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Abstract. Locating contents is an essential function, but it presents a
very diÆcult and challenging problem for large-scale Peer-to-Peer (P2P)
systems. Many P2P systems, protocols, architectures, and search strate-
gies are proposed for this problem. In this paper, we focus on the self-
organization of a community structure based on user preferences for P2P
systems. We propose these methods to improve P2P search performance:
1) Extended Pong, 2) Pong Proxy, 3) QRP with Firework 4) Backward
Learning, and 5) Community Self-Organization Algorithm. We evalu-
ate the performance of the self-organized community network through
simulations. These results show that the self-organized community net-
work maintains a high query hit rate without over
ow. As an example
of implementation, we propose the Self-Organizable P2P Search Engine.

1 Introduction

Peer-to-Peer (P2P) protocols and applications such as Gnutella[1] and Freenet[2]
extend the power of Internet users. The current major P2P application is shar-
ing of illegal contents. In the future, P2P systems will be applied to distributed
search engines, knowledge management, and myriad Internet applications. How-
ever, P2P systems present many problems, one of which is Locating Contents.

In Gnutella protocol v0.4, a 
ooding algorithm[1] is used to locate contents.
Peer sends a Query tagged with a maximum Time-To-Live (TTL) to its all
neighbors on the overlay network. Each peer forwards the Query to its neighbors.
When the Query string partially or exactly matches a �le name stored locally,
the peer replies with the QueryHit. Though this algorithm is very simple and
robust even when peers are joining or leaving the system, it lacks scalability.
A system comprising a large number of peers is inundated with Queries even if
peers do not forward Queries that they have forwarded previously.

This paper proposes an approach to locating contents, a self-organization of
communities based on the user's preferences. It is very natural to introduce a
structure of community into P2P systems. Communities in the real world and
cyberspace are formed by people who have similar preferences. For example,
they form mailing lists, chat rooms, and Bulletin Board Systems (BBSs). The
members of each community share the common knowledges with each other. We
propose a new P2P protocol: TellaGate that can self-organize communities and
Self-Organizable P2P Search Engine based on TellaGate.
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Fig. 1. Self-Organizable P2P Search Engine and TellaGate Browser. (a) The proposed
Self-Organizable P2P Search Engine comprises 4 modules: i. Document DB, ii. Search
Engine, iii. Routing Engine, and iv. Connection Engine.

The remainder of this paper proceeds as follows: Section 2 proposes a Self-
Organizable P2P Search Engine; Section 3 gives a full detail of TellaGate proto-
col; Section 4 shows through simulations that a self-organized community net-
work maintains a high query hit rate without over
ow; and Section 5 concludes
the discussion and proposes future work.

2 Self-Organizable P2P Search Engine

We show the architecture of the Self-Organizable P2P Search Engine in Fig. 1
(a). The proposed system comprises the following 4 modules.

i. Document DB
The shared documents are stored on the Document DB. Each document has
a Globally Unique Identi�er (GUID).

ii. Search Engine
The Search Engine provides a full text search service. Keywords are extracted
from the shared documents using text mining techniques.

iii. Routing Engine

The Routing Engine resolves messages routing according to the Query Rout-
ing Protocol with Firework ( Sec. 3.2).

iv. Connection Engine

The Connection Engine controls the TCP/IP connections with other peers
according to the Community Self-Organization Algorithm ( Sec. 3.3).

In Fig. 1 (a), user accesses to the system by browser as shown in Fig. 1 (b).
The TCP connections between peers are recon�gured by TellaGate protocol, so
that the community structures are self-organized on overlay networks.

To implement the Self-Organizable P2P Search Engine, we propose a new
P2P protocol: TellaGate protocol. In the next section, we give a full detail of
TellaGate protocol.



(a) Gnutella Header.

Descriptor ID Payload
Descriptor

TTL Hop Payload Length

0 15 16 17 18 19 22

(b) Pong.

port IP Address Number of Files
Shared

Number of
Kilobytes Shared

0 1 2 6 115 10 13

(c) Extended Pong.

port IP Address

0 1 2 65 32005

PeerDigest

Fig. 2. Structure of message: (a), (b), and (c) are the Gnutella header, Pong, and
proposed extended Pong, respectively. (a) In Ping, the Payload Length is 0. That is,
Ping comprises only a header. (c) The proposed extended Pong includes a PeerDigest.

