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Abstract. We are interested in the development of a database manage-
ment layer which is completely portable and, therefore, “pluggable” on
top of multiple host platforms. This layer, so called Peer Database Man-
agement System (PDBMS), must be able to remotely connect with its
database and to connect it with other peer databases. We realize mobil-
ity by storing PDBMS on a flash drive. We realize network independence
by developing a fully decentralized data coordination model. The two no-
tions at the core of our model are Interest groups and Acquaintances.
The first notion allows for a global aggregation of nodes carrying simi-
lar information, while the second allows for a local logical point-to-point
data exchange between databases. The system has been developed on
top of the Peer-to-Peer platform JXTA.

1 Introduction

We are interested in the study of new paradigms allowing conventional database
technology to be effectively operational in mobile settings. We think of database
mobility as a database network, where databases appear and disappear sponta-
neously and their network access points may change, and are not known a priori.
There is a further request that databases must know, independently of their net-
work access points, how to locate other databases, and how to interoperate with
them on servicing user requests (i.e., queries and updates).

Examples of the application domain for mobile databases are medical care or
the real estate domain. For instance, think about a person, called John, who goes
for skiing and suffers an accident. He is taken to a local clinic for a treatment.
Doctors need to know whether John has any contra-indication against some
particular drugs. John does not know these details, but luckily his database
management layer, that he keeps on his flash drive, has a link to the family
doctor’s database, where the history of his treatments is stored. Thus a simple
query helps to solve the problem. Another example is an application where real
estate agents coordinate their databases in exchanging real estate information
with the goal of pushing sales. Since they travel to their customers (who may
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want to sell or, instead, to buy), they always carry relevant data with them.
When one is on the site of a customer, who wants to sell a house, the agent
updates his database and makes this data available for other agents. Or, when
an agent talks with a potential buyer, and nothing from the agent’s database
satisfies the client, the agent may want to query other agents’ databases to look
for additional sale options.

We implement these functionalities within a so called Peer Database Manage-
ment System (PDBMS) which is supposed to run on top of a standard database
management system. We see three major requirements for a PDBMS. First, it
must be self-contained and relatively small in size. This allows it to be totally
independent from other databases and middleware. It also allows it to fit on
a small capacity storage device as a flash drive, which can be easily handled
around. Second, it must be system, networking platform, and IP independent;
this in order to make it “pluggable” on top of multiple host platforms. Third,
PDBMS must know how to connect to its database and how to connect it with
other databases in order to exchange queries and data.

PDBMS runs on top of JXTA [11]. JXTA provides an IP-independent nam-
ing space to address nodes. It implements a Peer-to-Peer (P2P) decentralized
networking model where each party (called a node or a peer) has equivalent abil-
ities in providing other parties with data and/or services. Peers are largely au-
tonomous from other peers, and they interoperate in a local, point-to-point man-
ner. All these notions are crucial from the point of view of mobility – databases
may come and go, interact with different databases at different times or for an-
swering different queries, the size of the network can dynamically shrink and
expand depending on how many nodes are online, and databases can benefit
from collaboration with one other by coordinating their data at runtime.

Existing database integration solutions are inapplicable for our application
domain. In conventional database integration technology, interoperation is reached
by means of introducing the notion of a global virtual schema [13]. Queries are
posed against the global schema and then reformulated w.r.t. local schemas
which describe real data in the system. Should a new schema be imported to the
system (which is not supported by the global schema), then the global schema
must be reconsidered as a design time activity. The dynamic factor of mobil-
ity, i.e. the fact that parties are regularly unavailable, and the open-ended au-
tonomous nature of P2P make these solutions impractical. Therefore, we propose
a new solution to P2P databases, that we call database coordination. We see co-
ordination as the ability of peers to effectively manage, at runtime, semantic
data dependency links among databases in a decentralized, distributed and col-
laborative manner.

The key notions of the database coordination model are Interest Groups and
Acquaintances. Interest groups support the formation of peers according to data
models they have in common; and acquaintances allow for peers inter-operation.
The combination of database and P2P technologies has already received a lot
of attention, see for instance [9, 5, 7, 10]. Among many other things (see [4] for a
detailed discussion of the related work) our solution considers a new dimension



for P2P databases – mobility, where PDBMS, database, or both, can be mobile.
[4] provides the vision of our approach, whereas this paper makes it concrete by
presenting the key notions, algorithms and architecture at a reproducible level
of details.

