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Abstract. The use of Model Driven Software Development (MDSD) approach 
is increasing in industry. MDSD approach raises the level of abstraction using 
models as main artifacts of software engineering processes. Models are closer 
to the problem domain than the solution domain and are easier to understand 
than the code. Models could be used for early validation and verification or for 
the automatic generation of code. When models are used for code generation, a 
system based on metamodels and transformations is developed in order to allow 
automatic code generation from models. Maintainability and evolution  of these 
systems is a real and complex issue. Moreover, when the software architecture 
of the targeted systems evolves, the system that generates the code should 
evolve too. This means to adapt the transformation rules, the input metamodel 
and models.   

 
To reduce the adaptation time of MDSD system has become crucial. In this 

paper we present an approach and a tool for performing automated analysis of 
the impact of software architecture changes due to evolution, concretely soft-
ware architecture migrations, on model driven code generation systems. The 
approach and the tool improve the process of managing and implementing the 
required changes in MDSD due to  Software architecture changes. To demon-
strate the usefulness of the approach the tool has been applied to a MDSD sys-
tem that generates ANSI-C code semi-automatically from UML models (a de-
sign based on UML2 components).   

Keywords: Model Driven Software Development, Code generation, Impact 
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1 Introduction 

Industrial software systems must continually evolve otherwise the solution they pro-
vide could become increasingly less satisfactory for the users and the marketplace.  
Concepts and techniques of Software Architecture are fundamental in software devel-
opment [1]. A key aspect of software evolution is software architecture evolution.  
Depending on the requirements of the software evolution different abstraction level 
elements of the software architecture are affected. [2] Defines three kinds of software 
architecture evolution: Endogenous, architecture migration  and exogenous migration. 



Endogenous evolution refers to software architecture design refinements, such as 
splitting a component in two. Exogenous evolution refers to changes in the architec-
ture modeling language. Software architecture migration occurs when the architecture 
must adopt a new technical infrastructure characteristic such as moving from client 
server architecture (CS) to service oriented architecture (SOA), or changing frame-
work or execution platform. This work is focused on software architecture migration 
in which aspects, such as the concurrency API, the inter-component communication 
mechanism or execution platform evolve. 
 

The combination of model driven software development (MDSD) and software ar-
chitecture concepts is considered especially advantageous for developing complex 
systems. One of the weak points of MDSD is the management of the evolution of 
software architectures. When software architecture changes the adaptation of the de-
signed and implemented MDSD system  is critical. The aim of the work is to reduce 
the development cost of  model driven code generation systems when a software ar-
chitecture migration must be done. In this paper we present a methodology and a tool 
for automatic impact analysis of software architecture migrations in MDSD systems. 
The tool concretely deducts the transformation rules that must be modified and the 
changes that must be made in the transformation rules to adapt the MDSD system to  
software architecture migrations. The impact analysis tool is designed for MDSD 
systems that generate automatically code, but it can be used in any MDSD system that 
has a M2M transformation. First, in section 2, concepts of MDSD evolution and soft-
ware architecture evolution concepts are explained. The third section describes the 
implementation of the impact analysis tool. Then in section 4 a case study which vali-
dates the usefulness of the tool is presented. Finally in section 5 and 6 we present the 
conclusions and future works respectively. 

2 MDSD and Software Architecture Evolution 

The adaptation process of MDSD systems for any kind of evolution has the same 
steps as in traditional software development : 

(a) Identify an emergent need  
(b) Understand and analyze  the change impact 
(c) Implement changes 
(d) Validate the implementation 

However in MDSD systems the evolution  not only affects the final source code, 
also the metamodels, transformation rules (including templates) and models are af-
fected. MDSD systems can evolve in different dimensions [3]: regular evolution, 
metamodel evolution, platform evolution and abstraction evolution.In regular evolu-
tion the models are the modified elements, the metamodels and transformation rules 
don’t require any change.   In metamodel evolution the modeling language is mod-
ified to increase its expressivity.  The changes in the metamodel impact the models 
and therefore the models must   be migrated to the evolved metamodel. In [4][5][9] 



co-evolution between metamodels and models is  treated .In metamodel evolution  co-
evolution between metamodels and transformation rules is also needed. In platform 
evolution, MDSD system must adapt the automatically generated output to new APIs, 
frameworks or provide different implementations of certain services. Such changes 
require modifications in the model to model (M2M) and model to text (M2T) trans-
formations. When the source metamodel does not support the abstractions required 
for the new platform requirement it is necessary to extend the metamodel or to add a 
new metamodel. These situations are defined as abstraction evolutions and new do-
main concepts are inserted in the MDSD system. In abstraction evolution all the 
MDSD artifacts are affected. 

