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Abstract. In this paper, we demonstrate how small worlds – i. e., highly
clustered networks with small diameter – of peers can organize them-
selves in an ontology-based P2P knowledge management system. To that
end, we provide rewiring strategies to build a network in which peers
form clusters where they are connected to other peers interested in simi-
lar topics. These strategies only rely on the local knowledge of each peer
and on the notion of similarity derived from the relationships of entities
the ontology. We evaluate these algorithms and show that a small world
of topically coherent clusters actually emerges, and that this improves
the performance of query operations.

1 Introduction

In many networks found in nature and society, a so-called small world structure
has been observed; these networks exhibit special properties, namely, a small
average diameter and a high degree of clustering, which make them effective and
efficient in terms of spreading and finding information.

The main focus of this paper is to examine the use of small world topologies
in an ontology-based P2P knowledge management (P2PKM) system. We assume
that in such a system, each peer maintains a knowledge base describing a part of
the world relevant to its user. These knowledge bases can then be queried locally
or by other peers in the network.

In this paper, we show a way of letting peers in a P2PKM setting organize
themselves into a small world structured around the topics that peers contain
knowledge about, and how this small world topology can improve the perfor-
mance of query routing strategies.

The remainder of this paper is structured as follows: Sections 2 and 3 intro-
duce related work and the necessary terms and definitions, respectively. Routing
and rewiring algorithms to build a small-world semantic P2P network are de-
scribed in Section 4 and evaluated in Section 5. Section 6 provides a conclusion,
an interpretation of the results and outlook.

2 Related Work

Recently, there have been several research projects concerned with knowledge
management in a P2P setting; examples include Edutella [1] and SWAP [2]. The



assumptions about P2PKM systems made in Section 3 are coherent with what
has been done in these projects.

Much of this paper draws upon the observations on the structure and evolu-
tion of small-world networks presented by Barabási [3] and Watts/Strogatz [4].
Barabási demonstrates how the structure of existing networks, such as the hy-
perlink topology of the WWW, can be replicated by a process of preferential
attachment, meaning that each node in the network will be linked to by others
with a probability proportional to its number of links.

Watts and Strogatz [4] describe the basic notions of the clustering coefficient
and characteristic path length measures as indicators of small-world networks.
Watts [5] examines several models for the growth of small-world networks from
what he calls substrates: e. g. a substrate could be a ring or a grid graph from
which a small-world topology emerges. He introduces the idea of rewiring as a
mechanism for evolving the graph structure of a substrate into a more desirable
one.

Both Barabási and Watts/Strogatz, however, assume a global view on the
graph; for example, to attach preferentially to a node with high indegree in the
Barabási model, a new node would have to see all nodes in the graph in order to
assess the respective degrees. In Section 4, we show strategies for rewiring into
a small-world network which only rely upon the local knowledge present at each
node.

The knows relation presented in Section 3 is a variant of the routing index
as presented by Crespo et. al. [6], extended from a keyword-based version into
one that contains arbitrary items comparable by a distance function.

Clustering is mentioned as an enabling factor for routing strategies such as
fireworks routing [7] or the superpeer-based routing in Edutella [8]. We comple-
ment these works by presenting a strategy for building the necessary clustered
structure and demonstrate under which circumstances clustering is beneficial for
routing. [7] mentions a Learning Fuzzy method for topology building (which is
not elaborated in the paper), which may be similar to the rewiring strategies
mentioned in Section 4.

Haase and Siebes [9] describe P2P routing strategies based on semantic
topologies. In contrast to this paper, they use an approach of pushing advertise-
ments of one’s own expertise to other peers, as opposed to the rewiring strategies
used here which pull information about suitable new neighbors from the network.
Furthermore, they do not make any explicit observations about the graph struc-
ture of the emergent network.

3 Basics and Definitions

3.1 Model of the P2P network

As this paper is mainly concerned with network topologies and routing strategies
in P2PKM systems, we abstract from the details of a P2PKM system implemen-
tation and make the following assumptions (similar to [9]):



– Each peer stores a set of content items. On these content items, there exists
a similarity function sim which can be used to determine the similarity of
content items to each other. We assume 1− sim to be a metric.

– Each peer provides a self-description of what it contains, in the following
referred to as expertise. Expertises need to be much smaller than the knowl-
edge bases they describe, as they are transmitted over the network and used
in other peers’ routing tables. In our case, the expertise consists of a content
item selected as representative for the peer, but in general, the expertise
could also include peer metadata like query languages supported, additional
capabilities of the peer etc. As peer expertises are content items, they can
be compared to each other and to queries using the sim function.