This paper is organized as follows. Section 2 introduces the four basic archi-
tectural notions of our data coordination model. Section 3 explains how these
notions are implemented in JXTA. Section 4 discusses the logical architecture
that we propose. Finally, Section 5 gives the conclusions.

2 A model for data coordination

We consider the notion of a DB peer (or just peer) as primitive, taking it as any
device supporting one or more networking protocols. There is a further request
that each peer provides a source database described by a (source) schema, or
supplies only the schema. In this latter case a node acts as a kind of mediator
in transitive propagation of data. Peers define semantic data dependency links
between their schemas and use these links to coordinate data, i.e., answer input
queries, propagate query results and updates. An input query can come from a
user (user query) or from another node on the network (network query). Both
user queries and network queries are formulated w.r.t. the source schema of a
particular node. A P2P database network (or just network) is a collection of DB
peers and semantic data dependency links relating schemas of pairs of nodes.
Peers are largely autonomous, in particular in what data they store, in which
nodes they establish semantic data dependency links with and coordinate their
data, etc. We define data coordination in terms of four basic notions. They are:
Interest Groups, Acquaintances, Correspondence Rules and Coordination Rules.

2.1 Interest Groups

Usually, nodes know very little about the topics other nodes can answer queries
about. Intuitively, “Ford cars”, “Trentino libraries”, “Movies” are all possible
topics. An Interest Group (or a Peer Group) is a set of nodes able to answer
queries about a particular topic. Interest groups form a hierarchical parent-child
relationship, where each child has only one parent. Each child peer group has a
more specialized topic w.r.t. the topic of its parent group. The interest groups
hierarchy is a tree, where the root stands for “All Topics” interest group (ATG).
ATG is used by nodes, whose schemas do not correspond to any of the other
groups in the hierarchy. The lower a group in the hierarchy, the more specialized
its topic is and the more “specific” queries its nodes are able to answer. We
describe the topic of an interest group by the path from ATG to that interest
group in the hierarchy and by a set of keywords which additionally describe the
content of the group. This information is useful for peers looking for appropriate
groups to join. Consider the following example.

Example 1. Consider Figure 1, where an example of interest group hierarchy is
depicted. The “Arts” group includes nodes with databases storing rather general



data about arts, for instance, categories of arts (music, photography, etc), ad-
dresses of relevant museums and names of relevant people, etc. Its child group,
titled “Movies”, contains information about particular movies, directors and ac-
tors, producers, and so on. The topic for group “Movies” in this case could be
GT (“Movies′′) =< ATG−Arts−Movies, “movies, cartoons, video, celebrities′′ >

Fig. 1. An interest group hierarchy

Each interest group has a Group Manager (GM) whose task is to provide
peers with information about the group. In particular, GM is responsible for
collecting statistical information, such as the number of nodes which have joined
the group, the number of nodes which are online in average, average number of
queries per node in a unit of time, volume of data in the nodes’ databases, average
volume of a query answer, and so on. GM keeps up-to-date this information and
makes it available for nodes willing to join. GM stores the topic information of
its interest group as well the data about its child interest groups. A child interest
group is formed by a node of some (parent) interest group. This node becomes
the group manager of this new group. Once a new group is created, new nodes
may join, and, eventually form new child interest groups. Nodes self-organize into
interest groups and build the interest group hierarchy in a decentralized fashion.
As a thumb rule, any peer can participate in more than one interest group
independently on their position in the hierarchy (providing that this peer has
relevant relations for these groups), and can join and leave groups spontaneously.

2.2 Acquaintances

Acquaintances are nodes a node knows about. There is a further request that a
node must know how to translate an input query (or its part) w.r.t. the schema
of an acquaintance and how to translate query results or an update coming from
an acquaintance w.r.t. its source schema. The acquaintance is not a symmetric
notion, i.e. the fact that a node is acquainted with another node does not nec-
essarily mean that the vice versa also holds. A node is an acquainted node for
some other node if the latter is an acquaintance of the former.

