
Ontology-based Service Discovery in P2P Networks

Daniel Elenius, Magnus Ingmarsson
Department of Computer and Information Science

Linköping University
581 83 Linköping, Sweden
{daele, magin}@ida.liu.se

Abstract

Theubiquitous computingvision is to make knowledge and
services easily available in our everyday environments. A
wide range of devices, applications and services can be in-
terconnected to provide intelligent and automatic systems
that make our lives more enjoyable and our workplaces
more efficient. Interaction typically is to be between peers
rather than clients and servers. In this context, the JXTA
peer-to-peer infrastructure, designed for interoperability,
platform independence and ubiquity, is a suitable founda-
tion to build future computer systems on.

Peers need ways to effortlessly discover, consume and
provide services, and to take advantage of new services as
they become available in a dynamically changing network.
However, JXTA does not currently handle this service-
discovery problem. In this paper, we examine several
service-discovery architectures, to see whether they can be
adapted to JXTA. We conclude that none of them adequately
support the flexibility and expressiveness that ubiquitous
computing requires. We therefore argue that Web Ontol-
ogy Language (OWL) and OWL Services (OWL-S) ontolo-
gies should be used to express detailed semantic informa-
tion about services, devices and other service-discovery
concepts. This kind of approach allows peers to reason
about service offerings and achieve intelligent service dis-
covery by using an inference engine. We present an ex-
perimental implementation of this ontological approach to
service-discovery, called Oden (Ontology-based Discovery-
Enabled Network).

1 Introduction

In the ubiquitous computing [1] (ubicomp) vision of the fu-
ture, workplaces, homes and public environments will con-
tain a wide range of networked devices intended to make
workplaces more efficient, to increase quality of life, and
empower users by providing information and services in an
effortless way. Devices, and the applications and services
running on them, will be highly interconnected, but usu-

ally cannot depend on pre-configured servers or static net-
work addresses. Instead, these environments will typically
be highly dynamic. Mobile networked entities appear and
disappear, are reconfigured on-the-fly, and must adapt to an
ever-changing network.

The peer-to-peer (P2P) paradigm of computing provides
a viable approach to these issues. P2P does away with many
assumptions in typical client–server systems, such as conti-
nuity of service access, and static configuration of servers,
routers and naming services. Consequently, a P2P approach
is well suited to ubiquitous-computing and ad-hoc network
systems.

Enabling devices to work in concert over P2P networks,
and allowing users to interact with networked services
seamlessly, poses new technical challenges. Users should
not need to configure services manually or have detailed
knowledge of technical details, and interaction between
peers should not depend on which operating systems or
programming languages peers use. Solving this service-
discovery problem will become even more important as
more numerous and complex devices and services become
embedded in our everyday environments.

There are several P2P systems available, for example
Gnutella and Napster. However, most of these systems are
intended for one specific application, such as file sharing.
Therefore, our current research on ubiquitous computing
uses the P2P infrastructure JXTA. This is a general-purpose
infrastructure designed for interoperability, platform inde-
pendence and ubiquity.

While providing for some of the needs of future com-
puting systems, JXTA does not currently provide an ade-
quate solution to the service-discovery problem. JXTA has
a basic advertisement/search mechanism, described in the
next section, but this is not sufficient for the general case.
JXTA needs a flexible service-discovery system, not just for
ubicomp applications, but also for any application with dy-
namic interconnected services.

After a short introduction to JXTA (Section 2), we ex-
amine existing service-discovery systems (Section 3), to
see whether any of these can fill this need for JXTA. Sec-

1

tion 4 discusses problems with the existing approaches, and
Section 5 suggests a solution—integrating service discov-
ery based onontologieswith JXTA—and our experimental
implementation Oden (Ontology-based Discovery-Enabled
Network). Section 6 relates our work to some other research
projects, and Section 7 provides a discussion of our results.
Finally, we present our summary and conclusions, in Sec-
tion 8.

2 JXTA

The goals of the peer-to-peer infrastructure JXTA [2] (short
for "juxtapose") areinteroperability, platform indepen-
dence, andubiquity. Through the JXTA protocols, peers
using different transport protocols and hardware platforms,
and programmed in different languages, can interact with
each other. Currently, JXTA has support for TCP/IP and
HTTP networks. The reference implementation of JXTA is
written in Java. There are also versions for J2ME [3] (Java 2
Micro Edition), a very light-weight C language implemen-
tation suitable for embedded devices [4], and several other
implementations in development.

In JXTA, peers are organised intopeergroups. A
peergroup can be used to represent thecontextof peers’
interactions—types of service, current state, location, etc.—
and representing context is of the utmost importance in
ubiquitous computing [5].