– There is a relation knows on the set of peers. Each peer knows about a certain
set of other peers, i. e., it knows their expertises and network address (IP,
JXTA ID). This corresponds to the routing index as proposed by Crespo et
al. [6]. In order to account for the limited amount of memory and processing
power, the size of the routing index at each peer is limited.
Sometimes it is more convenient to talk about the network in the terms of
graph theory. One can view the P2P network as a directed graph G(V,E)
with a set of nodes V and a set of edges E ⊆ V × V , where each peer P
constitutes a node in V , and (P1, P2) ∈ E iff knows(P1, P2). We will use
both notations synonymously.

– Peers query for content items on other peers by sending query messages to
some or all of their neighbors; these queries are forwarded by peers according
to some query routing strategy. Using the sim function mentioned above,
queries can thus be compared to content items and to peers’ expertises.

3.2 (Weighted) Clustering Coefficient

One observation about small-world networks found in many areas such as sociol-
ogy or biology is that there are clusters of nodes. This means, loosely speaking,
that for each node, its neighbors are likely to be connected directly themselves.

More specifically, the clustering coefficient for a node v has been defined [5]
as the fraction of possible edges in the neighborhood of a node which are actually
present. We slightly modify that definition to use a directed graph as our knows
relation may be asymmetric.

γv =
1

kv(kv − 1)

∑
w∈Γ (v)

|{u ∈ Γ (v) : (w, u) ∈ E}| (1)

where Γ (v) are the nodes pointed to by v, not including v:

Γ (v) = {u ∈ V \{v} : (u, v) ∈ E} (2)

and kv = |Γ (v)| is the size of the neighborhood. As kv(kv−1) in Equation 1 is
the maximum number of edges possible in the neighborhood, γv takes on values
between 0 and 1.



The clustering coefficient γ(G) of a graph is the mean of the clustering coef-
ficient over all nodes.

In the following, we extend this notion to a weighted clustering coefficient γw.
The motivation for this is that we do not only want to capture how densely con-
nected the neighborhood of each peer is, but also if the neighbors have contents
similar to that of the respective peer:

γw
v =

1
kv(kv − 1)

∑
w∈Γ (v)

sim(v, w) |{u ∈ Γ (v) : (w, u) ∈ E}| (3)

This means that for the weighted clustering coefficient of node v, each edge
from a neigbor w counts only as much as the similarity between w and v.

The weighted clustering coefficient is related to the observation that in actual
small-world networks where there is a notion of similarity between nodes, nodes
are not only surrounded by dense neighborhoods, but the neighboring nodes tend
to be similar to the node under consideration. In a social network of humans,
for example, you are likely to find people of common interests in these clusters.

With the above definitions, we have 0 ≤ γw
v ≤ 1. Large values of γw

v mean
that v is surrounded by a dense neighborhood of similar nodes.

3.3 Characteristic Path Length

The characteristic path length is a measure for the mean distance between nodes
in the network. It is defined by Watts [5, p. 29] as follows: “The characteristic
path length (L) of a graph is the median of the means of the shortest path
lengths connecting each vertex v ∈ F (G) to all other vertices. That is, calculate
d(v, j) ∀j ∈ V (G) and find dv for each v. Then define L as the median of {dv}.”
Here, d(v, j) is the number of edges on the shortest path from v to j, and dv is
the average of d(v, j) over all j ∈ (V − {v}).

For reasons of efficiency, we use the sampling technique proposed by Watts
(take a sample {v1, . . . , vm} ⊂ V for some m < |V |, compute mean distance dvi

for each, take median of mean distances as CPL) to estimate L. Note again that
in contrast to [5], we consider our network to be directed.

3.4 Ontologies

We assume that in the P2P knowledge management system, peers operate on
knowledge represented in terms of ontologies. More specifically, in this paper we
will use the terms “ontology” and “knowledge base” as defined in the context of
the KAON ontology framework; for details refer to [10].

In short, a core ontology consists of a partially ordered set of concepts1, the
partial order being “subconcept of”, and relations1 between these concepts. For
example, there could be concepts Professor and PhDStudent, and a relation su-
pervises(Professor, PhDStudent) between them. A knowledge base consists of a
1 More precisely: concept identifiers and relation identifiers; we will stick to the sim-

plified terminology of [10] here.



core ontology plus instances of the concepts and relations; e. g. a knowledge
base using the above concepts could contain stumme as an instance of Profes-
sor, schmitz as an instance of PhDStudent, and supervises(stumme, schmitz)
instantiating the supervises relation.