For each acquaintance, a node keeps one or more acquaintance queries. An
acquaintance query is a query over the relations of the database of an acquain-
tance, whose answer satisfies one of the relations of the schema of an appropriate



acquainted node. In data integration terminology this kind of mappings is called
Global-as-View, or GAV [6]. An acquaintance query is the minimal block for
building semantic data dependency links between peer databases. We represent
acquaintance queries as conjunctive queries, which can express select-project-join
queries [13]. All input queries in a network are also represented in the conjunctive
form. An acquaintance query (or an input query) has the following form:

r(X) : −r1(X1), . . . , ri(X i), ci+1(X i+1), . . . , cn(Xn)
where r, r1, . . . , rn and ci+1, . . . , cn are predicate names. r(X) is called the head

of the query and refers to a particular relation. r1(X1), . . . , ri(X i) are the re-
lation subgoals, and ci+1(X i+1), . . . , cn(Xn) are the comparison subgoals of the
body of the query. Comparison subgoals stand for arithmetic comparisons, such as
<,≤, =, �=. Tuples X, X1, . . . , Xi contain variables, whereas tuples Xi+1, . . . , Xn

contain either constants or variables from the relation subgoals. Variables from
X1, . . . , Xn are called body variables, and variables from X are called head vari-
ables. We allow only meaningful queries, i.e. we require that all head variables
must also be body variables, names of the relation subgoals must be mutually
different, etc. If a query respects these rules then we say that that this query is
valid.

The head of an acquaintance query is equal to some relation of the source
schema, and its relation subgoals and body variables refer respectively to the
relations and attributes of the schema of an acquaintance. Comparison subgoals
of an acquaintance query represent restrictions over the domain of the acquain-
tance database which are caused by the source database domain constraints;
they are used for update propagation. For an input query, the head is equal to
the answer relation, and the relation subgoals refer to the relations of the source
schema.

Acquaintance queries are used for the translation of input queries and their
propagation to acquaintances as well as for update propagation from acquain-
tances. Each acquaintance query is stored in two copies – one at an acquainted
node and another at its respective acquaintance. We will say that an acquain-
tance query is relevant for some relation, if either it is stored at an acquainted
node and the head of the query is equal to that relation, or if it is stored at an
acquaintance and that relation appears in the body of the query. Consider the
following example:

Example 2. Consider two nodes A and B, whose relations store information
about banks (as names, departments, cities, countries) and bank employees (as
names, departments they are attached to, and salaries). The relations of the two
nodes are:

node A node B
Banks(bankName, city, country) Banca(nome, stipendio, banca, cita′)
Departments(depName, bankName)
Staff(name, depName, salary)



A particularity of database B is that it stores information about employ-
ees working in Italian banks with salaries more than 2000 Euros. Node B is
acquainted with node A w.r.t. the following acquaintance query:

Banca(n, s, b, c) : − Banks(b, c, ctr), Departments(dn, b), Staff(n, dn, s),
ctr = “Italy′′, s > 2000

As it can be seen from the acquaintance query, two comparison subgoals apply
restrictions on the salary and country attributes of relations of A in accordance
with the domain of the database of node B.

2.3 Correspondence Rules

In most cases, participating databases are semantically heterogeneous, namely,
they represent the same concepts differently [8]. Correspondence rules define how
constants from the local domain are translated into constants in the domain of
an acquaintance (forward translation) and vice versa (backward translation).
Correspondence rules are defined on the domains of all head variables of ac-
quaintance queries (since they appear in input queries) and of all those body
variables which appear in the comparison subgoals. Note, that correspondences
between relations and attributes are already defined by the acquaintance queries.
Namely, one relation in a peer source schema may correspond to several relations
in an acquaintance’s one. Also an attribute in a relation (i.e. a head variable) may
correspond to several attributes in acquaintance’s relations (i.e. body variables).

We denote by FT (x) = y a function for forward translation and by BT (x) =
y a function for backward translation. Forward translation is used for trans-
lating constants in queries, whereas backward translation is used for translat-
ing constants in query results and updates. Note, that these two translations
are not necessarily symmetric, i.e. it is not necessarily true that the following
holds FT (BT (x)) = x. An example of this situation could be a translation
between two currencies. In the simplest case, when two nodes share the same
domain, constants are translated by correspondence rules into themselves, i.e.
FT (x) = BT (x) = x. In this case we will say that such correspondence rules are
plain translations. Consider the following example.