Any peer that wishes to make a service available on a
JXTA network needs to create anadvertisementof the ser-
vice. An advertisement is a small piece of XML data that
announces the existence, and some properties of, a peer, a
peergroup, or a pipe. The peer then needs to publish the ad-
vertisement. Publishing an advertisement allows other peers
in the same peergroup to find it, using a standardized search
mechanism, until the expiration time of the advertisement
has passed. At that time, the service provider should publish
a new advertisement, if it still wishes to provide the service.
When a peer finds an advertisement, it usually puts it in its
local cache. Other peers can then retrieve it from there as
well as retrieving the advertisement from the actual service
provider. This mechanism provides additional redundancy
and scalability of JXTA networks.

Advertisements in JXTA have a string Name field. When
a peer wants to locate other peers, it can use these names
to guide its search. If we adopt the convention of using
colon-separated strings, such as “Device:Printer:Printer1”
or “Service:E-shop:UsedComputersInc” for the advertise-
ment names, they can be used to indicate what type of ser-
vice the peer provides, in a hierarchical fashion. The dis-
covery mechanism in JXTA also allows ’*’ as a wild card,
so for example a peer could search for “Device:Printer:*”
in order to find all peers with names starting with “De-
vice:Printer:”.

However, the name of a device or service often does
not provide sufficient information. Until there is a glob-
ally agreed-on hierarchy of devices, the search string above
would perhaps result in a few matching printing services,
but other printers could be named for example “Hard-
ware:OutputDevice:Printer,” or something entirely differ-
ent, and these services would not be discovered. A user
looking for a used PC may be happy to find “UsedCom-
putersInc,” not knowing that it only sells Macs. These ex-
amples hint that more than just simple name matching is
needed for service-discovery.

3 Current Service-Discovery Tech-
nologies

To implement service discovery for JXTA, we first examine
existing service-discovery protocols, to see if any of these
can provide a solution, or give valuable insights into the
service-discovery problem. Several surveys of service dis-
covery have been published [6, 7]. Our examination will
only present some of the most important characteristics of
the protocols. We will discuss shortcomings of these pro-
tocols, especially related to service-discovery for JXTA and
ubiquitous-computing environments, in Section 4.

3.1 Bluetooth SDP

Bluetooth1 is a short range, low power wireless technology
for cable replacement. In other words, it is intended to rid
users of cable clutter and the need for frequent disconnec-
tion and reconnection. Bluetooth was invented by Erics-
son but is now controlled by the Bluetooth special interest
group (SIG), today comprised of a large number of com-
panies including 3com, NOKIA, IBM, Intel, Microsoft and
Motorola.

Bluetooth defines its own protocol stack, including a
service-discovery protocol, SDP. This is based on unique
identification numbers (UUIDs), with several predefined
services such as Headset, Printing, Fax, etc. After a device
has been discovered, a Protocol Descriptor List in the SDP
service description is consulted to find out which protocols
can be used to initiate contact with the device. An interest-
ing project [8] has shown that the Bluetooth SDP can also
be extended with semantic descriptions written in RDF or
DAML+OIL to support more expressive information about
devices.

While not truly peer-to-peer in the sense of equality
among the peers (one is master the other is slave), Bluetooth
does provide the ability to switch between these roles. The
Bluetooth specification defines so-called ’piconets’ which
are groups of up to 255 devices. Only eight of these devices

1http://www.bluetooth.com/

2

can be active at any given time. The rest have to be in ’park
mode’. Several piconets can be connected into ’scatternets’
using a device acting as a ’bridge-slave’. A device can be
master in one piconet and slave in another.

3.2 Universal Plug and Play (UPnP)

Poised to make home networking easier, the UPnP2 stan-
dard, geared towards both software services and physical
devices, is developed by a forum led by Microsoft.

UPnP builds on existing protocols and standards: DHCP
and AutoIP for addressing; IP, UDP, TCP and HTTP for
communication; and SOAP for remote invocation. UPnP
also defines a couple of additional XML-based protocols to
support service-discovery: SSDP (Simple Service Discov-
ery Protocol) and GENA (Generic Event Notification Pro-
tocol). We will here focus on SSDP as it has the most rele-
vance for our purposes.

When entering a network, devices broadcast a short ad-
vertisement containing its type, unique identifier, and an
URL to more information. These advertisements are stored
by control points. Searching for a device is done by broad-
casting a request for the desired type of device. This re-
quest is intercepted by all control points, and matching ad-
vertisements are sent back to the requester. Next, the service
requester retrievesdevice descriptionsandservice descrip-
tions of the devices found, using URLs embedded in the
advertisements. These descriptions are based ontemplates
defined by the UPnP forum. Only a few templates have
been defined however, among them Internet Gateway De-
vice, Printer Device, and Lighting Controls. SSDP device
descriptions can also have an URL to a HTMLpresentation
page, which can be used to control the device or service and
view information about it.