4 Rewiring and Routing Algorithms

In a social system, people tend to be surrounded mostly by people who are
similar to themselves in some sense. A librarian will relate to other people who
care about books, and a surgeon will probably know some more people from the
health care area. This leads to the following observation: if I want to find out
something about, say, a possible cure for squinting, I may want to ask my friend,
the surgeon. Even though he possibly does not know very much about squinting
himself, chances are that he will know an ophthalmologist. On the other hand, if
people are related to very similar people only, this will lead to so-called “caveman
worlds” [5], i. e. disconnected cliques which are not connected to each other. In
practice, however, many people maintain relationships to people from different
professions, geographical locations, etc.; these are called long range edges.

To apply these observations in a peer-to-peer setting and allow our P2P
network to organize itself to mimic the behavior of a social system, we need
algorithms to make sure that peers can move within the network by establishing
new connections and abandoning old ones, trying to get into clusters of similar
peers. Peers also need to be able to estimate which of their outgoing edges are
most suitable for forwarding an incoming query.

Figures 1 and 2 show examples of clustered and unclustered networks, re-
spectively2; both have been laid out using a spring embedder algorithm. While
in Figure 1 the nodes are linked randomly, in Figure 2, a topical structure can
be observed. In the top left, there are peers concerned with persons and research
projects (Lecturer, Professor, etc.), in the middle, there are peers containing en-
tities related to organizations, and in the bottom right corner peers are clustered
which deal with publications. In the latter of these two networks, it is reasonable
to assume that peers can make “educated guesses” about the best direction in
which to forward any given query, as most peers which will be able to answer
can be found in a limited region of the network. In the following paragraphs, we
introduce two simple strategies to cluster P2P networks by topic.

4.1 Rewiring Algorithms

In order to build a topically clustered graph using only the kind of knowledge
available locally on the peers, we use strategies based on walks on the P2P
network. To become part of a topically clustered neighborhood, i. e. to be sur-
rounded by similar peers, a peer Pk will periodically initiate the following pro-
cedure:
2 In this case, for the sake of simplicity, each peer contains exactly one label from an

ontology. See Section 5.1 for details.



Fig. 1. Unclustered network

1. Pk assesses its knows relation and decides whether it is in an unsuitable
neighborhood, i. e. on the average, its neighbors are too dissimilar from
itself:

1
kPk

∑
Pj∈{Pj |knows(Pk,Pj)}

sim(Pk, Pj) < minSimilarity (4)

2. If so, Pk sends a WalkMessage M, containing its expertise and a time-to-live
(TTL) value, into the network.

3. Message M is forwarded until TTL = 0; each forwarding peer appends its
own expertise to M .

4. If TTL = 0, M is sent back to the original sender Pk.
5. Pk collects the other peers’ expertises from M . It may find one or more

suitable neighbors in that set and decide to keep these in its own routing
index. If the routing index size is exceeded, entries for other – less similar –
peers may have to be dropped.

The forwarding in step 3 can be done in different ways:

Random Walk. The message M is forwarded randomly. This is the best one
can do if the network is not clustered yet.
Gradient Walk. At each peer Pi, the message M is forwarded to the neighbor
of Pi which is most similar to the original sender Pk of M . This is suitable if
the network already has a structure corresponding to the ontology (as shown in
Figure 2); in a random network, however, this strategy will get stuck in local
minima too easily.



Fig. 2. Clustered network
4.2 Routing Strategies

We have experimented with a number of routing strategies which promise to be
useful under the assumptions we made in the preceding sections:

Fixed Fanout Forwarding. The query is forwarded to a fixed number n of
neighbors; these are selected to be the n neighbors most similar to the query.
Threshold Forwarding. The query is forwarded to all neighbors which are
more similar to the query than a given threshold.
Fireworks. If the query is more similar to the expertise of the forwarding peer
than a given threshold, it is broadcast in the neighborhood of the forwarding
peer with a new TTL.
Fixed Fanout Random Forwarding. The query is forwarded to a fixed num-
ber of randomly selected neighbors.
Random Composite Strategy. A meta-strategy which wraps a number of
other strategies plus corresponding weights, and hands over each query to one
of the wrapped strategies which has been selected randomly according to the
weights. For example, if we wrap strategies A and B with weights 2 and 1,
respectively, A will get to handle twice as many queries as B.
Composite Strategy. A meta-strategy using a chain of responsibility [11] of
strategies; each strategy can claim that it has processed the query, or pass it to
the next strategy in the chain. Figure 3 shows an example of a composite strategy.
First the query is processed locally. Then, the Fireworks strategy gets to handle
it, broadcasting it if the necessary level of similarity is met. Otherwise, the query
is handled by the Random Composite Strategy, which randomly chooses to hand
it over to the Fixed Fanout Strategy.