Example 3. Recall the nodes, relations and acquaintance query from Example 2.
The variables, which are associated with correspondence rules, are n, s, b, c and
ctr. Now imagine that node A is in the United States, and therefore all salaries
are in US dollars. In order to allow queries with the salary attribute in the body,
the following correspondence rules might be set up at B for this acquaintance
query:

FT (s) = s ∗ 1.27; BT (s) = s ∗ 0.78;

Correspondence rules for variables n, b, c and ctr are plain translations since
we assume that both databases use the same natural language (e.g. English) to
refer to personnel, bank, city, and country names.



Apart from the translation of constants, correspondence rules do another op-
eration, namely transformation of a relation subgoal of an input query into a
query w.r.t. the schema of a particular acquaintance. Depending on the number
of acquaintance query definitions, bound to some relation subgoal, each subgoal
may have zero, one, or more transformations. The transformation consists of two
main phases: (1) unfolding of the relation subgoal in accordance with the defini-
tion of a respective acquaintance query; (2) “pushing” the comparison subgoals
to the reformulated query. In the first phase we omit all comparison subgoals
from the acquaintance query, and, in the second phase, we add only those from
the input query, which refer to the head variables from the relation being trans-
lated. There are two reasons for doing this. First reason is to allow queries which
ask for data beyond local domain constraints. If comparison subgoals of acquain-
tance queries were added, resulting query might already become unsatisfiable.
The second reason is that, by “pushing” the input query comparison subgoals to
a query w.r.t. acquaintance database, we reduce the amount of data, returned by
the acquaintance. On the completion of the second phase, correspondence rules
translate constants, if any. Consider the following example:

Example 4. Assume that the user of node B from Example 2 submits a query
asking for the names of employees in Rome with salaries less then 1800 Euros.
The corresponding conjunctive query is:

QB(n, b) : −Banca(n, s, b, c), s < 1800, c = “Rome′′

According to the definition of the acquaintance query from Example 2, for-
mulated for relation “Banca′′, QB is unfolded to the following query:

Q′
B(n, b) : − Banks(b, c, ctr), Departments(dn, b),

Staff(n, dn, s), s < 1800, c = “Rome′′

Note, that comparison subgoals from the acquaintance query are omitted,
whereas the ones from the user query are added. If the comparison subgoals of
the acquaintance query were left, then we would have two comparison subgoals
which are mutually inconsistent (i.e. s > 2000 and s < 1800). Finally, we apply
correspondence rules for translating constants 1800 and “Rome”, and we get the
following query, ready for being executed at node A:

QA(n, b) : − Banks(b, c, ctr), Departments(dn, b),
Staff(n, dn, s), s < 2286, c = “Rome′′

2.4 Coordination Rules

Each node has a set of coordination rules. Their primary goal is managing data
coordination with acquaintances and acquainted nodes. They are run by spe-
cial kind of events, called data coordination events and, depending on the event,
perform a particular action. The data coordination events are: (1) a database
manipulation operation, such as select, insert, delete or update formulated w.r.t.
to the source schema and submitted by the user; (2) a network query coming
from an acquainted node; (3) query results coming from an acquaintance node;



or (4) an update request coming from an acquaintance. An action, performed
by coordination rules, can be transformation and propagation of an input query
to an acquaintance, reconciliation of results and their propagation to an ac-
quainted node, etc. Let us consider how coordination rules process the four data
coordination event types.

Database manipulation operations. Select is used when a user submits
queries. User queries are checked for validity, and then they are evaluated against
the source schema. The evaluation involves a check of whether referenced rela-
tions exist, whether they are given certain number of variables, etc. If a node is
equipped with a source database and it is accessible, then the variables in the
conjunctive query are assigned corresponding attributes, and then the query is
submitted to the database.

Then, for each relation subgoal in the query coordination rules check whether
there are any relevant acquaintance queries. For each found acquaintance query,
correspondence rules are applied to get a transformed query w.r.t. the schema of
the appropriate acquaintance. Finally, all reformulated queries for all subgoals,
which passed the consistency check, are propagated to appropriate acquain-
tances. Since different acquaintance queries may refer to nodes from different
interest groups, a user query may be propagated within several interest groups
at the same time.