3.3 Salutation

The Salutation architecture3 is controlled by the Salutation
Consortium, ranking IBM and a large number of printer and
digital camera manufacturers among its members.

The architecture is based on service brokers calledSalu-
tation Managers(SLMs). These play a crucial role in Salu-
tation, mediating all interaction between devices, including
actual data transfer. SLMs useTransport Managers(TMs)
to achieve network independence and connect to remote
SLMs. A device that wishes to provide a service registers it
with an SLM, or provides its own SLM and makes it avail-
able on the network. Services are described byFunctional
Units (FUs). FUs such as Print, Fax Data, Address Book,
etc. have been defined. Each FU defines attributes relevant
to its type of service, and specific services fill in values for

2http://www.upnp.org/
3http://www.salutation.org/

these attributes. To discover a service, a request is sent to
an SLM, which tries to match the request with the FUs that
have been registered there. An SLM can also propagate a re-
quest to other SLMs that may know of more devices. SLMs
can also exchange information among themselves, creating
a topology of the network.

3.4 Service Location Protocol (SLP)

In designing SLP4, the Internet Engineering Task Force
(IETF) aimed at IP-based networks, and this architecture
relies heavily on TCP and UDP to determine existence, lo-
cation and settings of the services offered. There are three
types of agent in SLP: User agents (UAs), Service agents
(SAs) and Directory agents (DAs). UAs discover locations
and settings needed by the potential user of the service; SAs
advertise the availability of services; and DAs act as bro-
kers, caching information about services. The system can
operate in two modes—with or without DAs. When oper-
ating without DAs, the UA will send a multicast request for
services, and will receive unicast replies. When there are
DAs present, SAs will attempt to register with a DA, and
UAs will send all discovery requests to these brokers. Ser-
vice descriptions in SLP are very basic—’Service URLs’
that categorize service types.

SLP strictly deals with discovery. What happens after
that is not within the range of the SLP specification.

3.5 Jini

To ensure platform independence, Sun developed Jini5 to
run on Java. This of course leads to a certain amount of
platform independence but unfortunately it also creates the
requirement that devices that want to use Jini have to have
a running Java implementation on them. When a service
wishes to make its presence known on the network it will
register itself by uploading a proxy object to alookup ser-
vice. When searching for a service, the searcher sends out
a multicast UDP request. After receiving the results for the
search from the lookup services, the searcher can download
the proxy objects and run them locally in order to estab-
lish contact with the desired service. Jini is one of the few
service-discovery systems that rely on code mobility and
serialization of (Java) objects.

Jini also sports other features such as a transaction server,
but we will not describe these here.

4 Issues in Current Service Discovery

The five technologies we have discussed above are repre-
sentative of current approaches to service discovery. We

4RFC 2165
5http://www.jini.org/

3

have already mentioned some limitations of these technolo-
gies. This section will give a deeper discussion of the issues.

First, we note that some of the existing protocols depend
on specific network transport layers. UPnP integrates a suite
of such protocols, from IP and TCP for basic communica-
tions, up to SOAP and GENA for service invocations and
event notifications. SLP is also IP-only, but uses its own
formats rather than XML for its various service-discovery
messages. Jini uses UDP. Bluetooth SDP runs only on Blue-
tooth networks, of course. Other protocols have abstrac-
tions for the transport layer that allow different infrastruc-
tures to be used. Salutation, with its Transport Managers, is
a case in point.

A service-discovery architecture for JXTA should be in-
dependent of network infrastructure. Using something like
UPnP or SLP would compromise this platform indepen-
dence, which we view as important in a ubicomp setting.
To ensure this, service-discovery in JXTA should be placed
at a higher level of abstraction than JXTA’s own primitives,
such as peers and peergroups. This is not possible if the
service-discovery protocol is tightly integrated into the un-
derlying network infrastructure. Of the technologies we
have examined, only Salutation meets this first goal with-
out major modifications. A JXTA Transport Manager can
be written to enable the Salutation architecture to run on
JXTA networks.

A second issue is the use of brokers, and the suitability
of the service-discovery technologies for peer-to-peer net-
works. Bluetooth SDP does not require brokers, but connec-
tions have a master-slave setup, whereas peers in P2P net-
works are usually considered as fundamentally equal. UPnP
makes use of control points, but these are usually directly
connected to the device itself, rather than acting as proxies
or brokers for many devices. Salutation’s SLMs can be both
local and remote, so both direct and mediated discovery is
supported. SLP and Jini require the use of central reposito-
ries of service descriptions or interfaces.