3 TellaGate Protocol

There are evident communities in some conventional client-server web applica-
tions such as mailing lists, chat rooms, and BBSs. These communities are main-
tained by centralized servers. On the other hand, decentralized and distributed
P2P systems have no such servers. In a social network, a so-called acquaintance
network[3], communities are frequently self-organized by local interactions. This
study implements local interactions to a decentralized P2P system using 1) Ping-
Pong and 2) Bloom �lters.[4] Next, we brie
y explain these key technologies.

3.1 Key Technologies

Ping-Pong In Gnutella protocol v0.4, a peer uses Ping to probe the network
actively for other peers. Gnutella protocol messages comprise a header and pay-
load. A Ping has only a header portion, as shown in Fig. 2(a). A peer receiving
a Ping forwards it to its neighbors and responds with a Pong, which contains
its own IP address and the Port number and the amount of data it is sharing
on the Gnutella network. The payload part of a Pong message is shown in Fig.
2(b). The number of Pings increases exponentially through replication and for-
warding, thereby 
ooding the network with Ping-Pongs.

Bloom Filter and QRP A Bloom �lter[4] is a quick and space-eÆcient data
structure for representing a set of N elements to support membership queries.
An array of M bits and K independent hash functions is used for a Bloom �lter.
A Bloom �lter may generate false positives. According to the analysis in [5], the
false positive rate is given as

f =
�
1� e�

K

r

�K
; (1)

where r represents the number of bits per element,M=N . Some exemplary values
of false positive rates are



M=N = 6 K = 4 f = 0:0561 M=N = 8 K = 6 f = 0:0215
M=N = 12 K = 8 f = 0:00314 M=N = 16 K = 11 f = 0:000458

We can choose a reasonable value of M=N and K by considering the expected
false positive rate.

Rohrs proposed a Query Routing Protocol (QRP)[6] for Gnutella networks.
In QRP, keywords are hashed and embedded in a Bloom �lter. The Bloom �lter
of each peer is sent and forwarded to its neighbors so that the Bloom �lter is
propagated throughout the network. Queries are routed according to the QRP
without a 
ooding algorithm.

3.2 Improvements

The above subsection brie
y explained Ping-Pong, Bloom �lters, and QRP. We
extend these important elements to improve the P2P system performance.

Extended Pong We extend a Pong message so that we can use Bloom �lters
to self-organize communities. The Extended Pong (ExPong) includes a Bloom
�lter as shown in Fig. 2(c). In web cache systems[7], a Bloom �lter is called
a Summary Cache[8] or Cache Digests[9]. In this paper, a Bloom �lter of the
ExPong is called a PeerDigest. The PeerDigest of Peer i is represented as digesti.

We restrict the shared contents within such document �les having extensions
as .html, .ps, and .pdf. Shared .pdf or .ps �les are transformed into text �les
by pdftotext or ps2text. Keywords are extracted from these text �les using text
mining techniques.[10] It is considered that digesti shows the preference of the
Peer i because these keywords are embedded into the PeerDigest.

PeerDigest Cache and Pong Proxy In Gnutella protocol v0.6[1], a hierar-
chical structure is de�ned as Ultra Peer and Leaf Peer. The Gnutella backbone is
dominated by connections of Ultra Peers because Leaf Peer connects only to Ul-
tra Peers. Ultra Peer serves as a proxy or server like Clip2 Re
ector or Napster,
thereby reducing redundant Pings and Queries.

In this paper, we propose a Pong Proxy instead of a hierarchical structure to
reduce Ping-Pongs. Each peer has two PeerDigest Caches: cachel(l = 1; 2). Pairs
(addressj ; digestj) are cached into the cachel, where addressj is ipj :portj of Peer
j. The �rst and second neighbors of Peer i are represented as nbri;l(l = 1; 2).
The index l of cachel and nbri;l indicates the degree of neighbors. If Peer j
receives a Ping from Peer i, Peer j responds with an ExPong including digestj .
Moreover, Peer j responds with ExPongs including digestk(k 2 nbrj;1). Peer
i caches digestj and digestks into cachei;1 and cachei;2, respectively. In this
manner, Peer j plays the role of Pong Proxy.