Insert leads to an update of data at some source database. When executed at
some node, it may evoke update propagation to some other, acquainted node(s).
Nodes may agree on automatic propagation of updates related to some acquain-
tance queries. An update propagation works as follows: when an insert opera-
tion is performed, coordination rules look for acquaintance queries of acquainted
nodes, which contain the relation being modified amongst their relation sub-
goals. For each acquaintance query found, the node computes the acquaintance
query keeping only the newly inserted tuples for the corresponding relation. The
reason for this is that in this case the query computes only new tuples, w.r.t. to
ones which might have been already computed during the previous insert opera-
tions or queries. Note, that now the comparison subgoals of acquaintance queries
are also used in the computation of result tuples (which is not a case in query
answering). Then, the node sends the computed tuples to respective acquainted
nodes, with the IDs of corresponding acquaintance queries.

Delete removes tuples from a relation. Nodes may agree also on the auto-
matic propagation of delete updates. For each relevant acquaintance query, we
treat tuples, which are in the difference of the query computation results before
and after the delete operation, as candidates for being deleted from the corre-
sponding relation at the respective acquainted node. In order to compute them,
before executing the delete operation on some relation, we query that relation
asking for all attributes where the condition part is equal to the one of the delete
operation. Then we compute the acquaintance query involving the result of the
last query. Finally, the result of the computation is sent to the acquainted node



in an update message with the ID of corresponding acquaintance query with the
mark for deletion.

Update may cause three different actions to be performed on the database
of an acquainted node. Namely, an update may produce new tuples for an ac-
quainted peer due to the fact that some comparison subgoals are now satisfied; it
may lead to a deletion of some tuples because some comparison subgoals are no
longer satisfied; or, it could lead just to changes in some existing tuples. In order
to handle the update operation, we proceed as follows. First, we query for all
attributes of the relation R being updated with the condition clause in the query
equal to the one of the corresponding update operation, and get the result set
A. Then, we compute each relevant acquaintance query by substituting R with
A, and get the result set B. B contains tuples which might have been already
computed and propagated to a particular acquainted node. The update opera-
tion is performed over R and A. Then, we re-compute relevant acquaintances
over updated A and get the result set B′. Finally, for all tuples which are in B,
but not in B′ the node sends a delete request message, and for all tuples which
are in B′ and not in B the node sends an insert request message. Note, that at
the moment tuples which just need to be changed are updated by a delete-insert
sequence.

Network query. Coordination rules process network queries in the same way as
user queries with only two differences. First, the results of querying the database
are sent back to the acquainted node, which sent the query. Second, queries are
allowed to be propagated only to the nodes of the same interest group. In order
to do this, all network queries are sent with the interest group ID which identifies
the scope of further propagation.

Query results handling. Query results coming from an acquaintance can be
seen as additional tuples for some relation appearing in an input query. It is
crucial to compute new tuples for this input query (new tuples w.r.t. previously
computed results). In order to reach this goal we proceed in two steps. Analo-
gously to the updates case, we substitute existing tuples of the given relation by
the new results and re-compute the input query. Then, from the newly computed
tuples we delete those, which are duplicates of the previously produced results.
In order to do this we store input query computation results until the query
answering is complete. Finally, after deleting the duplicates, the remaining tu-
ples are either reported to the user, or propagated backward to the appropriate
acquainted node.

Update requests handling. An update message is a request for an insert or
for a delete. When a node receives such a message, it translates it using cor-
respondence rules and updates the corresponding relation. With an insert, the
node updates its relation avoiding inserting duplicates. Analogously to query
answering, coordination rules look for relevant acquaintance queries, and, de-
pending on the kind of the update (insert or delete), initialize corresponding



update propagation procedures. Update propagation is different from query an-
swering in that an intermediate node may decide not to accept an update and
thus stops further update propagation.

2.5 Data coordination

A fundamental question in data coordination is how nodes cooperate globally
(in the scope of an interest group) in the overall processing of an initial data
coordination event, such as a user query or an update. A query or an update
at a node may lead to its propagation to some other nodes, they in turn may
propagate it further, and so on. At the network level, we see data coordination
as a transitive propagation of data via chains of nodes as the result of local
point-to-point interactions of nodes with their acquaintances and acquainted
nodes. Since nodes are free to make acquaintances with any other nodes they
like, the “acquaintance” topology of the network may be absolutely arbitrary.
In such settings it becomes crucial to process correctly loops in order to avoid
indefinitely long propagation of data, and to determine when query answering
(or update propagation) is complete.