Using brokers, or proxies, to mediate service-discovery
requests, while done by for example JXTA Search [9], is not
suitable for ad-hoc and ubiquitous-computing networks. A
requirement to use proxies or mediator services may mean
that many peers lose the service-discovery capability if the
central mediator goes down, or if the network connectivity
to the mediator is faulty. It could also mean that users have
to configure which mediator service to use manually, or at
least have knowledge of which mediator services there are.
Furthermore, in an environment where devices are highly
mobile, and the state of devices is rapidly changing, having
a mediator could mean excess work, as the mediator service
must be updated to reflect all such changes. It is fundamen-
tal to P2P systems that all peers should be able to directly
connect to each other, and this is one of the reasons why
we feel that a P2P approach is suitable for our ubiquitous

Table 1: Summary of current service-discovery technolo-
gies.

Network P2P Expressive-
independence discovery ness

Bluetooth No Yes No
UPnP No Yes No
Salutation Yes Yes No
SLP No No No
Jini No No No

computing research. Of the examined technologies, Blue-
tooth, UPnP and Salutation meet this goal of peer-to-peer
discovery.

A third issue to discuss is the expressiveness and flexi-
bility of device descriptions and discovery requests. Blue-
tooth SDP uses globally reserved unique identifiers for pre-
defined service types. UPnP uses its own XML format,
which allows more information about devices to be de-
scribed, but these descriptions must be based on one of
the (so far very few) existing templates agreed upon by
the UPnP forum. Salutation has a similar approach with
its Functional Units. SLP only allows a simple categoriza-
tion of services based on its Service URLs. Jini describes
services only from a programming perspective; its service
descriptions are the Java interfaces to services.

While using appropriate network technologies can solve
the first two issues we have mentioned, those of network in-
dependence, and direct peer-to-peer discovery, this third is-
sue of expressiveness and flexibility of device descriptions
and discovery is more difficult, and requires some novel
thinking. None of the service-discovery architectures we
have examined scale well in this regard; without expres-
sive device descriptions, service-seeking peers cannot rea-
son about devices in an intelligent way.

Our survey, summarized in Table 1, has not given us
a ready-to-use service-discovery architecture for JXTA. It
has, however, resulted in three requirements for such an ar-
chitecture:

1. Network independence. By placing the service-
discovery mechanism at a higher level of abstraction
than peers, peergroups, etc., we can take advantage of
the network independence already provided by JXTA.

2. Peer-to-peer discovery. We have argued that service-
discovery should be unmediated in order to be suitable
for ubiquitous computing and ad-hoc networks.

3. Expressiveness. Service descriptions must be expres-
sive and flexible, scaling to future device types and
providing support for reasoning about services.

The next section describes an approach to solving the

4

service-discovery problem and meeting the above require-
ments, by integratingontologieswith JXTA.

5 Ontology to the Rescue

We propose to enhance JXTA with semantic models of ser-
vices using OWL [10] (Ontology Web Language). OWL
has its roots in the semantic web and Description Logic [11]
fields, and can be used to create ontologies to represent any
sort of knowledge. An ontology in computer science is usu-
ally defined asan explicit specification of a conceptualiza-
tion of a domain. For our purposes, we can use ontologies
to describe a shared conceptualization of the domain of ser-
vices, devices and other concepts that could influence the
service-discovery process, such as different kinds of con-
text [5]. Using ontologies will enable service-seeking peers
to reason about available services and devices, and make
intelligent and informed decisions regarding which services
to use, and how.

OWL is the emerging standard representation language
for ontologies, and as such has good tool support. Also, the
OWL Services6 (OWL-S) ontology is written in OWL, pro-
viding further motivation for using this way of representing
ontologies.

The OWL-S ontology for semantic web services pro-
vides a starting-point for our work, by providing a set of
concepts for modeling some aspects of services. For ex-
ample, it lets us model inputs and outputs, preconditions
and effects, and the relations that different processes have
to each other. However, we feel that a more comprehen-
sive ontology is needed for service-discovery in ubiquitous
computing in general, since OWL-S does not include con-
cepts fordevice capabilitiesand context. It must also be
demonstrated how such an ontology can be integrated with
the JXTA peer-to-peer network.

Our experimental research platform Oden uses ontolo-
gies expressed using OWL, and expanding on OWL-S con-
cepts, for semantic modeling of services and devices. Oden
integrates these ontological descriptions with JXTA in a
way that preserves the fundamental P2P characteristics that
we believe are important,viz. independence of network in-
frastructure, and direct P2P discovery. While JXTA handles
the basic networking duties, service ontologies enable rea-
soning and evaluation of services. We thus have two layers
in Oden: the low-level communications infrastructure, and
the high-level ontologies and reasoning. These two layers
are mostly independent of each other. We could rewrite the
ontologies without changing how they are integrated with
JXTA, and we could replace JXTA and still use the same
ontologies. This is an important feature, as both P2P sys-
tems and ontologies are rapidly evolving fields.