This way, combinations of different routing strategies can be assembled flex-
ibly. In practice, this will be done by an expert who designs and implements
the actual P2PKM system. One can also imagine a P2PKM system learning
appropriate strategies over time (cf. outlook in Section 6.2).



Fig. 3. Chained routing strategies

5 Evaluation

5.1 Setting

As actual P2P networks cannot easily be instantiated with arbitrary numbers of
peers, different routing strategies etc., we conducted a number of experiments in
a simulation environment. In our experiments, we used 500 peers, each of which
was allowed to have a routing index of size 10. Each peer was assigned one
randomly chosen item from the SWRC ontology3, which acted both as content
and as expertise.

Rada [12] argues that the graph distance, i. e. the number of edges between
two entities in a semantic structure such as an ontology, is a valid metric of the
similarity of entities. Thus, the metric in our experiment was defined by shortest
paths in the graph of the SWRC ontology. Non-taxonomic relationships (such as
cooperatesWith) were given twice the length of taxonomic relationships such as
instanceOf or subclassOf. This means that taxonomic relationships bind entities
tighter that non-taxonomic ones. The distances between pairs of entities were
then divided by their average distance from the root concept; the motivation for
this is that two sibling concepts further down the hierarchy, say, Lecturer and
Professor, would be regarded as more closely related than sibling concepts at
the top of the hierarchy, such as Topic and Person.

The substrate each experiment started with was as a 10-regular random
graph, i. e. the knows relation of each peer was initialized with the 10 randomly
selected other peers. If not stated otherwise, the following parameters were used:

– fireworks strategy with broadcast threshold of 1 (meaning, broadcast only if
query matches peer exactly), broadcast TTL of 2

– if the fireworks strategy does not handle the query, it is forwarded to the
two best matching neighbors

– the query TTL was set to 5
– the minSimilarity was set to 0.7
– composite rewiring strategy which randomly chooses between random walk

or gradient walk rewiring with equal probability, both with a TTL of 5
– the starts of the rewiring processes at the peers were uniformly distributed

over the time interval [8000, 12000]; the time between invocations of the
rewiring processes was randomly selected from a normal distribution of 500
with a standard deviation of 100.

3 http://ontobroker.semanticweb.org/ontos/swrc.html



5.2 Clustering Coefficients

Fig. 4. Clustering coefficients over time,
for different minSimilarity values

Fig. 5. (Weighted) clustering coefficient
for minSimilarity = 0.7

Figures 4 and 5 show that the clustering coefficients γ increase as intended
as a result of the rewiring process. The influence of the minSimilarity param-
eter can be seen: the higher the demands of the rewiring peers are as to the
minSimilarity of their neighborhoods, the more the clustering coefficients in-
crease. The same holds for the weighted clustering coefficient γw, proving that
we are building a network of topically related clusters.

Furthermore, note in Figure 5 that the weighted clustering coefficient γw

increases much more than the clustering coefficient (a factor of 3.5 vs. 2.2),
relative to the values at the beginning. This is an indication that the clusters
that are formed actually consist of topically related peers.

5.3 The Influence of Clustering on Recall and Network Load

As can be seen in Figure 6, the recall of the queries sent by the peers increases as
a result of the rewiring – except for the extreme case with minSimilarity = 0.9,
which will be discussed in Section 5.4. In the best case for minSimilarity = 0.7,
an increase of 44% (0.27 vs. 0.39 recall) could be achieved.

At the same time, the number of messages needed per result decreases. Fig-
ure 7 shows the ratio between the number of messages needed to process each
query (query and response messages) and the number of items retrieved. At the
end of the rewiring process, about 9 messages are needed to retrieve one result,
as opposed to 14 at the beginning (a 36% decrease).

5.4 Clustering Too Much
While the previous section has shown that a certain amount of clustering is
beneficial for query routing, it is possible to cluster too much. Figure 6 shows
the recall for different values of the minSimilarity parameter (and thus, differ-
ent amounts of clustering as shown in Figure 4). We can see that for average
minSimilarity values of around 0.7, the level of clustering achieved is optimal.