 
Continuous adaptation of software architectures evolution in MDSD system is essen-
tial. Regarding evolution of software architectures, there are three different types of 
architectural evolution: Exogenous, endogenous and software architecture migrations. 
Table 1 shows the relation between architectural evolution and MDSD evolution.. 
Endogenous evolution requires only model refinements in a MDSD code generation 
system. Architectural exogenous evolution requires metamodels and meta-
metamodels changes. . When architecture migration occurs the MDSD must adapt the 
transformation rules that generate the code and  it may also be necessary to extend the 
architecture metamodel.  

Table 1. SW Architecture Evolution  relation with MDSD evolution dimensions 

SW architecture Evolution type MDSD Evolution 

Dimension Elements to modify 

Endogenous Regular Evolution Models 

Migration 

 

Platform Evolution 

Abstract Evolution 

Metamodels, models and transformation 

rules 

Exogenous Metamodel and meta-metamodel evolution 

 

Metamodels, models  and transformation 

rules 

 
In most MDSD co-evolution proposals the input metamodel evolution differential is 
the initial entry point for the adaptation process. In these cases, changes impact analy-
sis and changes implementation (co-evolution) requires adaptation mechanisms based 
on input meta-model evolution. [6] defines a framework based in megamodeling for 
analyzing the impact on transformation rules due to the evolution of the metamodel. 
The solution is based on relationships between elements of the metamodel and trans-
formation rules for the impact analysis on the transformation rules. There are several 
works  where  different elements of MDSD are adapted automatically. For example, 
[4] and [5] automatically migrate existing models to new metamodel specifications. In 
[7] transformations are semi-automatically adapted based on the input metamodel 
evolution differential.However, sometimes the evolution requirement provides infor-
mation about the changes to be made in the MDSD system output, for example in the 



generated code. In these situations the input metamodel may require changes or not. 
For example, if a UML MARTE [8] design needs a change of the execution platform 
API, the metamodel is not affected. Sometimes  changes in the input metamodel are 
also needed but it is not clear how to do the extension or there are several metamodel 
extension options. Architectural software often tend to create this kind of  evolution 
scenarios in MDSD code generation systems.  Even when the architectural   evolution 
is expressed in the metamodel  , as done in [2], predict and determine the changes of 
the transformation rules that generate the ouptut code requires an  exhaustive inspect. 
In these situations an automatic impact analysis on the MDSD system transformation 
rules based on the output models is   very useful both for designing a metamodel ex-
tension properly, as to guide the engineer in adapting transformation rules, especially 
when    breaking and unresolvable changes[8] appears on the metamodel. 

  

 
Fig. 1. MDSD code generation system generic design 

 
In this paper, we present a tool for automatic impact analysis of MDSD code genera-
tion systems for SW architecture migration scenarios. The impact analysis is done on 
the M2M transformation. The solution uses a differential model of the models 
representing the code to establish the adaptations that must be made in the transforma-
tion rules. The differential model represents the SW architecture migration in the 
source level.  The Figure 1 shows a MDSD code generation system with an interme-
diate step that generates a model that represents the code; the approach is for this kind 
of MDSD systems. The impact analysis process due to architectural software migra-
tion consists of the following phases: 

1. Capture new software architecture migration requirement 
2. Increase manually a previous output model without the requirement and obtain the 

differential model 
3. Obtain the traceability between a previous design model, an output model without 

the requirement  and the transformation rules  
4. Deduct the adaptations to be made in the transformation rules of the MDSD sys-

tem. 
 

To automate the analysis process a JAVA & EMF tool has been created. The tool can 
be applied to any MDSD system implemented with EMF and ATL. The tool is inde-
pendent of the metamodel used in the design and the output metamodel as long as 
they are based on the EMF meta-metamodel. 



3 Automatic impact analysis tool design 

The automatic impact analysis tool and the process used are described in detail in this 
section, see figure 2. First   how the SW architecture migration requirement must be 
captured is explained. Then how the output models differential and the traceability 
model must be obtained is described. Finally the algorithm used to deduct the re-
quired changes in the transformation rules is introduced.
 

 
Fig. 2. Impact analysis process for architecture SW migrations 

3.1 Capture new architectural software  migration requirements 

An EMF metamodel has been created to express the software architecture migration 
by actions to perform to achieve the requirement. This metamodel is based in [16] and 
allows specifying different level characteristics of source code that must be added and 
modified in the generated code when a software architecture evolution is needed. 
When a new software architecture migration requirement appears the software archi-
tecture engineer defines a model specifying the operations that are needed to adapt the 
software architecture of the applications. An architectural migration requirement ex-
ample model is on figure 3. This metamodel can be replaced in the tool by another 
metamodel for expressing the output elements evolution without modifying the tool. 
This way the tool is independent of the metamodel used to specify the evolution, arc-
hitectural or not architectural. 