We handle loops in query and update propagation differently. We avoid them
in query propagation by propagating with a query a path, consisting of acquain-
tance query IDs, which have been used for propagation of the query. Once a
node receives a query, it does not propagate it further using whose acquaintance
queries which IDs are already in the path. However, this allows for a query to
pass over the same node more than once. This is possible when a query comes to
a node via different paths of nodes, or, when there is a loop in the path of nodes,
and different acquaintance queries are used at the same node but at different
times for further propagation of the query.

In order to clarify when query answering is complete, we introduce some
additional notions. Namely, we call acquaintance queries, incoming links, if these
acquaintance queries are used by some acquainted nodes for querying the source
databases of the given node. We call acquaintance queries, outgoing links, if that
node uses these acquaintance queries to translate and propagate queries to its
acquaintances. We say that an incoming link depends on an outgoing link, or
that an outgoing link is relevant for some incoming link, if amongst the relational
subgoals of the incoming link there is a relation appearing in the head of the
outgoing link. Importing data tuples from an outgoing link may produce new
tuples for all incoming links which depend on that outgoing link.

Query answering for some query at a given node is complete, if all outgoing
links used for the propagation of the query from this node are in the state
“closed”. When an outgoing link is used for propagation of a query, its state
initially is “open”, which means that new tuples may be imported using this link.
An acquaintance “closes” an incoming link if: (a) there is no further propagation
of the query from this node, or (b) all its outgoing links which are relevant for
this incoming link are in the state “closed”. When all outgoing links of a node are
in the state “closed”, the node becomes also “closed”. The query answering for
some query is complete when all nodes participated in answering of this query



are “closed”. Note, that the node where a user query was originally submitted
gets to the “closed” state last. It worths saying that this algorithm guarantees
termination with the presence of loops in the network topology.

Handling of loops in update propagation is more complex than in query an-
swering. Since nodes update their databases, re-computing acquaintance queries,
after an update reached a node following a loop of nodes, may produce new tu-
ples to be further propagated into the loop. Thus, an update sequence may go
through a loop of nodes several times until no more new tuples are produced for
any of the nodes in the loop. A node stops update propagation if this update
brings no new tuples for this node, and this node is in the sequence of nodes
which propagated this update. For doing this, when each node propagates an
update, it adds itself to the nodes sequence and sends it with the update. In the
rest, the termination of update propagation is determined analogously with the
query propagation case. For a thorough discussion on how updates are handled
in a P2P database system see [2].

The second important question in data coordination is how acquaintances,
correspondence rules and coordination rules are actually formed at runtime.
Nodes of an interest group may search for other nodes of the group for the
purpose of making acquaintances with them. The process of making an acquain-
tance, involving the creation of acquaintance queries, correspondence rules and
coordination rules, is called the getting acquainted protocol. The protocol works
as follows: a node (say, node A) locates a potential acquaintance (node B), it re-
trieves the source schema of B and matches it with its own source schema (see [3,
12] for a discussion on schema matching techniques). The matching results show
how the elements (i.e. relations and attributes) of one schema correspond to the
elements of another. This information is used by the system to build (likely with
the help of the user) acquaintance queries and correspondence rules. In order
to “activate” coordination rules for an acquaintance (or acquainted node) it is
sufficient to provide relevant acquaintance queries.

3 Implementing data coordination in JXTA

JXTA provides an open set of protocols which allow to build P2P applications.
JXTA peers are devices which implement one or more JXTA protocols. JXTA-
powered applications, amongst other things, can: create groups of peers, locate
peers on the network, create messages, where a message can carry arbitrary type
of data (e.g. images, code, query results, etc), create communication links (called
pipes) with other nodes and send messages onto pipes. The pipe endpoints are
referred as the input pipe (the receiving end) and as the output pipe (the send-
ing end). Pipe endpoints correspond to available peer network interfaces (e.g.,
TCP port and IP address). JXTA allows for the definition of a set of services
that a peer makes available for other peers. Services fall into two categories: peer
services and peer group services. Peer services are provided by single peers, and,
should a peer fail, the service also fails. Peer group services are provided by a
collective set of peers, and, should a peer fail, the service does not fail assuming



that there are other peers providing this service. JXTA defines the core set of
services necessary for a full-functional operation of a peer. Some of them are:
Discovery Service, Membership Service and Pipe Service. The Discovery Service
allows peers to locate and publish information on the network. The Membership
Service is used by current members of a peer group to reject or accept a new
group membership application. The Pipe Service allows peers to create pipes
with nodes from the same group. Apart from this, JXTA uses sophisticated
algorithms to generate unique (for an interest group) IDs to identify various re-
sources. We use this machinery to generate IDs for queries, acquaintance queries,
update propagation, and so on.