6http://www.daml.org/services/owl-s/1.0/

device

device:Printer

device:Printer:
Printer1

device:Scanner

Printer1Profile

PrinterProfile

DeviceProfile

Profile

ScannerProfile

is-a

is-ais-a

Printer2Profile

instantiates

device:Printer:
Printer2

. . .

. . .

. . .

. . .

(a) (b)

instantiates

Figure 1: The one-to-one mapping of (a) the JXTA Name
hierarchy and (b) the OWL-S Profile hierarchy.

The following subsections will discuss discovery-
enabling ontologies, how Oden integrates such ontologies
with JXTA, and how the service-discovery procedure in
Oden takes place in more detail.

5.1 Ontologies and Reasoning

Service-seeking peers must be able to evaluate service de-
scriptions, compare their pros and cons and deduce facts
that might be needed to make a decision on which service
to use, and how. To evaluate OWL ontologies, peers need
an inference engine. Several inference engines are avail-
able. The peers we have implemented currently use JTP
[12] (Java Theorem Prover), as it offered a good combina-
tion of usability, performance and documentation; but we
could substitute this for other inference engines if neces-
sary. In fact, all evaluation in Oden takes place at the service
consumer, so different peers could use different engines and
altogether different methods of evaluating services.

The service descriptions in Oden are currently based on a
hierarchy of OWL classes, shown in Figure 1, based on the
OWL-S Profile class. OWL-S encourages subclassing the
Profile class to present properties specific to particular types
of services to agents that wish to evaluate the service. We
introduce a class called DeviceProfile, with properties com-
mon to all types of devices. For example, each DevicePro-
file can have several DeviceConfigurations, each of which
can, in turn, hold several ServiceParameters. This lets us
express differentcombinationsof parameters that the device
supports. For example, a printer may have a high-resolution
black-and-white configuration, and a low-resolution colour
configuration.

Further subclasses of DeviceProfile define properties
specific to different types of devices. As an example, we
have created a PrinterProfile class, with properties for paper
size, resolution and so on. New subclasses can be added for

5

any type of device, and relations between device types can
be expressed using subclassing, and other OWL constructs,
such as class disjointness, unions, etc.

We plan to further expand our ontology with more con-
cepts that can be useful for service discovery, for exam-
ple different types of context; location, movement, social
context, etc. These discovery-enabling technologies are a
promising direction for future research. The ontologies we
have implemented so far are not comprehensive, but the
Oden architecture shows how such ontologies will fit into
an integrated architecture, and thus lays a foundation that
this research can build on.

5.2 Communications Infrastructure

In Oden, each peer represents a device or service. Rather
than a classic client–server approach, Oden uses peers that
can both consume and provide services, and does not make
assumptions on pre-configured servers. JXTA was designed
specifically for ubiquitous and ad-hoc networks, and can
handle these issues using abstractions such as peers, peer-
groups and advertisements.

Oden builds on the basic discovery mechanism in JXTA,
i.e., advertisements and searching for service names, and
augments it with a layer of semantic information. We de-
fine two important additions to service advertisements that
peers providing services using Oden must implement: 1) A
WSDL7 interface description of the service, and 2) Point-
ers to OWL files that describe the service (see Figure 2).
Furthermore, service names must follow a common hierar-
chy. This hierarchy maps one-to-one to the OWL-S Profile
hierarchy described in Section 5.1, as shown in Figure 1.

WSDL is a language for defining programming inter-
faces of objects and methods, in a way that is independent
of the programming language the objects and methods are
written in. WSDL uses XML descriptions to achieve this
language independence, and is being standardized by the
W3C. OWL-S uses WSDL interface descriptions to provide
a concrete ’grounding’ to its abstract descriptions of meth-
ods, so our use of WSDL follows naturally from our choice
to use OWL-S.

Peers that wish to evaluate a service need to retrieve the
OWL files that describe the service. This remote commu-
nication is also kept language-independent by using SOAP8

(Simple Object Access Protocol). SOAP is also an XML
format, and an associated protocol for remote invocation
also standardized by W3C.

To use SOAP in the JXTA infrastructure, Oden uses a
JXTA-SOAP bridge that embeds the SOAP messages in

7Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl

8SOAP Version 1.2 Part 1: Messaging Framework,
http://www.w3.org/TR/soap12-part1/

Network

Advertisement

<Name>
 Device:Printer:
Printer1
</Name>

<WSDL>
 WSDL Interface description
here
</WSDL>

<OwLSProfile>
 printer1-profile.owl
</OWLSProfile>
 .
 .
 .

Service-providing Peer

printer1-service.owl
printer1-profile.owl
printer1-process.owl
printer1-grounding.owl

Advertisement

<Name>
 Device:
Printer:
Printer1
</Name>

<WSDL>
 WSDL
Interface description
here
</WSDL>

<OwLSProfile>
 printer-
service.owl
</OWLSProfile>
 .
 .
 .