If each peer sends Pings to all �rst neighbor peers, as in Gnutella v0.4,
the network load will increase as a result of the ExPongs because the ExPong
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Fig. 3. QRP with Firework and Backward Learning. Peer A sends the Query to Peer
B. Query routing is decided by check(digestj ; q)(j 2 nbrB;1) at Peer B. q, qh, and qe
show the Query, QueryHit, and QueryError, respectively.

size is usually very large. We also improve the Ping-ExPong protocol in the
following respect. Each peer sends Pings to MaxCon peers that are selected
randomly from cache1. The peer responds with MaxCon ExPongs that are
selected randomly from cache1. Hence, the upper bound for the total size of
ExPongs that a peer will receive is given as

upper bound = MaxCon� (1 +MaxCon)

�SizeExPong: (2)

It is fair to add that the Gnutella peer also sends and forwards Pings toMaxCon
peers in simulations of Section 4.

QRP with Firework According to the Pong Proxy, each peer has information
about the contents shared by its neighbors. We use the PeerDigests for query
routing.

In Fig. 3, Peer A sends a Query: q, including search keywords, to Peer B. If
Peer B has no content for the Query, Peer B must forward the Query. Routing
of the Query is implemented as follows: Peer B checks whether keywords of q
are in digestj(j 2 nbrB;1) or not. It is given as

check(digestj; q) = ftrue; falseg: (3)

If keywords exist in digestj(j 2 nbrB;1), Peer B forwards the Query to Peer j.
In Fig. 3, Peer B forwards the Query to Peers C, D, and F. If check(digestj ; q)
is false for all �rst neighbors, the Query is forwarded to Peer j(2 nbr1), which
is selected randomly. This process is equivalent to a Random Walk Search.



Backward Learning In Fig. 3, Peer B forwards the Query to Peers C, D, and
F. If Peer F has no content for the Query and is in Dead Lock, Peer F returns
QueryError: qe to Peer B. According to the QueryError, Peer B modi�es digestF
as

digest
(m)
F = 0; m = hk(q) (k = 1; � � � ;K);

where digest(m) is the m-th bit of digest and h is a hash function. On the other
hand, if Peer C has content sought by the Query, Peer C replies to Peer B with
QueryHit: qh. The QueryHit: qh is backwarded to the Peer A by way of Peer B.
According to the QueryHit, each mediate peer and originator routed by random
walk strategy modi�es digest as

digest
(m)
j = 1; m = hk(q) (k = 1; � � � ;K);

where j(2 nbri;1) shows the next or last mediate peer.

3.3 Community Self-Organization Algorithm

This subsection presents the Community Self-Organization Algorithm (CSOA).
The above section mentioned that the PeerDigest shows the respective prefer-
ences of peers. Therefore, we can use PeerDigest to self-organize communities
based on respective users' preferences.

We must de�ne the similarity of the preference between Peer i and Peer j,
simij . That similarity is de�ned as

simij � count(digesti ^ digestj); (4)

where ^ is an AND operator and count(�) is a function that counts bits with 1.

Self-organization is implemented as follows. Firstly, Peer i calculates the sim-
ilarity simi;j between itself and the second neighboring Peers j(2 nbri;2). Sec-
ondly, Peer i selects the Peer j that has the largest value of simi;j . Thirdly, if the
number of current connections Coni is greater than the maximum connections
MaxConi, then Peer i randomly selects Peer k(2 nbri;1) to disconnect. Finally,
Peer i disconnects Peer k and connects to Peer j. The pseudo-code of this self-
organization algorithm is shown in Fig. 4. This algorithm is very simple and
requires only local information, that is, the PeerDigests of the �rst and second
neighbor peers. Moreover, this local information is obtained by local interactions:
Ping-ExPong and Pong Proxy.