New peer groups may include (a subset of) the core services as well as custom
services. Custom services allow for the creation of peer groups which will provide
their peers with desirable functionality. A JXTA peer group is a set of peers which
agree on the common set of services. All network resources in JXTA (i.e. peers,
peer groups, pipes, etc) are described by advertisements, which are language
neutral XML documents. Peers can publish, discover and use advertisements
(e.g. create a pipe from an advertisement). JXTA provides an IP-independent
naming space to identify network resources, and supports various network pro-
tocols, such as TCP/IP or Bluetooth. Moreover, since JXTA is implemented in
Java, it is platform independent and can run both on Windows and on Linux. As
discussed in Section 1, all this is very important from the point of view of mo-
bility. Namely, a peer can enter the network from different places, use available
platforms and networking protocols and it will be easily located and identified
by other peers.

Fig. 2. Classification of DB-related services

We implement database coordination by implementing locally at each node
the four basic notions of our data coordination model. In order to do this we use
JXTA to implement peers, interest groups and acquaintances. Coordination rules
and correspondence rules are implemented in the application software. We im-
plement peers as JXTA peers. We extend the standard JXTA peer advertisement
to encapsulate the source schema information of a peer. Once an advertisement
of a peer is located by another node, the latter extracts the schema and executes
the getting acquainted protocol. Finally, if the user finds the results relevant and
wants to make an acquaintance, then, the two nodes exchange pipe advertise-



ments, and create input and output pipes. At this moment, one node is said to
be acquainted with another.

We implement interest groups as JXTA groups by encoding database re-
lated functionalities into the custom set of services, called DB-related services.
We extend the standard JXTA peer group advertisement to include the group
topic information. We classify DB-related services into two categories: node-level
services and group-level services (see Figure 2). There are several node-level ser-
vices. For instance, there is a node-level service which creates pipes with ac-
quainted nodes and listens to their endpoints. And, as soon as a network query
arrives, the service processes it as it is described above in the corresponding sec-
tion. Another node-level service implements handling of query results, coming
from acquaintances. If the source databases is absent, this service uses another
node-level service, that computes input queries from the results received from
acquaintances. Note, that this service needs to perform only the join and project
operations. Since comparison subgoals are “pushed” to acquaintances, and first
data tuples are computed in real databases, then all tuples coming from acquain-
tances already satisfy the comparison subgoals of input queries, and therefore
the select operation is not required.

One example of a group-level service is the Screening Service, obtained by
modifying the JXTA Membership Service. The service helps supporting a proper
constitution of an interest group w.r.t. its topic. A peer willing to join an in-
terest group, first locates a current member, and then applies for membership,
providing its schema as credentials. An application is accepted or rejected by
a collective set of current members. In order to do this, each peer matches the
schema of the newcomer with its source schema (without involvement of the
user) and returns the number of discovered mappings. If the aggregated result
for all available nodes is above a certain threshold then the membership appli-
cation of a new peer is accepted and rejected otherwise. Another example of a
group-level service is the GM service. This service is responsible for sending to
group manager all information necessary for GM to run the group. As long as
there are running peers in the group, these two services are available.

We build DB-related services on top of the core services provided by JXTA.
As a consequence, the implementation of the basic P2P functionality (i.e., dis-
covery, pipes, etc) is given. Each DB peer has a copy of both the core JXTA
services and DB-related services. This helps us to implement the self-containment
requirement as specified in the introduction. JXTA peer groups form a hierar-
chical parent-child relationship. This fact allows us to support the formation of
interest group hierarchies, as shown on Figure 1.

4 The logical architecture and implementation

We describe the logical architecture at two levels of detail: the architecture of a
node (first level); and the second level, which shows how the four basic notions
are implemented in JXTA. The first level architecture is a variation of the high
level architecture first reported in [1].