Advertisement

<Name>
 Device:
Printer:
Printer1
</Name>

<WSDL>
 WSDL
Interface description
here
</WSDL>

<OwLSProfile>
 printer-
service.owl
</OWLSProfile>
 .
 .
 .

Advertisement

<Name>
 Device:
Printer:
Printer1
</Name>

<WSDL>
 WSDL
Interface description
here
</WSDL>

<OwLSProfile>
 printer-
service.owl
</OWLSProfile>
 .
 .
 .

Service-providing Peer

printer1-
service.owl
printer1-
profile.owl
printer1-
process.owl
printer1-
grounding.owl

Adve
rtise
ment

<Nam
e>

Adve
rtise
ment

<Nam
e>

Adve
rtise
ment

<Nam
e>

Service-providing Peer

printer1-
service.owl
printer1-
profile.owl
printer1-
process.owl
printer1-
grounding.owl

Adve
rtise
ment

<Nam
e>

Adve
rtise
ment

<Nam
e>

Adve
rtise
ment

<Nam
e>

Service-providing Peer

printer1-
service.owl
printer1-
profile.owl
printer1-
process.owl
printer1-
grounding.owl

Adve
rtise
ment

<Nam
e>

Service-providing Peer

printer1-
service.owl
printer1-
profile.owl
printer1-
process.owl
printer1-
grounding.owl

Adve
rtise
ment

<Nam
e>

Adve
rtise
ment

<Nam
e>

Service-providing Peer

printer1-
service.owl
printer1-
profile.owl
printer1-
process.owl
printer1-
grounding.owl

Adve
rtise
ment

<Nam
e>

Adve
rtise
ment

<Nam
e>

Service-providing Peer

printer1-
service.owl
printer1-
profile.owl
printer1-
process.owl
printer1-
grounding.owl

Adve
rtise
ment

<Nam
e>

Adve
rtise
ment

<Nam
e>

Figure 2: A service advertisement in Oden. The Name
places the device or service in a hierarchy; the WSDL field
provides a programming interface to the service; and the
OWLS tags point to detailed semantic descriptions, retreiv-
able from the service-providing peer.

JXTA messages. This bridge builds on existing work, and
has been extended to better interact with the other parts
of Oden. Integrating WSDL and SOAP with JXTA was
straightforward, as JXTA uses open XML messages and ad-
vertisements, and is not commited to any particular standard
for remote communication.

5.3 Service Discovery Procedure

The procedure, then, for a peer to find, evaluate and use a
service in Oden is as follows:

1. Retrieve advertisements from other peers that are of
the correct type (e.g. “Device:Printer:*”).

2. Retrieve the OWL files, indicated by the advertise-
ments, that describe the services provided by these
peers. Calling a getFile SOAP method that all service-
providing peers in Oden must implement retrieves the
files.

3. Load the OWL descriptions into an inference engine.

6

Evaluate the data and decide which service(s) to use, if
any.

4. Extract the WSDL interface description of the service
from the service’s advertisement, and call the SOAP
methods described there in order to invoke the service.

6 Related Work

Developing for a ubiquitous P2P environment requires new
ways of approaching the development process. The authors
of [13] present three dimensions that they claim will create a
new paradigm ofservice-drivenarchitectures: Information
vs. activity, centralized vs. ad-hoc networks and implicit
vs. explicit semantic descriptions. The authors argue that
ad-hoc configured, activity-oriented services with explicit
semantics will offer new opportunities. On the downside,
going from centralized to ad-hoc configurations and from
implicit to explicit semantic descriptions, usually generates
a higher degree of complexity in the system. However, this
kind of migration is probably necessary if we are to support
future dynamic and ubiquitous environments. Using JXTA
to solve the ad-hoc issue as we have done in Oden, is a good
starting point.

Several attempts have been made to marry the peer-to-
peer and semantic web worlds. Edutella [14] is a meta-
data query infrastructure based on RDF9, and layered on
top of JXTA. Oden is also based on JXTA, so it is inter-
esting to contrast Oden with Edutella. The similarities do
not run very deep, however. Edutella uses an approach
similar to JXTA Search (already mentioned, [9]), that uses
’super-peers’ (calledhubs in Edutella) to register query-
answering capabilities and propagate queries. Querying
takes place using a pre-defined query language and data
model, and reasoning is not done on the service-seeking
agent. These approaches are, as we have argued, not appro-
priate for service-discovery in ubiquitous computing net-
works. Edutella is not intended for discovering and using
services, but rather for finding metadata about information
providers. It has no explicit SOAP/WSDL integration as
Oden does. Despite these difficulties, there has been re-
search [15] on using DAML-S10 service descriptions with
Edutella.