3.2 Output Models differential  

Using the information of the architectural software migration requirement model the 
software  architecture expert modifies a previously automatically generated output 
model to meet the new requirements.  Knowledge on the generated software is needed 
in this step. Next the difference model between the incremented output model and the 
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previous model output is obtained. This differential is obtained by EMFCompare tool 
[10] that uses EMFDiff metamodel. After this step the software architecture engineer 
must establish the relationship between the differences and the architecture migration 
requirement model. This traceability information is used in the impact analysis algo-
rithm. This relationship is done using Atlas Model Weaving (AMW) [11].    

3.3 Transformation rules traceability 

In the next step the ATL2Trace [12] Higher Order Transformation (HOT) [13] is 
applied to the M2M transformation of the  MDSD system under development. The 
result of the HOT is a refinement of the ATL transformation rules under analysis. 
This new transformation rules creates traceability information when they are executed 
for an input design model and generates an output model that represent the source 
code of the design. The refined rules are executed with the input design model that 
creates the output model without new requirements.   Each traceability data saves the 
target element, the source model element and the transformation rule responsible of 
generating   the target model element. 

3.4 MDSD system changes deduction phase 

Using the differential model of the output models, traceability model and the weaving 
model between the architectural software migration requirement model and the output 
differential model the impact analysis can be done automatically. The tool performs 
the analysis in three stages: First it gets a complete list of possible changes to be 
made, then it performs a filtering process to avoid duplications and finally deducts the 
modifications to perform. The following sub sections describe the different stages. 

 
Relationship between the output models differentials and transformations. First, 
it is established and collected which transformation rule is related to which difference 
of the output models differential.  The tool gets the element of each output difference 
and searches in the trace model the transformation rule associated with the target ele-
ment. Each relationship between a transformation rule and a difference is called adap-
tation goal. The tool relates EMFDiff metamodel difference with the modification 
operation to be applied on the transformation rules. Currently only ModelElement-
ChangeLeft and ReferenceChangeLeftTarget difference types from EMFDiff meta-
model are considered by the tool. For each ReferenceChangeLeftTarget, the type of 
modification that must be done in the transformation is to add a new binding. When 
the difference is a ModelElementChangeLeft, adaptation goal is established slightly 
differently. This difference type requires a binding in the related rule and a new rule 
to create the new output element. A simple metamodel has been defined to express 
adaptation goals. Adaptation goals are composed of: a source element, a target ele-
ment, the transformation rule and rule refinement operations. The result data of the 
impact analysis is an adaptation goals model.   

 



Adaptation goals filtering. Because the relationship between the transformation 
rules and the difference model is based on model elements and not on metamodel 
elements several adaptation goals may be referred to the same change to be made in 
the transformation rules. We therefore must filter adaptation goals to obtain the final 
list of changes. The filtering is based on the affected transformation rule, the source 
element type, the target element type and the software architecture migration re-
quirement operation associated to the difference element. Due to space reason the 
filtering algorithm has been omitted.  
 
Semi-Automatic adaptation of the transformation rules adaptations. With the 
information provided by the impact analysis, for example table 2 adaptations goals 
model, the MDSD system developers can start to make the required changes in the 
transformation rules. To facilitate this process a HOT has been defined to refine any 
ATL transformation rules using the impact analysis information. From the source and 
target elements the element type data is used. When an addRule change operation 
must be applied, a rule is created with its corresponding binding and is inserted into 
the corresponding ATL module. When the type of modification to be made in the 
transformation rules is an addBinding operation, the HOT refines this rule. The HOT 
also creates the header of the helper functions to be used in the binding assignments. 
For reason of space the HOT list is not shown, but if necessary you can request it via 
email. 

4 Case study 

In this section the automatic analysis of the impact is applied to a concrete MDSD 
code generation system. The MDSD system used in this case study can generate 
ANSI-C code for component-based SW architectures previously designed by UML 
[14]. UML designs are transformed to ANSI-C code through a M2M transformation 
and a M2T transformation, as shown in figure 1. In the first stage, the M2M transfor-
mation, the UML component models are transformed in SIMPLEC (a meta-model 
representing a subset of ANSI-C) models. M2M transformation is implemented in 
ATL. M2M transformation is performed incrementally by superimposition mechan-
ism of ATL [15]. M2M transformation consists of 8 files, 40 matched rules, 30 lazy 
rules and 44 helper functions.  In a second stage XPAND2 based templates are ap-
plied to  SIMPLEC models to generate ANSI-C code. Two architectural software 
migration requirements have been used to test the impact analysis method and the 
developed tool. Originally the MDSD system of the case study did not offer concur-
rency characteristics on the components. The first migration   requirement was to add 
concurrency capabilities to the   generated code. The second requirement was a mi-
gration from a bare-metal cyclic executive concurrency API to freeRTOS. For space 
limitations only the first one is shown. 