Consider Figure 3. A node consists of PDBMS, a Source Database (SDB)
and a Source Schema (SS). SS describes a shared part of SDB. PDBMS consists
of User Interface (UI), Database Manager (DBM), JXTA Layer and Wrapper.
DBM implements the four basic notions described in Section 2. JXTA Layer is
responsible for all node’s activities on the network, such as discovering of new
nodes and interest groups, joining and leaving groups, communication with group
managers, sending and receiving queries and query results, and so on. Wrapper
manages connections to SDB, it is responsible for extraction and maintenance of
SS. Since different nodes may use different databases, this module is adjustable
depending on the underlying database.

Fig. 3. First level architecture: a node

Arrows between UI and DBM as well as arrows between Wrapper, JXTA
Layer and DBM have the same graphical notation bacause they represent pro-
cedure calls between different modules. Bidirectional arrow from JXTA Layer to
a P2P database network has a different notation because it represents JXTA-
supported messaging, mostly represented in the form of XML documents. The
arrows between SDB, SS, and Wrapper have yet another notation because the
communication is SDB dependent.

In Figure 4 we “open” DBM and JXTA Layer. Rectangles with rounded cor-
ners stand for data repositories which store various information. Normal rect-
angles represent executive modules. The meaning of arrows between UI, DBM,
JXTA Layer and Wrapper is the same as in Figure 3, namely, they represent pro-
cedure calls. Continuous thin arrowed lines show information flows between mod-
ules and data repositories, as well as procedure calls between modules. Dashed
arrowed lines show the functional dependencies between components. For ex-
ample, they show that coordination rules, correspondence rules, acquaintance
queries, peer advertisements and pipes all functionally depend on acquaintances.

Consider JXTA Layer. The advertisements repository stores all discovered
and locally created JXTA advertisements. Inside the rectangle, three advertise-
ment types are represented, although in practice there are also others. The peer
group advertisement includes also the group topic information, and the peer
advertisement includes the source schema information. The Services module im-
plements the core JXTA services and DB-related services. We encode the input



Fig. 4. Second level architecture: DBM and JXTA Layer

pipe advertisement of the group manager in the Services module. Nodes use this
information to contact their appropriate GM. The Discovery module implements
the Discovery Service, and the Pipes module implements the Pipe Service.

Consider now DBM. The P2P Management module allows users to control
other modules and repositories from both DBM and JXTA Layer. For instance, it
makes it possible to create a new pipe, to make a new acquaintance or to modify
a coordination rule. The control lines are shown as thick arrows from P2P Man-
agement to other components. Query Planner processes all input queries. It uses
acquaintance queries, acquaintances and interest groups information in order to
detect groups and nodes for propagation. The Query Propagation (QP) module
takes this information as input and uses correspondence rules for query rewrit-
ing. Finally, it uses pipes to send translated queries to acquaintances. When
necessary, QP submits queries to the source database. Results Handler receives
results coming from acquaintances and translates them using Correspondence
Rules. If these results are for a user query, then it reports them to UI. Other-
wise, it sends them backward to the node which sent respective network query.
Apart from this, Results Handler gets results coming from Wrapper, and sends
them either to UI or to the network. Finally, Update Handler provides all func-
tionality necessary for updates processing.

The current version of the prototype implements a major part of the ideas
described in this paper. In particular, acquaintances and coordination rules, as
well as query and update propagation algorithms are fully implemented except
some minor details. Interest groups and correspondence rules are not fully im-
plemented at the moment. The prototype is implemented in Java and is about
6 Mbytes in size including required JXTA libraries and excluding all meta-data
files (e.g. source schemas, JXTA advertisements, etc). The Java Virtual Machine
runtime environment (about 40 Mbytes) is required to run the application. Thus



a self-contained application package can fit in space of about 46 Mbytes, which
can be easily placed on a flash drive. The results of the first experiments show
reasonable query answering and update propagation times in small size networks
(up to 20 nodes). For the experiments we created various source databases with
several thousand of tuples at each node, with different degrees of overlapping
of the data at different nodes. Future work includes the study of the scalability
property of our solution, as well as the implementation of interest groups and
correspondence rules.

5 Conclusions

In this paper we have proposed a new solution for P2P databases which is ap-
plicable in mobile settings. The solution allows for the coordination of peer
databases, where PDBMSs, databases or both can be mobile. We have demon-
strated how data coordination can be implemented exploiting the four basic
notions, namely Interest Groups, Acquaintances, Correspondence Rules and Co-
ordination Rules. Finally, we have shown how our solution can be implemented
in JXTA and proposed a logical architecture at two levels of detail.
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