Still, Edutella is an impressive infrastructure for infor-
mation integration in distributed systems, and its makers
have shown how a multitude of different types of infor-
mation resources can be aggregated and translated using its
mediating ’wrapper’ peers.

Other developments focus more on the low-level details
of peer-to-peer networks, such as routing of messages be-

9Resource Description Framwork, a W3C Recommendation,
http://www.w3.org/TR/REC-rdf-syntax/

10The precursor to OWL-S.

tween peers. In [16], an “ontology-based P2P Infrastructure
for semantic seb services” is presented. While JXTA relies
on broadcasting to distribute queries and advertisements,
and rendezvous and relay peers to propagate these messages
to other networks if necessary, the infrastructure presented
in [16] partitions the P2P network into a so-calledhyper-
cube. There are specific algorithms for entering and leaving
the cube, and for routing and broadcasting messages, that
all peers must implement. Consequently, all peers share
the responsibility for the integrity of this delicate topology,
which may be a disadvantage. Furthermore, an ’outer’ hy-
percube partitions the network according to global ontolo-
gies, for example ontologies for service types. This ap-
proach can be seen as a more sophisticated version of the
first step of our approach to service-discovery. That is, in-
stead of using a hierarchy of JXTA names and the standard
JXTA search mechanism, they use global service ontologies
that partition a hypercube topology. They claim superior
scalability to very large networks for their approach, and
it is possible that it is very useful for these situations. In-
deed, it could be combined with thesecondstage of service-
discovery that we have suggested, that is, OWL and OWL-
S service descriptions that are retrieved from the service-
providing peer and loaded into an inference engine on the
client. However, their approach places an extra burden on
all peers, and the benefits must be weighed against this dis-
advantage. Many ubiquitous-computing applications that
have been envisioned have a high degree oflocality. Peers
will mostly communicate with other peers that are physi-
cally nearby, and for these situations a local broadcast may
be a sufficient solution.

A similar approach is done in [17]. Their Semantic Over-
lay Network groups nodes according to semantic similarity.

7 Discussion

A significant feature of Oden is that the service con-
sumer controls all evaluation of services. A broker or
service-evaluation service could still be implemented to
help resource-constrained peers to find and use the services
they need, but the choice to use such brokers is up to the
service consumer, not to the service provider. Our service-
discovery architecture itself does not assume such a broker.

A second important point to note is that a service-seeking
peer first filters out potentially interesting services using
JXTA’s name-matching search, and then loads and evalu-
ates only these services. This two-step process reduces net-
work traffic and the amount of work the service-seeking
peer has to do, since a smaller number of advertisements
have to travel the network, and there is less data for the peer
to evaluate. The first step is a coarse filtering, and the sec-
ond, using the ontologies, provides precision.

7

As we mentioned in Section 2, this process assumes
a global namespace of devices and services. This is, of
course, difficult to achieve, but there are different ways
to alleviate this problem. At one extreme, the first step
could be skipped completely, which happens if peers simply
search for “*” instead of e.g. “Device:Printer:*”. This may
be feasible if the contexts of discovery (i.e. the peergroups)
are sufficiently small. All evaluation of services would then
be performed using their ontologies. This solution would
be highly robust, but as we have mentioned, it may give the
searching peer far too many service descriptions to evaluate.

At the other extreme, the namespace hierarchy would
be extremely fine-grained, so a peer would search for,
e.g. “Device:Printer:LaserPrinter:HPLaserJet:*”. This ap-
proach would give the searching peer exactly what it was
looking for, provided that it knows exactly what it wants,
and that the hierarchy is stable. These are very strong pro-
visos however, and this solution is highly brittle.

We believe that the optimal solution lies somewhere be-
tween these two extremes. The exact layout of the names-
pace hierarchy is still an open question, but it should only
provide broad categories—sufficiently general to avoid the
brittleness of a too specific approach, but specific enough to
avoid flooding the searching peer with irrelevant advertise-
ments.

A third issue we wish to mention is the concerns that
have been stated regarding the performance of JXTA [18,
19]. It should be noted, however, that the JXTA platform
is under intense development, and these problems are being
addressed. Furthermore, our concern here is not maximum
throughput of data between peers, but to build an architec-
ture for service discovery. The evaluation of service adver-
tisements, using an inference engine, currently takes much
longer than retrieving the advertisements, so the speed of
network traffic is not the most critical issue in this context.

So far, we have not made large-scale experiments with
Oden as it is still under development.

8 Summary and Conclusions

Mobility, dynamically changing networks and the desire for
automatic configuration without user intervention are fac-
tors that combine to motivate the need for powerfulservice
discovery. While P2P systems are well suited to fill many of
the needs of current and future computer systems, such as
ad-hoc and ubiquitous computing networks, no system of-
fers a sufficient solution to the service-discovery problem.
In this paper, we have suggested a solution to this issue for
the JXTA peer-to-peer network infrastructure.