Fig. 6. Recall over time, averaged over
10000 timesteps
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Fig. 7. Messages per result obtained, av-
eraged over 10000 timesteps

Lower values don’t yield much clustering and improvement in the querying per-
formance at all, while higher values tend to produce clusters which are too tight,
thus sacrificing inter-cluster connections. This can lead to “caveman worlds”,
where each cluster (cavemen in one cave) is very dense, with next to no connec-
tions to the outside world. For values of minSimilarity close to 1, the graph
will even be partitioned into unconnected components.

5.5 Characteristic Path Length
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Fig. 8. Characteristic path length over
time for different minSimilarity values

As we started from a regular ran-
dom graph, the characteristic path
length (CPL) of the network was quite
small from the outset [5]. Although a
high clustering coefficient and small
CPL are in many cases contradicting
goals (e. g. a hypercube or a random
graph have small CPLs, but also small
clustering coefficients), Figure 8 shows
that the characteristic path length was
not increased much in the rewiring
process, while the clustering coefficient
increased (see Section 5.2). For the
case yielding the best recall – namely, minSimilarity = 0.7 – the CPL increased
only about 2%. For a higher minSimilarity value, the CPL increase was larger.
This is an indication that in that case we cluster too much (cf. Section 5.4).

6 Conclusion and Outlook

6.1 Conclusion

In this paper, we have demonstrated how peers in an ontology-based P2P knowl-
edge management scenario can organize themselves into a network topology
which reflects the structure of the ontology – i. e., peers having similar contents



get to be close to each other in the network, thus forming clusters around com-
mon topics. We have provided simple algorithms which can be executed on each
peer without central control to create this kind of topology, and have shown that
a clustered topology is beneficial for query routing performance. We have also
demonstrated that clustering can be overdone, yielding poorer query results.

Furthermore, we have introduced the notion of a weighted clustering coeffi-
cient to measure if the clusters that are forming relate to common topics, and
provided interpretation of the routing performance with respect to the graph
structure of the emerging network.

6.2 Outlook and Future Work

– In Section 5, we used a simplified setting where each peer contained just one
entity out of an ontology. In real-world scenarios, each peer would contain a
complete knowledge base. Therefore, we need to address two open questions:
1. How can we aggregate the knowledge base of each peer into a reason-

ably small expertise? The expertise must express the essence of what
the knowledge base is about, but at the same time be small enough to
be efficiently used in making routing decisions. We are currently inves-
tigating the use of graph clustering techniques on knowledge bases in
order to partition them into meaningful clusters. From these clusters,
representatives for the content of the knowledge base can be selected.

2. If we have an expertise of more than just one content item: how can we
adapt the similarity function in order to be able to compare expertises
against each other or against queries?

– The methods described in this paper work well if one assumes that all peers
share the same ontology (at least, parts of one ontology large enough so that
the shared entities can be used to do the routing). This may or may not be
realistic, depending on the kind of community which wants to use this kind
of semantic P2P network. If the community was not a closely-knit one which
can easily agree on some standard ontology for the expected KM tasks, the
problems of emergent ontologies, ontology alignment and mapping, standard
upper ontologies etc. apply and would have to be solved.
Multiple groups of users, each of which agrees on a standard ontology, would
be quite easy to accommodate in a network as described here, however. The
use of a certain ontology could be incorporated into each peer’s expertise
and thus be considered in the routing process.

– Our framework for routing and clustering in P2PKM leaves a lot of room for
tuning parameters and combinations of strategies. In an implementation of
such a network for end-users, one would need to hide all of these parameters
and either find default values suitable for a wide range of possible network
states, or find ways for each peer to automatically determine reasonable
values, thus enabling the network as a whole to learn suitable parameters.
Furthermore, it is worth discussing which of the parameters sould be user-
settable. It could be necessary to limit users’ possibilities in order to prevent



users from accidentally or malevolently flooding the network with query
messages; on the other hand, a user should be able to express her preferences,
e. g. to trade off time against precision.

– The clusters in the network can be seen as communities of peers with com-
mon interests. Making these communities explicit would facilitate tasks such
as browsing: if a user finds that peer Pk contains interesting material, she
might want to browse the contents of other peers in the community of Pk.
Complementary to querying, browsing would provide a different way of ac-
cessing the knowledge available in the network. Maintaining and labeling
such communities in a decentralized manner would be an interesting exten-
sion of P2P knowledge management systems.
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