 
To perform the impact analysis a previously used UML design was selected: a  UML 
design of an automatic door controller.  To start with the impact analysis, first, the 



architecture software migration was specified. The new platform requirement is to 
provide concurrent components under an API. Figure 3 shows the architectural SW 
migration model of this case study. The next step is to manually edit the SIMPLEC 
output model with the code elements necessary to use concurrent tasks under the se-
lected API. Once the target output model with concurrency is created the difference 
model between the original and the incremented model is generated using EMFCom-
pare Tool.  A total of 12 changes were founded. In order to add information about the 
reason for the difference in the model representing the code, each difference is related 
to architectural software migration operations defined previously in software architec-
ture migration model. Finally the traceability model is obtained. 
 

 

Fig. 3.   Architectural software  migration specification for adding concurrency characteristic 

All the inputs needed by the impact analysis tool are ready: Traceability model, out-
put differences model,   weaving model between differences and software Architectu-
re migration operations, the automatic door UML design and the corresponding door 
SIMPLEC model. With this information the tool can be executed. 
Table 2 shows the  adaptation goal list for concurrency adaptation of the case study. 
 

Table 2. Final adaptation goal list for concurrency adaptation. 
Adaptation id. Transformation rule Source Element Target Element Modification operation type 

1 lazy rule createAppComponentInstance Uml::Component AppOS SimpleC::Module AppOS  addBinding 

2 lazy rule InstanceModuleFile Uml::Component AppOS SimpleC::File AppOS  addBinding 

3 lazy rule  createDeploymentPackage Uml::Component AppOS SimpleC::Package AppOS  addRule,addBinding 

4 lazy rule componentInstance Uml::Component SimpleDoor SimpleC::Module SimpleDoor  addBinding 

5 lazy rule InstanceModuleFile Uml::Component SimpleDoor SimpleC::File SimpleDoor  addBinding 

6 rule createComponentPackage • Uml::Component 

SimpleDoor 

• SimpleC::Package 

SimpleDoor  

addRule,addBinding 

7 x x SimpleC::Method AddTask addRule,addBinding 

8 x x SimpleC::Method Schedule addRule,addBinding 

 
This architectural software migration requires platform evolution and abstract evolu-
tion in the MDSD system because requires changes in the generated code and new 
metamodeling elements. The OMG MARTE profile SRM package [8] was selected to 
specify the concurrency in the design. The changes implemented in the transformation 
rules to adapt the MDSD system to the new requirements were those suggested by the 
tool. This same process has been used successfully to adapt the selected MDSD sys-
tem to a different concurrency API.  Due to the design characteristic of MARTE pro-



file SRM package this architecture migration requirement   did not  need different or 
new   metamodeling elements, so platform evolution was only required in the selected 
MDSD system.  

5 Conclusions 

The article has presented an impact analysis method for MDSD code generation sys-
tems for software architecture migrations. The analysis method has been automated 
by a Java tool & EMF. The benefits of using the tool have been also demonstrated 
comparing the impact analysis done without and with the tool for a selected MDSD 
system in the context of two software architecture migrations. The tool can be applied 
to any MDSD legacy system that has a M2M transformation implemented in ATL. To 
apply the tool it is enough knowing the changes that are necessary in the M2M trans-
formation output models. The tool is independent of the metamodel used to express 
the evolution. In this case a metamodel has been defined to specify software architec-
ture evolutions. There are studies about co-evolution for models migration [4] [5] and 
for adaptation of transformations [7] when metamodel evolution occurs. The work 
presented complements these works because it deducts changes that should be done in 
the transformation rules independently of the input metamodel evolution. In [6] mega-
modeling is used to determine the impact that may raise evolution of a meta-model on 
the transformation rules. This type of solution requires previous knowledge of the 
MDSD system to establish the corresponding relationships between the meta-model 
elements and the transformation rules. Using only input and output models previously 
used to validate the MDSD system   the presented tool can be used to understand the 
MDSD system and establish the relationships necessary for the mega-modeling. The 
work   shows that combining traceability information and output models differential it 
is possible to analyze the impact of evolution requirements for M2M transformations. 

6 Future work 

The tool has been tested with one MDSD system  case study. It is necessary to apply 
the automatic impact to other MDSD systems. Currently the tool only works with two 
types of EMFDiff difference types. The tool must be extended to deal with more dif-
ference types. Therefore, it is essential to analyze different types of software evolu-
tion and architecture migrations situations. This new situations will require new re-
finements operations and patterns for the transformation rules.  At short term, the 
impact analysis result will be used in the design of metamodel extensions in software 
architecture migration situations that require abstraction evolution of the MDSD sys-
tem. The goal is to predict the adaptation time of a MDSD system mixing the impact 
analysis data and the metamodel extension design.  
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