4 Simulations

Simulator of complex systems such as Gnutella is not an easy task. We provided
a simple setup for the following simulations.



procedure Self-Organization (Peer i)

calculate simij for all Peers j 2 nbri;2
nbri;2 = sort nbri;2 according to simij

Peer j =top of nbri;2
connect to Peer j
add Peer j to nbri;1 and cachei;1
remove Peer j from nbri;2 and cachei;2

if( Coni > MaxConi)
Peer k = select from nbri;1 at random
disconnect Peer k
remove Peer k from nbri;1 and cachei;1

Fig. 4. Pseudo code of the proposed Community Self-Organization Algorithm. In the
following simulations of Section 4, MaxCon = 4.

{ Initial Topology

The initial topology of a network is given as a random network, as shown
in Fig. 10(a). The network comprises 500 peers. Each peer has four random
outgoing links; therefore MaxConi = 4. The number of peers is constant in
the following simulations. We also simulated cases wherein the network is
growing, but identical results to these were obtained.

{ Community

All peers are classi�ed into �ve communities. Each peer is assigned randomly
to one of these communities. There are no explicit community structures in
the initial network topology as shown in Fig. 10(a).

{ Contents and Keywords

Each keyword is an integer value for simplicity.[2] The number of keywords,
N , is 500. The keywords are divided to �ve classes: KCi(i = 0; � � � ; 4). Class
KCi comprises the inherent 100 keywords and 20 keywords which belong to
the class KCi+1(KC5 = KC0). The content associated with each keyword
is an integer equal to the keyword.

{ PeerDigest

The hash functions are built by �rst calculating the MD5 signature of the
keyword string, which yields 128 bits, then dividing the 128 bits into four
32-bit unsigned integer values, then �nally taking the modulus of each 32-bit
unsigned integer value by the PeerDigest size M [8]. MD5 is a cryptographic
message digest algorithm that hashes arbitrary length strings to 128 bits. The
bits per element M=N is set to four in the following simulations; therefore,
the theoretical false positive rate is 0:160.

{ Local Storage

In real P2P systems, most users have no shared local storage; they are called
Free Riders[11]. However, in simulations, peers have the same local storage



capacity for simplicity. We de�ne the local storage capacity factor as

� �
LSC

NC
; (5)

where LSC and NC are the local storage capacity and the number of con-
tents assigned to a community, respectively. If � � 1, each peer can store all
contents shared by its own community on the local storage. If � < 1, LRU
cache replacement is used for stored content.

{ Uploader and Downloader

All local storage locations are initially empty. Contents are provided by spe-
ci�c peers called Upload-Only Members (UOMs). The remaining peers are
Download-Only Members (DOMs). We assumed that the number of UOMs
is 10% of all peers. In Fig. 10(a), UOM and DOM peers are shown as big
and small circles, respectively.

{ Message Size and Bu�er

The TTL of Ping and Query are set to five. We de�ne the size of each mes-
sage as shown in Table 1. According to the above assumption,MaxConi = 4,
the upper bound eq.(2) is 0:64 M-byte. The message bu�er, that is, the num-
ber of messages that Peer i can process in a single time step, is represented
as mbi. Each peer has the same size mb. If the number of messages received
is greater than the size of mb, the over
owed messages are dropped.

Message Type Message Size [byte]

Ping 22
Pong 35
ExPong 32027
Query 50
QueryHit 100
QueryError 50

Table 1. Message size.

{ Time Step

Each peer generates a Query and Ping every 10 and 1000 time steps. CSOA
is applied every 1000 time steps.

4.1 Performance

We compared the performance of TellaGate with Gnutella protocol v0.4. Re-
spective performances were evaluated by the success rate of search, network
load, average HOP of the successful Query, and the average number of Query-
Hit. We implemented several simulations under various parameter values, that
is, the local storage capacity factor � (0 < � � 1:0) and the message bu�er
mb (10 � mb � 100). Due to limitation space, this paper describes results of
simulations under � = 1:0 or 0:25 and mb = 100 or 20.
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Fig. 5. Performance: success rate.
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Fig. 6. Performance: network load.

Results represent an average of 10 simulations; they are shown in Figs. 5-8.
In those �gures, results of Gnutella v0.4 and TellaGate are shown by the broken
line with open squares and the solid line with �lled squares, respectively.

