolving systems deliver business-critical or safety-critical services, their
non-functional properties (NFPs) must be verified continually. We summarised
recent research into using quantitative model checking to support continual NFP
verification in cloud-based systems. This novel approach to NFP verification can
be exploited by both providers and users of cloud-deployed services, and has been
employed successfully in several case studies, e.g. [1, 5, 7, 8, 13]. Nevertheless, sig-
nificant research is still needed to extend its applicability to new scenarios, to
improve its scalability, and to identify and address its limitations.

References

1. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Comm. ACM 55(9), 69–77 (Sept 2012)

2. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic QoS management and optimization in service-based systems. IEEE Trans.
Softw. Eng. 37, 387–409 (2011)

3. Calinescu, R., Johnson, K., Rafiq, Y.: Using observation ageing to improve Marko-
vian model learning in QoS engineering. In: ICPE 2011. pp. 505–510

4. Calinescu, R., Kikuchi, S., Kwiatkowska, M.: Formal methods for the development
and verification of autonomic IT systems. In: Formal and Practical Aspects of
Autonomic Computing and Networking. pp. 1–37. IGI Global (2010)

5. Calinescu, R., Rafiq, Y.: Using intelligent proxies to develop self-adaptive service-
based systems. In: TASE 2013. pp. 131–134

6. Calinescu, R.: Emerging techniques for the engineering of self-adaptive high-
integrity software. In: Assurances for Self-Adaptive Systems. Springer (2013)

7. Calinescu, R., Johnson, K., Rafiq, Y.: Developing self-verifying service-based sys-
tems. In: ASE 2013. To appear

8. Calinescu, R., Kikuchi, S., Johnson, K.: Compositional reverification of probabilis-
tic safety properties for large-scale complex IT systems. In: Large-Scale Complex
IT Systems. LNCS, vol. 7539, pp. 303–329. Springer (2012)

9. Calinescu, R., Kwiatkowska, M.: CADS*: Computer-aided development of self-*
systems. In: FASE 2009. pp. 421–424. Springer

10. Calinescu, R., Kwiatkowska, M.Z.: Using quantitative analysis to implement auto-
nomic IT systems. In: ICSE 2009. pp. 100–110

11. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time adaptation. In: ICSE 2009. pp. 111–121

12. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: ICSE 2011. pp. 341–350

13. Johnson, K., Calinescu, R., Kikuchi, S.: An incremental verification framework for
component-based software systems. In: CBSE 2013. pp. 33–42

14. Kwiatkowska, M.: Quantitative verification: Models, techniques and tools. In:
ESEC/FSE 2007. pp. 449–458. ACM Press

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: CAV’11. LNCS, vol. 6806, pp. 585–591. Springer (2011)

16. Pehlivanov, S.: Modelling of Multi-Tier Applications Deployed on Cloud Comput-
ing Infrastructure. Master’s thesis, University of York (September 2013)

Proceedings of NiM-ALP 2013 5