We have examined existing service-discovery technolo-
gies to determine whether any of these can be of use, or
at least provide some additional insight into the service-
discovery problem. We concluded that none provide the

network independence, suitability for P2P systems or ex-
pressiveness that we need.

We have presented a novel solution to the problem: In-
tegrating discovery-enabling OWL and OWL-S ontologies
with JXTA to provide semantic models of services. This en-
ables service-seeking peers to perform their discovery more
intelligently than otherwise possible, using an inference en-
gine. With our research platform Oden, we have shown how
to integrate these ontologies with JXTA without compro-
mising important P2P characteristics, that is, Oden fulfills
all three criteria in Table 1. A significant feature of Oden is
that the service consumer controls the discovery process.

Acknowledgements

The preparation of the manuscript was supported by Vin-
nova (grant no. 2002-00907) and by The Swedish Research
Council (grant no. 621-2003-2991).

References

[1] M. Weiser, “The Computer for the Twenty-First Cen-
tury,” Scientific American, pp. 94–100, September
1991.

[2] S. Oaks, B. Traversat, and L. Gong,JXTA in a Nut-
shell. Sebastopol, CA: O’Reilly, 2002.

[3] Kim Topley, J2ME in a Nutshell. Sebastopol, CA:
O’Reilly, April 2002.

[4] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou,
J. Hugly, and E. Pouyoul, “Project JXTA-C: Enabling
a Web of Things,” inProceedings of the 36th Annual
Hawaii International Conference on System Sciences,
pp. 282–290, 2003.

[5] A. Schmidt, “Ubiquitous Computing—Computing in
Context,” November 2002. Submitted to Lancaster
University for PhD degree,http://www.comp.
lancs.ac.uk/~albrecht/pubs/ .

[6] S. Helal, “Standards for Service Discovery and Deliv-
ery,” IEEE Pervasive Computing, vol. 1, pp. 95–100,
July 2002.

[7] G. G. Richard,Service Discovery Protocols and Pro-
gramming. Developer Guides, McGraw-Hill Educa-
tion, June 2002.

[8] S. Avancha, A. Joshi, and T. Finin, “Enhanced Service
Discovery in Bluetooth,”Computer, vol. 35, pp. 96–
99, June 2002.

8

[9] S. Waterhouse, D. Doolin, G. Kan, and A. Fay-
bishenko, “Distributed Search in P2P Networks,”
IEEE Internet Computing, vol. 6, pp. 68–72, January–
February 2002.

[10] D. L. McGuinness and F. van Harmelen (eds.), “OWL
Web Ontology Language Overview.” W3C Recom-
mendation 10 February 2004,http://www.w3.
org/TR/owl-features/ .

[11] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. Patel-Schneider, eds.,The Description Logic
Handbook - Theory, Implementation and Applica-
tions. Cambridge: Cambridge University Press, Jan-
uary 2003.

[12] R. Fikes, G. Frank, and J. Jenkins, “JTP: A System
Architecture and Component Library for Hybrid Rea-
soning,” in Proceedings of the Seventh World Multi-
conference on Systemics, Cybernetics, and Informat-
ics, 2003.

[13] A. Mädche and S. Staab, “Services on the Move - To-
wards P2P-Enabled Semantic Web Services,” inPro-
ceedings of the 10th International Conference on In-
formation Technology and Travel & Tourism, ENTER
2003, (Heidelberg), Springer-Verlag, 2003.

[14] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek,
A. Naeve, M. Nilsson, M. Palmér, and T. Risch,
“EDUTELLA: a P2P networking infrastructure based
on RDF,” inProceedings of the eleventh international
conference on World Wide Web, pp. 604–615, ACM
Press, 2002.

[15] U. Thaden, W. Siberski, and W. Nejdl, “A Semantic
Web based Peer-to-Peer Service Registry Network,”
tech. rep., Learninglab Lower Saxony, 2003.

[16] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “A
Scalable and Ontology-based P2P Infrastructure for
Semantic Web Services,” inProceedings of the Second
International Conference on Peer-to-Peer Computing,
pp. 104–111, 2002.

[17] A. Crespo and H. Garcia-Molina, “Semantic Overlay
Networks for P2P Systems,” tech. rep., Computer Sci-
ence Department, Stanford University, October 2002.

[18] E. Halepovic and R. Deters, “The Costs of Using
JXTA,” in Proceedings of the Third International
Conference on Peer-to-Peer Computing, pp. 160–167,
2003.

[19] K. Burbeck, D. Garpe, and S. Nadjm-Tehrani, “Scale-
up and performance studies of three agent platforms,”

in Proceedings of International Performance, Com-
munication and Computing Conference, Middleware
Performance workshop., pp. 857–863, April 2004.

9