The success rates converge to 1.0 for Gnutella v0.4 and TellaGate with � =
1:0, mb = 100, as shown in Fig. 5(a). Moreover, the average HOP converges to 0,
as shown in Fig. 7(a) because each peer has local storage of suÆcient capacity to
store the contents and a message bu�er that is suÆcient to receive the messages.
However, Gnutella v0.4 induces a 
ood of Ping-Pongs and Queries in an early
time step as shown in Fig. 6(a). The network load of Gnutella v0.4 converges to
the lower value after the peak. When the size of the local storage is limited, the
network load of Gnutella v0.4 converges to the higher value, as shown in Fig.
6(b). When the size of the message bu�er is also limited, as many Queries are
dropped out; the average number of QueryHit decreases and the success rate
converges to the lower value of 0.68, as shown in Fig. 8(c) and Fig. 5(c).

TellaGate does not engender a rapid increase of the network load. Network
loads of TellaGate converge to the lower value, as shown in Fig. 6. In Fig. 5,
even though the size of local storage and message bu�er are limited, the success
rate of TellaGate converges to 1.0.

We also simulated TellaGate without the CSOA to clarify the reason why
the self-organized community network retains the high success rate value: the
network retains the initial topology, as shown in Fig. 10(a) and the routing



 0

 1

 2

 3

 4

 5

 0  10000  20000  30000

A
ve

ra
ge

 H
O

P

Time Steps

Gnutella
TellaGate

 0

 1

 2

 3

 4

 5

 0  10000  20000  30000

A
ve

ra
ge

 H
O

P

Time Steps

Gnutella
TellaGate

 0

 1

 2

 3

 4

 5

 0  10000  20000  30000

A
ve

ra
ge

 H
O

P

Time Steps

Gnutella
TellaGate

(a) � = 1:0, mb = 100. (b) � = 0:25, mb = 100. (c) � = 0:25, mb = 20.

Fig. 7. Performance: average value of HOP.
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Fig. 8. Performance: average number of QueryHit.

of Queries is implemented by QRP with Firework. Results of the success rate,
network load and average number of QueryHit are shown in Fig. 9. These three
values of TellaGate without the CSOA are lower than the values of the original
TellaGate.

According to these results, we inferred the following answer to the question
above. For TellaGate without the CSOA, the probability that the �rst neighbors
have the same preference is a low value; thereby, the routing strategy is equivalent
to a Random Walk Search. If � � 1, the search strategy is improved gradually to
QRP with Firework by backward learning based on QueryError and QueryHit.
However, if � < 1, as the contents on the local storage are replaced by the LRU
replacement policy, the PeerDigest will be inconsistent with the current contents
shared by the distant peers. Many Queries are dropped out according to the TTL
limitation.

On the other hand, in the self-organized community network shown in Fig.
10(b), each peer has several �rst neighbors that have identical preferences. As
QRP with Firework replicates and forwards a Query based on eq.(3), the proba-
bility that the Query is replicated is higher than in the random network. Hence,
the probability of locating contents will be a high value. This e�ect that is
induced by the community structure and replication of Query is called the Com-
munity E�ect.
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Fig. 9. The e�ect of community structure: CSOA is the Community Self-Organization
Algorithm.

5 Conclusion

This paper proposed the Self-Organizable P2P Document Search Engine and
a new P2P protocol: TellaGate protocol. Simulation results show that the self-
organized community network maintains a high query hit rate without over
ow.
However, we did not consider that peers often go o�ine in the above simulations.
Therefore, future work will address simulations under such dynamic conditions.

The proposed Community Self-Organization Algorithm is based on local in-
teractions. Recently, Davidsen and co-workers proposed a model of acquaintance
networks.[19] In their model, the network is self-organized from an initial ran-
dom network to a Small World network[17][18] characterized as having: 1) short
path length, 2) high clustering[17], and 3) scale-free or exponential link distribu-
tions[18]. The proposed CSOA in this paper and Davidsen's algorithm are based
on similar local interactions; indeed, the Self-Organized Community Network has
short path length (L ' 3:0) and a high clustering (C ' 0:14) property. However,
in Davidsen's model, not every node has an internal state such as PeerDigest.
How do Small World properties in
uence the self-organization processes? Future
works will address this question.
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